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Diamond grit is widely used in cutting, grinding, and polishing tools for its superior mechanical properties and
performance in machining hard materials. Selective laser brazing (SLB) of diamond grits is a new additive
manufacturing technique that has great potential to fabricate the next generation of high-performance
diamond tools. However, fundamental understanding and quantitative analysis for the design and tuning of
the SLB process and the resulting bonding e�ciency are not yet established as the process is complicated
by heating, fusion, wetting, solidi�cation, grit migration, bonding, reaction, and the interplay between
these e�ects. We present a thermodynamically consistent phase-�eld theoretical model for the prediction
of melting and wetting of SLB on diamond grits using a powder-based additive manufacturing technique.
The melting dynamics is driven by laser heating in a chamber �lled with argon gas and is coupled with
the motion of multiple three-phase contact lines. The relevant wetting dynamics, interfacial morphology,
and temperature distribution are computationally resolved in a simpli�ed two dimensional (2D) con�guration.

Keywords: selective laser brazing, wetting dynamics, diamond grits, phase-�eld modeling, additive
manufacturing

I. INTRODUCTION

Synthetic diamond tools have long been developed for
a variety of applications in machining metallic, glass, ce-
ramic, and composite materials.? ? ? ? ? ? Having ad-
vantages of superior hardness, tensile strength, thermal
conductivity, wear resistance, self-sharpening capability,
and low friction and low thermal expansion coe�cient,
synthetic diamond grits in a metal matrix are often used
in producing cutting, grinding, and polishing tools for the
machining of hard materials.? ? ? Two types of brazing
�ller metals are widely used in brazing diamond tools,
that is, copper-based medium-temperature alloys and
nickel-based high-temperature materials.? ? ? ? ? ? The
former has a relatively low operating temperature and
thus lower risk of graphitization and cracks due to mild
residual stress, however, it su�ers from lower mechan-
ical strength and less wear resistance. The latter has
a strong a�nity to diamond, great chemical resistance
and wearing resistance, however, nickel could catalyze
the graphitization of diamond grits at high temperature.
In practices, phosphorus, boron, and carbon are often al-
loyed with nickel to reduce the melting temperature and
alleviate the graphitization problem. Chromium can also
be added as an active metal to form carbide, which en-
hances the bonding of diamond grits to the substrate.
The performance and service life of diamond tools are

often limited by the pullout of grits during operation,
which is associated with the impregnated depth of dia-
mond grits in the metal �ller as well as the wetting pro�le,
protrusion height from the �ller metal, and the cutting
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conditions. Electroplating and brazing are two major
techniques in fabricating surface-set diamond tools. In
electroplating, diamond grits are evenly covered by the
plating metal as mechanical support, however, the bond-
ing force is relatively weak as a recess cavity region often
appears in the brazing material around each grit and can
not guarantee the performance of the diamond tool for
an aggressive cutting at the higher speed.? ? In the SLB
process, the �ller metal is melted by heating �rst, pro-
viding wetting e�ectively to the substrate and diamond
grits. As the grits are �rmly embedded in the brazing
alloy, higher bonding force and thus better tool life and
performance are expected than those electroplated dia-
mond tools.?

Because brazing dynamics is complicated by heating,
fusion, wetting, solidi�cation, and chemical reaction,?

the local heat transfer rate and temperature distribution
would signi�cantly a�ect the formation of the intermetal-
lic phase and residual stress.? Therefore, careful control
and optimization of the process are essential to the suc-
cess of making brazing diamond tools. With the recent
advancement of additive manufacturing of metallic parts,
fabrication of metal-diamond composite is further devel-
oped by using selective laser melting (SLM) and laser
cladding process.? ? Selective laser brazing (SLB) of di-
amond grits is an additive manufacturing technique that
holds promise for adjusting the temperature, degree of
melting of the �ller metal, brazing pro�le, protrusion
height of the diamond grits, and to improve bonding or
adhesion force, yet reducing the risk of graphitization
and micro cracks. Selective laser brazing would have ad-
vantages on better control of the spatial arrangement of
diamond grits and microstructure of the metal composite
matrix. However, there exist no details about transient
brazing dynamics and predictive modeling tools that can
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facilitate basic understanding and rapid design of the pro-
cess.
In this article, we focus on the �rst approximation of

the phase transition and 2D wetting dynamics during the
SLB process with an assumed �xed diamond-grit con�gu-
ration. As wetting dynamics is essential for a �rm bond-
ing between diamond grits and the substrate, reaction
and formation of the intermetallic phase are neglected to
simplify the model. The di�use interface or phase-�eld
method? ? ? ? ? ? is applied to the derivation of phase
transition and transport equations in the proposed theo-
retical framework. The phase-�eld approach has the ad-
vantage of describing transient and multiphase dynam-
ics without explicitly tracking the moving boundaries.
The details of wetting dynamics are described by the
multi-component Cahn-Hilliard type equation, whereas
the Allan-Cahn equation is used for solid-liquid phase
transition of the �ller metal. The phase-�eld method has
been developed primarily for investigating the growth ki-
netics, interfacial patterning, and the stability of den-
dritic microstructure in metallic systems.? ? ? ? ? ? The
phase �led method can also include other e�ects, such
as elastic energy, electrical �eld, magnetic �eld, and
thermo�uid dynamics.? ? ? ? ? ? ? ? ? ? ? ? Recently we
have extended the phase-�eld approach and thermal-�uid
analysis to the applications in additive manufacturing? ?

and biopharmaceutical processing.? ? In SLB additive
manufacturing process, the contact line dynamics can be
described by an order parameter (phase-�eld variable)
with interfacial boundary conditions obtained from ei-
ther surface energy,? geometrical contact angle,? ? ?

or imposed constraint to minimize the resulting free
energy.? ? ? Here we adopt the constraint approach for
its completeness in describing the evolution of contact
lines and the transient wetting dynamics.

II. THEORETICAL ANALYSIS

Figure 1 shows the simpli�ed setting of our model sys-
tem with diamond grits and powders made of the �ller
metal, presumed alternately placed on top of the coated
substrate. Upon laser heating and melting of the �ller
metal, wetting and spreading introduce interfacial mo-
tion and �uid �ow around the diamond grits. The sub-
sequent solidi�cation immerses the grits and provides
bonding of the grits to the substrate surface. The fol-
lowing assumptions are made to facilitate the theoreti-
cal analysis: i) the diamond grits are assumed �xed to
the same location, that is, the motion or migration of
grits is neglected, ii) characteristic size of the Gaussian
laser beam is assumed of the same order of magnitude
as grits and powders, iii) evaporation and condensation
of the �ller metal are neglected, iv) chemical reaction
and intermetallic phase formation are not included, v)
the latent heat, heat capacity, density, dynamic viscos-
ity of the �ller metal are assumed constant, whereas the
thermal conductivity is temperature dependent, vi) ther-

FIG. 1. Schematic of selective laser brazing (SLB) process
on a tool surface. A stainless steel substrate is coated with
the �ller metal, and diamond grits are a�xed on top of it.
Melting of the powders made of the same �ller metal between
grits provides bonding of grits to the substrate. ϕ1 to ϕ4 are
the corresponding material volume fractions. Length L is the
characteristic size of grits with an assumed hexagonal shape,
D represents the width of the computational domain with
periodic con�guration, and the Gaussian beam is featured by
an irradiation intensity H and characteristic spot radius a.

mal Marangoni e�ect along the liquid-gas interface is ne-
glected, vii) the nominal size of the powders is about the
same as diamond grits with a periodic spatial arrange-
ment, and viii) the ambient argon gas is assumed ideal.

A. Entropy functional

Following the thermodynamically consistent phase-
�eld approach,? ? ? we express the entropy functional
of the system as

S ′ =

∫︂
Ω

L′dV =

∫︂
Ω

[︃
s (e, φ, ϕ1, ϕ2, ϕ3, ϕ4)

− 1

2
ξ2φ|∇∇∇φ|2 − 1

2

4∑︂
i=1

ξ2i |∇∇∇ϕi|2
]︃
dV ,

(1)

where Ω indicates the physical and computational do-
main, including the substrate, �ller metal, diamond grits,
and the argon gas environment, the integrand L′ of the
entropy functional includes the contributions of gradi-
ent entropy e�ect across the interfaces and the local en-
tropy s (per unit volume) within the bulk phase as a
function of the internal energy e, solid-liquid phase-�eld
variable φ, and volume fractions of the argon gas ϕ1,
�ller metal ϕ2, diamond ϕ3, and substrate ϕ4. The as-
sumed constant gradient coe�cients ξφ and ξ1∼4 asso-
ciated with the corresponding gradient e�ects are con-
nected with the interfacial energy, thickness, as well as
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the constraint to the three-phase contact line. The phase-
�eld variable φ ∈ [−1, 1] (−1 for the liquid phase and +1
for the solid phase) is a non-conserved order parameter
to describe solid-liquid phase change, whereas ϕ1 to ϕ4

∈ [0, 1] are material volume fractions as conserved phase-

�eld variables under a constraint of
∑︁4

i=1 ϕi = 1. The
entropy functional S ′ can be modi�ed and written as a
constrained form:

S =

∫︂
Ω

LdV =

∫︂
Ω

[︃
s− λ

(︄
4∑︂

i=1

ϕi − 1

)︄

− 1

2
ξ2φ|∇∇∇φ|2 − 1

2

4∑︂
i=1

ξ2i |∇∇∇ϕi|2
]︃
dV ,

(2)

where λ is a Lagrange multiplier to be determined, and L
is the revised integrand that incorporates the constraint.
Now we consider the time derivative of the above entropy
functional,

dS
dt

=

∫︂
Ω

(︄
∂s

∂e

∂e

∂t
+

∂s

∂φ

∂φ

∂t
+

4∑︂
i=1

∂s

∂ϕi

∂ϕi

∂t

+
∂L
∂∇∇∇φ

∇∇∇∂φ

∂t
+

4∑︂
i=1

∂L
∂∇∇∇ϕi

∇∇∇∂ϕi

∂t

)︄
dV ,

(3)

which can be arranged to an Euler-Lagrange form as

dS
dt

=

∫︂
Ω

[︄
∂s

∂e

∂e

∂t
+

(︃
∂s

∂φ
−∇∇∇ · ∂L

∂∇∇∇φ

)︃
∂φ

∂t

+

4∑︂
i=1

(︃
∂s

∂ϕi
−∇∇∇ · ∂L

∂∇∇∇ϕi

)︃
∂ϕi

∂t

+∇∇∇ ·

(︄
∂φ

∂t

∂L
∂∇∇∇φ

+

4∑︂
i=1

∂ϕi

∂t

∂L
∂∇∇∇ϕi

)︄]︄
dV .

(4)

By using variational operator δ, Eq. (??) can be ex-
pressed as

dS
dt

=

∫︂
Ω

[︄
δS
δe

∂e

∂t
+

δS
δφ

∂φ

∂t
+

4∑︂
i=1

δS
δϕi

∂ϕi

∂t

+∇∇∇ ·

(︄
∂φ

∂t

∂L
∂∇∇∇φ

+

4∑︂
i=1

∂ϕi

∂t

∂L
∂∇∇∇ϕi

)︄]︄
dV ,

(5)

where the �rst variation of the entropy functional with
respect to the internal energy e, phase �eld φ, and volume
fraction ϕi are

δS
δe

=
∂s

∂e
=

1

T
, (6)

δS
δφ

=
∂s

∂φ
−∇∇∇ · ∂L

∂∇∇∇φ
=

∂s

∂φ
+ ξ2φ∇2φ , (7)

and

δS
δϕi

=
∂s

∂ϕi
−∇∇∇ · ∂L

∂∇∇∇ϕi
=

∂s

∂ϕi
+ ξ2i∇2ϕi, (8)

respectively, where T is temperature and i = 1 to 4.
Furthermore, based on the entropy transport equation,

the time derivative of the entropy functional can be writ-
ten as

dS
dt

=

∫︂
Ω

[︄
∇∇∇ · (−JJJs) + Γ̇ +

Q̇

T

]︄
dV , (9)

where JJJs represents entropy �ux, Γ̇ is local entropy gen-
eration rate, which has a positive value according to the
2nd law of thermodynamics, and Q̇ accounts for the heat
source (Q̇ > 0) or sink (Q̇ < 0) e�ect. By combining
Eqs. (??) and (??) and with integration over an arbi-
trary material domain, the di�erential entropy transport
equation leads to

∇∇∇ · (−JsJsJs) + Γ̇ +
Q̇

T
=

δS
δe

∂e

∂t
+

4∑︂
i=1

δS
δϕi

∂ϕi

∂t

+
δS
δφ

∂φ

∂t
+∇∇∇ ·

(︄
∂φ

∂t

∂L
∂∇∇∇φ

+

4∑︂
i=1

∂ϕi

∂t

∂L
∂∇∇∇ϕi

)︄
,

(10)

which forms the basis of governing transport equations
and the evolution of phase-�eld variables that describe
the laser brazing problem in hand.

B. Energy equation

The di�erential energy equation in terms of the varia-
tional derivative of S can be expressed as

∂e

∂t
+ vvv · ∇∇∇e = −∇∇∇ ·

(︃
Me∇∇∇

δS
δe

)︃
+Φ+ Q̇ , (11)

and by selecting the mobility coe�cient Me = kTT
2 as a

function of the temperature-dependent thermal conduc-
tivity kT , the �rst term on the right-hand side reduces
to the classical Fourier heat conduction e�ect. The vis-
cous dissipation function Φ = σσσvis : ∇∇∇vvv is for an as-
sumed Newtonian �uid, with σσσvis and vvv representing the
�uid �ow viscous stress and the velocity �eld, respec-
tively. The heat source term Q̇ incorporates the radia-
tion lose Q̇r and laser irradiation Q̇ir e�ects to be de�ned
later on. Note that the local and convective derivatives
on the left-hand side can be replaced by the substantial
derivative of the internal energy, De/Dt.

The additive internal energy is given by e =
∑︁4

i=1 ϕiei,
where e1, e3, and e4 are the internal energy of pure argon
gas, diamond, and substrate, respectively, whereas e2 is
the internal energy of the �ller metal that follows

e2(T, φ) = e
(s)
2 (T ) + P (φ)La , (12)
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where e
(s)
2 indicates internal energy density (per unit vol-

ume) of the solid phase of the �ller metal, La is an as-
sumed constant latent heat of melting for the �ller metal,
and P (φ) is an interpolation function across solid and liq-
uid phases, here de�ned as

P (φ) = 1/2− 1/16
(︁
3φ5 − 10φ3 + 15φ

)︁
. (13)

The above polynomial function satis�es P ′ = P ′′ = 0 at
φ = ±1,? so that P (1) = 0 indicates the solid phase and
P (−1) = 1 for the liquid phase. By incorporating the
latent heat e�ect into the phase-�eld approach, the time
derivative of internal energy can be approximated by

De

Dt
≃

4∑︂
i=1

ϕi
Dei
Dt

= ϕ2P
′La

Dφ

Dt
+

4∑︂
i=1

(︃
ϕiρicpi

DT

Dt

)︃
.

(14)
We further assume that all speci�c heats, denoted by cpi ,
are temperature-independent, and for the solid and liquid

phases of the �ller metal we have c
(s)
p2 ≃ c

(ℓ)
p2 = cp2

. As a
result, the energy equation (??) can be written as

4∑︂
i=1

ϕiρicpi

DT

Dt
=∇∇∇ · (kT∇∇∇T ) + σσσvis :∇∇∇vvv

+ Q̇r + Q̇ir − ϕ2P
′La

Dφ

Dt
,

(15)

where temperature-dependent thermal conductivity kT
has covered the contribution from each phase and can be
calculated by

kT =

4∑︂
i=1

ϕikTi
, (16)

with kT1
to kT4

indicating the temperature-dependent
thermal conductivity for argon, �ller metal, diamond
grits, and the substrate, respectively. The radiation heat
loss to the environment and irradiation of the laser beam
at the surface (∂Ω) of the diamond grits and �ller metal
are calculated by

Q̇r(x ∈ ∂Ω) = −ϵσB(T
4 − T 4

a )

W
, (17)

and

Q̇ir(x ∈ ∂Ω) = −αHHH ·nnn
W

, (18)

respectively, where ϵ =
∑︁4

i=2 ϕiϵi is the emissivity of the
surface with apparent characteristic width W , ϵi repre-
sents emissivity of each corresponding phase, σB is the
Stefan-Boltzmann constant, Ta is the ambient tempera-
ture, α is the absorptivity of the system assumed approx-
imately the same as ϵ, nnn is the outward surface normal
pointing from the �ller metal or diamond grits to the am-
bient gas environment, determined by nnn = ∇∇∇ϕ1/|∇∇∇ϕ1|,
and HHH is the intensity of an assumed 2D Gaussian laser

beam. Note that gas participation in thermal radiation
is neglected here. The heat �ux of the Gaussian laser
beam can be approximated by

HHH =
−
√︁
2/πQ
a

exp

[︃
−2(x− x0 − Uat)

2

a2

]︃
êy , (19)

where Q is the laser power per unit length, a is the char-
acteristic spot radius, x is horizontal coordinate, and x0

is the initial position and Ua is the scanning speed of the
laser beam traveling along the horizontal direction (êx,
Fig. 1). Note that the heat �ux for a uniform laser beam
in the test case is approximated by HHHu = −(Q/D) êy.

C. Phase-�eld evolution equations

Following the entropy transport equation (Eq. ??) and

with a positive entropy generation rate Γ̇, the time evo-
lution of the non-equilibrium solid-liquid phase �eld φ
is assumed linearly proportional to the entropy driving
force δS/δφ, written as

∂φ

∂t
= Mφ

δS
δφ

= Mφ

(︃
∂s

∂φ
+ ξ2φ∇2φ

)︃
, (20)

where the assumed positive proportional constant Mφ is
the so-called interfacial mobility, and the �rst variation of
entropy functional comes from Eq. (??). Furthermore,
the transient evolution of each volume fraction ϕi as a
conserved phase-�eld variable follows the Cahn-Hilliard
type evolution equation? , expressed as

∂ϕi

∂t
= −∇∇∇ ·

[︃
Mi∇∇∇

(︃
δS
δϕi

)︃]︃
= −∇∇∇ ·

[︃
Mi∇∇∇

(︃
∂s

∂ϕi
+ ξ2i∇2ϕi

)︃]︃ (21)

for i = 1 to 4, where the positive mobility coe�cients
M1 to M4 are for argon gas, �ller metal, diamond grits,
and the substrate, respectively. As mixing is avoided
across the boundaries of each component in this case,
the mobility coe�cients are no longer associated with
Fickian-type species di�usivity. Here the coe�cients are
determined by scaling analysis based on the comparison
of characteristic time scales.

Now to associate ∂s/∂φ and ∂s/∂ϕi in Eqs. (??) and
(??) with internal energy and free energy density, the
total derivative of internal energy e(s, φ, ϕ1, ϕ2, ϕ3, ϕ4) is
expressed as

de = Tds+
∂e

∂φ
dφ+

4∑︂
i=1

∂e

∂ϕi
dϕi , (22)
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and thus

ds =
1

T
de− 1

T

∂e

∂φ
dφ− 1

T

4∑︂
i=1

∂e

∂ϕi
dϕi . (23)

By comparing the partial derivatives of entropy
s(e, φ, ϕ1, ϕ2, ϕ3, ϕ4) with the above expression, one can
establish the following relations:

∂s

∂φ

)︃
e,ϕ1,ϕ2,ϕ3,ϕ4

= − 1

T

∂e

∂φ

)︃
s,ϕ1,ϕ2,ϕ3,ϕ4

, (24)

and

∂s

∂ϕi

)︃
e,φ,ϕj(j ̸=i)

= − 1

T

∂e

∂ϕi

)︃
s,φ,ϕj(j ̸=i)

(25)

for i = 1 to 4. Moreover, since the Helmholtz free energy
density is introduced as f(T, φ, ϕ1, ϕ2, ϕ3, ϕ4) = e − Ts,
the total derivative of free energy is

df = d(e− Ts) = −sdT +
∂e

∂φ
dφ+

4∑︂
i=1

∂e

∂ϕi
dϕi , (26)

therefore,

∂e

∂φ

)︃
s,ϕ1,ϕ2,ϕ3,ϕ4

=
∂f

∂φ

)︃
T,ϕ1,ϕ2,ϕ3,ϕ4

, (27)

and

∂e

∂ϕi

)︃
s,φ,ϕj(j ̸=i)

=
∂f

∂ϕi

)︃
T,φ,ϕj(j ̸=i)

(28)

for i = 1 to 4. By further incorporating the constraint
of volume fraction and the Lagrange multiplier, the free
energy density that is complementary to the bulk entropy
density appeared in Eq. (??) can be formulated as

f =
4∑︂

i=1

ϕifi + fmix + Tλ

(︄
4∑︂

i=1

ϕi − 1

)︄
, (29)

where the free energy density f2 is for the �ller metal,
including both solid and liquid phases with an equi-
librium free energy pro�le determined by a double-well
potential,? written as

f2 = T

[︃
−
∫︂ T

Tm

e2(T
′, φ)

T ′2 dT ′ +
1

4
hφ

(︁
1− φ2

)︁2 ]︃
, (30)

where Tm is the equilibrium melting temperature of the
�ller metal, internal energy e2 is de�ned in Eq. (??),
and hφ is the corresponding energy barrier (per degree
Kelvin) across solid and liquid phases of the �ller metal.
Additional energy terms f1, f3, and f4 are the free energy
densities of pure argon, diamond, and the substrate, re-
spectively. To avoid mixing of di�erent components, here
we introduce mixing free energy fmix using a double-well

type potential to accommodate the enthalpy e�ect? :

fmix = T

4∑︂
i=1

[︁
hiϕ

2
i (1− ϕi)

2
]︁
, (31)

where h1 to h4 are the energy barriers for mixing di�erent
components. The last term on the right-hand side of
Eq. (??) takes Lagrange multiplier into account for the

constraint
∑︁4

i=1 ϕi = 1.

Now by combining the thermodynamic relationships
above, the φ-derivative of entropy is approximated as

∂s

∂φ
≃ ϕ2

[︃
P ′La

T − Tm

TTm
+ hφ

(︁
φ− φ3

)︁]︃
, (32)

where the latent heat is assumed temperature indepen-
dent, and the ϕi-derivative is approximated as

∂s

∂ϕi
≃ − 1

T

∂fmix

∂ϕi
− λ

= −2hiϕi(1− ϕi)(1− 2ϕi)− λ ,

(33)

where the mixing enthalpy e�ect dominates the free en-
ergy expression. Finally, substituting Eq. (??) into Eq.
(??), the φ-equation for solid-liquid phase transition be-
comes

∂φ

∂t
= Mφ

[︃
ξ2φ∇2φ+ ϕ2P

′La
T − Tm

TTm

+ ϕ2hφ

(︁
φ− φ3

)︁ ]︃
,

(34)

where the evolution of the phase �eld φ is determined
by three e�ects: the 2nd term on the right is the ther-
mal driving force for solid-liquid phase transition by tak-
ing elevated temperature and latent heat into account,
whereas 1st and 3rd terms indicate the balance of dif-
fusive and double-well type phase separation e�ects for
generating and evolving a smooth yet narrow interfacial
pro�le. Similarly, substituting Eq. (??) to Eq. (??), the
volume fraction phase-�eld equation can be formulated
as

∂ϕi

∂t
=∇∇∇ ·

{︄
Mi∇∇∇

[︃
2hiϕi(1− ϕi)(1− 2ϕi)

+ λ− ξ2i∇2ϕi

]︃}︄ (35)

for i = 1 to 4 in general. The double-well term pre-
vents the mixing of di�erent components, the Lagrange
multiplier accounts for the constraint, and the 4th-order
term takes the long-ranged e�ect into account, which is
obtained originally from the entropy gradients. In the
above phase-�eld evolution equations, the gradient co-
e�cients ξ2φ and ξ2i , and the energy barriers hφ and hi

are associated with interfacial energy and characteristic
thickness of the interface, which will be explained in the
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following section. Note that to accommodate the �uid
�ow convective e�ect, hereafter we replace ∂/∂t by the
substantial derivative D/Dt ≡ ∂/∂t + vvv · ∇∇∇, where vvv is
the velocity �eld.

D. Interfacial energy and Lagrange multiplier

The interfacial energy γ is associated with the excess
energy due to the appearance of the interface at equilib-
rium and can be estimated by the one dimensional (1D)
approximation of the phase-�eld pro�le.? As a result,
the interfacial energy at the solid-liquid interface of the
�ller metal can be expressed as

γφ =

∫︂ ∞

−∞

[︁
Tmξ2φ|∇∇∇φ|2

]︁
dx =

2
√
2

3

ξ2φ
Wφ

Tm , (36)

where x indicates the coordinate in an assumed un-
bounded 1D domain, Tm is the reference temperature
at the melting point of the �ller metal, and Wφ is the
characteristic thickness of interface correlated with the
entropy gradient coe�cient through ξ2φ = hφW

2
φ. Simi-

larly, the interfacial energy across two di�erent compo-
nents can be formulated by the general form:

γij =

∫︂ ∞

−∞

[︃
T 0
ij

(︁
ξ2i + ξ2j

)︁
|∇∇∇ϕi|2

]︃
dx , (37)

where i and j indicate the corresponding component, and
T 0
ij is the reference temperature. Considering ϕi ∈ [0, 1],

the interfacial energy between the �ller metal and argon
gas environment becomes

γ12 =

√
2

6

(︁
ξ21 + ξ22

)︁
W12

T 0
12 =

√
2

6
(h1 + h2)W12T

0
12 , (38)

where W12 is the characteristic thickness of the interface
between argon and �ller metal. Similar expressions are
applied to the interfacial energy between argon and dia-
mond grits (γ13), argon and stainless steel (γ14), and the
�ller metal and diamond grits (γ23). We further assign
all reference temperatures to the melting point of �ller
metal, T 0

ij = Tm, and apply the same characteristic thick-
ness by letting Wij = W . Further arrangement of the
four entropy gradient coe�cients for their corresponding
components can be formulated by the interfacial energies
as ⎡⎢⎣ξ

2
1

ξ22
ξ23
ξ24

⎤⎥⎦ =
3W√
2Tm

⎡⎢⎣ 1 1 −1 0
1 −1 1 0
− 1 1 1 0
− 1 −1 1 2

⎤⎥⎦
⎡⎢⎣γ12γ13
γ23
γ14

⎤⎥⎦ . (39)

In the multi-component system, the energy barriers are
further associated with the gradient coe�cients and in-

terfacial thickness as

hi + hj =
ξ2i + ξ2j
W 2

. (40)

A reduction of the relationships leads to a decoupled
form:

hi =
ξ2i
W 2

(41)

for i = 1 to 4.

Finally, following the derivation of Boyer et al.? ? , the
Lagrange multiplier λ can be determined by combining
Eqs. (??) and (??) and substituting into the constrain∑︁4

i=1 ϕi = 1, and then taking the time derivative of the
constraint at an arbitrary temperature as

D

Dt

(︄
4∑︂

i=1

ϕi

)︄
= 0 = ∇2

[︄
1

T

4∑︂
i=1

(︃
Mi

∂fmix

∂ϕi

)︃

+ λ

(︄
4∑︂

i=1

Mi

)︄
−

4∑︂
i=1

(︁
Miξ

2
i∇2ϕi

)︁ ]︄
.

(42)

A simpli�ed relationship was postulated by Boyer et
al.? ? by letting

M1ξ
2
1 = M2ξ

2
2 = M3ξ

2
3 = M4ξ

2
4 = M0 , (43)

where M0 is a constant. The last term on the right-hand
side of Eq. (??) vanishes due to the constraint, so that
the resulting Lagrange multiplier becomes

λ =
−1

T
∑︁4

i=1 Mi

(︄
4∑︂

i=1

Mi
∂fmix

∂ϕi

)︄
. (44)

Note that the energy barriers hi mentioned in Eq. (??)
are used to calculate the partial derivatives of the mixing
energy fmix, and for computing the Lagrange multiplier.

The general formulation for solving ϕi can be simpli�ed
in our case. First of all, the volume fraction of stainless
steel ϕ4 is de�ned based on a �xed con�guration (Fig.
1):

ϕ4 = −1

2
tanh

(︃
|y − ys| − ds/2

W

)︃
+

1

2
, (45)

where ys is the center position of stainless steel in the y-
axis, and ds is the width. Second, the volume fraction of
diamond grits ϕ3 is also de�ned using a similar hyperbolic
tangent function to outline the hexagonal shape, assumed
a �xed con�guration. Third, the volume fraction for �ller
metal ϕ2 is solved at every time instant to re�ect the
wetting dynamics, and the volume fraction of argon gas
is calculated by the constraint ϕ1 = 1−

∑︁4
i=2 ϕi. Finally,

the Lagrange multiplier is updated from ϕ1 to ϕ4 at each
time step.
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E. Korteweg stress and momentum equation

During the phase transition process, the molten �ller
metal is assumed as a quasi-incompressible Newtonian
�uid. The �ow dynamics involved is described by the con-
tinuity equation and Navier-Stokes-Korteweg momentum
equation as

∇∇∇ · vvv = 0 , (46)

and

ρ
Dvvv

Dt
=∇∇∇ · τττ −∇∇∇ ·

4∑︂
i=1

ΠΠΠi , (47)

respectively, where ρ is the density that includes the con-
tributions from all components,

ρ =

4∑︂
i=1

ϕiρi (48)

where ρ1 to ρ4 stand for the mass density of each com-
ponent, vvv is the velocity �eld, τττ represents total viscous
stress, and ΠΠΠi indicates the Korteweg stress introduced
by capillarity e�ect across each interface. The constitu-
tive stress-strain rate model for a Newtonian �uid can be
formulated by

τττ = −pδδδ + σσσvis = −pδδδ + η
[︂
∇∇∇vvv + (∇∇∇vvv)

T
]︂
, (49)

where p is pressure, δδδ is the identity matrix, σσσvis is vis-
cous stress, and η is a temperature-dependent dynamic
viscosity, here calculated by

η = ϕ2

[︂
Pη

(ℓ)
2 + (1− P )η

(s)
2

]︂
+

4∑︂
i=1,i̸=2

ϕiηi , (50)

with η1, η3, and η4 representing the dynamic viscosity of

argon gas, diamond grits, and stainless steel, η
(s)
2 and

η
(ℓ)
2 are the dynamics viscosity for solid and liquid �ller
metal, respectively, and P is the interpolation function
de�ned by Eq. (??). Furthermore, using Tm as a refer-
ence temperature, the Korteweg stress according to the
volume fraction can be derived? and expressed as

ΠΠΠi = −Tmξ2i

(︃
1

2
|∇∇∇ϕi|2 + ϕi∇2ϕi

)︃
δδδ

+ Tmξ2i (∇∇∇ϕi)(∇∇∇ϕi) ,

(51)

where the isotropic part of the stress tensor above can
be combined with the pressure e�ect in the momentum
equation.

To facilitate the computation, the higher-order mo-
mentum equation can be reduced by introducing a po-
tential form? ? through a free energy functional F and
the corresponding non-classical chemical potential µi be-

low:

F =

∫︂
Ω

[︃
f (T, φ, ϕ1, ϕ2, ϕ3, ϕ4)

+
1

2
Tξ2φ|∇∇∇φ|2 + 1

2

4∑︂
i=1

Tξ2i |∇∇∇ϕi|2
]︃
dV ,

(52)

and

µi =
δF
δϕi

=
∂f

∂ϕi
− Tξ2i∇2ϕi . (53)

Here we assume that the Korteweg e�ect is temperature
independent and the reference temperature Tm is applied
to the chemical potential. The body force term obtained
from the Korteweg stress thus can be replaced by the free
energy density and the chemical potential as

∇∇∇ ·
4∑︂

i=1

ΠΠΠi =∇∇∇

(︄
f − Tm

4∑︂
i=1

ξ2i ϕi∇2ϕi

)︄
−

4∑︂
i=1

µi∇∇∇ϕi .

(54)
By absorbing the �rst term on the right-hand side of the
above equation into the pressure gradient, the momen-
tum equation can be simpli�ed as

ρ
Dvvv

Dt
= −∇∇∇p̂+∇∇∇ ·

[︁
η(∇∇∇vvv +∇∇∇vvvT )

]︁
+

4∑︂
i=1

µi∇∇∇ϕi , (55)

where the modi�ed pressure becomes

p̂ = p−
4∑︂

i=1

(︁
Tmξ2i ϕi∇2ϕi

)︁
+ f , (56)

and the computation of chemical potential is separated
from the momentum equation.

F. Material properties

As temperature variation is critical in thermal and mo-
mentum transport, we summarize the relevant properties
and transport coe�cients that take temperature depen-
dency into account. The density of ideal argon gas is
calculated by

ρ1 =
p0MA

RT
, (57)

where p0 is the ambient pressure, MA is the molar mass
of argon, R is the universal gas constant, and the data for
thermal conductivity and dynamic viscosity? are corre-
lated in terms of dimensional values in MKS units and
degree Kelvin as

kT1
≃ 1.473× 10−2 + 2.840× 10−5T , (58)
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FIG. 2. (a) Temperature-dependent thermal conductivity
kT1 , and viscosity of argon gas η1, (b) thermal conductivi-
ties of �ller metal kT2 , diamond grits kT3 , and stainless steel
substrate kT4 .

and

η1 ≃ 1.885× 10−5 + 3.362× 10−8T . (59)

The above linear correlations are plotted against the tem-
perature in Fig. 2(a) for reference.

A few material properties of commonly used nickel-
based �ller metals in brazing of diamond tools, such
as BNi-2, BNi-3, and BNi-7 can be found in the lit-
erature? ? ? . However, these �ller alloys, whether in
solid or liquid form, are in general lack of temperature-
dependent thermal physical properties. For the solid
phase of the �ller metal below melting temperature, we
choose temperature-dependent thermal conductivity of a
pure nickel? instead, whereas for the molten phase we
adopt a constant conductivity from a liquid nickel at its
melting temperature. Across the computational domain,
we utilize the interpolation function P , Eq. (??), to de-

termine the overall thermal conductivity as

kT2
≃ k

(s)
Ni [1− P (φ)] + k

(ℓ)
NiP (φ) , (60)

and k
(s)
Ni represents the solid-state thermal conductivity

of pure nickel and is approximated by

k
(s)
Ni ≃ 50.06 + 0.022T , (61)

where k
(ℓ)
Ni = 49.7 W/(m ·K) is the thermal conductivity

of liquid nickel at its melting temperature.? The thermal
conductivities of diamond? and stainless steel? can be
estimated by

kT3 ≃ 227.40 + 7.11× 106T−1.53 , (62)

and

kT4
≃ 9.42 + 0.0143T , (63)

respectively. These conductivities are plotted in Fig.
2(b). Other material properties used in the case studies
are listed in Table ??. A few more characteristic lengths
and model parameters are included in Table ??.

TABLE I. Reference material properties.

Parameters Value, SI
mass density: kg/m3

�ller metal ρ2
? 7810

diamond ρ3
? 3500

stainless steel ρ4
? 7874

reference thermal conductivity kT0
? 90.9 W/(m ·K)

speci�c heat: J/(kg ·K)
argon cp1

? 520.3
�ller metal cp2

? 490.0
diamond cp3

? 1994.2
stainless steel cp4

? 633.0

liquid �ller metal viscosity η
(ℓ)
2

? 0.0125 Pa · s
interfacial energy in between: J/m2

solid and liquid �ller metal γφ
? 0.347

nickel and argon gas γ12
? 1.838

nickel and diamond γ23
? 2.572

diamond and gas γ13
? 3.980

stainless steel and argon gas γ14
? 1.860

melting temperature of �ller metal Tm
? 1243 K

latent heat of fusion of �ller metal La
? 2.32× 109 J/m3

emissivity:
�ller metal ϵ2

? 0.34
diamond grit ϵ3

? 0.20
stainless steel ϵ4

? 0.40
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TABLE II. Additional parameters used in test cases.

Parameters Value, SI
grits size, characteristic length L 2× 10−4 m
domain size D = 2πL ∼ 1.2× 10−3 m
interfacial thickness for φ �eld Wφ 1.6× 10−5 m
interfacial thickness for ϕi �eld W 8× 10−6 m
temperature di�erence ∆T 500 K
solid-liquid energy barrier hφ 18.5 J/(m3 ·K)
energy barrier for �ller metal h2 91.7 J/(m3 ·K)
characteristic velocity U 0.73 m/s
solid-liquid interfacial mobility Mφ 32.1 m · s ·K/kg
2D power of laser beam Q 2.1× 105 W/m
spot size of laser beam a 100 µm
scanning speed of laser beam Ua 0.1 m/s

G. Scaling and simpli�cation

The governing equations (??), (??), (??), and (??), are
scaled by the grit size L and phase transition time scale
τφ (Table ??). The scaling and de�nition of reference
parameters (with subscript 0) are based on �ller metal
as

ρ0 = ρ2 , cp0
= cp2

, and η0 = η
(ℓ)
2 . (64)

The characteristic velocity U is associated with the capil-
lary velocity and adjusted by a constant β (here we select
β = 0.005) as

U =
βγ12

η
(ℓ)
2

, (65)

and the temperature is scaled by a characteristic temper-
ature di�erence ∆T (assumed 500 K) as

T̃ =
T − Tm

∆T
. (66)

With the above reference parameters and material prop-
erties, �ve characteristic time scales involved in the SLB
process can be determined, namely, thermal di�usion
time scale τT , convective time scale τc, solid-liquid phase
transition time scale τφ, the time scale for wetting dy-
namics τwet, and viscous di�usion time scale τvis, ex-
pressed as

τT =
L2ρ0cp0

kT0

, τc =
L

U
, τφ =

1

hφMφ
,

τwet =
L2

h2M2
, and τvis =

ρ0L
2

η0
.

(67)

The resulting values are listed in Table ??. The pressure
and stress involved in this problem are scaled by inertia
e�ect ρ0U

2.
Considering the scaling and reference parameters

above, the energy equation can be simpli�ed to a dimen-

TABLE III. Time scales based on Eq. (??) and relevant pa-
rameters listed in Tables ?? & ??.

Parameters Value, s
thermal di�usion time τT ∼ 1.68× 10−3

convective time scale τc 2.74× 10−4

phase transition time scale τφ 1.68× 10−3

wetting dynamics time scale τwet 1.68× 10−5

viscous di�usion time τvis 2.50× 10−2

sionless form as

c̃p

(︄
∂T̃

∂t̃
+ Pe vvṽ · ∇̃T̃

)︄
+

ϕ2P
′

Ste

(︃
∂φ

∂t̃
+ Pe vvṽ · ∇̃φ

)︃
= Leφ∇̃ ·

(︂
k̃T ∇̃T̃

)︂
+ BrLeφσσσ̃vis : ∇̃vvṽ

−
αBiirLeφ

Chã

√︃
2

π
exp

[︄
−2(x̃− x̃0 − PeŨat̃)

2

ã2

]︄
(eeêy ·nnn)

−
ϵBirLeφ

Ch

⎡⎣(︄1 + T̃∆T

Tm

)︄4

−

(︄
1 +

T̃ a∆T

Tm

)︄4
⎤⎦ ,

(68)

where the tilde is used for scaled parameters, heat ca-
pacity c̃p =

∑︁4
i=1 ϕiρĩc̃pi

, thermal conductivity k̃T =∑︁4
i=1 ϕik̃Ti , emissivity ϵ =

∑︁4
i=2 ϕiϵi, absorptivity is as-

sumed the same as emissivity, α = ϵ, and the dimension-
less groups are de�ned as

Pe =
τφ
τc

, Ste =
ρ0cp0

∆T

La
, Leφ =

τφ
τT

,

Br =
η0U

2

kT0∆T
, Bir =

σBT
4
mL

kT0∆T
,

Biir =
Q

kT0
∆T

and Ch =
W

L
.

(69)

The Peclet number Pe compares the phase transition and
convective time scales, Stefan number Ste measures the
ratio of sensible heat to latent heat, interfacial Lewis
number Leφ measures the ratio of the phase transition
to thermal di�usion time scales, Brinkman number Br

compares the viscous dissipation to the heat conduction
e�ects, Biot number Biir measures the ratio of irradia-
tion to heat conduction e�ect, Biot number Bir measures
the radiation heat transfer to heat conduction e�ect, and
Ch is the Cahn-Hilliard number indicating the relative
thickness of the interface to the length scale. The scaled
φ-equation can be expressed as

∂φ

∂t̃
+ Pe vvṽ · ∇̃φ = C2

hφ
∇̃2

φ+ ϕ2(φ− φ3)

+ ϕ2P
′Λφ

T̃

1 + (∆T/Tm)T̃
,

(70)
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where an additional Cahn-Hilliard number Chφ
represents

the thickness of solid-liquid interface to the length scale,
and the phase-change number Λφ describes the ratio of
latent heat of fusion to the interfacial energy, de�ned as

Chφ =
Wφ

L
, and Λφ =

La∆T

hφT 2
m

, (71)

respectively. Furthermore, the governing equation for the
volume fraction of the �ller metal ϕ2 reduces to

∂ϕ2

∂t̃
+ Pe vvṽ · ∇̃ϕ2 =

τφ
τwet

∇̃ ·

{︄
∇̃
[︃
λ

h2
− C2

h∇̃
2
ϕ2

+ 2ϕ2(1− ϕ2)(1− 2ϕ2)

]︃}︄
.

(72)

Finally, the scaled Navier-Stokes-Korteweg momentum
equation is written as

ρ̃

Sc

(︃
∂vvṽ

∂t
+ Pe vvṽ · ∇̃vvṽ

)︃
≃ −Re∇p̃+ReΓ

4∑︂
i=1

(︂
µ̃i∇̃ϕi

)︂
+ ∇̃ ·

[︂
η̃(∇̃vvṽ + ∇̃vvṽT )

]︂
,

(73)
where the scaled chemical potential µ̃i = µi/(Tmh2), den-

sity ρ̃ =
∑︁4

i=1 ϕiρ̃i, and the dynamic viscosity is

η̃ = ϕ2

[︂
P η̃

(ℓ)
2 + (1− P )η̃

(s)
2

]︂
+

4∑︂
i=1,i̸=2

ϕiη̃i . (74)

Note that the dynamic viscosities for all solid compo-
nents are much larger than the dynamic viscosity of liq-

uid �ller metal, here we assume η̃3 = η̃4 = η̃
(s)
2 ≃ 105.

The Schmidt number Sc compares the phase transition
to viscous time scales, Reynolds number Re indicates the
inertia to viscous e�ects, and Korteweg number Γ mea-
sures the ratio of energy barrier of �ller metal to the
kinetic energy, de�ned as

Sc =
τφ
τvis

, Re =
τvis
τc

, and Γ =
Tmh2

ρ0U2
, (75)

respectively. The dimensionless groups and their cor-
responding values are listed in Table ?? for order-of-
magnitude comparison.

In summary, the governing system and the assump-
tions are proposed to simulate the phase transition and
wetting dynamics of diamond grits brazing process us-
ing nickel-based �ller metal. Speci�cally, we solve energy
equation (Eq. ??) for the temperature distribution, solid
liquid phase-�eld equation (Eq. ??) for solid-liquid phase
transition, volume fraction phase �led equation (Eq. ??)
for wetting dynamics, and the Navier-Stokes-Korteweg
equation (Eq. ??) for �uid dynamics of the system. The
fully coupled governing equations are solved with given
initial and periodic boundary conditions. The computa-

TABLE IV. Dimensionless groups.

Dimensionless group Value
Peclet number Pe 6.14
Stefan number Ste 0.82
Lewis number Leφ 1
Brinkman number Br 1.47× 10−7

Biot number for radiation Bir 5.96× 10−4

Biot number for irradiation Biir 0.018
Cahn-Hilliard number for φ �eld Chφ

0.08
phase change number Λφ 4.07× 104

Cahn-Hilliard number for ϕi �eld Ch 0.04
Reynold number Re 91.2
Schmidt number Sc 0.067
Korteweg number Γ 27.4

tional algorithm is developed for the scaled formulation,
and in general applicable to 2D and 3D cases.

III. RESULTS AND DISCUSSION

To demonstrate the transient dynamics, numerical
tests are performed by applying an alternative spatial ar-
rangement of the �ller powders and diamond grits (Fig.
1).The results shown on the following �gures are from
discretization on a 2D mesh with 800 by 800 uniform
grid points, and further re�nement on the mesh will not
generate the noticeable di�erence. A periodic boundary
condition is applied to facilitate the computation using
Fourier spectral method. The thermal conductivity of the
substrate material has been adjusted to provide a quasi-
insulation boundary condition at the bottom of the com-
putational domain. The pseudo-spectral scheme is used
to discretize nonlinear terms. The momentum equation
is solved by using the projection formulation to decou-
ple velocity �eld from the pressure �eld, and the solid
phase is simply taken as an assumed �uid with much
higher (at least �ve orders of magnitude) viscosity than
the molten �ller metal. The nonlinear e�ects induced by
variable transport coe�cients are discretized using the
algorithm provided by Zhu et al.? . The temporal dis-
cretization applies the forward Euler integration scheme
with uniform time step h = 10−5 and a semi-implicit
spatial discretization is applied for all test cases. The
transient simulations are carried out for about 5 × 105

time steps until the formation of meniscus around the
diamond grits. Note that there is no smooth or adaptive
scheme applied to the moving interfaces in the phase-�eld
approach, which can be further extended to a variety of
conditions with di�erent powder size and con�guration
or spatial arrangement. Next, we present a validation of
three-phase contact line dynamics and the simulation of
SLB using stationary and moving laser beams.
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FIG. 3. Normalized free energy of an unbiased ternary system
(a), and for an argon(ϕ1)-�ller metal(ϕ2)-diamond(ϕ3) system
(b) at equilibrium.

A. Free energy of a ternary system

Figure 3 demonstrates the contour map of normalized
free energy and its relation with the Young's contact
angle under the steady-state condition for an assumed
unbiased ternary system (Fig. 3a) and the argon-�ller-
diamond system (Fig. 3b), where the free energy fmix

(Eq. ??) is scaled by its maximum value. For the unbi-
ased case, γ12 = γ13 = γ23, the energy barriers are based
on a similar relationship as given in Eqs. (??) and (??),
and the result indicates that the free energy has three
locally minimum points at (ϕ1, ϕ2, ϕ3) = (1, 0, 0), (0,
1, 0), and (0, 0, 1), implying a separation of the three-

FIG. 4. A sessile liquid droplet on top of a solid substrate at
di�erent static contact angles. The gravity e�ect is neglected,
and the theoretical pro�les can be well approximated by a
portion of a circle for θ = 30◦ (a), 45◦ (c), 60◦ (d), 75◦ (e),
and 90◦ (f). The black area mimics the solid substrate (ϕ3),
the grey area is the for the vapor phase (ϕ1), and the white
area is the droplet (ϕ2). The zoom-in view (b) shows phase-
�eld contours at ϕ2 = 0.2, 0.5, 0.8 near the tri-junction point,
and the theoretical pro�le (long-dash line) at a contact angle
of 30◦. Reference parameters: Tm = 1243 K,W = 1×10−6 m,
γ13 = 3.980 J/m2, γ12 = 1.838 J/m2, and γ23 = γ13−γ12 cos θ.

component system which is equally weighted by a triple-
well type energy potential with the global maximum lo-
cated at the center point of the energy landscape, i.e.,
(ϕ1, ϕ2, ϕ3) = (1/3, 1/3, 1/3). On the other hand, for
the argon-�ller-diamond system, the energy barriers are
calculated from interfacial energy γ12, γ13, and γ23 listed
in Table ??. The free energy has three local minima at
the same locations as the unbiased system with a shifted
global maximum. Points A(ϕ1 = 0.5, ϕ2 = 0, ϕ3 = 0.5),
B(0.5, 0.5, 0), and C(0, 0.5, 0.5) in Fig. 3b corre-
spond to the interfaces between argon and diamond, ar-
gon and �ller, and �ller and diamond, respectively, with
f̃A > f̃C > f̃B , meaning that the system prefers to
have a larger interfacial area between argon-�ller or to
reduce interface formation between argon and diamond.
According to the de�nition of fmix and interfacial en-
ergy relationship, Eq. (??), the free energy at points A,
B, and C can be correlated to interfacial free energy as
f̃A : f̃B : f̃C = (h1 + h3) : (h1 + h2) : (h2 + h3) =
γ13 : γ12 : γ23, which is associated with the steady-state
Young's contact angle of a sessile droplet of liquid �ller
metal on top of a diamond plate in an argon gas envi-
ronment by γ13 − γ23 = γ12cosθ. The calculated contact

angle is θ = cos−1
[︂
(f̃A − f̃C)/f̃B

]︂
≃ 40◦.

As a simple test of the steady-state model, wetting of
the solid plate by a liquid droplet within a vapor environ-
ment under di�erent contact angles is tested by evolving
ϕ2 equation from a spherical droplet to a fully relaxed
state. The steady-state result shown in Fig. 4 at di�er-
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ent contact angles agrees well with the theoretical pro�les
(dashed lines).

B. Brazing process using a stationary laser beam

Figure 5 demonstrates the transient dynamics of braz-
ing of nickel-based �ller metals using an assumed station-
ary laser beam with uniform irradiation intensity for the
heating and melting process. To demonstrate the wet-
ting process driven by interfacial energy alone, �rst, we
neglect the convective e�ect in the process simulation.
The 2D laser power Q is 2.1 × 105 W/m, spot radius
a → ∞, and the scanning speed is set to U = 0. The
initial con�guration at t̃ = 0 is arranged by placing three
powders of �ller metals and three diamond grits of equal
size and arranged alternatively on top of a layer of �ller
metal attached to the substrate (Fig. 1). Note that pow-
der size L = 200 µm and domain size D ≃ 1200 µm. The
process time scale τφ is about 1.7×10−3 second. The ini-

tial temperature T̃ = −0.2 is uniform for all components
including the argon gas environment. Figure 5 includes
six sequential plots at scaled time instants t̃ = 0, 0.5,
1.0, 1.3, 1.5, and 2.0. At each time instant, a color map
on the left is for the phase �eld φ and side-by-side com-
pared with a scaled temperature map T̃ on the right.
The evolution of the �ller metals and the con�guration
pro�les of grits are indicated by thick solid lines deter-
mined by ϕ2 = 0.5 and ϕ3 = 0.5, whereas a few selected
temperature contours are shown by thin solid lines for
reference. In this case, the onset of melting appears at
the top surface of the �ller metal powders during the
early stage of laser heating, shown at time instant around
t̃ = 0.5. At this moment, the �ller powders are not in
contact with diamond grits, and thus a circular powder
shape is maintained owing to a strong surface tension ef-
fect. The downward advancing of the melting front over-
laps with the melting temperature contour T̃ = 0, which
validates the basic assumption that the process is ther-
mally controlled and the solid-liquid interface is near an
equilibrium state. The corresponding temperature map
shows that the thermal di�usion wave has penetrated the
�ller metals and diamond grits at t̃ = 1.0, as expected
from scaling estimation. Furthermore, the evolution of
the molten �ller metals driven by wetting e�ect occurs
at a later stage after time instant t̃ reaches about 1.0
(Fig. 5). The three-phase contact line moves upward
and downward to coat the diamond grits, shown in the
sequential plots at time instants t̃ = 1.0, 1.3, and 1.5.
During the process, higher temperature appears at the
top surface of the �ller powders due to higher absorp-
tivity of thermal radiation (α ≃ 0.34) compared to di-
amond grits (α ≃ 0.2 ). At t̃ = 1.0 and 1.3, one can
observe a gradually deeper melting temperature contour
appeared in the diamond grits compared with the �ller
metal. This is because of the absorption of latent heat
into the �ller metal in addition to its relatively low ther-
mal conductivity (kT2

= 73.5 vs. kT3
= 281.6 Wm−1K−1

at T = Tm, shown in Fig. 2b). Eventually, the molten
powders are fused with coated layer on the steel sub-
strate, and the evolving interface �lls the gap region as
shown at t̃ = 2.0. At this moment, a meniscus nearly at
equilibrium is formed between diamond grits in order to
provide the required bonding force. Continuous heating
leads to further melting of the coated material.
In Fig. 6, we demonstrate the results by considering

the convective e�ect using the same conditions for the
case shown in Fig. 5. The two time instants at t̃ = 1.0
and 2.0 are demonstrated with respect to the same time
instants in Fig. 5. A symmetric circulation appears near
the top interface of the �ller powder due to the tendency
of molten �ller metal to �atten the free surface on top
and wet the diamond grits on the side. Comparing with
Fig. 5, the overall interfacial morphology is very similar,
indicating that the enhanced wetting due to convective or
inertial e�ect is insigni�cant under a relatively low laser
power. In this case, at around Q = 2.1×105 W/m. Away
from the coating region of interest, the velocity vanishes
in the far �eld as expected.

C. Brazing process using a scanning laser beam

Figure 7 shows the transient dynamics of the braz-
ing process using an assumed Gaussian laser beam with
the same laser power as the case shown in Fig. 5,
Q = 2.1 × 105 W/m, and spot size a = 100 µm. Al-
though under the same power, the peak value of the heat
�uxHHH from the scanning laser beam is about an order of
magnitude higher than the case using a uniform heat �ux
HHHu . The scanning process starts from the left edge of the
computational domain at x0 = 0 and moves horizontally
to the right-hand side with constant speed u = 0.1 m/s.
The onset of the melting and wetting appears at the top-
left corner around time instant t̃ = 0.5, where the heat-
ing comes from thermal irradiation and heat conduction
by direct contact of the �ller metal with the diamond
grit. The diamond grit has four times higher thermal
conductivity and about two times higher thermal di�u-
sivity than the nickel-based �ller metal, and thus over-
all resulting in a smaller temperature gradient (longer
thermal di�usive length) in the diamond grits during the
heating process. Note that the thermal di�usivities for
argon gas, diamond grits, and �ller metal are approx-
imately 5.3 × 10−4, 4.5 × 10−5, and 2.1 × 10−5 m2/s.
Further heating from the scanning beam leads to an evo-
lution of the melting front in the �ller powder and the
coated �ller metal on the substrate. The three-phase con-
tact line moves downward to coat the diamond grit at the
left and then moves upward to coat the second diamond
grit while �lling the gap area (t̃ = 1.0, 1.3, and 1.5). At
time instant t̃ = 1.0 the molten �ller metal shifts to the
left and the free surface maintains a circular shape due
to strong surface tension e�ect. The sequential tempera-
ture plots clearly show the marching of the melting front
at T̃=0 and the accumulation and dissipation of the heat
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FIG. 5. Transient evolution of phase �eld φ for describing solid-liquid phase change and the scaled temperature �eld T̃ driven
by heating from a laser beam with uniform intensity at six scaled time instants t̃=0, 0.5, 1.0, 1.3, 1.5 and 2.0. The sequential
plots include temperature contours (thin solid lines) and boundary pro�les of metals and diamond grits located at ϕ2 = 0.5 and

ϕ3 = 0.5, respectively. The time scale is de�ned by τφ = 1.7 × 10−3s, and the temperature is scaled as T̃ = (T − Tm)/(∆T ),
with melting temperature of the �ller metal Tm = 1243 K and characteristic temperature di�erence ∆T = 500 K.

content. With continuous heating, the second �ller pow-
der melts and wets more grits (t̃ = 2.0 and 4.0). The
wetting dynamics eventually forms a meniscus between
diamond grits.

Figure 8 demonstrates the temperature history of a
few points in the diamond grits along with the liquid
fraction of the �ller metal during the transient process.
Shown in Fig. 8a, the process is driven by a station-
ary laser beam with uniform intensity. The temperature
at three selected points within a diamond at the top,
middle, and bottom places increases monotonically with
�rst-order type pro�les near the initial stage of heating.
In the beginning, around t̃ ≃ 0.1 the top surface reaches

the melting temperature T̃m = 0 so that fusion happens
and the liquid fraction of the �ller metal starts to increase
(shown by the red dashed line). At around time t̃ ≃ 0.8
to 0.9 heating and melting proceed along with capillary
wetting which �lls the space, resulting in a slightly faster
increase of temperature. This is due to the liquid �ller
coating on diamond grits, which causes higher laser en-
ergy absorption (α2 ≃ 0.34 vs. α3 ≃ 0.2). In Fig. 8b
we demonstrate a few more points to describe the tem-
perature history around the diamond grits as well as the
liquid fraction of the �ller metal heated by a scanning
laser beam. As expected, a strong ramp-up of temper-
ature advances from left to right. Comparing with Fig.
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FIG. 6. Velocity �eld overlapped with phase and temper-
ature �elds for the case shown in Fig. 5. The magnitude
of velocity vectors has been scaled by characteristic velocity
U = 0.73 m/s.

8(a), a much higher temperature gradient and faster tem-
perature rise appear on the surface of the diamond grit.
This is due to the focused irradiation near the center
point of a Gaussian beam. In the test case, the high-
est local heat �ux is about an order of magnitude higher
than the uniform beam. As the scanning proceeds to
preheat the second and third diamond grits, at t̃ ≃ 1.0,
the surface temperature of �rst diamond grit (location
1) decreases due to less thermal irradiation and higher
radiation heat loss to the gas environment, shown by
temperature increase with a decayed magnitude. Mean-
while, the temperature at the bottom part of the grit
continues to raise. The temperature history on location
3 closely correlates with the approaching and departing
of the scanning laser beam. The heat conducted through
the �ller metal around the grit is in�uenced by the degree
of wetting. At t̃ ≃ 2.8, the highest temperature reaches
T̃ ≃ 0.60, which may cause degradation of the bonding
strength due to possible graphitization of the diamond
grits. On the other hand, once melting starts from the
corner of the powder, the overall liquid fraction of the
�ller metal increases smoothly and correlates well to the
increase of phase transition area. Comparing with the
uniform heating case shown in Fig. 8(a), the demon-
strated process using a scanning beam takes longer time
(t̃ = 4.0 vs. t̃ = 2.0) to complete. However, a larger
molten zone is observed in the scanning case (VM = 68%
vs 37%).

Figure 9 demonstrates a sensitivity test of brazing dy-
namics based on di�erent power of thermal irradiation.
Applying the same con�guration, initial and boundary
conditions, and the traveling speed of the laser beam as
shown in Fig. 8, with an increasing irradiation intensity
HHH by adjusting the overall power Q. At a higher laser
power, the brazing process completes faster but having a
risk of overheating the diamond grits even within a short
period of time. On the other hand, at lower power, the
brazing process may not provide su�cient molten �ller
metal to bond the diamond grits completely.
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FIG. 7. Transient evolution of phase �eld φ and the scaled temperature �eld T̃ at six scaled time instants t̃= 0.5, 1.0, 1.3, 1.5,
2.0, and 4.0. The heating dynamics is driven by a scanning laser beam with 2D laser intensity Q = 2.1× 105 W/m, spot size
a = 100 µm, and scanning speed u = 0.1 m/s. The red arrow indicates the center position of the scanning laser beam.
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FIG. 8. Temperature history T̃ (t̃) at a few selected points
in diamond grits, and the liquid fraction of the overall �ller
metal Vm, either heated by a stationary (a) or scanning (b)
laser beam.

IV. CONCLUSION

We present a thermodynamically consistent phase-
�eld model to predict the dynamic process of selective
laser brazing of diamond grits. The simpli�ed 2D
model features laser heating, melting, and wetting of
nickel-based �ller metal to diamond grits, as well as
�lling the voids and providing bonding to the grits. The
phase-�eld framework has successfully incorporated the
constraint of three-phase contact line dynamics with
a non-isothermal phase transition process as well as
the convective e�ect in the molten liquid metal. Com-
putational results on heating e�ciency and transient
interfacial evolution under uniform and scanning laser
beams are demonstrated. The temperature history,
transient liquid fraction, and degree of completeness

FIG. 9. Temperature history on the top surface of a diamond
grit and the corresponding liquid fraction of the �ller metal
heated by a scanning laser beam with di�erent thermal irra-
diation power.

of the brazing process illustrate the potential of using
the theoretical model to predict, design, and optimize
the selective laser brazing process at a high level of
precision. Future development of the laser brazing
model will focus on experimental validation and thermal
stress analysis with a di�erent spatial arrangement and
diamond protrusion height to facilitate the a�nity or
bonding strength, and reduce graphitization of diamond
grits to enhance cutting tool performance.
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