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Abstract

Convex optimization with feedback is a frame-

work where a learner relies on iterative queries

and feedback to arrive at the minimizer of a con-

vex function. The paradigm has gained signifi-

cant popularity recently thanks to its scalability

in large-scale optimization and machine learning.

The repeated interactions, however, expose the

learner to privacy risks from eavesdropping ad-

versaries that observe the submitted queries. In

this paper, we study how to optimally obfuscate

the learner’s queries in convex optimization with

first-order feedback, so that their learned opti-

mal value is provably difficult to estimate for the

eavesdropping adversary. We consider two formu-

lations of learner privacy: a Bayesian formulation

in which the convex function is drawn randomly,

and a minimax formulation in which the function

is fixed and the adversary’s probability of error is

measured with respect to a minimax criterion.

We show that, if the learner wants to ensure the

probability of the adversary estimating accurately

be kept below 1/L, then the overhead in query

complexity is additive in L in the minimax for-

mulation, but multiplicative in L in the Bayesian

formulation. Compared to existing learner-private

sequential learning models with binary feedback,

our results apply to the significantly richer fam-

ily of general convex functions with full-gradient

feedback. Our proofs are largely enabled by tools

from the theory of Dirichlet processes, as well as

more sophisticated lines of analysis aimed at mea-

suring the amount of information leakage under a

full-gradient oracle.
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1. Introduction

Convex optimization with feedback is a paradigm in which

an learner repeatedly queries an external data source in

order to identify the optimal solution of a convex function.

The interactive nature of the framework is a double-edged

sword. On the one hand, the iterative optimization methods

offers inherent scalability since the learner is not required

to possess the entire function from the start. As such, it

has found applications in large-scale distributed machine

learning systems, such as Federated Learning (McMahan

et al., 2017; McMahan & Ramage, 2017), where a learner

interacts with millions of individual users (data providers)

in order to perform training. On the other hand, the repeated

interactions with external entities exposes the learner to

potential adversaries who may steal the learned model by

eavesdropping on the queries exchanged during the training

process, a woe especially poignant when the system involves

a large number of data providers, many of which could be

an eavesdropper in disguise ((Juuti et al., 2019), (Kairouz

et al., 2019, Section 4.3)).

To address challenges in protecting the learner’s privacy, a

recent line of research proposed the framework of Private

Sequential Learning, aimed at quantifying the extra query

complexities the learner has to suffer in order to ensure the

submitted queries provably conceal the learned value (Tsit-

siklis et al., 2018; Xu, 2018; Xu et al., 2019). The model

is centered around a binary search problem where a learner

tries to estimate an unknown value X∗ ∈ [0, 1] by sequen-

tially submitting queries and receiving binary responses,

indicating the position of X∗ relative to the queries. Mean-

while, an adversary observes all of the learner’s queries but

not responses, and tries to use this information to estimate

X∗. The learner’s goal is to design a querying strategy with

a minimal number of queries so that she can accurately esti-

mate X∗ while ensuring that the eavesdropping adversary

cannot reliably estimate X∗. Progress has been made to-

wards understanding the optimal querying strategies in this

problem, and upper and lower bounds on the query complex-

ity have been developed that differ by additive constants in

the case where the learner’s queries are noiseless (Tsitsiklis

et al., 2018; Xu et al., 2019), and are order-wise optimal in

the case of noisy queries (Xu et al., 2019).

While the original binary search formulation provides valu-
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able insights, its simplifying assumption that the learner

only has access to binary feedback is a severe restriction

when it comes to modeling convex optimization. Indeed,

most real-world applications provide the learner access to

significantly richer feedback such as a full gradient (e.g.,

model training in machine learning). We elaborate further

on the potential applications of our model in Section 4.

The main purpose of the present paper is to take a step

towards closing this gap by studying learner-private opti-

mization with general convex functions and a full-gradient

oracle. In a nutshell, our results demonstrate that the most

prominent features of the query complexity in the binary

search model extend gracefully to the general convex op-

timization setting. However, to establish that this is the

case is far from trivial. A major difficulty stems from the

significantly enriched functional class: unlike in a binary

search problem where the ground truth is fully described

by a scalar (location of X∗), we will see that the private

query complexity crucially depends on the shapes of the

convex functions in a family, and not just the locations of

their minimizers.

This added richness necessitates the development of both

new problem formulations and analytical techniques. We

propose in this paper two new learner-privacy frameworks:

a new minimax formulation, as well as a Bayesian formu-

lation that generalizes earlier Bayesian private sequential

learning to a full-gradient oracle. A number of new tech-

niques are developed to analyze query complexity under

these formulations: we introduce tools from the theory of

Dirichlet processes to construct priors that convey the rich-

ness of the model. Tools from nonparametric Bayes theory

are deployed for the analysis under such prior distributions.

In addition to an enriched functional class, another funda-

mental challenge lies in the richness of the feedback. Unlike

the binary search model, the responses aligns with the loca-

tion of the query and the shape of the unobserved convex

function to a great extent. In the face of a more powerful

learner equipped with a full-gradient oracle, we rely on a

more sophisticated line of analysis to gauge the amount of

information the responses reveal. We will discuss in more

detail these ramifications in Section 4.

Relation to private information retrieval (PIR) and pri-

vate function retrieval (PFR) Our model formulation

bears some similarities with the PIR (Abadi et al., 1989;

Chor et al., 1995; Gasarch, 2004) and PFR (Mirmohseni &

Maddah-Ali, 2018) framework. However, there are major

distinctions which result in completely different dynamics

between the learner and the adversary. In PIR, the database

is assumed to contain a vector (xi)i≤N . The learner’s goal

is to learn the evaluation xi at some index i by querying the

database, while preventing the database (adversary) from

learning the value of i. The PFR problem is formulated sim-

ilarly, except that the database is indexed by functions. Note

that in PIR/PFC, the private index is assumed to be known

to the learner a priori. In contrast, in our framework, the

private information X∗ is something the learner herself is in

the process of discovering. As a result, our problem is posed

as a sequential learning problem. It has natural applications

in model stealing attack prevention, where eavesdropping

adversaries attempt to steal the model parameters by par-

ticipating in the model training process. The fundamental

difference between the two settings also leads to completely

different techniques for analysis. For us, privacy is ensured

by utilizing the adversary’s lack of knowledge on the re-

sponses, which is not the case in PIR/PFC.

Relation to data-owner privacy models Similar to Pri-

vate Sequential Learning, the private convex optimization

problem we consider diverges significantly from the existing

literature on differentially private iterative learning (Song

et al., 2013; Abadi et al., 2016; Agarwal et al., 2018; Jain

et al., 2012; Melis et al., 2019), a key difference being that

the latter focuses on protecting data owners’ privacy rather

than learner’s privacy. To protect data owners’ privacy, the

notion of differential privacy (Dwork, 2008) is often adopted

and privacy is often achieved by injecting calibrated noise

at each iteration of the learning algorithms. In contrast,

our work focuses on preventing the adversary inferring the

learned model, which is conceptually closer to recent studies

of information-theoretically sound obfuscation in sequential

decision-making problems (Fanti et al., 2015; Luo et al.,

2016; Tsitsiklis & Xu, 2018; Erturk & Xu, 2019; Tang et al.,

2020b). See (Xu et al., 2019) for a comprehensive discus-

sion on the distinction between data-owner privacy models

and this line of work.

2. The Model: Learner-Private Convex

Optimization

We now introduce our model, dubbed Learner-Private Con-

vex Optimization. The emphasis on the learner’s privacy

here is to distinguish our model from other forms of private

sequential learning, especially those that focus on protecting

the privacy of data owners (See proceeding discussion in

the Introduction).

Learner Let F be a family of R-valued convex functions

with domain [0, 1], such that all elements in F admit a

unique minimizer. Suppose there is an unknown truth f∗ ∈
F with the minimizer X∗ := argminx f

∗(x). Fix n ∈ N.

Our decision maker is a learner who wants to identify X∗

by sequentially submitting a total of n queries in [0, 1] to an

oracle. For the ith query, qi, the oracle returns a response ri
that is equal to the gradient of f∗ at q:

ri = (f∗)′(qi). (1)
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If f∗ is not differentiable at qi, then ri is an arbitrary subgra-

dient of f∗ at qi. We assume that the learner is allowed to

introduce outside randomness, in the form of a random seed

Y that takes value in a finite discrete alphabet. Formally,

we denote by φ the learner’s strategy, which consists of

a sequence of mappings φ0, φ1, ..., φn−1 such that the ith
query is generated as a function of all previous responses

and the random seed:

qi = φi−1(r1, ..., ri−1, Y ). (2)

Once the querying process is terminated, the learner con-

structs an estimator of the optimizer X∗, X̂ , based on the n
responses. We say that the learner strategy φ is ε-accurate,

if

Pf

{∣∣∣X̂ − x
∣∣∣ ≤ ε/2

}
= 1, ∀f ∈ F , (3)

where x is the minimize of f and the Pf indicates the in-

duced probability law when the truth f∗ is equal to f , and

the probability is measured with respect to the randomness

in the random seed, Y .

Adversary Meanwhile, an adversary is trying to learn

X∗ by eavesdropping on the learner’s queries: we assume

that the adversary observes all n queries submitted by the

learner, but not their responses. Denote by X̃ the adver-

sary’s estimator, which is a (possibly random) function of

(qi)i=1,...,n. Wary of such an adversary, the high-level ob-

jective of the learner are to (1) generate a query sequence

that is largely “uninformative” towards X∗, and (2) at the

same minimizing the number of queries needed, n.

We next formalize in what sense a learner’s strategy can

be private. Generally speaking, a learner strategy is private

if we can ensure that the adversary’s estimator X̃ is not

accurate. Importantly, different definitions of the adver-

sary’s accuracy will lead to drastically different definitions

of privacy, and consequently, distinct algorithms, guarantees

and domains of applications. In this paper, we will analyze

two privacy metrics, Bayesian and minimax, that parallel

the two paradigms in the statistics literature. The Bayesian

formulation extends the Bayesian private learning model in

(Tsitsiklis et al., 2018), while the minimax formulation is

new.

Minimax The truth f∗ is a deterministic but unknown

function in F . We say that a learner strategy φ is (δ, L)-
private if

sup
X̃

inf
f∈F

Pf

{∣∣∣X̃ − x
∣∣∣ ≤ δ/2

}
≤ 1/L, (4)

where the probability is measured with respect to the internal

randomness employed by the learner’s querying strategy

and that used in the adversary’s estimator. In other words,

the learner strategy is considered private if the adversary’s

minimax risk is large.

Bayesian The truth f∗ is drawn from a prior distribution

π, a probability distribution over F . We say that a learner

strategy φ is (δ, L)-private if

sup
X̃

P

{∣∣∣X̃ −X∗
∣∣∣ ≤ δ/2

}
≤ 1/L, (5)

where the probability is measured with respect to all random-

ness in the system, including the prior π and any internal

randomness employed by the learner’s querying strategy

and the adversary’s estimator.

Private query complexity Finally, we have come to the

main metric of interest. In both the minimax and the

Bayesian formulations, we define the optimal query com-

plexity, N(ε, δ, L), as the least number of queries necessary

for there to exist an ε-accurate learner strategy that is also

(δ, L)-private:

N(ε, δ, L) =min{n : ∃φ with at most n queries,

that is ε-accurate and (δ, L)-private}.

3. Main Results

3.1. Minimax formulation

We will assume that the function class F satisfies the fol-

lowing assumption:

Assumption 1 (Complexity of F ). Fix f ∈ F and interval

I ⊂ [0, 1] that contains the minimizer of f . Then, for every

x ∈ I , there exists g ∈ F such that g is minimized at x, and

the gradient of f and g coincide outside of I .

Assumption 1 is needed to rule out trivial cases where a

learner may exactly pinpoint the location of the minimizer

solely by looking at far-away gradients. We show in Section

5 that this richness assumption on F is in some sense neces-

sary. Examples of function classes that satisfy Assumption 1

include the set of all convex functions on [0, 1], and the set

of all piecewise-linear convex functions on [0, 1]. The next

theorem is our main result for the minimax formulation:

Theorem 1 (Minimax Query Complexity). Assume that F
satisfies Assumption 1. If 2ε ≤ δ ≤ 1/L, then1

2L+log
δ

ε
−2 ≤ N(ε, δ, L) ≤

{
2L+ log δ

ε if L ≥ log 1
δ

L+ log 1
ε o.w.

.

Note that if there were no privacy consideration, the min-

imax optimal query complexity would be log(1/ε). Thus

under the minimax formulation, a higher level of privacy L
leads to an additive overhead in the optimal query complex-

ity, that is at most about 2L.

1Here and subsequently log refers to logarithm with base 2.
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Note that this is substantially higher than the minimax set-

ting where such overhead is only additive in L. When

α→ 0, F converges to a step function and our query com-

plexity bounds recover the existing ones in the binary search

problem (Xu, 2018), showing that N(ε, δ, L) ∼ L log 1
ε as

ε→ 0 for fixed δ, L.

4. Discussion

In this section, we examine some real-world applications

of our privacy model and discuss some of the most salient

features of our main results and modeling assumptions.

Motivating examples A learner naturally suffers from pri-

vacy breaches if the learning process involves interactions

with third-party users. An example would be the afore-

mentioned Federated Learning framework. A typical Fed-

erated Learning model training process can be posed as

iterative optimization of some unknown function. Iterations

of model updates are generated from the feedback from a

large number of users (see e.g. the FederatedAveraging

algorithm (McMahan et al., 2017)). Since the model up-

dates (queries) are broadcasted to the participating users, the

learner is exposed to eavesdropping attacks. Due to the high

cost of large-scale model training, it is of great importance

to protect the learner from such privacy breaches, and do so

at a minimal cost (Kairouz et al., 2019).

Another potential application is pricing optimization, where

the goal is to learn the optimal release price of a product by

conducting market experiments at test price points (queries).

See (Xu et al., 2019; Tsitsiklis et al., 2018) for more de-

tailed discussions on the Federated learning and pricing

optimization examples.

Given the close connection between convex and monotone

functions, our work can also be applied to learning mono-

tone functions, for example to clinical dose-response stud-

ies (Ramgopal et al., 1993; Bornkamp & Ickstadt, 2009). In

dose-response analysis, the potency curve µ(x) is a mono-

tone function that models the treatment effectiveness as a

function of the dosage. An important problem is to estimate

the minimum effective dose (MED)

MED = min
x

{x : µ(x) > µ(0) + ∆}

for some threshold ∆. Note that the MED is the minimizer

X∗ of some unknown convex function f∗ (e.g. f∗(x) =∫ t
0
µ(t)dt− [µ(0)+∆]x). We also remark that the Dirichlet

process is widely used in isotonic regression for modeling

monotone functions (Lavine & Mockus, 1995; Bornkamp

& Ickstadt, 2009), as we do when modeling the gradient of

the convex function.

Applying the Bayesian and Minimax privacy criteria

Our results show that the two privacy criteria lead to dis-

tinct query complexity scalings, so it would be instructive to

understand in what application domain each metric is most

applicable. We expect the Bayesian formulation to be most

relevant in data-driven machine learning and optimization

with feedback such as in Federated Learning and pricing

optimization; the aforementioned dose-response analysis is

also a natural application of the Bayesian formulation due

to the close connection between potency curves and convex

functions. The minimax formulation is a new metric pro-

posed in this paper. One interesting application is in law and

criminal justice, where a prosecutor should have to prove

that the accuracy of any conclusion drawn from evidence

holds up regardless of the value of a certain hidden parame-

ter (Young et al., 2001). Other potential applications include

autonomous driving, where the performance guarantee of

an estimator needs to be valid in the worst case, for the sake

of public safety.

Comparisons with private sequential learning As men-

tioned in the Introduction, our convex optimization frame-

work generalizes the Private Sequential Learning (PSL)

model. Recall that in the PSL framework, the responses

are binary and only indicate whether the minimizer is to

the left or right of a given query; this is equivalent, in our

setting, to returning only the sign of the gradient. There

are several major differences that distinguish the convex

optimization framework from the PSL model. First and

foremost, the learner now has access to the entire gradient

instead of only its sign. A most direct implication of this

enriched information structure is that, when analyzing the

amount of information leakage of a learner strategy, we will

have to keep track of the distributions over target functions,

as opposed to only the minimizers, as was the case in PSL.

Moreover, when the learner has access to full gradients, it

is in principle possible for the learner to gather information

about the minimizer’s precise location even from queries

that are submitted far away from the minimizer, which was

not possible within bisection search. For instance, if the

underlying target function is known to be quadratic, then

two queries placed anywhere are sufficient to uncover the

minimizer. To address these complexities, our goal is to

precisely measure the amount of information about the min-

imizer that the learner and adversary may obtain from a

given sequence of queries. We will do so both by develop-

ing more sophisticated information theoretic arguments, and

by exploiting structural properties of the Dirichlet process.

Open questions Our results leave open a number of ques-

tions. For the Bayesian query complexity in one dimen-

sion, there remains a gap between the leading constants

in the upper and lower bounds, in the regime where α is

bounded away from zero. Generalizing the main theorems

to a multi-dimensional setting, where x ∈ R
d, d ≥ 2, is also

interesting and practically relevant. We take a first step in

this direction by extending our results to multi-dimensional
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separable functions (see supplementary material), while the

general case with non-separable objective functions remains

open and appears to be challenging. Our problem formu-

lation only considers first-order feedback. An interesting

direction is to consider convex optimization with more gen-

eral types of feedback, e.g., bandit feedback (Agarwal et al.,

2013).

A different notion of minimax privacy in (Tang et al.,

2020a) A recent work (Tang et al., 2020a) also aims to

extend the private sequential learning model of (Tsitsiklis

et al., 2018) to convex optimization. They use a different

notion of minimax privacy criteria that bear some superfi-

cial similarities to ours. However, the definition of privacy

in (Tang et al., 2020a) contains crucial errors that render

it vacuous, in the sense that there cannot exist any private

learner strategy satisfying that definition. To be precise,

here is Definition 2 of (Tang et al., 2020a): fix ε, δ ∈ (0, 1).
A learner strategy is said to be (ε, δ)-private if for any ad-

versary estimator X̃ and any truth f ∈ F ,

Pf (err(X̃, f) ≤ ε) ≤ δ, (7)

where err(·, ·) is a certain error function which measures

the discrepancy between the adversary estimator and the

true minimizer. For instance, in our example err(X̃, f) =

|X̃ − argmin f(x)|.

The problem with this privacy definition is that it can never

be satisfied by any learner strategy. Indeed, for any f ∈ F
with minimizer x∗, there always exists an adversary estima-

tor that trivially yields zero estimation error with probability

one: simply set X̃ = x∗, without even taking into account

the queries. Under this trivial estimator, we automatically

have Pf (err(X̃, f) = 0) = 1, so (7) cannot possibly hold

uniformly across all adversary estimators and all f . Unfor-

tunately, this would further suggest that the analysis and

conclusions in (Tang et al., 2020a) contain errors as well.

5. Proof of Main Results

We present in this section the proof sketch of our main

results and defer the full proof to the supplementary material

due to the space constraint.

5.1. Proof sketch under the Bayesian setting

Proof of the upper bound in Theorem 2. The upper bound

is established by analyzing a constructive algorithm. The

key challenge is that the prior distribution on X∗ is always

non-uniform under the Dirichlet process model. In partic-

ular, we can no longer simply apply the replicated search

strategy from (Xu et al., 2019), since the non-uniform distri-

bution of X∗ provides the adversary with additional prior

information.

To address this difficulty, our key algorithmic idea is to find

L intervals that occupy the same prior mass, while at the

same time are at least δ-separated from each other. One of

these intervals contains the true value X∗. On each of the

otherL−1 intervals, we sample a proxy forX∗ according to

the conditional distribution of X∗ restricted to the interval.

Let ν denote the distribution of X∗. For an interval

I ⊂ [0, 1], write νI for the probability distribution of ν
conditioned on I , i.e., dνIdν (x) = 1{x ∈ I}/ν(I). We de-

sign the following multi-phase querying strategy to attain

the desired upper bound.

Algorithm 1 Querying Strategy under the Bayesian Setting

1: Recursively query the median of the posterior distribu-

tion of X∗, until it is supported on an interval I with

ν(I) ∈ [2δLHα, 4δLHα].
2: Let κj be the j/L quantile of νI for j = 0, 1, ..., L and

let Ij = [κj−1, κj ] for j ∈ [L]. Query κ1, ..., κL−1 and

identify j∗ for which f ′(κj∗−1) ≤ 0 and f ′(κj∗) > 0
so that Ij∗ contains X∗.

3: Query the median mj of νIj for j ∈ [L]. If f ′(mj∗) >
0, let Jj = [κj−1,mj ] for all j; otherwise let Jj =
[mj , κj ].

4: For all j 6= j∗, sample Xj ∼ νJj independently. De-

note Xj∗ = X∗. For j = 1, ..., L, run the regular

bisection search on Jj to locate Xj up to ε-accuracy.

Phase 1 runs the median-based bisection search, which

is equivalent to the regular bisection search on U =
Fν(X

∗) ∼ Unif[0, 1], where Fν is the CDF of ν. Note

that this step is always possible under the assumption

2δLHα ≤ 1. Phase 2 divides I intoL subintervals I1, ..., IL
with equal ν-probability and determines Ij∗ containing X∗.

Phase 3 is the key to ensure adequate separation between

the subintervals {Jj}j∈[L]. Phase 4 serves to achieve the

ε-accuracy while obfuscating the adversary.

The querying strategy outlined in Algorithm 1 is clearly

ε-accurate by design. We now show that it is also (δ, L)-
private. The high-level proof idea is to consider an adversary

who has access to X1, ..., XL. Using a genie-aided argu-

ment, we argue that this adversary is stronger than the one

who only has access to the query sequence. We then estab-

lish that the conditional distribution ofX∗ givenX1, ..., XL

is uniform on the Xj’s. Moreover, phase 3 of the querying

strategy ensures that the Xj’s are all δ-separated. There-

fore even with the additional knowledge of X1, ..., XL, the

adversary cannot estimate X∗ accurately with probability

higher than 1/L.

Proof of Privacy: Since the adversary only has access to

the query sequence q, any adversary’s estimator X̃ must

be a (random) function of q, that is X̃ ≡ X̃(q). Mean-

while by the design of our querying strategy, q can be com-
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pletely reconstructed fromX1, ..., XL. To see that, note that

I, {Ij}, {Jj} and all the queries in phase 4 are deterministic

functions of X1, ..., XL. Therefore there is a mapping ψ̃

such that X̃(q) = ψ̃(X1, ..., XL). Thus,

P

{∣∣∣X̃ −X∗
∣∣∣ ≤ δ

2

}

= E

[
P

{∣∣∣X̃(q)−X∗
∣∣∣ ≤ δ

2

∣∣∣ q
}]

≤ E

[
sup
ψ̃

P

{∣∣∣ψ̃(X1, ..., XL)−X∗
∣∣∣ ≤ δ

2

∣∣∣ X1, ..., XL

}]

≤ E

[
sup
x̃∈[0,1]

P

{
|x̃−X∗| ≤

δ

2

∣∣∣ X1, ..., XL

}]
. (8)

We claim that

(i) X∗ | X1, ..., XL ∼ Unif{X1, ..., XL}.

(ii) With probability 1, |Xi −Xj | > δ for all i 6= j.

Assuming the two claims hold (the proofs are deferred to

the supplementary material),

sup
x̃∈[0,1]

P

{
|x̃−X∗| ≤

δ

2

∣∣∣ X1, ..., XL

}

= sup
x̃∈[0,1]

1

L

∑

j≤L

1

{
|x̃−Xj | ≤

δ

2

}
≤

1

L
,

where the equality is from (i) and the inequality is from (ii).

Continuing (8), we have P{|X̃−X∗| ≤ δ/2} ≤ 1/L. Thus

our strategy is (δ, L)-private.

Finally, the number of queries needed follows from a

straightforward bookkeeping calculation, which we defer to

the supplementary material.

Proof of the lower bound in Theorem 2. For the lower

bound, the challenge lies in tracking and quantifying the

amount of information the learner gains from the responses.

Compared to the binary search model, the full gradient

responses can potentially reveal too much information

to the learner. To tackle this challenge, our key proof

strategy is to find an event on which the learner cannot

gather information on X∗ too rapidly. The proof follows

the following main steps.

Step 1: quantify the learner’s information. We adopt the

notion of “learner’s intervals”, I0, I1, .... Here, I0 = [0, 1]
and Ii is the smallest interval that the learner knows to

contain X∗ after the first i queries.

Step 2: analyze the conditional distribution of X∗ over the

learner’s interval. This is the key step of the proof. We want

to find a “good” event B on which the conditional distribu-

tion is uniform and hence the learner does not possess too

much information on the location of X∗. To this end, we

crucially exploit the stick-breaking characterization of the

Dirichlet Process, which we describe next.

Given base distribution µ0 and scaling parameter α > 0,

draw {Xk}
∞
k=1 i.i.d. from µ0, and independently draw

{Vk}
∞
k=1 i.i.d. from Beta(1, α). From a stick of unit length,

break off the first stick of length V1; break off V2 fraction

of the remaining stick and repeat. In other words, denote by

βk the length of the k’th stick. We have

βk = Vk ·
∏

j≤k−1

(1− Vk)

and
∑∞

k=1 βk = 1. Let µ =
∑
k≥1 βkδXk

be the discrete

distribution supported on {Xk}
∞
k=1, where δXk

denotes the

point mass distribution at Xk. Then µ with the distribution

function of F follows the Dirichlet process DP(µ0, α).

Here is an intuitive explanation on how the stick-breaking

process helps us prove the uniformity of the conditional

distribution of X∗. Under our prior construction, X∗ is

at the median of F ∼ DP(λ[0,1], α), where we recall that

λ[0,1] is the Lebesgue measure on [0, 1]. Therefore, X∗

occurs at one of the stick-breaking locations Xk. Even

though the Xk’s are distributed i.i.d. uniformly in [0, 1],
X∗ itself does not follow the uniform distribution since

the index i that corresponds to X∗ is random. The key

observation is that the conditional distribution of X∗ is

uniform conditional on the event A that the length of the

longest stick is at least 1/2. To prove uniformity, we first

show that on the event A, the median X∗ must occur at

the Xk that corresponds to the longest stick. Moreover, by

independence of the stick lengths {βk}k≥1 and the locations

{Xk}k≥1, the distribution of the location corresponding

to the longest stick is uniform in [0, 1]. Furthermore, the

posterior distribution of X∗ remains uniform as queries are

sequentially submitted. The following Lemma 1 contains

the precise statement on uniformity.

Some notation is necessary before stating Lemma 1. Firstly,

denote by β(1), β(2), ... the order statistics of the lengths of

the sticks in the stick-breaking process corresponding to F .

Let

A =
{
β(1) ≥ 1/2

}
= ∪z≥1/2Az, Az ,

{
β(1) = z

}
.

Let J ⊂ [0, 1] be an arbitrary fixed interval.

Write [q−, q+] = Ii ∩ J . Let the event B =
B(z, J, y, i, ρ(i), ρ−, ρ+) encode the random instances of

F , Y and the first i responses, defined as

B =
{
Az, X

∗ ∈ J, Y = y, r(i) = ρ(i), F (q±) = ρ±

}
.

See Figure 2 for an example of F and some quantities in the

definition of B.
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Lemma 1. For all z ≥ 1/2, J, y, i, ρ(i), ρ− < 1/2, ρ+ >
1/2, we have

L (X∗ | B) = Unif[q−, q+],

where L(·) denotes the (conditional) distribution.

1
ρ+

ρ−

1/2

X∗q− q+ 10 x

F

Figure 2. Conditional on X∗

∈ J and the responses to the first i

queries, the range of X∗ is narrowed down to Ii ∩ J = [q−, q+].
Further conditioning on F (q−) = ρ− and F (q+) = ρ+, we show

that F restricted to [q−, q+] also follows a Dirichlet process after

appropriate scaling.

The proof of Lemma 1 crucially utilizes the self-similarity

property of the Dirichlet process. In short, it ensures that the

values of F inside of [q−, q+] conditional on information

outside of [q−, q+] also follows a scaled Dirichlet process.

Thus the learner cannot gain too much information about

the location of X∗ in [q−, q+].

Step 3: use Lemma 1 to control the speed at which the

learner’s interval shrinks. Divide [0, 1] into 2/δ subintervals

J1, ..., J2/δ of length δ/2, and let J∗ denote the subinterval

of contains X∗. In this step, by integrating over instances of

B, and letting J range over the 2/δ subintervals, we prove

the following lemma.

Lemma 2. For all i, we have that

E

(
log

|Ii+1 ∩ J
∗|

|Ii ∩ J∗|

∣∣∣A
)

≥ −P {qi+1 ∈ J∗ | A} . (9)

Step 4: In this step, we apply Lemma 2 to obtain the desired

lower bound on the optimal query complexity. Let n be the

total number of queries submitted by the learner. By writing

log |In ∩ J∗| as a telescoping sum, we have that

E (log |In ∩ J∗| | A)

= log |I0 ∩ J
∗|+

n−1∑

i=0

E

(
log

|Ii+1 ∩ J
∗|

|Ii ∩ J∗|

∣∣∣A
)

= log
δ

2
+

n−1∑

i=0

E

(
log

|Ii+1 ∩ J
∗|

|Ii ∩ J∗|

∣∣∣A
)

≥ log
δ

2
− E (number of queries in J∗ | A) . (10)

From the accuracy requirement, we must have |In| ≤ ε with

probability 1. Therefore

E

(
|In ∩ J∗|

∣∣∣ A
)
≤ E

(
|In|

∣∣∣ A
)
≤ ε/2,

so that by Jensen’s inequality,

E (log |In ∩ J∗| | A) ≤ logE(|In ∩ J∗| | A) ≤ log
ε

2
.

Combining the last display with (10) yields

E (number of queries in J∗ | A) ≥ log
δ

ε
. (11)

Consider an adversary who adopts the proportional-

sampling strategy (Xu, 2018). That is, suppose the adver-

sary’s estimator X̃ is sampled from the empirical distribu-

tion of the queries. For this particular X̃ ,

1

L
≥ P

{
X̃ ∈ [X∗ − δ/2, X∗ + δ/2]

}

=
E(number of queries in [X∗ − δ/2, X∗ + δ/2])

n
,

which gives a lower bound on the total number of queries:

n ≥ LE(number of queries in [X∗ − δ/2, X∗ + δ/2]).

Since J∗ ⊂ [X∗ − δ/2, X∗ + δ/2], combining the last

display with (11) yields that

n ≥ LE(number of queries in J∗) ≥ P (A)L log
δ

ε
.

We have thus arrived at the desired query complexity lower

bound with

c1 = P(A) = P
{
β(1) > 1/2

}
≥ P {β1 > 1/2} ,

where β1 ∼ Beta(1, α) is the length of the first stick fom

the stick-breaking characterization of the Dirichlet process.
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5.2. Proof sketch under the Minimax setting

Since the response contains the full gradient information,

the key challenge in the analysis is to track the amount of

information available to the learner. Note that aside from

the directional information 1{X∗ ≥ q}, the response for a

query q contains additional information on (f∗)′(q). The

key insight in the proof under the minimax setting, is that

under the Assumption 1 on the richness of the family of

functions, only the directional information is relevant to

the learning task. Therefore, it suffices to only track the

learner’s knowledge with the directional information from

the responses.

Starting with the upper bound, we design a querying strat-

egy that is ε-accurate, (δ, L)-private, and submits at most

max{2L+ log(δ/ε), L+ log(1/ε)} queries. In particular,

our querying strategy only utilizes the directional informa-

tion of the gradient responses. Firstly, note that since the gra-

dient responses contain the binary directional information,

the learner can always check whether an interval contains

X∗ by querying the two endpoints. We refer to a pair of

queries at q and q + ε as a guess. The key privacy-ensuring

mechanism is to check L guesses that are δ apart from each

other. By doing so, the learner manually plants L possible

locations for X∗ that an adversary cannot rule out without

observing the responses, thus achieving (δ, L)-privacy.

To prove the lower bound, we need to show that a querying

strategy that only utilizes the directional information can be

optimal. Firstly, let us give a heuristic argument of why only

the gradient information is relevant to learning X∗ under

Assumption 1. Given (f∗)′(a) < 0 and (f∗)′(b) > 0, under

Assumption 1, X∗ can be anywhere between a and b regard-

less of the value of the gradients (f∗)′(a), (f∗)′(b). We

should point out that the richness assumption is necessary.

For example, suppose F is the family of convex polyno-

mial functions with fixed degree d. Then the learner can

solve for the X∗ by submitting d distinct queries at arbitrary

locations, making both learning and obfuscation trivial.

The lower bound proof contains two main ingredients.

(a) Step 1: Rigorously justify the claim that under Assump-

tion 1, the learner does not benefit from the additional

gradient information aside from the one-bit directional

response. In particular, we show that the learner cannot

search faster than the bisection method on any interval

I ⊂ [0, 1]. Therefore, for each interval of length δ, it

takes at least log(δ/ε) queries in I to achieve ε-accuracy,

in the worst case.

(b) Step 2: Relate the adversary’s statistical performance to

the size of the information set (Tsitsiklis et al., 2018) of

a query sequence q, defined as

I(q) ={x ∈ [0, 1] : ∃f ∈ F and y,

s.t. x = argmin f, and q(f, y) = q}.

The information set contains all possible values of X∗

that could lead to the query sequence q. We show that

to ensure the adversary achieves δ-accuracy with prob-

ability at most 1/L, there must be some q for which

the δ-covering number of I(q) is at least L. Note that

from the ε-accuracy requirement, each member of I(q)
is sandwiched between a pair of queries in q that are at

most ε-apart. Therefore, q contains at least L such pairs

of queries, contributing a total of 2L queries.

After performing these two steps, some challenges remain.

The functions associated with q (in step 2) may not coin-

cide with the worst-case instances that arise from step 1.

Therefore, the remaining task is to combine the two lower

bounds log(δ/ε) and 2L. To this end, we show the exis-

tence of some interval I , such that for some f minimized

in I , the learner must pay not only the log(δ/ε) queries for

accuracy, but also the 2L queries for privacy. The high-level

idea behind the proof is to divide q into two sub-sequences

qbefore, qafter, before and after the 2L queries (in step 2) are

submitted. The key observation is that qbefore is shared by

a large class of functions whose minimizers lie in some

δ-length interval I . For all these functions, the cost of 2L
queries would have been committed in qbefore. For at least

one of them, an extra cost of log(δ/ε) queries must be paid

in qafter to achieve ε-accuracy.
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