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ABSTRACT 
Modern digital manufacturing processes, such as additive 

manufacturing, are cyber-physical in nature and utilize complex, 
process-specific simulations for both design and manufacturing. 
Although computational simulations can be used to optimize 
these complex processes, they can take hours or days--an 
unreasonable cost for engineering teams leveraging iterative 
design processes. Hence, more rapid computational methods are 
necessary in areas where computation time presents a limiting 
factor. When existing data from historical examples is plentiful 
and reliable, supervised machine learning can be used to create 
surrogate models that can be evaluated orders of magnitude 
more rapidly than comparable finite element approaches. 
However, for applications that necessitate computationally-
intensive simulations, even generating the training data 
necessary to train a supervised machine learning model can pose 
a significant barrier. Unsupervised methods, such as physics-
informed neural networks, offer a shortcut in cases where 
training data is scarce or prohibitive. These novel neural 
networks are trained without the use of potentially expensive 
labels. Instead, physical principles are encoded directly into the 
loss function. This method substantially reduces the time 
required to develop a training dataset, while still achieving the 
evaluation speed that is typical of supervised machine learning 
surrogate models. We propose a new method for stochastically 
training and testing a convolutional physics-informed neural 
network using the transient 3D heat equation- to model 

temperature throughout a solid object over time. We demonstrate 
this approach by applying it to a transient thermal analysis 
model of the powder bed fusion manufacturing process. 
 
1. INTRODUCTION 
 Cyber-physical manufacturing methods such as additive 
manufacturing (AM), can benefit in a variety of ways from the 
use of high-resolution, physics-based simulations [1]. For 
instance, these simulations are often essential for optimizing 
designs and fine-tuning process parameters and take advantage 
of the data-intensive nature of AM. For expensive manufacturing 
processes such as laser powder bed fusion (LPBF), simulations 
are especially important because they can reveal potential build 
failures or highlight areas where process parameters can be 
improved without wasting resources on failed build attempts [1].  
 While LPBF analysis can involve many different 
phenomena (e.g., thermomechanical, electricity and magnetism, 
dynamics), thermal analysis alone is particularly important 
because the powder fusion process is highly dependent on 
temperature. Accurately simulating LPBF thermal phenomena 
involves analyzing temperature changes at fast timescales below 
the nanosecond range [1], several orders of magnitude shorter 
than the entire build duration. As a result of this high temporal 
resolution, full simulations of LPBF can take hours or days [1]. 
In the context of the engineering design process, this time cost is 
often too large to be used to design parts with low production 
volumes or small profit margins. In order to decrease this 
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computational cost, some researchers have turned to creating 
surrogate models which can return approximate simulation 
results much more quickly than traditional simulations.   

Artificial neural networks (ANNs), machine learning (ML) 
models that can be trained on existing simulation data, are a 
common means of constructing surrogate models. While there 
has been success in implementing computationally faster ANN 
surrogate models for LPBF, the training data is still generated 
from computationally-intensive methods such as finite element 
analysis (FEA) [2]. Generating training data from FEA 
simulations may take a long time, which makes developing and 
improving these models a very slow process. Thus, ANNs could 
be improved and iterated on rapidly if the need for 
computationally-intensive training datasets could be overcome. 
The ability to quickly tune LPBF models without first obtaining 
potentially expensive datasets would also reduce the logistical 
barrier behind starting the ML development process.  

Physics-informed neural networks (PINN) are artificial 
neural networks supervised without labels. Instead, PINNs are 
constrained by partial differential equations (PDEs) [3]. By 
training an ANN using readily available analytical equations, the 
need for expensive training data can be eliminated while also 
encoding physical principles, which ensures that solutions are 
physically valid [4]. Since reducing development time of LPBF 
surrogate models is desirable, the ideal PINN should be designed 
with training data that is inexpensive to generate and utilize an 
architecture that has potential for universality [3]. Upon creating 
this PINN, the aggregate performance of this model must be 
compared to a traditional label-trained ANN that uses the same 
training data and architecture. In addition to this, an application 
for LPBF transient thermal analysis simulation is of great interest 
as well. Therefore, the research questions for this paper are: 

 
1. How does a PINN perform compared to a traditional 

label-trained ANN over a large range of data in terms of 
aggregate prediction error? 

 
2. How does the PINN compare, in terms of prediction 

error over time, to a traditional label-trained ANN based 
on a ground truth model in a LPBF thermal analysis 
problem? 

 
2. BACKGROUND 

This section provides relevant background information on 
LPBF (see Section 2.1), ML and ANN methods in LPBF (see 
Section 2.2) and related work involving PINNs (see Section 2.3). 

  
2.1 An Overview of Laser Powder Bed Fusion 
Simulation  

LPBF is a common metal additive manufacturing method 
used today. This process typically utilizes a radiative heat source 
that fuses powdered material together layer by layer. For each 
layer, a parametric laser path is generated and executed in order 
to fuse a particular shape. Although numerous variations of the 
LPBF process exist, ongoing LPBF research centers around 
incremental improvements in the areas of residual stress 

reduction, surface finish optimization, melt pool optimization, 
build time reduction, part consistency, and failure rate reduction 
[1,5]. In addition to being experimentally investigated, these 
improvements are also driven by research involving LPBF 
simulations, which allow enhanced build attributes to be 
discovered without as much reliance on costly manufacturing 
trials [6]. 

A particularly active type of prediction in LPBF simulation 
research is of the melt pool produced by the heat source. 
Simulations can be used to estimate the melt pool shape, residual 
stresses, or thermomechanical dynamics [5]. This problem is 
particularly difficult to compute due to the disparity in time 
scales involved [1]. As models become more and more detailed, 
both the spatial and time scales become smaller. Since the overall 
build time for typical LPBF jobs can be hours or even days,  
every reduction in scale increases the difficulty of applying the 
model to entire builds, even with large CPU clusters [7].  

 
2.2 Machine Learning in LPBF Systems 

The applications of ML and ANNs in LPBF are varied. Of 
these applications, a substantial number of research efforts in this 
area involve process monitoring. The LPBF process is highly 
dependent on conditions within the build environment; so, 
gathering and processing data while LPBF builds are ongoing is 
a lucrative way of preventing failures or optimizing the process 
parameters. One particular application is using images of the 
melt pool in order to make predictions about the properties of the 
melt pool [8,9]. These images can be processed by an ANN in 
order to predict laser temperature, melt pool size, and defects. 
However, in order to make in situ adjustments to the LPBF 
process, potentially large amounts of data must be collected. 
Kwon et al. report several hundred gigabytes of image data for 
one build [9]. Yang et al. collected 118,928 images of melt pools 
after only 21 layers of an LPBF build [8].  

It is difficult to assign labels to such a large number of 
images; therefore, an advantageous alternative is to apply 
physics domain knowledge to this problem. Ren et al. added 
physics-informed input features in addition to the melt pool 
images in order to help the training process [10]. For simulation 
purposes, ML methods have also been used to predict the 
outcome of the LPBF process; however, this method typically 
utilizes commercial simulation software to generate validation 
data [11]. In addition to the applications mentioned, an important 
concept to consider in the field of LPBF models is the ability to 
form hybrid models. Moges et al. demonstrated the success of a 
hybrid model involving the combination of traditional numerical 
analysis and ML/ANN-based surrogate models, improving 
computation speed and accuracy [12]. 
 
2.3 Related Work in Physics-Informed Neural Networks  

PINNs are defined as any deep learning technique used to 
solve PDEs by encoding prior knowledge of the PDE in the loss 
function [3]. As such, there is a wide range of attempts to solve 
PDEs, or engineering problems involving PDEs, using this 
method. Raissi et al. introduced a framework for using PINNs to 
solve nonlinear PDEs for continuous and discrete time modes 
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[13]. This approach was further tested to converge to the PDE 
even with corrupted noise applied to the training dataset- 
suggesting that even with data that does not appear 
experimentally, a model can still converge [14]. This PINN 
framework by Raissi et al. also introduced the idea of using 
automatic differentiation of backpropagation instead of 
numerical differentiation for penalizing the physics-informed 
loss. In our work, we use numerical differentiation, but the 
method of automatic differentiation is common in most recent 
PINN research, with novel applications to Navier-Stokes 
equations, subsurface flow, noisy forward and inverse problems, 
time dependent PDEs, and performance iterations on the linear 
PDE PINN architecture [15–19]. In general, the architectures 
and training data used with PINNs is quite varied with each 
tailored to the specific problem being investigated.  

For our work, one notable example is from Wang et al. who 
developed a non-automatic differentiation, finite time difference, 
PINN for transient electromagnetic analysis using a recurrent 
neural network (RNN) [20]. This approach was novel not only 
due to the use of an RNN for transient analysis, but also involved 
a unique way of generating training data, which is of great 
interest for our motivation. The problem space was a 2D 
uniformly spaced mesh, similar to how voxels are used in ANNs. 
Here, training data was created by randomly generating wave 
point sources and interference objects. The goal of this method 
was to quickly simulate abstract scenarios without actually 
collecting data or generating training data without using 
numerical methods- utilizing one of the main benefits of the 
PINN method towards inexpensive training. It is distinct from 
some of the automatic differentiation approaches that only 
lightly apply noise to training data instead of fully abstract data. 
Liu et al. created a physics constrained neural network (PCNN) 
for the 2D heat equation [21]. The PCNN method is similar to 
the PINN method in that it encodes physics domain knowledge; 
however, it still uses labelled training data in tandem with the 
physics-based loss function. The goal of this method is to reduce 
the amount of labelled data required, and to also enforce the 
physical constraint. For our work, the success of the heat 
equation PCNN is of particular interest for LPBF simulation. 
 
3. PROPOSED METHOD AND ASSUMPTIONS 

This section details the methods and assumptions regarding 
the LPBF finite difference method used here as a ground truth 
model (see Section 3.1), the layer architecture shared by the 
PINN and the label-trained ANN (see Section 3.2), the LPBF 
application experimental design (see Section 3.3), and the 
experimental approach used to compare the PINN and label-
trained ANN (see Section 3.4). 

 
3.1 Finite Difference Method for LPBF Ground Truth 

For this paper, we build on the 3D finite difference (FD) 
method tailored for AM proposed by Stockman et al. [22]. This 
model analyzes the transient temperature of a volume of fused 
powder in a laser direct energy deposition (DED) machine and 
includes conduction, a radiative boundary, a convective 
boundary, and Dirichlet boundary conditions. DED is similar to 

LPBF in that it often uses a laser to fuse powdered metal into a 
specific shape; however, it does not use a large bed of powder.  

To represent the LPBF process instead, internal heat 
generation (energy transfer) was added in place of the constant 
temperature Dirichlet boundary condition used to approximate 
the laser source. Approximating the laser source as internal heat 
generation is commonly used in FEA LPBF simulation [23,24]. 
There are many approaches to modeling this internal heat 
generation, but for our approach, one voxel was heated at a time 
[25]. The radiative boundary was not included. For voxels that 
only pertain to conduction and Dirichlet boundary conditions, 
the equation is  

 
𝑇𝑖,𝑗,𝑘

𝑛+1 =  𝐹𝑜(𝑇𝑖+1,𝑗,𝑘
𝑛 + 𝑇𝑖−1,𝑗,𝑘

𝑛 + 𝑇𝑖,𝑗+1,𝑘
𝑛   

                           + 𝑇𝑖,𝑗−1,𝑘
𝑛 + 𝑇𝑖,𝑗,𝑘+1

𝑛 + 𝑇𝑖,𝑗,𝑘−1 
𝑛  (1) 

                          + 
𝑄𝑖,𝑗,𝑘

𝑛

𝑘𝑝
 −  6𝑇𝑖,𝑗,𝑘

𝑛 ) + 𝑇𝑖,𝑗,𝑘
𝑛   

                                           
where 𝑇𝑖,𝑗,𝑘

𝑛  is the absolute temperature at the current timestep 
(𝑛) of a node at positions i, j, k (corresponding to the 𝑥, 𝑦, 𝑧 
coordinates), 𝑇𝑖,𝑗,𝑘

𝑛+1 is absolute temperature at the future (𝑛 + 1) 
timestep, 𝑄𝑖,𝑗,𝑘

𝑛  is current timestep (𝑛) heat generated at node 
𝑖, 𝑗, 𝑘, and  𝐹𝑜 is the Fourier number found in Equation 2 
 
                                  𝐹𝑜 = 𝑘𝑝 𝑑𝑡

ℎ2 𝜌 𝑐
                                             (2) 

 
where 𝑘𝑝 is the thermal conductivity of the powder, 𝑑𝑡 is the 
timestep, ℎ is the cubic voxel side length, 𝜌 is the density of the 
powder, and 𝑐 is the specific heat of the powder. For voxels that 
involve conduction and convection the equation is modified as 
 

    𝑇𝑖,𝑗,𝑘
𝑛+1 =  𝐹𝑜[ (2 𝐵𝑖 𝑇𝑖,𝑗−1,𝑘

𝑛 ) + ( 2 𝑇𝑖,𝑗+1,𝑘
𝑛 )        

              + 𝑇𝑖,𝑗,𝑘+1
𝑛 + 𝑇𝑖+1,𝑗,𝑘

𝑛 + 𝑇𝑖−1,𝑗,𝑘
𝑛 + 𝑇𝑖,𝑗,𝑘−1

𝑛 + 𝑇𝑖,𝑗,𝑘
𝑛    (3) 

             + 
𝑄𝑖,1,𝑘

𝑛

𝑘𝑝
 + 𝑇𝑖,1,𝑘

𝑛 (−2 𝐵𝑖 − 6) ] + 𝑇𝑖,1,𝑘
𝑛   

 
where 𝐵𝑖 is the Biot number computed as 

 
𝐵𝑖 = 𝐶∗ ℎ

𝑘𝑎
                                               (4) 

 
where 𝐶 is the heat transfer coefficient of the air and 𝑘𝑎 is the 
thermal conductivity of the air.  

By using the finite difference method in conjunction with 
voxel representation, the equation that calculates temperature at 
each voxel can be generalized for every volumetric region of 
interest in the powder volume to a desired resolution. Equation 1 
applies to all interior voxels connected to the conduction voxels 
seen in Figure 1 and all other interior voxels not connected to a 
boundary condition. Meanwhile, Equation 3 applies to all 
interior voxels connected to convection voxels (see Figure 1). 
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FIGURE 1: Visualization of boundary condition locations used with 

the finite difference equations 1 and 3. 
 

3.2 ANN Architecture Design 
In order to facilitate comparison between the PINN and the 

label-trained ANN, the training parameters, training data, and 
physical constants of the PINN and the label-trained ANN were 
held constant. This section details the shared ANN architecture 
of the PINN and the label-trained ANN (see Section 3.2.1), 
custom loss function of the PINN (see Section 3.2.2), and design 
of the shared training dataset (see Section 3.2.3). 

 
3.2.1 PINN and label-trained ANN architecture 

The simulated powder bed volume used as the input for both 
the PINN and the label-trained ANN had a voxel dimension of 
20 × 7 × 7. Each of the voxels encoded a two-channel vector 
representing the temperature and heat generation magnitude at 
each voxel at a particular instance in time. The output of the 
PINN and the label-trained ANN was a 20 × 7 × 7 voxel-based 
field, where each voxel represents the estimated temperature of 
the region after one additional timestep has passed. Both of these 
models are discrete time models, where input data describing the 
temperature and heat transfer field is used to predict a 
temperature field at a fixed timestep. The loss function of the 
PINN only iterates through the interior nodes of the input since 
the outer layers of the input space are encoded as the boundary 
conditions for the temperature channel (see Figure 1) or exist as 
“padding” for the heat generation channel. In order to match the 
dimensionality of the input, the outer voxels of the output also 
serve as padding.  

Since the LPBF application requires prediction of an entire 
scalar field throughout a volume, it necessitates a model with a 
relatively high output dimensionality. A convolutional neural 
network (CNN) architecture was selected because CNNs are 
particularly advantageous at retaining practicable training times 
with increases in input and output dimensionality [26]. The 

shared architecture of both the PINN and label-trained ANN is 
specified in Figure 2 for our work. 

 

 
 

FIGURE 2: Flowchart of shared PINN and label-trained ANN 
architecture layers 

 
The shared architecture in Figure 2 was developed in 

TensorFlow version 2.1.0, Keras version 2.3.1, and Python 
version 3.7.6. The ANNs were trained using a GTX 1080 Ti GPU 
while the FD was executed using an intel 4770k CPU. The PINN 
and the label-trained ANN were trained using the same 5000 
training samples with a batch size of 100 samples for 50 epochs. 
The optimizer used was Adam with a learning rate of 5×10-4. The 
label-trained ANN used mean squared error (MSE) as the loss 
function while the PINN used the loss function described in 
Section 3.2.2.  
 
3.2.2 PINN loss function 

The PINN custom loss function is constructed as the MSE 
of the conduction and convection finite difference equations. 
Since loss should approach 0 during training, the future time step 
solution is subtracted from the current temperature and FD 
calculated change in temperature. The loss equation 
corresponding to voxels with only conduction and heat 
generation is given by 
 
      𝐿𝑜𝑠𝑠𝑎 = ∑ ∑ ∑ |𝑇𝑖,𝑗,𝑘

𝑛 + (∆𝑇𝑖,𝑗,𝑘
𝑛 )𝑐𝑜𝑛𝑑 − 𝑇𝑖,𝑗,𝑘

𝑛+1|20
𝑘=1

7
𝑗=2

7
𝑖=1     (5) 

 
where 𝑇𝑖,𝑗,𝑘

𝑛  is the current (𝑛) timestep temperature of the voxel 
at position i, j, k (indices corresponding to the 𝑥, 𝑦, and 𝑧 axes), 
(∆𝑇𝑖,𝑗,𝑘

𝑛 )𝑐𝑜𝑛𝑑  is the change in temperature calculated using 
equation 1, and 𝑇𝑖,𝑗,𝑘

𝑛+1 is the future (𝑛 + 1) temperature predicted 
by the PINN. The loss equation corresponding to voxels with 
conduction, convection, and heat generation is computed as 



 5 © 2021 by ASME 

 
      𝐿𝑜𝑠𝑠𝑏 = ∑ ∑ ∑ |𝑇𝑖,𝑗,𝑘

𝑛 + (∆𝑇𝑖,𝑗,𝑘
𝑛 )𝑐𝑜𝑛𝑣 − 𝑇𝑖,𝑗,𝑘

𝑛+1|20
𝑘=1

1
𝑗=1

7
𝑖=1     (6) 

 
where 𝑇𝑖,𝑗,𝑘

𝑛  is the current (𝑛) timestep temperature of the voxel 
at position i, j, k (again corresponding to the 𝑥, 𝑦, and 𝑧 axes),  
(∆𝑇𝑖,𝑗,𝑘

𝑛 )𝑐𝑜𝑛𝑣 is the change in temperature calculated using 
equation 3, and 𝑇𝑖,𝑗,𝑘

𝑛+1 is the future (𝑛 + 1) temperature predicted 
by the PINN. The loss equations are then combined using 
 

                              𝐿𝑜𝑠𝑠 = (𝐿𝑜𝑠𝑠𝑎+𝐿𝑜𝑠𝑠𝑏)2

𝑁
                               (7) 

 
where N is the number of voxels included in the loss calculation 
(here, 𝑁 = 450). 
 
3.2.3 Training dataset design 

In an effort to eliminate the need for prohibitive labelled 
data, synthetic data can be particularly advantageous. Existing 
PINN methods incorporate many different approaches for 
generating training data without relying on costly or unavailable 
experimental observations. For instance, one approach used 
experimental data with 1% noise [14]. A second approach 
randomly generated shapes in order to mimic experimental 
training data [20].  

In this work, we sought a method of training set generation 
that maximized the speed of generating training data while 
minimizing the potential bias toward a small number of 
researcher-selected shapes. To achieve this goal, we 
procedurally generated a set of temperature and heat generation 
fields in which each voxel was uniformly assigned a random 
value between -100 and 100 (for both temperature, measuring in 
K, and energy transfer, measured in W). This range was 
intentionally below the order of magnitude of temperatures and 
approximately on the order of magnitude for heat generation 
values experienced in a powder bed volume after melt pool 
solidification in order to keep the input data uniform and simple. 
Here, positive values represent heat generation within a voxel, 
and negative values represent heat absorption. For temperature, 
although half of the data is below 0 K, the loss function used is 
continuous for all temperature values. In other application areas, 
the selection of the range for the random values should be treated 
as an additional hyperparameter in the end-to-end PINN training 
process. An example of a training data sample (for the 
temperature or heat transfer channel) can be seen in Figure 3. 

 
FIGURE 3: Example 3D plot of uniformly randomly generated 

temperature channel and heat transfer channel training data. 
 

In addition to the training data, the training process is 
constrained by global constants. The temperature boundary 
conditions are held constant at a value of 293 K. The cubic voxel 
side length was 1×10-7 meters with a constant timestep length of 
2.7×10-8 seconds. This voxel size is below the typical size for 
powdered metal in LPBF; however, this model only simulates an 
effective homogeneous medium [27]. The material properties 
chosen were: 0.1 W/m·K for the powder thermal conductivity, 
0.02 W/m·K for the air thermal conductivity, 25 watts per meters 
squared kelvin for the heat transfer coefficient, 8000 kg/m2 for 
the powder density, and 420 J/K·kg [27–30]. These values are 
within the range of numbers found in metal LPBF processes. An 
important constant to mention is the thermal conductivity of the 
powder. While metal powders typically used in LPBF have 
conductivities of 10-200 W/m·K, research shows that due to the 
packing density and composition of the air, the effective value is 
much lower [30]. 

 
3.3 LPBF Application Problem Statement 

The performance of the PINN was assessed in a transient 
thermal analysis problem of a LPBF process. As previously 
mentioned, the finite difference method used for the loss 
function is already tailored for additive manufacturing [22], with 
some modification as noted in Section 3.1. Heat conduction is 
modeled with Dirichlet boundary conditions on 5 exterior faces 
of the temperature field, and a convection boundary condition on 
the 6th surface. The laser is modeled using a single internal heat 
source approach, where 1 voxel is heated at a time. The boundary 
conditions on all 6 faces are constrained by a temperature value 
of 293 kelvin.  

The simulation involves two sequential modes: a single laser 
track and a diffusion mode with no heat generation. From t = 0 
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to 504 nanoseconds- a 1000-watt heat source moves voxel by 
voxel along the top plane of the temperature field. This 
approximates a laser moving at 3.57 m/s. These numbers are 
within the range of values found in LPBF processes [31,32]. 
After the t = 504 nanoseconds, the heat source is turned off, and 
the temperature field approaches steady state until t = 2772 
nanoseconds is reached. A cutaway of the FD simulation result 
at t = 504 nanoseconds is shown in Figure 4.  

 
FIGURE 4: Visualization showing cutaway view of the ground truth 
temperature through the powder bed volume after 504 nanoseconds of 

laser radiation.  
 
3.4 Experimental Methods 

To investigate differences in the PINN training method and 
the label-trained method, we compared the aggregate prediction 
error of 30 pairs of the PINN and label-trained ANN in a one-
sided Wilcoxon signed-rank test. Pairs of models were trained 
using the same random seed. Each pair of PINN and label-trained 
ANN models was trained with the parameters found in Section 
3.2.3 with a different random number seed for each pair. Each 
pair of PINN and label-trained ANN models was also tested on 
a dataset generated similarly to the training dataset. However, 
instead of values between -100 and 100, we selected 1000 
samples of a much larger range of 100-10000 Kelvin and 100-
10000 Watts in order to test unseen data out of the training range 
and demonstrate universality of the model. Each pair also used a 
shared seed for a total of 30 training datasets, 30 testing datasets, 
and 30 different seed pairs. Each sample is only fed through the 
network once; so, this does not evaluate compounding error.  

We tested each PINN and label-trained ANN model by 
directly comparing the predictions to the FD ground truth 
(ground truth minus prediction) and calculating the mean of 
these prediction errors per model. These means were then 
compared using a Wilcoxon signed-rank test [33] in order to 
demonstrate the difference between the two different training 
methods aggregate error biases. In order to compare the 
distribution of prediction error between the two models, the 
mean standard deviation of the 30 pairs was also calculated. 

The FD LPBF simulation serves as the ground-truth model 
for the PINN method since the PINN loss function is derived 
from the same FD equations. For demonstrative purposes, we 
selected the two best PINN and label-trained ANN models from 
the 30 models tested in the Wilcoxon signed-rank test (based on 
mean error).  

The FD LPBF simulation is compared to the ANNs in two 
ways: (1) mean absolute percent error (MAPE) over time and (2) 
a visual inspection of error per voxel over time. MAPE was 
chosen as a way of continuously evaluating the aggregate 
temperature field error of each timestep. By evaluating this 
metric over time, we can learn how each ANN performs in each 
simulation mode defined in Section 3.3. By calculating and 
displaying the error for each voxel over time, we can also 
empirically evaluate the source of error for each ANN. 

 
4. RESULTS 

This section presents the results of the Wilcoxon signed-
rank test (see Section 4.1) and LPBF simulation (see Section 4.2) 
based on the methods previously described (see Section 3.4). 
These results test our two research questions in Section 1. 

 
4.1 Comparison of PINN and Label-Trained ANN 

For the first research question, we assess how PINN models 
compare to label-trained ANN models. Training results of one 
sample of seed-paired PINN and label-trained ANN models are 
shown in Figure 5. Both training methods converged similarly, 
but to different loss values due to the different loss functions 
used. 

 

 
FIGURE 5: Plot of example loss per epoch convergence for PINN 

and label-trained ANN models 
  

The Wilcoxon signed-rank test dataset was calculated for 
the aggregate prediction error of 30 pairs of PINN and label-
trained models. This test gave a p-value of 0.145, showing with 
moderate significance that the PINN has a different aggregate 
prediction bias compared to the label-trained ANN. In addition 
to the statistical test, we also show the distribution of predictions 
from the two best models (based on mean bias) in Figure 6. 
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(a) 

(b) 
FIGURE 6: Example histograms of the two best (a) PINN and 

(b) label-trained ANN predicted temperatures vs. the FD ground truth 
temperature error residuals 

 
Although in general the PINN predictions appear to have a 

smaller standard deviation, the actual mean standard deviation 
across all 30 pairs is 150.0 for the PINN and 149.8 for the label-
trained ANN. Because the standard deviations are relatively 
similar, the absolute value of the aggregate prediction bias acts 
as a better predictor of model performance. 
 
4.2 LPBF Inspired Simulation 

For the second research question, we asses how the PINN 
performs over time in a LPBF simulation compared to the label-
trained ANN. The LPBF simulation involves compounding time 
steps and as a result produced more divergent results between the 
PINN and label-trained ANN than the previous section, even 
though both models selected had relatively low mean biases. For 
the PINN, MAPE peaked at a value of 1.24% while the label-
trained ANN peaked at a value of 22.5%. In the laser track 
simulation mode, both models increased in error over time. In 
the conduction simulation mode, the PINN system approaches 0 
error while the label-trained ANN does not. These results can be 
found in Figure 7. 

To visualize the transient simulation process, eight instances 
of the LPBF simulation are shown for comparison in Figure 8. 
The first four instances (t = [0,504] nanoseconds) demonstrate 
the laser track motion; the last four (t = (504,2772] nanoseconds) 
demonstrate the diffusion mode with no heat generation. In the 

first three rows, we plot the PINN, FD ground truth, and label-
trained ANN simulations at the chosen timesteps. In the last two 
rows, we plot the error of the PINN and label-trained ANN 
predictions vs the ground truth FD model. 

 

 
FIGURE 7: Plot of MAPE vs. time for the PINN and label-

trained ANN LPBF simulation 
 

Visually, the simulations appear very similar to the FD 
ground-truth; however, the pattern of the error is dissimilar for 
the PINN and label-trained ANN. For the first four instances (the 
laser track simulation mode), the PINN error mirrors the laser 
track. In the last four instances (the diffusion simulation mode), 
the error is more symmetric throughout the temperature field- 
and decreases over time. The label-trained ANN does not exhibit 
the same pattern of error as the PINN, it is more symmetric for 
all eight timesteps- with error concentrated towards the center of 
the temperature field rather than the boundary. The error for the 
label-trained ANN also increases over time. 
 
5. CONCLUSION  

In the case of LPBF, a cyber-physical AM method, 
computational simulations become increasingly important 
towards optimizing the fabrication process and preventing 
failure. In contribution to this paradigm, ANNs and ML have 
become powerful tools for LPBF. In this work, the goal was to 
evaluate a method to eliminate the prohibitive data labelling 
process and to train surrogate models using well understood 
physics domain knowledge. Our work created a LPBF heat 
transfer simulation that utilized a stochastically-trained PINN 
with multiple boundary conditions. 

For the first research question, we investigated the statistical 
difference between our proposed PINN and a traditionally label-
trained ANN. Our Wilcoxon signed-rank test demonstrated that, 
in general, it is likely that the PINN performs better than the 
label-trained ANN given the same training data and constraints. 
However, although the distribution of prediction errors appeared 
to be superior for the PINN, the standard deviations of both the 
PINN and label-trained ANNs prediction errors were the same. 
Knowing this, at a very minimum the PINN performs equally to 
the label-trained ANN. 
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FIGURE 8: Cutaway plots of PINN simulation, FD ground truth simulation, label-trained ANN simulation, PINN error, and label-trained ANN 
error at selected timesteps. 

 
The second research question involved simulating a LPBF 

thermal problem. For this problem, the error was compounded 
over time, which further demonstrated the difference between 
the PINN and label-trained models. Upon comparing the two 
best models from the statistical test dataset, the PINN showed 
better MAPE over time. Furthermore, upon visual analysis of the 
errors for each voxel, it was clear that the pattern of error was 
different for the PINN compared to the label-trained ANN. 

Although our proposed PINN showed promise compared to 
the traditionally label-trained ANN, especially in the LPBF 
simulation, this work only involved a single PDE, namely, the 
heat equation. This work also used many static physical 
constants which can change over time in a LPBF build. Future 
work can directly build on this work by investigating the ability 
of the PINN to learn more variables or channels at once (beyond 
the temperature and heat generation channels demonstrated 
here). The LPBF process involves many other physical 
phenomena, and future work could investigate similar 
simulations with different loss functions. In addition to using 
different PDEs for loss functions, the method of an auto-
differentiating PINN could be investigated for LPBF as well. 
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