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ABSTRACT

Modern digital manufacturing processes, such as additive
manufacturing, are cyber-physical in nature and utilize complex,
process-specific simulations for both design and manufacturing.
Although computational simulations can be used to optimize
these complex processes, they can take hours or days--an
unreasonable cost for engineering teams leveraging iterative
design processes. Hence, more rapid computational methods are
necessary in areas where computation time presents a limiting
factor. When existing data from historical examples is plentiful
and reliable, supervised machine learning can be used to create
surrogate models that can be evaluated orders of magnitude
more rapidly than comparable finite element approaches.
However, for applications that necessitate computationally-
intensive simulations, even generating the training data
necessary to train a supervised machine learning model can pose
a significant barrier. Unsupervised methods, such as physics-
informed neural networks, offer a shortcut in cases where
training data is scarce or prohibitive. These novel neural
networks are trained without the use of potentially expensive
labels. Instead, physical principles are encoded directly into the
loss function. This method substantially reduces the time
required to develop a training dataset, while still achieving the
evaluation speed that is typical of supervised machine learning
surrogate models. We propose a new method for stochastically
training and testing a convolutional physics-informed neural
network using the transient 3D heat equation- to model
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temperature throughout a solid object over time. We demonstrate
this approach by applying it to a transient thermal analysis
model of the powder bed fusion manufacturing process.

1. INTRODUCTION

Cyber-physical manufacturing methods such as additive
manufacturing (AM), can benefit in a variety of ways from the
use of high-resolution, physics-based simulations [1]. For
instance, these simulations are often essential for optimizing
designs and fine-tuning process parameters and take advantage
of the data-intensive nature of AM. For expensive manufacturing
processes such as laser powder bed fusion (LPBF), simulations
are especially important because they can reveal potential build
failures or highlight areas where process parameters can be
improved without wasting resources on failed build attempts [1].

While LPBF analysis can involve many different
phenomena (e.g., thermomechanical, electricity and magnetism,
dynamics), thermal analysis alone is particularly important
because the powder fusion process is highly dependent on
temperature. Accurately simulating LPBF thermal phenomena
involves analyzing temperature changes at fast timescales below
the nanosecond range [1], several orders of magnitude shorter
than the entire build duration. As a result of this high temporal
resolution, full simulations of LPBF can take hours or days [1].
In the context of the engineering design process, this time cost is
often too large to be used to design parts with low production
volumes or small profit margins. In order to decrease this
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computational cost, some researchers have turned to creating
surrogate models which can return approximate simulation
results much more quickly than traditional simulations.

Artificial neural networks (ANNs), machine learning (ML)
models that can be trained on existing simulation data, are a
common means of constructing surrogate models. While there
has been success in implementing computationally faster ANN
surrogate models for LPBF, the training data is still generated
from computationally-intensive methods such as finite element
analysis (FEA) [2]. Generating training data from FEA
simulations may take a long time, which makes developing and
improving these models a very slow process. Thus, ANNs could
be improved and iterated on rapidly if the need for
computationally-intensive training datasets could be overcome.
The ability to quickly tune LPBF models without first obtaining
potentially expensive datasets would also reduce the logistical
barrier behind starting the ML development process.

Physics-informed neural networks (PINN) are artificial
neural networks supervised without labels. Instead, PINNs are
constrained by partial differential equations (PDEs) [3]. By
training an ANN using readily available analytical equations, the
need for expensive training data can be eliminated while also
encoding physical principles, which ensures that solutions are
physically valid [4]. Since reducing development time of LPBF
surrogate models is desirable, the ideal PINN should be designed
with training data that is inexpensive to generate and utilize an
architecture that has potential for universality [3]. Upon creating
this PINN, the aggregate performance of this model must be
compared to a traditional label-trained ANN that uses the same
training data and architecture. In addition to this, an application
for LPBF transient thermal analysis simulation is of great interest
as well. Therefore, the research questions for this paper are:

1. How does a PINN perform compared to a traditional
label-trained ANN over a large range of data in terms of
aggregate prediction error?

2. How does the PINN compare, in terms of prediction
error over time, to a traditional label-trained ANN based
on a ground truth model in a LPBF thermal analysis
problem?

2. BACKGROUND

This section provides relevant background information on
LPBF (see Section 2.1), ML and ANN methods in LPBF (see
Section 2.2) and related work involving PINNs (see Section 2.3).

21 An Overview of Laser Powder Bed Fusion
Simulation

LPBF is a common metal additive manufacturing method
used today. This process typically utilizes a radiative heat source
that fuses powdered material together layer by layer. For each
layer, a parametric laser path is generated and executed in order
to fuse a particular shape. Although numerous variations of the
LPBF process exist, ongoing LPBF research centers around
incremental improvements in the areas of residual stress

reduction, surface finish optimization, melt pool optimization,
build time reduction, part consistency, and failure rate reduction
[1,5]. In addition to being experimentally investigated, these
improvements are also driven by research involving LPBF
simulations, which allow enhanced build attributes to be
discovered without as much reliance on costly manufacturing
trials [6].

A particularly active type of prediction in LPBF simulation
research is of the melt pool produced by the heat source.
Simulations can be used to estimate the melt pool shape, residual
stresses, or thermomechanical dynamics [5]. This problem is
particularly difficult to compute due to the disparity in time
scales involved [1]. As models become more and more detailed,
both the spatial and time scales become smaller. Since the overall
build time for typical LPBF jobs can be hours or even days,
every reduction in scale increases the difficulty of applying the
model to entire builds, even with large CPU clusters [7].

2.2 Machine Learning in LPBF Systems

The applications of ML and ANNs in LPBF are varied. Of
these applications, a substantial number of research efforts in this
area involve process monitoring. The LPBF process is highly
dependent on conditions within the build environment; so,
gathering and processing data while LPBF builds are ongoing is
a lucrative way of preventing failures or optimizing the process
parameters. One particular application is using images of the
melt pool in order to make predictions about the properties of the
melt pool [8,9]. These images can be processed by an ANN in
order to predict laser temperature, melt pool size, and defects.
However, in order to make in situ adjustments to the LPBF
process, potentially large amounts of data must be collected.
Kwon et al. report several hundred gigabytes of image data for
one build [9]. Yang et al. collected 118,928 images of melt pools
after only 21 layers of an LPBF build [8].

It is difficult to assign labels to such a large number of
images; therefore, an advantageous alternative is to apply
physics domain knowledge to this problem. Ren et al. added
physics-informed input features in addition to the melt pool
images in order to help the training process [10]. For simulation
purposes, ML methods have also been used to predict the
outcome of the LPBF process; however, this method typically
utilizes commercial simulation software to generate validation
data [11]. In addition to the applications mentioned, an important
concept to consider in the field of LPBF models is the ability to
form hybrid models. Moges et al. demonstrated the success of a
hybrid model involving the combination of traditional numerical
analysis and ML/ANN-based surrogate models, improving
computation speed and accuracy [12].

2.3 Related Work in Physics-Informed Neural Networks

PINNs are defined as any deep learning technique used to
solve PDEs by encoding prior knowledge of the PDE in the loss
function [3]. As such, there is a wide range of attempts to solve
PDEs, or engineering problems involving PDEs, using this
method. Raissi et al. introduced a framework for using PINNSs to
solve nonlinear PDEs for continuous and discrete time modes
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[13]. This approach was further tested to converge to the PDE
even with corrupted noise applied to the training dataset-
suggesting that even with data that does not appear
experimentally, a model can still converge [14]. This PINN
framework by Raissi et al. also introduced the idea of using
automatic differentiation of backpropagation instead of
numerical differentiation for penalizing the physics-informed
loss. In our work, we use numerical differentiation, but the
method of automatic differentiation is common in most recent
PINN research, with novel applications to Navier-Stokes
equations, subsurface flow, noisy forward and inverse problems,
time dependent PDEs, and performance iterations on the linear
PDE PINN architecture [15-19]. In general, the architectures
and training data used with PINNs is quite varied with each
tailored to the specific problem being investigated.

For our work, one notable example is from Wang et al. who
developed a non-automatic differentiation, finite time difference,
PINN for transient electromagnetic analysis using a recurrent
neural network (RNN) [20]. This approach was novel not only
due to the use of an RNN for transient analysis, but also involved
a unique way of generating training data, which is of great
interest for our motivation. The problem space was a 2D
uniformly spaced mesh, similar to how voxels are used in ANNS.
Here, training data was created by randomly generating wave
point sources and interference objects. The goal of this method
was to quickly simulate abstract scenarios without actually
collecting data or generating training data without using
numerical methods- utilizing one of the main benefits of the
PINN method towards inexpensive training. It is distinct from
some of the automatic differentiation approaches that only
lightly apply noise to training data instead of fully abstract data.
Liu et al. created a physics constrained neural network (PCNN)
for the 2D heat equation [21]. The PCNN method is similar to
the PINN method in that it encodes physics domain knowledge;
however, it still uses labelled training data in tandem with the
physics-based loss function. The goal of this method is to reduce
the amount of labelled data required, and to also enforce the
physical constraint. For our work, the success of the heat
equation PCNN is of particular interest for LPBF simulation.

3. PROPOSED METHOD AND ASSUMPTIONS

This section details the methods and assumptions regarding
the LPBF finite difference method used here as a ground truth
model (see Section 3.1), the layer architecture shared by the
PINN and the label-trained ANN (see Section 3.2), the LPBF
application experimental design (see Section 3.3), and the
experimental approach used to compare the PINN and label-
trained ANN (see Section 3.4).

3.1 Finite Difference Method for LPBF Ground Truth
For this paper, we build on the 3D finite difference (FD)
method tailored for AM proposed by Stockman et al. [22]. This
model analyzes the transient temperature of a volume of fused
powder in a laser direct energy deposition (DED) machine and
includes conduction, a radiative boundary, a convective
boundary, and Dirichlet boundary conditions. DED is similar to

LPBF in that it often uses a laser to fuse powdered metal into a
specific shape; however, it does not use a large bed of powder.

To represent the LPBF process instead, internal heat
generation (energy transfer) was added in place of the constant
temperature Dirichlet boundary condition used to approximate
the laser source. Approximating the laser source as internal heat
generation is commonly used in FEA LPBF simulation [23,24].
There are many approaches to modeling this internal heat
generation, but for our approach, one voxel was heated at a time
[25]. The radiative boundary was not included. For voxels that
only pertain to conduction and Dirichlet boundary conditions,
the equation is

n+l _ n n n
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where T/’ is the absolute temperature at the current timestep
(n) of a node at positions i, j, k (corresponding to the x,y,z
coordinates), Tl-’fjfkl is absolute temperature at the future (n + 1)
timestep, Q[ is current timestep (n) heat generated at node
i,j,k,and Fo is the Fourier number found in Equation 2
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where k,, is the thermal conductivity of the powder, dt is the
timestep, h is the cubic voxel side length, p is the density of the
powder, and c is the specific heat of the powder. For voxels that
involve conduction and convection the equation is modified as
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where Bi is the Biot number computed as
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where C is the heat transfer coefficient of the air and k, is the
thermal conductivity of the air.

By using the finite difference method in conjunction with
voxel representation, the equation that calculates temperature at
each voxel can be generalized for every volumetric region of
interest in the powder volume to a desired resolution. Equation 1
applies to all interior voxels connected to the conduction voxels
seen in Figure 1 and all other interior voxels not connected to a
boundary condition. Meanwhile, Equation 3 applies to all
interior voxels connected to convection voxels (see Figure 1).
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FIGURE 1: Visualization of boundary condition locations used with
the finite difference equations 1 and 3.

3.2 ANN Architecture Design

In order to facilitate comparison between the PINN and the
label-trained ANN, the training parameters, training data, and
physical constants of the PINN and the label-trained ANN were
held constant. This section details the shared ANN architecture
of the PINN and the label-trained ANN (see Section 3.2.1),
custom loss function of the PINN (see Section 3.2.2), and design
of the shared training dataset (see Section 3.2.3).

3.2.1 PINN and label-trained ANN architecture

The simulated powder bed volume used as the input for both
the PINN and the label-trained ANN had a voxel dimension of
20 x 7 x 7. Each of the voxels encoded a two-channel vector
representing the temperature and heat generation magnitude at
each voxel at a particular instance in time. The output of the
PINN and the label-trained ANN was a 20 x 7 x 7 voxel-based
field, where each voxel represents the estimated temperature of
the region after one additional timestep has passed. Both of these
models are discrete time models, where input data describing the
temperature and heat transfer field is used to predict a
temperature field at a fixed timestep. The loss function of the
PINN only iterates through the interior nodes of the input since
the outer layers of the input space are encoded as the boundary
conditions for the temperature channel (see Figure 1) or exist as
“padding” for the heat generation channel. In order to match the
dimensionality of the input, the outer voxels of the output also
serve as padding.

Since the LPBF application requires prediction of an entire
scalar field throughout a volume, it necessitates a model with a
relatively high output dimensionality. A convolutional neural
network (CNN) architecture was selected because CNNs are
particularly advantageous at retaining practicable training times
with increases in input and output dimensionality [26]. The

shared architecture of both the PINN and label-trained ANN is
specified in Figure 2 for our work.

input. | (None, 7, 7, 20, 2)
conv3dd_1_input: InpufLayer o
- oufput: | (None, 7, 7, 20, 2)
mput (None, 7.7, 20, 2)

convid_1: Conv3iD

output: | (None, 6, 6, 19, 64)

mput: | (None, 6, 6, 19, 64)

convdd_transpose_1: Conv3DTranspose
oufput: | (None, 7, 7, 20, 32)

input: | (None. 7,7, 20, 32)

convid_2: Conv3iD

oufput: | (None, 7, 7, 20, 16)
mput: | (None, 7, 7, 20, 16)
convid_transpose_2: Conv3DTranspose
output (None, 7, 7, 20, 8)
iput: | (None, 7, 7, 20, 8)

conv3dd_3: Conv3D

oufpuf: | (None, 7, 7, 20, 1)

FIGURE 2: Flowchart of shared PINN and label-trained ANN
architecture layers

The shared architecture in Figure 2 was developed in
TensorFlow version 2.1.0, Keras version 2.3.1, and Python
version 3.7.6. The ANNs were trained usinga GTX 1080 Ti GPU
while the FD was executed using an intel 4770k CPU. The PINN
and the label-trained ANN were trained using the same 5000
training samples with a batch size of 100 samples for 50 epochs.
The optimizer used was Adam with a learning rate of 5x10. The
label-trained ANN used mean squared error (MSE) as the loss
function while the PINN used the loss function described in
Section 3.2.2.

3.2.2 PINN loss function

The PINN custom loss function is constructed as the MSE
of the conduction and convection finite difference equations.
Since loss should approach 0 during training, the future time step
solution is subtracted from the current temperature and FD
calculated change in temperature. The loss equation
corresponding to voxels with only conduction and heat
generation is given by

LOSSa = 21'7:1 217'=2 Z%O:1|Tiflj,k + (ATile,k)cond - ir,lj?—k1 (5)

where T/} ;. is the current (n) timestep temperature of the voxel

at position i, j, k (indices corresponding to the x, y, and z axes),
(AT k)cona 1 the change in temperature calculated using

equation 1, and Tl"fkl is the future (n + 1) temperature predicted

by the PINN. The loss equation corresponding to voxels with
conduction, convection, and heat generation is computed as
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LOSSb = 23:1 Z]l'zl Zigl iT,lj,k + (ATiTLj,k)conv - ifljj‘kl (6)

where T7 ;. is the current (n) timestep temperature of the voxel

at position i, j, k (again corresponding to the x, y, and z axes),
(AT ) )conv is the change in temperature calculated using

equation 3, and T[‘;'kl is the future (n + 1) temperature predicted
by the PINN. The loss equations are then combined using

2
Loss = (Lossg+Lossy) (7)
N

where N is the number of voxels included in the loss calculation
(here, N = 450).

3.2.3 Training dataset design

In an effort to eliminate the need for prohibitive labelled
data, synthetic data can be particularly advantageous. Existing
PINN methods incorporate many different approaches for
generating training data without relying on costly or unavailable
experimental observations. For instance, one approach used
experimental data with 1% noise [14]. A second approach
randomly generated shapes in order to mimic experimental
training data [20].

In this work, we sought a method of training set generation
that maximized the speed of generating training data while
minimizing the potential bias toward a small number of
researcher-selected shapes. To achieve this goal, we
procedurally generated a set of temperature and heat generation
fields in which each voxel was uniformly assigned a random
value between -100 and 100 (for both temperature, measuring in
K, and energy transfer, measured in W). This range was
intentionally below the order of magnitude of temperatures and
approximately on the order of magnitude for heat generation
values experienced in a powder bed volume after melt pool
solidification in order to keep the input data uniform and simple.
Here, positive values represent heat generation within a voxel,
and negative values represent heat absorption. For temperature,
although half of the data is below 0 K, the loss function used is
continuous for all temperature values. In other application areas,
the selection of the range for the random values should be treated
as an additional hyperparameter in the end-to-end PINN training
process. An example of a training data sample (for the
temperature or heat transfer channel) can be seen in Figure 3.
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FIGURE 3: Example 3D plot of uniformly randomly generated
temperature channel and heat transfer channel training data.

In addition to the training data, the training process is
constrained by global constants. The temperature boundary
conditions are held constant at a value of 293 K. The cubic voxel
side length was 1x107" meters with a constant timestep length of
2.7x10°® seconds. This voxel size is below the typical size for
powdered metal in LPBF; however, this model only simulates an
effective homogeneous medium [27]. The material properties
chosen were: 0.1 W/m-K for the powder thermal conductivity,
0.02 W/m-K for the air thermal conductivity, 25 watts per meters
squared kelvin for the heat transfer coefficient, 8000 kg/m? for
the powder density, and 420 J/K-kg [27-30]. These values are
within the range of numbers found in metal LPBF processes. An
important constant to mention is the thermal conductivity of the
powder. While metal powders typically used in LPBF have
conductivities of 10-200 W/m-K, research shows that due to the
packing density and composition of the air, the effective value is
much lower [30].

3.3 LPBF Application Problem Statement

The performance of the PINN was assessed in a transient
thermal analysis problem of a LPBF process. As previously
mentioned, the finite difference method used for the loss
function is already tailored for additive manufacturing [22], with
some modification as noted in Section 3.1. Heat conduction is
modeled with Dirichlet boundary conditions on 5 exterior faces
of the temperature field, and a convection boundary condition on
the 6™ surface. The laser is modeled using a single internal heat
source approach, where 1 voxel is heated at a time. The boundary
conditions on all 6 faces are constrained by a temperature value
of 293 kelvin.

The simulation involves two sequential modes: a single laser
track and a diffusion mode with no heat generation. From t =0
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to 504 nanoseconds- a 1000-watt heat source moves voxel by
voxel along the top plane of the temperature field. This
approximates a laser moving at 3.57 m/s. These numbers are
within the range of values found in LPBF processes [31,32].
After the t = 504 nanoseconds, the heat source is turned off, and
the temperature field approaches steady state until t = 2772
nanoseconds is reached. A cutaway of the FD simulation result
at t = 504 nanoseconds is shown in Figure 4.

1300

1000

750

Temperature [K]

500

293

FIGURE 4: Visualization showing cutaway view of the ground truth

temperature through the powder bed volume after 504 nanoseconds of
laser radiation.

3.4 Experimental Methods

To investigate differences in the PINN training method and
the label-trained method, we compared the aggregate prediction
error of 30 pairs of the PINN and label-trained ANN in a one-
sided Wilcoxon signed-rank test. Pairs of models were trained
using the same random seed. Each pair of PINN and label-trained
ANN models was trained with the parameters found in Section
3.2.3 with a different random number seed for each pair. Each
pair of PINN and label-trained ANN models was also tested on
a dataset generated similarly to the training dataset. However,
instead of values between -100 and 100, we selected 1000
samples of a much larger range of 100-10000 Kelvin and 100-
10000 Watts in order to test unseen data out of the training range
and demonstrate universality of the model. Each pair also used a
shared seed for a total of 30 training datasets, 30 testing datasets,
and 30 different seed pairs. Each sample is only fed through the
network once; so, this does not evaluate compounding error.

We tested each PINN and label-trained ANN model by
directly comparing the predictions to the FD ground truth
(ground truth minus prediction) and calculating the mean of
these prediction errors per model. These means were then
compared using a Wilcoxon signed-rank test [33] in order to
demonstrate the difference between the two different training
methods aggregate error biases. In order to compare the
distribution of prediction error between the two models, the
mean standard deviation of the 30 pairs was also calculated.

The FD LPBF simulation serves as the ground-truth model
for the PINN method since the PINN loss function is derived
from the same FD equations. For demonstrative purposes, we
selected the two best PINN and label-trained ANN models from
the 30 models tested in the Wilcoxon signed-rank test (based on
mean error).

The FD LPBF simulation is compared to the ANNs in two
ways: (1) mean absolute percent error (MAPE) over time and (2)
a visual inspection of error per voxel over time. MAPE was
chosen as a way of continuously evaluating the aggregate
temperature field error of each timestep. By evaluating this
metric over time, we can learn how each ANN performs in each
simulation mode defined in Section 3.3. By calculating and
displaying the error for each voxel over time, we can also
empirically evaluate the source of error for each ANN.

4. RESULTS

This section presents the results of the Wilcoxon signed-
rank test (see Section 4.1) and LPBF simulation (see Section 4.2)
based on the methods previously described (see Section 3.4).
These results test our two research questions in Section 1.

4.1 Comparison of PINN and Label-Trained ANN

For the first research question, we assess how PINN models
compare to label-trained ANN models. Training results of one
sample of seed-paired PINN and label-trained ANN models are
shown in Figure 5. Both training methods converged similarly,
but to different loss values due to the different loss functions
used.

3 PINN Loss
LT ANN Loss
4
m
(7]
LE
&
8
2
1!
0 10 20 30 40 50

Epoch

FIGURE 5: Plot of example loss per epoch convergence for PINN
and label-trained ANN models

The Wilcoxon signed-rank test dataset was calculated for
the aggregate prediction error of 30 pairs of PINN and label-
trained models. This test gave a p-value of 0.145, showing with
moderate significance that the PINN has a different aggregate
prediction bias compared to the label-trained ANN. In addition
to the statistical test, we also show the distribution of predictions
from the two best models (based on mean bias) in Figure 6.
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FIGURE 6: Example histograms of the two best (a) PINN and
(b) label-trained ANN predicted temperatures vs. the FD ground truth
temperature error residuals

Although in general the PINN predictions appear to have a
smaller standard deviation, the actual mean standard deviation
across all 30 pairs is 150.0 for the PINN and 149.8 for the label-
trained ANN. Because the standard deviations are relatively
similar, the absolute value of the aggregate prediction bias acts
as a better predictor of model performance.

4.2 LPBF Inspired Simulation

For the second research question, we asses how the PINN
performs over time in a LPBF simulation compared to the label-
trained ANN. The LPBF simulation involves compounding time
steps and as a result produced more divergent results between the
PINN and label-trained ANN than the previous section, even
though both models selected had relatively low mean biases. For
the PINN, MAPE peaked at a value of 1.24% while the label-
trained ANN peaked at a value of 22.5%. In the laser track
simulation mode, both models increased in error over time. In
the conduction simulation mode, the PINN system approaches 0
error while the label-trained ANN does not. These results can be
found in Figure 7.

To visualize the transient simulation process, eight instances
of the LPBF simulation are shown for comparison in Figure 8.
The first four instances (t = [0,504] nanoseconds) demonstrate
the laser track motion; the last four (t = (504,2772] nanoseconds)
demonstrate the diffusion mode with no heat generation. In the

first three rows, we plot the PINN, FD ground truth, and label-
trained ANN simulations at the chosen timesteps. In the last two
rows, we plot the error of the PINN and label-trained ANN
predictions vs the ground truth FD model.

—— PINN

20 Label-Trained ANN

15

10

Mean Absolute Percent Error

0 500 1000 1500 2000 2500
Time [ns]

FIGURE 7: Plot of MAPE vs. time for the PINN and label-
trained ANN LPBF simulation

Visually, the simulations appear very similar to the FD
ground-truth; however, the pattern of the error is dissimilar for
the PINN and label-trained ANN. For the first four instances (the
laser track simulation mode), the PINN error mirrors the laser
track. In the last four instances (the diffusion simulation mode),
the error is more symmetric throughout the temperature field-
and decreases over time. The label-trained ANN does not exhibit
the same pattern of error as the PINN, it is more symmetric for
all eight timesteps- with error concentrated towards the center of
the temperature field rather than the boundary. The error for the
label-trained ANN also increases over time.

5. CONCLUSION

In the case of LPBF, a cyber-physical AM method,
computational simulations become increasingly important
towards optimizing the fabrication process and preventing
failure. In contribution to this paradigm, ANNs and ML have
become powerful tools for LPBF. In this work, the goal was to
evaluate a method to eliminate the prohibitive data labelling
process and to train surrogate models using well understood
physics domain knowledge. Our work created a LPBF heat
transfer simulation that utilized a stochastically-trained PINN
with multiple boundary conditions.

For the first research question, we investigated the statistical
difference between our proposed PINN and a traditionally label-
trained ANN. Our Wilcoxon signed-rank test demonstrated that,
in general, it is likely that the PINN performs better than the
label-trained ANN given the same training data and constraints.
However, although the distribution of prediction errors appeared
to be superior for the PINN, the standard deviations of both the
PINN and label-trained ANNs prediction errors were the same.
Knowing this, at a very minimum the PINN performs equally to
the label-trained ANN.
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FIGURE 8: Cutaway plots of PINN simulation, FD ground truth simulation, label-trained ANN simulation, PINN error, and label-trained ANN
error at selected timesteps.

The second research question involved simulating a LPBF
thermal problem. For this problem, the error was compounded
over time, which further demonstrated the difference between
the PINN and label-trained models. Upon comparing the two
best models from the statistical test dataset, the PINN showed
better MAPE over time. Furthermore, upon visual analysis of the
errors for each voxel, it was clear that the pattern of error was
different for the PINN compared to the label-trained ANN.

Although our proposed PINN showed promise compared to
the traditionally label-trained ANN, especially in the LPBF
simulation, this work only involved a single PDE, namely, the
heat equation. This work also used many static physical
constants which can change over time in a LPBF build. Future
work can directly build on this work by investigating the ability
of the PINN to learn more variables or channels at once (beyond
the temperature and heat generation channels demonstrated
here). The LPBF process involves many other physical
phenomena, and future work could investigate similar
simulations with different loss functions. In addition to using
different PDEs for loss functions, the method of an auto-
differentiating PINN could be investigated for LPBF as well.
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