

1 Solvation and Stabilization of Single-Strand RNA at the Air/Ice 2 Interface Support a Primordial RNA World on Ice

3 Ivan Gladich,* Margaret L. Berrens, Penny M. Rowe, Rodolfo G. Pereyra, and Steven Neshyba*

Cite This: <https://dx.doi.org/10.1021/acs.jpcc.0c04273>

Read Online

ACCESS |

Metrics & More

Article Recommendations

Supporting Information

4 **ABSTRACT:** Outstanding questions about the RNA world hypothesis for the emergence
5 of life on Earth concern the stability and self-replication of prebiotic aqueous RNA. A
6 recent experimental work has suggested that solid substrates and low temperatures could
7 help resolve these issues. Herein, we use classical molecular dynamics simulations to
8 explore the possibility that the substrate is ice itself. Simulations at $-20\text{ }^{\circ}\text{C}$ show that an
9 eight-nucleotide single strand of RNA, initially situated in the quasiliquid layer at the air/
10 ice interface, exhibits a robust propensity to reorient itself—its bases turn toward the
11 (hydrophobic) air/ice interface, while its anionic phosphodiester oxygens align with the
12 underlying ice lattice. Kinetic analysis of hydrogen bonding indicates resistance to
13 hydrolysis that is greater than that of an aqueous single-strand RNA at the same temperature. This enhanced resistance, in turn,
14 could increase the opportunities for polymerization and self-copying. These findings thus offer the possibility of a role for an ancient
15 RNA world on ice distinct from that considered in extant elaborations of the RNA world hypothesis. This work is, to the best of our
16 knowledge, the first molecular dynamics study of RNA on ice.

17 ■ INTRODUCTION

18 According to the *RNA world* hypothesis, terrestrial life began
19 with the formation of polymeric chains of ribonucleic acid
20 (RNA) in a prebiotic soup of complex organic molecules.^{1–9}
21 In this hypothesis, chains of RNA, rather than DNA, were the
22 first informational polymer^{3–5} and catalyzed their own
23 polymeric growth and replication by Watson–Crick base-
24 pairing,⁶ evolving toward more complex molecular machineries
25 up to the first cellular life. Prior works supporting this
26 hypothesis include the observations that some forms of RNA
27 (i.e., ribozymes) are capable of biocatalytic activity,^{7–10} and
28 that in modern life the assembly of amino acids into protein
29 chains in the ribosome of all living cells is catalyzed by
30 ribosomal RNA. Moreover, RNA fragments are attached to
31 various enzymatic cofactors, which are widely interpreted as a
32 vestige of an ancient RNA world.¹¹

33 Unresolved questions remain, however, about the emer-
34 gence of prebiotic RNA and its evolution in the absence of
35 protein-assisted biochemical mechanisms. Even granting
36 abiotic formation of nucleotides in a prebiotic soup (a topic
37 still intensely debated^{6,11–14}), polymerization of nucleotides
38 faces an uphill free energy gradient.¹¹ In addition, in an
39 aqueous solution at room temperature, RNA polynucleotides
40 degrade quickly¹⁵ because the phosphodiester link between
41 monomers is vulnerable to nucleophilic attack and breakage by
42 the deprotonated 2'-OH group of the ribose sugar.^{16,17}
43 Experimental investigations have (so far) shown that the
44 synthesis of complementary RNA strands, by template-directed
45 synthesis from pre-existing RNA chains or catalyzed by other
46 short RNA chains acting as a replicase ribozyme, is slow
47 compared to hydrolysis.^{18–20}

Recently, two experimental findings have revitalized the RNA world hypothesis. In 2011, Deck et al.²¹ observed the growth of an RNA complementary strand from an immobilized RNA template on iron oxide beads in the presence of a solution of free nucleotides and at a low temperature ($-20\text{ }^{\circ}\text{C}$). Subsequently, Attwater et al.²² were able to design, for the first time, a polymerase ribozyme capable of catalyzing the synthesis of an RNA sequence longer than itself in a subzero saline aqueous solution at $-19\text{ }^{\circ}\text{C}$. Interestingly, this catalytic activity was reported to occur in the eutectic phase at the interface of two growing ice crystals. Before this, *in vitro* ribozymes never accomplished the synthesis of RNA strands of their own size.²²

These findings point to the possibility of ice as a key substrate for a cold start for life. Within this context, a number of physicochemical insights into aqueous solute behaviors at the air/ice interface come into view. First, the exposed part of air/condensed water interfaces has been shown to be a preferential environment for the (partial) solvation of organic molecules containing large nonpolar groups.^{23,24} One can expect the hydrophobic base moieties of RNA to behave similarly. Second, at temperatures above $\sim 200\text{ K}$, the surface layer of water at an air/ice interface forms a thin, disordered

Received: May 12, 2020

Revised: July 26, 2020

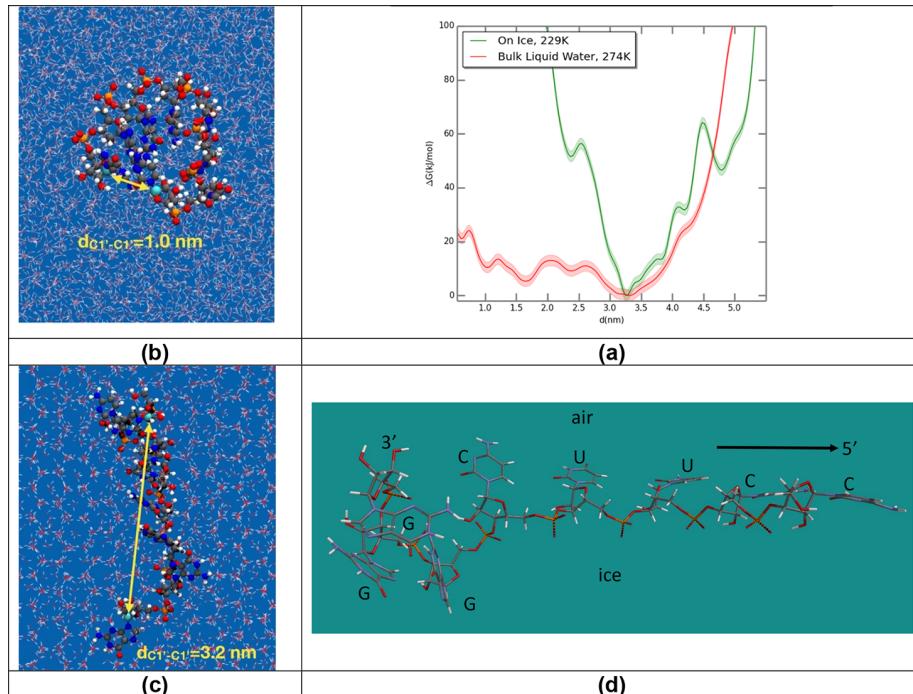
Published: July 28, 2020

71 (“premelted”) quasiliquid layer (QLL).^{25,26} A growing number
72 of experimental and computational studies^{27–34} indicate that
73 this QLL offers conditions that are quite different from those
74 experienced by solutes dissolved in bulk water, namely, a
75 heterogeneous solvation environment comprising the gas
76 phase, the disordered water layer, and the highly structured
77 underlying ice lattice. One can expect that RNA solvated
78 within this highly variegated environment might respond in
79 ways that could not occur in bulk aqueous solutions. Third,
80 phosphate is known to be a strong ionic kosmotrope, that is, it
81 directs, polarizes, and strengthens hydrogen bonding between
82 the nearby water molecules.^{35,36} Recent experimental³⁷ and
83 computational³⁸ works have indicated that the inner hydration
84 shell of phosphate typically consists of three water molecules
85 hydrogen bonded to each anionic phosphate oxygen (hence,
86 phosphate has an average of ~12 water molecules in its inner
87 solvation shell). If the anionic oxygens belonging to RNA’s
88 phosphodiesters behaved similarly, one would anticipate
89 similar strong interactions with water with the interesting
90 distinction that the ice-like water available for hydrogen
91 bonding at the air/ice interface could impose structural
92 constraints on the RNA that do not occur in aqueous RNA.

93 To explore whether an ice substrate could play a role in an
94 RNA world, a detailed molecular understanding of the
95 solvation and dynamics of RNA strands on ice is needed.
96 One attractive option for doing so is to employ the tools of
97 molecular dynamics (MD). In this work, we use MD
98 simulations to investigate the behavior of an eight-nucleotide,
99 CCUUCGGG, single-strand RNA sequence on the surface of
100 ice. Short strands such as this are attractive because sampling
101 of different configurations is more affordable on an MD time
102 scale; indeed, this sequence was the subject of prior MD
103 investigations^{39,40} in bulk water at 300 K. We find that this
104 approach yields structural and kinetic results that integrate well
105 with (and expand upon) the above-mentioned prior work in
106 bulk liquid water, beginning with the key observation that the
107 air/ice interfacial environment has a distinctive impact on the
108 orientation of RNA solvated at the air/ice interface.

109 ■ METHODS

110 MD simulations were performed to investigate the solvation
111 and dynamics of a small (8-nucleotide) single-strand RNA on
112 ice and liquid water. Interaction parameters were adopted from
113 a new force field for nucleic acids and proteins recently
114 proposed by Shaw’s group,^{41,42} which is provided with the
115 TIP4P-D water model.⁴³ TIP4P-D is a slight variation of the
116 TIP4P/2005⁴⁴ water model, which is one of the most
117 commonly used water models for ice and supercooled liquid
118 water.⁴⁵ TIP4P-D adopts the same geometry as TIP4P/2005,
119 slightly modifying the partial charges on atoms and nonbonded
120 interaction parameters. The melting temperature, T_m , of
121 TIP4P/2005 is 252 K.⁴⁶ The T_m of TIP4P-D has never been
122 calculated before; in this work, we determined it to be 249 K
123 (see Figures S1 and S2 in the Supporting Information).


124 An initial proton disordered ice I_h crystal of dimension ~5.5
125 nm \times 5.5 nm \times 4.1 nm (12 bilayers in the z -direction, with a
126 total of 4032 water molecules) was constructed using the Buch
127 algorithm.⁴⁷ This ice crystal was annealed from 0 to 229 K (the
128 latter corresponding to T_m —20 K) by performing a 1 ns
129 constant pressure simulation (NPT) at 0 bar with a time step
130 of 0.1 fs, followed by another 400 ps at the target temperature.
131 This annealing process allows the dimensions of the ice block
132 to adjust to the increasing temperature. Afterward, the

133 simulation box was enlarged along the z dimension to 16 nm
134 giving rise to an ice slab with two vapor-exposed basal ice
135 facets. Finally, another 2 ns constant volume (NVT) simulation
136 was performed, resulting in the formation of two equilibrated
137 interfacial premelted layers. Similar protocols for the
138 preparation of ice slab simulations have been exploited
139 successfully in the literature.^{48–50} In this paper, we refer to
140 the above premelted layer as the “ice-QLL layer”, and the
141 interface at which it occurs as the “air/ice interface”. This
142 nomenclature highlights the fact that the properties of the ice-
143 QLL layer differ from those of supercooled liquid water. Figure
144 S2 in the Supporting Information displays a snapshot at 248 K,
145 showing the ice crystal wetted by the ice-QLL layers at the
146 upper and lower air/ice interfaces.
147

148 For the simulation of the single-strand RNA in bulk liquid
149 water, the RNA was solvated in a cubic box of liquid water of a
150 lateral dimension of ~7 nm (11,126 water molecules) after
151 which the system was equilibrated at a desired temperature of
152 229 or 274 K, that is, 20 K below and 25 K above the melting
153 temperature of the TIP4P-D water model, respectively. The
154 equilibration was achieved during the course of 1 ns NPT
155 simulation at 1 bar pressure. Finally, a production run of 700
156 ns was achieved in a constant volume and temperature (NVT)
157 ensemble.
158

159 At room temperature, the CCUUCGGG sequence can fold,
160 forming a tetraloop structure by base pairing of the first and
161 last two nucleotides of the sequence. Bottaro et al.³⁹ and Cesari
162 et al.⁴⁰ have provided an accurate description of the free energy
163 landscape of folding and unfolding of CCUUCGGG at 300 K
164 in bulk water. However, Bottaro et al.³⁹ and Cesari et al.⁴⁰ used
165 a different force field and water model (TIP3P), which are not
166 suitable for ice simulation.⁴⁵ The initial structure of
167 CCUUCGGG was generated using the Make-NA web server
168 (<http://structure.usc.edu/make-na/server.html>) and initially
169 minimized in vacuum before solvating it on ice or supercooled
170 liquid water.
171

172 To identify the most probable CCUUCGGG configurations
173 on ice, MD simulations were complemented with an enhanced
174 sampling method (well-tempered metadynamics, hereafter
175 MTD)⁵¹ designed to explore different structural arrangements
176 of the RNA at the air/ice interface and in bulk water. A short
177 (100 ps) NVT run with a time step of 0.1 fs was performed to
178 relax the structure after placing the RNA on the ice interface.
179 Afterward, ~400 ns MTD runs in the NVT ensemble, using a
180 time step of 2 fs, were exploited by biasing the end-to-end
181 $C1'-C1'$ distance, $d_{C1'-C1'}$, of the RNA, depositing a Gaussian
182 potential of 0.1 nm width and a height of 1 kJ/mol every 1000
183 steps. A bias factor of 300 was adopted. Similarly, we also
184 exploited an MTD run for the single-strand RNA solvated in
185 bulk water at 274 K, that is, 25 K above the melting
186 temperature of the TIP4P-D water model, using a bias factor of
187 40. For the MTD run on ice (in bulk water), the heights of the
188 Gaussian hills dropped below 0.2 kJ/mol in ~260 ns (50 ns),
189 with diffuse behavior of the collective variable.⁵² Error bars on
190 the free energy profile were of the order of 2 kJ/mol and were
191 calculated according to the method reported in ref 52. The
192 obtained free energy profiles were used to determine the
193 structural global free energy minimum for the RNA on ice. A
194 temperature of 229 K was selected for our runs on the air/basal
195 surface of ice. This temperature corresponds to 20 °C below
196 the melting point of the TIP4P-D water model used here for
197 the classical MD (following the experimental works of Deck et
198 al.).
199

Figure 1. (a) Free energy profiles as a function of the C1'-C1' end-to-end distance for CCUUCGGG single-strand RNA on the basal surface of ice at 229 K (solid green line) and in bulk water at 274 K (solid red and blue lines, respectively). The methodology for assigning error bars to free energy profiles obtained by metadynamics is still an open question in the community:^{52,80,81} here, we have followed the approach in ref 52 and the shadow region in the figure represents three standard deviations ($\sim 2 \text{ kJ/mol}$). (b,c) Top view of representative structures in liquid water and on the air/basal-ice surface, respectively, at $d_{C1'-C1'} \sim 1 \text{ nm}$ (in liquid water) and $d_{C1'-C1'} \sim 3.2 \text{ nm}$ (on ice). (d) Profile view of (c).

al.²¹ and Attwater et al.²²). The initial structures used for the MTD runs are included in the Supporting Information.

As already pointed out in the literature,^{39,53,54} even at room temperatures and with single strands of eight nucleotides, simulations of hundreds of microseconds are needed to properly sample the conformational changes among different RNA structures and, at the same time, to provide a quantitative description of the free energy differences among those structures. This becomes even more challenging at low temperatures considered in this work, where the dynamics are much slower. For this reason, to probe the robustness of our free energy profiles, we also performed an unbiased (i.e., without any driving potential) 1 μs MD simulation for the RNA on ice using as the starting condition a configuration with $d_{C1'-C1'} \sim 4.4 \text{ nm}$, that is, slightly stretched out from the value at the global minimum. After $\sim 460 \text{ ns}$, the RNA structure on the basal air/ice interface converges to its global minimum at $d_{C1'-C1'} \sim 3.2 \text{ nm}$ (Figure S3a). This supports the reliability of the free energy profile obtained here as a qualitative assessment of the global and local minima of different RNA structures on ice.

In addition, during the MTD runs, we also tracked eRMSD metrics⁵⁵ for the system (Figure S4). The eRMSD is a metric based on the difference in the orientation and position of the nucleobases between two RNA structures. This metric has been proven to provide a more reliable description of RNA structures compared to the standard rmsd metrics^{39,55} and to be capable of discriminating between RNA structures with and without base pairing.³⁹ The native reference structure for the eRMSD metric was the CCUUCGGG strand in its tetraloop arrangement taken from the PDB structure 1FTY, residues 7–14. The default cutoff value of 2.4 for eRMSD was adopted.

All simulations were performed using GROMACS 2018.6,⁵⁶ employing the leap-frog integration algorithm⁵⁷ with a time step of 2 fs. The Lennard-Jones potential and the real part of the Coulomb interactions were truncated at 1 nm. The long-range part of the electrostatic and Lennard-Jones interactions were treated by the particle mesh Ewald method,^{58,59} as implemented in GROMACS, using a relative tolerance of 10^{-5} , fourth-order cubic interpolation, and a Fourier spacing parameter of 0.12. Two stochastic velocity rescaling thermo-stats,⁶⁰ one for the RNA and one for the water solvent, each with a time constant of 0.1 ps, were used to control the temperature. The Berendsen barostat⁶¹ with a time constant of 2 ps was used to control the pressure during the NPT runs of equilibration. The SETTLE algorithm⁶² was used to constrain the TIP4P-D water geometry, and the LINCS algorithm⁶³ was exploited to constrain hydrogen bonds in the RNA. PLUMED 2.5⁶⁴ was used to bias the MD simulations and for the postprocessing analysis; both eRMSD and $d_{C1'-C1'}$ are implemented in PLUMED.³⁹

Mono- and divalent ions are known to affect the structure and dynamics of RNA in water in such a way that, at the present date, classical force fields are still not able to capture properly.⁶⁵ To compensate for the negative charge of the single-strand RNA, in the ice simulations, we placed seven sodium (Na^+) counterions on the ice/air interface opposite the interface hosting the RNA. The charge neutralization was needed to avoid artefacts in the simulation of the inhomogeneous system by using compensating background charge and Ewald summation.⁶⁶ During the simulation time, the Na^+ ions did not cross the slab or evaporate from the interface to the other, and thus, they did not affect the structure or dynamics of the RNA. In simulations of single-

259 strand RNA in bulk liquid water where no inhomogeneity was
 260 present, we did not add any counterions, allowing a
 261 comparison between the bulk and ice simulations at the
 262 same (zero) ionic concentrations. As suggested in ref 65, in
 263 bulk simulation and at physiological concentrations, the
 264 number of water molecules interacting with the RNA at any
 265 instant is much larger than the number of ions, making
 266 simulations more sensitive to the water model rather than ions.
 267 Thus, for our purposes, omission of ions would not materially
 268 alter the conclusions drawn from MD runs in bulk water.

269 ■ RESULTS

270 Figure 1a shows the free energy of CCUUCGGG single-strand
 271 RNA on ice as a function of the strand's end-to-end distance,
 272 $d_{C1'-C1'}$. A single clear minimum is found within a steep energy
 273 well, at $d_{C1'-C1'} \sim 3.2$ nm. This free energy profile is quite
 274 different from that of bulk water at 274 K (also shown in
 275 Figure 1a), where $d_{C1'-C1'}$ can more easily sample a wider
 276 range of values, that is, from ~ 1.0 to 3 nm. In bulk water at 274
 277 K, we sometimes observed $d_{C1'-C1'} < 0.5$ nm. This structure
 278 (Figure S5) originates by the π -stacking interaction of the
 279 aromatic group of the first, C, and the last, G, nucleotides.
 280 Figure 1b,c illustrates the conformation of the RNA in 274 K
 281 bulk water at $d_{C1'-C1'} \sim 1$ nm and on ice at $d_{C1'-C1'} \sim 3.2$ nm
 282 (i.e., the global minimum structure on ice), illustrating how
 283 much more extended this RNA is on ice. A side view of this
 284 global minimum structure is also shown in the profile view of
 285 Figure 1d (for clarity, ice molecules are not shown). During
 286 the course of our MD/MTD runs, the eRMSD was always
 287 greater than 1.7 (see Figure S4), both on ice and in bulk water,
 288 indicating that the RNA never explored configurations with
 289 significant base-pairing. On ice, the single-strand RNA explores
 290 a wider range of $d_{C1'-C1'}$, as shown in Figure S4c,d.

291 Molecular level details about the solvation of the single-
 292 strand RNA on the surface of ice are shown in Figure 2. Figure
 293 2a shows the probability distributions of various moieties
 294 collected over the last 500 ns of the 1 μ s unbiased MD
 295 simulation in the neighborhood of its global minimum
 296 structure, $d_{C1'-C1'} \sim 3.2$ nm (Figure 1c), as a function of
 297 position within the crystalline ice lattice. The origin (at 0 nm)
 298 is judged to be far enough from the air/ice interface that it
 299 represents bulk crystalline ice. For example, we note that the
 300 probability distribution for the oxygens on water molecules of
 301 ice (OW; blue curve) exhibits a symmetrical doublet at 0.4 nm,
 302 corresponding to an intact ice bilayer. As one proceeds to the
 303 right, closer to the air/ice interface, the degradation of the
 304 symmetry of these doublets indicates a transition to the QLL.
 305 The figure reveals that the phosphates (BACKBONE; orange
 306 curve) prefer to occupy positions within the bilayers centered
 307 at 1.1 nm. Ribose moieties (SUGAR; yellow curve) are seen to
 308 prefer the next bilayer, at 1.5 nm, whose degraded doublet
 309 symmetry strongly suggests a QLL structure. The bases
 310 (BASES; red) are seen to position themselves at the outermost
 311 edge of the QLL, where the density of the QLL falls off to zero.
 312 Figure 2b, a snapshot from the last part of the trajectory, is
 313 consistent with this interpretation. These results suggest that
 314 the RNA finds in the underlying crystalline structure of the ice-
 315 QLL a template that favors an extended structure, with a
 316 specific value of $d_{C1'-C1'}$. This is quite distinct from the
 317 structure characterizing single-strand RNA in bulk water,
 318 which prefers a more compressed end-to-end distance (i.e.,
 319 $d_{C1'-C1'}$ in the range 1.5–3.0 nm, Figure 1a).

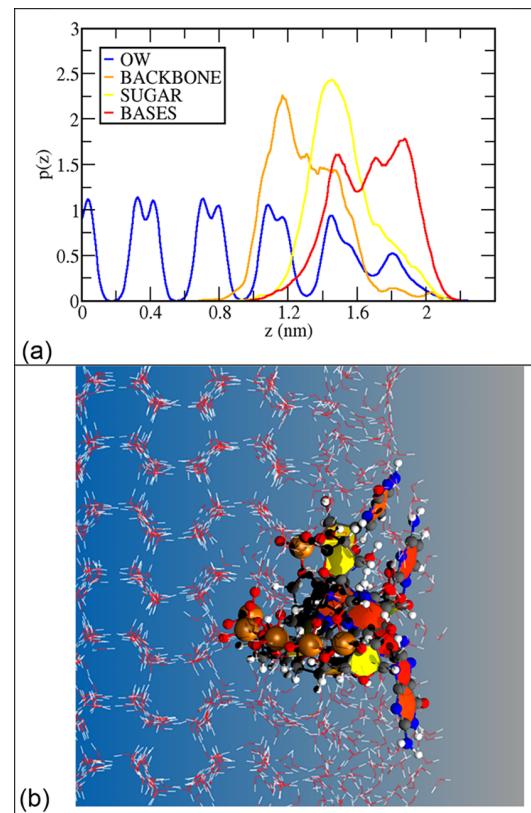
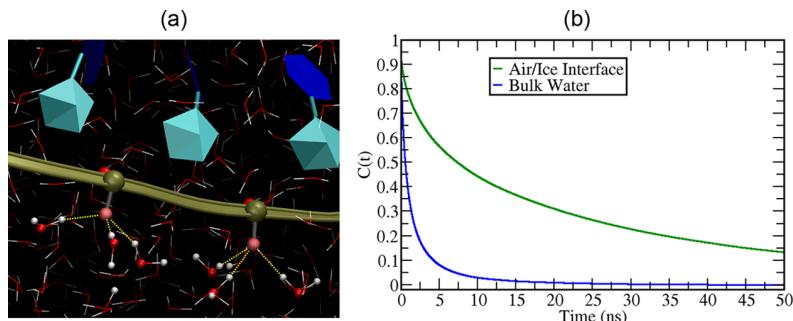



Figure 2. (a) Probability density profile as a function of the coordinate perpendicular to the ice surface (z). The probability distribution has been computed by collecting the center of mass position of water (solid blue line), phosphate backbone (orange), sugar (yellow), and bases (red) over the last 540 ns of 1 μ s of MD trajectory in the global minimum. (b) Snapshot taken from the last frames of the trajectory. The underlying ice lattice is depicted via a stick model, and the single-strand RNA is depicted using a ball-and-stick model, with bases and sugar moieties superimposed as red and yellow polygons, respectively. Atoms (and the corresponding colors) are as follows: P (orange), O (red), H (white), N (blue), and C (gray).

As mentioned in the Methods section, we also performed an 320 unbiased (i.e., without any driving potential) 1 μ s MD 321 simulation for the RNA on ice using as a starting configuration 322 at $d_{C1'-C1'} \sim 4.4$ nm, that is, slightly stretched out from the 323 value at the global minimum: the RNA structure on the basal 324 air/ice interface converges to its global minimum at $d_{C1'-C1'} \sim$ 325 3.2 nm after ~ 460 ns (Figure S3a). This demonstrates the 326 reliability of the free energy profile obtained here as a 327 qualitative assessment of the global and local minima of 328 different RNA structures on ice. Moreover, during the entire 329 course of the 400 ns MTD runs, the eRMSD was found to 330 range between 1.7 and 2.1 nm, indicating a negligible 331 occurrence of intrastrand pairing (i.e., between bases on the 332 RNA), as shown in Figure S4.

Figure 3 investigates the structure and kinetics of solvated 334 f3 single-strand RNA phosphodiesters. Figure 3a shows a 335 snapshot of hydrogen bonding configurations of two anionic 336 phosphodiester oxygens most deeply embedded in the ice 337 lattice. It is evident that bonds around these oxygens are 338 arranged in tetrahedral geometry, in which one bond is 339 covalently bonded to phosphorus and the other three are 340 hydrogen bonded to nearby (ice-like) water molecules. It is 341

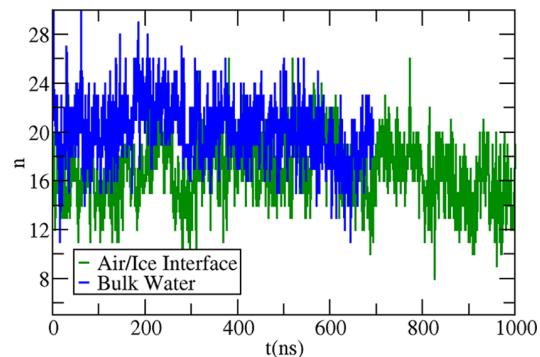


Figure 3. Hydrogen bonding between water molecules and anionic phosphate oxygens. (a) Snapshot showing hydrogen bonding interactions of two out-of-ribbon oxygens. (b) Autocorrelation functions between water molecules and phosphate groups for the solvated single-strand RNA collected over the last 350 ns of a 1 μ s MD trajectory initiated at the RNA-on-ice global Gibbs energy minimum structure (green solid line) and over the last 350 ns of 700 ns run in bulk supercooled bulk water (blue solid line). For both cases, the temperature was kept at 229 K.

also evident from the figure that these interactions involve significant structuring of the solvent water—for example, all three adjacent water molecules are acting as hydrogen bond donors to the phosphodiester oxygen atoms. Statistical analysis of our RNA-on-ice MD trajectory results indicates that each phosphodiester oxygen forms 2.7 hydrogen bonds on average. It is also of interest to consider the longevity of these bonds. A hydrogen bonding autocorrelation function, $C(t)$, is shown in Figure 3b. $C(t)$ is defined as the probability of the hydrogen bond that forms between the solvent and an anionic phosphodiester oxygen remaining intact over time.⁶⁷ A comparison between the two $C(t)$ curves displayed in the figure reveals a striking difference—assuming first-order kinetics in hydrogen bond breaking and reforming,⁶⁸ the results imply an average hydrogen bond lifetime on ice of \sim 14 ns, compared to a lifetime of only \sim 1 ns in supercooled bulk water, at the same degree of supercooling.

In combination, the results shown in Figures 2 and 3 constitute compelling evidence that the anionic phosphodiester oxygens of our RNA anchor to water molecules belonging to the ice lattice underlying the QLL, rather than attaching to QLL water solvent. This is significant because anchoring of the nucleotide chain in the underlying crystalline structure would tend to lock in geometry, putting a brake on geometrical rearrangements associated with hydrolysis, and thereby favoring the maintenance of the phosphodiester link. This mechanistic brake on hydrolysis would not be operative in bulk aqueous single-strand RNA.

We turn next to what our MD results tell us about kinetic precursors of hydrolysis, as shown in Figure 4. Hydrolysis of RNA polynucleotides is initiated by attachment of the deprotonated 2'-OH group of the sugar moiety to the adjacent phosphorus atom, resulting in breakage of the phosphodiester link. The process occurs spontaneously and rapidly⁶⁹ once the 2'-OH group is deprotonated by nucleophilic attachment of the water oxygen or hydroxyl ion. Our MD simulations do not permit covalent bond formation or breakage, but they do allow us to investigate the contact frequencies of participants in this reaction. Specifically, we monitor the number of contacts between the 2'-OH hydrogen of the ribose sugar and the solvent water oxygen, defining as a contact whenever the distance, d , between water oxygen and the $\text{H}_{\text{O}2'}$ hydrogen atoms reaches 0.35 nm or less. Because such contacts must precede the hydrolysis reactions by deprotonating the 2'-OH group, we can assume that the reaction rate, r , is proportional to the number of these contacts. Although this is a crude

Figure 4. Number of contacts ($d < 0.35$ nm) between the $\text{H}_{\text{O}2'}$ hydrogen and the water oxygen as a function of time. The green solid line is the number of contacts over the 1 μ s MD trajectory initiated at the RNA-on-ice global Gibbs energy minimum structure (green solid line) and the analogous curve for bulk supercooled bulk water (blue solid line). For both cases, the temperature was kept at 229 K.

approximation, it has been used successfully in the literature to provide qualitative assessment of the reaction of polyaromatic hydrocarbons and ozone on air/ice interfaces at different temperatures and reactant concentrations.^{30,70} Figure 4 shows the average number of contacts ($d < 0.35$ nm) between the $\text{H}_{\text{O}2'}$ hydrogen and the water oxygen during the simulation of RNA on ice and in liquid water, where both are at 229 K. The average number of contacts, n , calculated over the last 350 ns of the 1 μ s MD simulations of the RNA on ice and over the last 350 ns of the 700 ns MD simulations in bulk water at 229 K, are $n_{\text{ice}} = 16.2$ and $n_{\text{wat}} = 19.6$, respectively. This implies that $r_{\text{wat}}/r_{\text{ice}} \sim 1.2$, that is, initiation of hydrolysis would be 20% less frequent on ice compared to bulk liquid water at the same temperature (229 K).

DISCUSSION AND CONCLUSIONS

The molecular picture emerging from this work supports the view that single-strand RNA solvated on ice is more resistant to hydrolysis than its bulk aqueous counterpart. Specifically, our kinetic evidence shows that the contact between solvent water and the 2'-OH hydrogen of the ribose sugar occurs less frequently for ice-solvated RNA than for aqueous RNA at the same temperature. As this contact is an initial step in hydrolysis, it follows that hydrolysis is less likely to be initiated in ice-solvated RNA. We also find that anionic phosphodiester oxygen atoms bind preferentially with water belonging to the underlying ice lattice, in a geometry reminiscent of the strongly

414 kosmotropic phosphate ion (i.e., in which each anionic oxygen
415 forms hydrogen bonds with approximately three water
416 molecules in a tetrahedral arrangement^{35,37,38}). The resulting
417 alignment with the ice lattice confers a structural rigidity to the
418 RNA that would, we infer, strongly resist completion of
419 hydrolysis (among other effects). Kinetic evidence supports
420 this inference, in that the average hydrogen bond lifetime
421 between anionic phosphodiester oxygens and the surrounding
422 water molecules is at least 1 order of magnitude longer for ice-
423 solvated single-strand RNA than in the bulk aqueous solution.
424 Shifting focus to the “air” side of the air/ice interface, it is
425 worth noting possible implications of solvation of hydrophobic
426 bases in the topmost layer of the ice-QLL, exposed to (or near
427 to) the gas phase (see Figure 2). Such exposure would make
428 these bases more available to react with trace gases of a
429 primordial atmosphere, compared to being fully solvated in
430 water. Moreover, in a water-restricted environment such as the
431 topmost layers of the air/ice interface, the bases could be more
432 prone to base-stacking, enabling the correct base pairing with
433 other free nucleotides located in the topmost part of the ice-
434 QLL where the water diffusivity is faster,⁷¹ although this is
435 speculative. In addition, as the synthesis of building blocks for
436 nucleotide synthesis has been shown to be plausible under
437 prebiotic aqueous conditions,^{14,72,73} an immobilized and
438 extended RNA on ice could be more prone to polymerization
439 and self-replication with free nucleotides diffusing in the ice-
440 QLL than a compact arrangement, especially in the absence of
441 protein-assisted replicase. To some extent, this was already
442 demonstrated by the experimental findings of Deck et al.,²¹
443 who observed the growth of daughter RNA strands from an
444 immobilized RNA template at low temperatures.
445

More broadly, the idea of a “cold start” for the evolution of life on Earth has been suggested because of the reduced luminosity of the young Sun, which might have induced ice formation more extensively than thought previously.⁷⁴ In our view, the role of ice in this evolution does not preclude the role of liquid water, but rather it expands the range of possibilities in several ways. For instance, the ice-QLL itself provides diverse physicochemical properties (e.g., rigidity of the crystalline structure, water diffusivity, viscosity, and so on) as a function of depth and temperature^{71,75–77} that are not obtainable in liquid water. In addition, some of the features observed here at the air/ice interface would also occur at ice/liquid interfaces within grain boundaries. Finally, as the structure of the underlying ice lattice varies greatly from facet to facet, the geometrical constraints on RNA at the air/ice interface would likely vary from those explored here. Lines of future research indicated by the results presented here include a computational first-principles MD study of phosphodiester hydrolysis and polarized second harmonic generation experiments directed at extracting detailed surface orientation information of RNA on ice surfaces.^{78,79} In addition, Figure 2 highlights the fact that the phosphate group of single-strand RNA could sample different layers of the ice-QLL, suggesting that alternative or additional collective variables, other than $d_{C1'-C1'}$ or eRMSD, are needed for a more quantitative assessment of the free energy landscape of single-strand RNA on ice.

In conclusion, we have found that the air/ice interfacial environment has a distinctive impact on the orientation of surface-solvated single-strand RNA. The crystalline structure underlying the interfacial ice-QLL offers a template for immobilization of the RNA’s phosphodiester groups, while

its bases are exposed to the gas phase. Kinetic analysis of precursors to hydrolysis—for example, the number of contacts between water molecules and $H_{O2'}$ hydrogens of the sugar moieties—as well as structural constraints owing to the alignment of the RNA backbone with the ice lattice, indicate a resilience to hydrolysis being greater than that of supercooled bulk aqueous RNA. This work is, to the best of our knowledge, the first MD study of RNA on ice.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04273>.

Total energy per molecule as a function of time in MD simulations of an ice I_h slab at different temperatures using the TIP4P-D model; system configurations for the TIP4P-D ice slab at different temperatures; time series of $d(C1'-C1')$ during the (unbiased) MD simulation of single-strand RNA on ice using different configurations as the starting condition; and Scatter plots of eRMSD and the time series as a function of end-to-end $C1'$ distance, $d(C1'-C1')$, during the 400 ns MTD run of single-strand RNA on the basal surface of ice and during the 100ns MTD run in bulk water (PDF)

AUTHOR INFORMATION

Corresponding Authors

Ivan Gladich — International School for Advanced Studies (SISSA), 34136 Trieste, Italy; European Centre for Living Technology (ECLT), 30124 Venice, Italy; orcid.org/0000-0003-0929-3439; Phone: +974 4454 2651; Email: igladich@hbku.edu.qa

Steven Neshyba — Department of Chemistry, University of Puget Sound, Tacoma 98416, Washington, United States; Phone: +1 253-879-3379; Email: nesh@pugetsound.edu

Authors

Margaret L. Berrens — Department of Chemistry, University of Puget Sound, Tacoma 98416, Washington, United States

Penny M. Rowe — NorthWest Research Associates, Redmond 98052-5164, Washington, United States

Rodolfo G. Pereyra — Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.jpcc.0c04273>

Author Contributions

I.G. and S.N. conceived the project. I.G., S.N., and P.M.R. wrote the manuscript. I.G. performed the MTD simulations. I.G. and R.G.P. determined the melting temperature of TIP4P-D, as reported in the Supporting Information. M.L.B., S.N., and I.G. performed unconstrained MD simulations for RNA in bulk water and on ice. All authors participated in the discussion and organization of the paper.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

I.G. acknowledges Dr. Sandro Bottaro, Dr. Marcelo A. Carignano, and Prof. Giovanni Bussi for insightful discussions. S.N. acknowledges seminal conversations with Peter Wim-

534 berger, John Hanson, Amanda Mifflin, and Babak Minofar and
535 funding from the US National Science Foundation, CHE-
536 1807898. S.N. and M.L.B. acknowledge support from the
537 University of Puget Sound. P.M.R. acknowledges funding from
538 the National Science Foundation Office of Polar Programs
539 award 1543236.

540 ■ REFERENCES

541 (1) Bada, J. L. New insights into prebiotic chemistry from Stanley
542 Miller's spark discharge experiments. *Chem. Soc. Rev.* **2013**, *42*, 2186–
543 2196.

544 (2) Gilbert, W. Origin of life: The RNA world. *Nature* **1986**, *319*,
545 618.

546 (3) Woese, C. R.; Dugre, D. H.; Saxinger, W. C.; Dugre, S. A. The
547 molecular basis for the genetic code. *Proc. Natl. Acad. Sci. U.S.A.* **1966**,
548 *55*, 966–974.

549 (4) Crick, F. H. C. The origin of the genetic code. *J. Mol. Biol.* **1968**,
550 *38*, 367–379.

551 (5) Orgel, L. E. Evolution of the genetic apparatus. *J. Mol. Biol.* **1968**,
552 *38*, 381–393.

553 (6) Robertson, M. P.; Joyce, G. F. The Origins of the RNA World.
554 *Cold Spring Harbor Perspect. Biol.* **2012**, *4*, a003608.

555 (7) Abelson, J. The discovery of catalytic RNA. *Nat. Rev. Mol. Cell
556 Biol.* **2017**, *18*, 653.

557 (8) Cech, T. R.; Zaug, A. J.; Grabowski, P. J. In vitro splicing of the
558 ribosomal RNA precursor of Tetrahymena: involvement of a
559 guanosine nucleotide in the excision of the intervening sequence.
560 *Cell* **1981**, *27*, 487–496.

561 (9) Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman,
562 S. The RNA moiety of ribonuclease P is the catalytic subunit of the
563 enzyme. *Cell* **1983**, *35*, 849–857.

564 (10) Cech, T. R. A model for the RNA-catalyzed replication of RNA.
565 *Proc. Natl. Acad. Sci. U.S.A.* **1986**, *83*, 4360.

566 (11) Benner, S. A.; Kim, H.-J.; Yang, Z. Setting the Stage: The
567 History, Chemistry, and Geobiology behind RNA. *Cold Spring Harbor
568 Perspect. Biol.* **2012**, *4*, a003541.

569 (12) Powner, M. W.; Gerland, B.; Sutherland, J. D. Synthesis of
570 activated pyrimidine ribonucleotides in prebiotically plausible
571 conditions. *Nature* **2009**, *459*, 239.

572 (13) Leslie E, O. Prebiotic Chemistry and the Origin of the RNA
573 World. *Crit. Rev. Biochem. Mol. Biol.* **2004**, *39*, 99–123.

574 (14) Kim, S. C.; Zhou, L.; Zhang, W.; O'Flaherty, D. K.; Rondon-
575 Brovetto, V.; Szostak, J. W. A Model for the Emergence of RNA from
576 a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleo-
577 tides, and 2'-Deoxynucleotides. *J. Am. Chem. Soc.* **2020**, *142*, 2317–
578 2326.

579 (15) Elliot, D.; Ladomery, M. *Molecular Biology of RNA*; Oxford
580 University Press: New York, 2011.

581 (16) Li, Y.; Breaker, R. R. Kinetics of RNA Degradation by Specific
582 Base Catalysis of Transesterification Involving the 2'-Hydroxyl
583 Group. *J. Am. Chem. Soc.* **1999**, *121*, 5364–5372.

584 (17) Wright, T. H.; Giurgiu, C.; Zhang, W.; Radakovic, A.;
585 O'Flaherty, D. K.; Zhou, L.; Szostak, J. W. Prebiotically Plausible
586 "Patching" of RNA Backbone Cleavage through a 3'-5' Pyrophos-
587 phate Linkage. *J. Am. Chem. Soc.* **2019**, *141*, 18104–18112.

588 (18) Vogel, S. R.; Deck, C.; Richert, C. Accelerating chemical
589 replication steps of RNA involving activated ribonucleotides and
590 downstream-binding elements. *Chem. Commun.* **2005**, 4922–4924.

591 (19) Rohatgi, R.; Bartel, D. P.; Szostak, J. W. Kinetic and
592 Mechanistic Analysis of Nonenzymatic, Template-Directed Oligor-
593 ibonucleotide Ligation. *J. Am. Chem. Soc.* **1996**, *118*, 3332–3339.

594 (20) Joyce, G. F. The antiquity of RNA-based evolution. *Nature*
595 **2002**, *418*, 214.

596 (21) Deck, C.; Jauker, M.; Richert, C. Efficient enzyme-free copying
597 of all four nucleobases templated by immobilized RNA. *Nat. Chem.*
598 **2011**, *3*, 603.

599 (22) Attwater, J.; Wochner, A.; Holliger, P. In-ice evolution of RNA
600 polymerase ribozyme activity. *Nat. Chem.* **2013**, *5*, 1011.

(23) Hub, J. S.; Caleman, C.; van der Spoel, D. Organic molecules on the surface of water droplets—an energetic perspective. *Phys. Chem. Chem. Phys.* **2012**, *14*, 9537–9545.

(24) Habartová, A.; Valsaraj, K. T.; Roeselová, M. Molecular Dynamics Simulations of Small Halogenated Organics at the Air-Water Interface: Implications in Water Treatment and Atmospheric Chemistry. *J. Phys. Chem. A* **2013**, *117*, 9205–9215.

(25) Bartels-Rausch, T.; Jacobi, H.-W.; Kahan, T. F.; Thomas, J. L.; Thomson, E. S.; Abbott, J. P. D.; Ammann, M.; Blackford, J. R.; Bluhm, H.; Boxe, C.; Domine, F.; Frey, M. M.; Gladich, I.; Guzmán, M. I.; Heger, D.; Huthwelker, T.; Klán, P.; Kuhs, W. F.; Kuo, M. H.; Maus, S.; Moussa, S. G.; McNeill, V. F.; Newberg, J. T.; Pettersson, J. B. C.; Roeselová, M.; Sodeau, J. R. A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. *Atmos. Chem. Phys.* **2014**, *14*, 1587–1633.

(26) Gladich, I.; Pfalzgraff, W.; Maršálek, O.; Jungwirth, P.; Roeselová, M.; Neshyba, S. Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice. *Phys. Chem. Chem. Phys.* **2011**, *13*, 19960–19969.

(27) Kahan, T. F.; Donaldson, D. J. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces. *J. Phys. Chem. A* **2007**, *111*, 621 1277–1285.

(28) Kahan, T. F.; Donaldson, D. J. Heterogeneous ozonation kinetics of phenanthrene at the air-ice interface. *Environ. Res. Lett.* **2008**, *3*, 045006.

(29) Ardura, D.; Kahan, T. F.; Donaldson, D. J. Self-Association of Naphthalene at the Air–Ice Interface. *J. Phys. Chem. A* **2009**, *113*, 627 7353–7359.

(30) Liyana-Arachchi, T. P.; Valsaraj, K. T.; Hung, F. R. Molecular Simulation Study of the Adsorption of Naphthalene and Ozone on Atmospheric Air/Ice Interfaces. *J. Phys. Chem. A* **2011**, *115*, 9226–9236.

(31) Michaelides, A.; Slater, B. Melting the ice one layer at a time. *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114*, 195.

(32) Smit, W. J.; Bakker, H. J. The Surface of Ice Is Like Supercooled Liquid Water. *Angew. Chem., Int. Ed.* **2017**, *56*, 15540–15544.

(33) Ram, K.; Anastasio, C. Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow. *Atmos. Environ.* **2009**, *43*, 639 2252–2259.

(34) Sánchez, M. A.; Kling, T.; Ishiyama, T.; van Zadel, M.-J.; Bisson, P. J.; Mezger, M.; Jochum, M. N.; Cyran, J. D.; Smit, W. J.; Bakker, H. J.; Shultz, M. J.; Morita, A.; Donadio, D.; Nagata, Y.; Bonn, M.; Backus, E. H. G. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114*, 227.

(35) Moelbert, S.; Normand, B.; De Los Rios, P. Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability. *Biophys. Chem.* **2004**, *112*, 45–57.

(36) Dill, K. A.; Truskett, T. M.; Vlachy, V.; Hribar-Lee, B. Modeling Water, the Hydrophobic Effect, and Ion Solvation. *Annu. Rev. Biophys. Biomol. Struct.* **2005**, *34*, 173–199.

(37) Chen, C.; Huang, C.; Waluyo, I.; Weiss, T.; Pettersson, L. G.; Nilsson, A. Long-range ion-water and ion-ion interactions in aqueous solutions. *Phys. Chem. Chem. Phys.* **2015**, *17*, 8427–8430.

(38) Sharma, B.; Chandra, A. Ab Initio Molecular Dynamics Simulation of the Phosphate Ion in Water: Insights into Solvation Shell Structure, Dynamics, and Kosmotropic Activity. *J. Phys. Chem. B* **2017**, *121*, 10519–10529.

(39) Bottaro, S.; Banáš, P.; Šponer, J.; Bussi, G. Free Energy Landscape of GAGA and UUCG RNA Tetraloops. *J. Phys. Chem. Lett.* **2016**, *7*, 4032–4038.

(40) Cesari, A.; Bottaro, S.; Lindorff-Larsen, K.; Banáš, P.; Šponer, J.; Bussi, G. Fitting Corrections to an RNA Force Field Using Experimental Data. *J. Chem. Theory Comput.* **2019**, *15*, 3425–3431.

(41) Tan, D.; Piana, S.; Dirks, R. M.; Shaw, D. E. RNA force field with accuracy comparable to state-of-the-art protein force fields. *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115*, E1346–E1355.

669 (42) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular
670 dynamics force field for both folded and disordered protein states.
671 *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115*, E4758–E4766.

672 (43) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water
673 dispersion interactions strongly influence simulated structural proper-
674 ties of disordered protein states. *J. Phys. Chem. B* **2015**, *119*, 5113–
675 5123.

676 (44) Abascal, J. L. F.; Vega, C. A general purpose model for the
677 condensed phases of water: TIP4P/2005. *J. Chem. Phys.* **2005**, *123*,
678 234505.

679 (45) Vega, C.; Abascal, J. L. F. Simulating water with rigid non-
680 polarizable models: a general perspective. *Phys. Chem. Chem. Phys.*
681 **2011**, *13*, 19663–19688.

682 (46) Vega, C.; Abascal, J. L. F.; Conde, M. M.; Aragones, J. L. What
683 ice can teach us about water interactions: a critical comparison of the
684 performance of different water models. *Faraday Discuss.* **2009**, *141*,
685 251–276.

686 (47) Buch, V.; Sandler, P.; Sadlej, J. Simulations of H₂O solid,
687 liquid, and clusters, with an emphasis on ferroelectric ordering
688 transition in hexagonal ice. *J. Phys. Chem. B* **1998**, *102*, 8641–8653.

689 (48) Muchová, E.; Gladich, I.; Picaud, S.; Hoang, P. N. M.;
690 Roeselova, M. The Ice-Vapor Interface and the Melting Point of Ice
691 I(h) for the Polarizable POL3 Water Model. *J. Phys. Chem. A* **2011**,
692 *115*, 5973–5982.

693 (49) Conde, M. M.; Vega, C.; Patrykiejew, A. The thickness of a
694 liquid layer on the free surface of ice as obtained from computer
695 simulation. *J. Chem. Phys.* **2008**, *129*, 014702.

696 (50) Gladich, I.; Roeselová, M. Comparison of selected polarizable
697 and nonpolarizable water models in molecular dynamics simulations
698 of ice Ih. *Phys. Chem. Chem. Phys.* **2012**, *14*, 11371–11385.

699 (51) Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered
700 Metadynamics: A Smoothly Converging and Tunable Free-Energy
701 Method. *Phys. Rev. Lett.* **2008**, *100*, 020603.

702 (52) Branduardi, D.; Bussi, G.; Parrinello, M. Metadynamics with
703 Adaptive Gaussians. *J. Chem. Theory Comput.* **2012**, *8*, 2247–2254.

704 (53) Kührová, P.; Banáš, P.; Best, R. B.; Sponer, J.; Otyepka, M.
705 Computer Folding of RNA Tetraloops? Are We There Yet? *J. Chem.*
706 *Theory Comput.* **2013**, *9*, 2115–2125.

707 (54) Bergonzo, C.; Henriksen, N. M.; Roe, D. R.; Cheatham, T. E.,
708 3rd Highly sampled tetranucleotide and tetraloop motifs enable
709 evaluation of common RNA force fields. *RNA* **2015**, *21*, 1578–1590.

710 (55) Bottaro, S.; Di Palma, F.; Bussi, G. The role of nucleobase
711 interactions in RNA structure and dynamics. *Nucleic Acids Res.* **2014**,
712 *42*, 13306–13314.

713 (56) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
714 Hess, B.; Lindahl, E. GROMACS: High performance molecular
715 simulations through multi-level parallelism from laptops to super-
716 computers. *SoftwareX* **2015**, *1–2*, 19–25.

717 (57) Hockney, R. W.; Goel, S. P.; Eastwood, J. W. Quiet High-
718 Resolution Computer Models of a Plasma. *J. Comput. Phys.* **1974**, *14*,
719 148–158.

720 (58) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald-An
721 N.Log(N) Method for Ewald Sums in Large Systems. *J. Chem. Phys.*
722 **1993**, *98*, 10089–10092.

723 (59) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
724 Pedersen, L. G. A Smooth Particle Mesh Ewald Method. *J. Chem.*
725 *Phys.* **1995**, *103*, 8577–8593.

726 (60) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
727 through velocity rescaling. *J. Chem. Phys.* **2007**, *126*, 014101.

728 (61) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
729 Dinola, A.; Haak, J. R. Molecular Dynamics With Coupling To An
730 External Bath. *J. Chem. Phys.* **1984**, *81*, 3684–3690.

731 (62) Miyamoto, S.; Kollman, P. A. SETTLE—An Analytical Version
732 of the SHAKE and RATTLE Algorithm for Rigid Water Models. *J.*
733 *Comput. Chem.* **1992**, *13*, 952–962.

734 (63) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M.
735 LINCS: A linear constraint solver for molecular simulations. *J.*
736 *Comput. Chem.* **1997**, *18*, 1463–1472.

(64) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.;
737 Bussi, G. PLUMED 2: New feathers for an old bird. *Comput. Phys.*
738 *Commun.* **2014**, *185*, 604–613.

(65) Sponer, J.; Bussi, G.; Krepl, M.; Banáš, P.; Bottaro, S.; Cunha,
740 R. A.; Gil-Ley, A.; Pinamonti, G.; Poblete, S.; Jurečka, P.; Walter, N.;
741 G.; Otyepka, M. RNA Structural Dynamics As Captured by Molecular
742 Simulations: A Comprehensive Overview. *Chem. Rev.* **2018**, *118*, 743
4177–4338.

(66) Hub, J. S.; de Groot, B. L.; Grubmüller, H.; Groenhof, G.;
745 Quantifying Artifacts in Ewald Simulations of Inhomogeneous
746 Systems with a Net Charge. *J. Chem. Theory Comput.* **2014**, *10*, 747
381–390.

(67) Luzar, A.; Chandler, D. Effect of Environment on Hydrogen
749 Bond Dynamics in Liquid Water. *Phys. Rev. Lett.* **1996**, *76*, 928–931.

(68) Luzar, A. Resolving the hydrogen bond dynamics conundrum.
751 *J. Chem. Phys.* **2000**, *113*, 10663–10675.

(69) Voet, D.; Voet, J. G. *Biochemistry*; Wiley & Sons: New York,
753 2011.

(70) Vácha, R.; Cwiklik, L.; Řezáč, J.; Hobza, P.; Jungwirth, P.;
755 Valsaraj, K.; Bahr, S.; Kempfer, V. Adsorption of Aromatic
756 Hydrocarbons and Ozone at Environmental Aqueous Surfaces. *J.*
757 *Phys. Chem. A* **2008**, *112*, 4942–4950.

(71) Louden, P. B.; Gezelter, J. D. Why is Ice Slippery? Simulations
759 of Shear Viscosity of the Quasi-Liquid Layer on Ice. *J. Phys. Chem.*
760 *Lett.* **2018**, *9*, 3686–3691.

(72) Powner, M. W.; Gerland, B.; Sutherland, J. D. Synthesis of
762 activated pyrimidine ribonucleotides in prebiotically plausible
763 conditions. *Nature* **2009**, *459*, 239–242.

(73) Becker, S.; Feldmann, J.; Wiedemann, S.; Okamura, H.;
765 Schneider, C.; Iwan, K.; Crisp, A.; Rossa, M.; Amatov, T.; Carell, T.;
766 Unified prebiotically plausible synthesis of pyrimidine and purine
767 RNA ribonucleotides. *Science* **2019**, *366*, 76.

(74) Bada, J. L.; Lazcano, A. ORIGIN OF LIFE: Some Like It Hot,
769 But Not the First Biomolecules. *Science* **2002**, *296*, 1982.

(75) Wei, X.; Miranda, P. B.; Shen, Y. R. Surface vibrational
771 spectroscopic study of surface melting of ice. *Phys. Rev. Lett.* **2001**, *86*,
772 1554–1557.

(76) Bartels-Rausch, T.; Orlando, F.; Kong, X.; Artiglia, L.;
774 Ammann, M. Experimental Evidence for the Formation of Solvation
775 Shells by Soluble Species at a Nonuniform Air-Ice Interface. *ACS*
776 *Earth Space Chem.* **2017**, *1*, 572–579.

(77) Gladich, I.; Oswald, A.; Bowens, N.; Naatz, S.; Rowe, P.;
778 Roeselova, M.; Neshyba, S. Mechanism of anisotropic surface self-
779 diffusivity at the prismatic ice-vapor interface. *Phys. Chem. Chem. Phys.*
780 **2015**, *17*, 22947–22958.

(78) Tran, R. J.; Sly, K. L.; Conboy, J. C. Applications of Surface
782 Second Harmonic Generation in Biological Sensing. *Annu. Rev. Anal.*
783 *Chem.* **2017**, *10*, 387–414.

(79) Birman, Y.; Khorsand, S.; Tu, E.; Mortensen, R. B.; Butko, M.;
785 T. Second-harmonic generation-based methods to detect and
786 characterize ligand-induced RNA conformational changes. *Methods*
787 **2019**, *167*, 92–104.

(80) Laio, A.; Rodriguez-Fortea, A.; Gervasio, F. L.; Ceccarelli, M.;
789 Parrinello, M. Assessing the Accuracy of Metadynamics. *J. Phys. Chem.*
790 *B* **2005**, *109*, 6714–6721.

(81) Tiwary, P.; Parrinello, M. A Time-Independent Free Energy
792 Estimator for Metadynamics. *J. Phys. Chem. B* **2015**, *119*, 736–742.