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ABSTRACT: Outstanding questions about the RNA world hypothesis for the emergence
of life on Earth concern the stability and self-replication of prebiotic aqueous RNA. A

recent experimental work has suggested that solid substrates and low temperatures could
help resolve these issues. Herein, we use classical molecular dynamics simulations to
explore the possibility that the substrate is ice itself. Simulations at —20 °C show that an
eight-nucleotide single strand of RNA, initially situated in the quasiliquid layer at the air/
ice interface, exhibits a robust propensity to reorient itself—its bases turn toward the
(hydrophobic) air/ice interface, while its anionic phosphodiester oxygens align with the

underlying ice lattice. Kinetic analysis of hydrogen bonding indicates resistance to

hydrolysis that is greater than that of an aqueous single-strand RNA at the same temperature. This enhanced resistance, in turn,
could increase the opportunities for polymerization and self-copying. These findings thus offer the possibility of a role for an ancient
RNA world on ice distinct from that considered in extant elaborations of the RNA world hypothesis. This work is, to the best of our

knowledge, the first molecular dynamics study of RNA on ice.

Bl INTRODUCTION

According to the RNA world hypothesis, terrestrial life began
with the formation of polymeric chains of ribonucleic acid
(RNA) in a prebiotic soup of complex organic molecules.'™”
In this hypothesis, chains of RNA, rather than DNA, were the
first informational polymer’ > and catalyzed their own
polymeric growth and replication by Watson—Crick base-
pairing,® evolving toward more complex molecular machineries
up to the first cellular life. Prior works supporting this
hypothesis include the observations that some forms of RNA
(i.e., ribozymes) are capable of biocatalytic activity,’ ' and
that in modern life the assembly of amino acids into protein
chains in the ribosome of all living cells is catalyzed by
ribosomal RNA. Moreover, RNA fragments are attached to
various enzymatic cofactors, which are widely interpreted as a
vestige of an ancient RNA world."'

Unresolved questions remain, however, about the emer-
gence of prebiotic RNA and its evolution in the absence of
protein-assisted biochemical mechanisms. Even granting
abiotic formation of nucleotides in a prebiotic soup (a topic
still intensely debated®''™'*), polymerization of nucleotides
faces an uphill free energy gradient.'' In addition, in an
aqueous solution at room temperature, RNA polynucleotides
degrade quickly'> because the phosphodiester link between
monomers is vulnerable to nucleophilic attack and breakage by
the deprotonated 2'-OH group of the ribose sugar.'®'’
Experimental investigations have (so far) shown that the
synthesis of complementary RNA strands, by template-directed
synthesis from pre-existing RNA chains or catalyzed by other
short RNA chains actingg as a replicase ribozyme, is slow
compared to hydrolysis.'®~*
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Recently, two experimental findings have revitalized the
RNA world hypothesis. In 2011, Deck et al.>' observed the
growth of an RNA complementary strand from an immobilized
RNA template on iron oxide beads in the presence of a
solution of free nucleotides and at a low temperature (—20
°C). Subsequently, Attwater et al.”* were able to design, for the
first time, a polymerase ribozyme capable of catalyzing the
synthesis of an RNA sequence longer than itself in a subzero
saline aqueous solution at —19 °C. Interestingly, this catalytic
activity was reported to occur in the eutectic phase at the
interface of two growing ice crystals. Before this, in vitro
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ribozymes never accomplished the synthesis of RNA strands of s9

their own size.””

These findings point to the possibility of ice as a key
substrate for a cold start for life. Within this context, a number
of physicochemical insights into aqueous solute behaviors at
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the air/ice interface come into view. First, the exposed part of 64

air/condensed water interfaces has been shown to be a
preferential environment for the (partial) solvation of organic
molecules containing large nonpolar groups.”*** One can
expect the hydrophobic base moieties of RNA to behave
similarly. Second, at temperatures above ~200 K, the surface
layer of water at an air/ice interface forms a thin, disordered
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71 (“premelted”) quasiliquid layer (QLL).**° A growing number simulation box was enlarged along the z dimension to 16 nm 133
72 of experimental and computational studies’’ —>* indicate that giving rise to an ice slab with two vapor-exposed basal ice 134
73 this QLL offers conditions that are quite different from those facets. Finally, another 2 ns constant volume (NVT) simulation 135
74 experienced by solutes dissolved in bulk water, namely, a was performed, resulting in the formation of two equilibrated 136
75 heterogeneous solvation environment comprising the gas interfacial premelted layers. Similar protocols for the 137
76 phase, the disordered water layer, and the highly structured preparation of ice slab simulations have been exploited 13s
77 underlying ice lattice. One can expect that RNA solvated successfully in the literature.** ™" In this paper, we refer to 139
78 within this highly variegated environment might respond in the above premelted layer as the “ice-QLL layer”, and the 140
79 ways that could not occur in bulk aqueous solutions. Third, interface at which it occurs as the “air/ice interface”. This 141
80 phosphate is known to be a strong ionic kosmotrope, that s, it nomenclature highlights the fact that the properties of the ice- 142
81 directs, polarizes, and strengthens hydrogen bonding between QLL layer differ from those of supercooled liquid water. Figure 143
2 the nearby water molecules.””** Recent experimental’” and S2 in the Supporting Information displays a snapshot at 248 K, 144
83 computational®® works have indicated that the inner hydration showing the ice crystal wetted by the ice-QLL layers at the 145
84 shell of phosphate typically consists of three water molecules upper and lower air/ice interfaces. 146
ss hydrogen bonded to each anionic phosphate oxygen (hence, For the simulation of the single-strand RNA in bulk liquid 147

86 phosphate has an average of ~12 water molecules in its inner
87 solvation shell). If the anionic oxygens belonging to RNA’s
88 phosphodiesters behaved similarly, one would anticipate

[N

water, the RNA was solvated in a cubic box of liquid water of a 148
lateral dimension of ~7 nm (11,126 water molecules) after 149
o > ' 3 . ) ‘ which the system was equilibrated at a desired temperature of 150
80 similar strong interactions with water with the interesting 229 or 274 K, that is, 20 K below and 25 K above the melting 151
90 distinction that the ice-like water available for hydrogen temperature of the TIP4P-D water model, respectively. The 152
91 bonding at the air/ice interface could 'impose structural equilibration was achieved during the course of 1 ns NPT 153
2 constraints on the RNA that do not occur in aqueous RNA. simulation at 1 bar pressure. Finally, a production run of 700 1s4

%  To explore whether‘ an ice substrate could play ‘a role in an ns was achieved in a constant volume and temperature (NVT) 1ss
94 RNA world, a detailed molecular understanding of the
Ivation and dynamics of RNA strands on ice is needed.  SSCTO e
101 an mi ran n 1 1S n .
95 solvation an ynamics ot strands on ice 1 heede At room temperature, the CCUUCGGG sequence can fold, 1s7
96 One attractive option for doing so is to employ the tools of . .
. . forming a tetraloop structure by base pairing of the first and 158
97 molecular dynamics (MD). In this work, we use MD . 39 .
. . . . : . . last two nucleotides of the sequence. Bottaro et al.” and Cesari 159
98 simulations to investigate the behavior of an eight-nucleotide, 40 . o
etal.” have provided an accurate description of the free energy 160

ingle-st RNA th f: f
» .CCUUCGGG’ smgie s rand. sequence on the surface o landscape of folding and unfolding of CCUUCGGG at 300 K 161
100 ice. Short strands such as this are attractive because sampling . 39 ) 40
in bulk water. However, Bottaro et al.”” and Cesari et al.”" used 162

101 of different configurations is more affordable on an MD time ’ )
102 scale; indeed, this sequence was the subject of prior MD a different force field and water model (TIP3P), which are not 163

103 investigations39’40 in bulk water at 300 K. We find that this suitable for ice simulation. . The initial structure of 164
104 approach yields structural and kinetic results that integrate well CCUUCGGG was generated using the Make-NA web server 165

105 with (and expand upon) the above-mentioned prior work in (http://structure.usc.edu/make-na/serverhtml) and initially 166
106 bulk liquid water, beginning with the key observation that the minimized in vacuum before solvating it on ice or supercooled 167

107 air/ice interfacial environment has a distinctive impact on the liquid water. o168
108 orientation of RNA solvated at the air/ice interface. To identify the most probable CCUUCGGG configurations 169

on ice, MD simulations were complemented with an enhanced 170
100 @ METHODS sampling method (well-tempered metadynamics, hereafter 171
MTD)? designed to explore different structural arrangements 172
of the RNA at the air/ice interface and in bulk water. A short 173
(100 ps) NVT run with a time step of 0.1 fs was performed to 174

S ©

“

®©

X

110 MD simulations were performed to investigate the solvation
111 and dynamics of a small (8-nucleotide) single-strand RNA on

112 ice and liquid water. Interaction parameters were adopted from ) o
. . : relax the structure after placing the RNA on the ice interface. 175
113 a new force field for nucleic acids and proteins recently

114 proposed by Shaw’s group,41’42 which is provided with the Afterward, ~400 ns MTD runs in the NVT ensemble, using a 176

115 TIP4P-D water model.”> TIP4P-D is a slight variation of the tim/e ste[/) "?f 2 fs, were exploited by biasing .the end-to—e.nd 177
116 TIP4P/2005** water model, which is one of the most C1’—Cl’ distance, dcy/_cy, of the RNA, depositing a Gaussian 178

117 commonly used water models for ice and supercooled liquid potential of 0.1 nm width and a height of 1 kJ/mol every 1000 179

118 water.* TIP4P-D adopts the same geometry as TIP4P/2005, steps.. A bias factor of 300 was adopted. Similarly, we als.o 180
119 slightly modifying the partial charges on atoms and nonbonded exploited an MTD run for theAsmgle—strand RNA solvated. in 181
120 interaction parameters. The melting temperature, T,, of bulk water at 274 K, that is, 25 K above the melting 152
121 TIP4P/2005 is 252 K.*° The T,, of TIP4P-D has never been temperature of the TIP4P-D water model, using a bias factor of 183
122 calculated before; in this work, we determined it to be 249 K 40. For the MTD run on ice (in bulk water), the heights of the 184
123 (see Figures S1 and S2 in the Supporting Information). Gaussian hills dropped below 0.2 kJ/mol in ~260 ns (50 ns), 1ss
124 An initial proton disordered ice I crystal of dimension ~5.5 with diffuse behavior of the collective variable.”* Error bars on 186
125 nm X 5.5 nm X 4.1 nm (12 bilayers in the z-direction, with a the free energy profile were of the order of 2 kJ/mol and were 187
126 total of 4032 water molecules) was constructed using the Buch calculated according to the method reported in ref 52. The 188
127 algorithm."” This ice crystal was annealed from 0 to 229 K (the obtained free energy profiles were used to determine the 1s9
128 latter corresponding to T,—20 K) by performing a 1 ns structural global free energy minimum for the RNA on ice. A 190
129 constant pressure simulation (NPT) at O bar with a time step temperature of 229 K was selected for our runs on the air/basal 191
130 of 0.1 fs, followed by another 400 ps at the target temperature. surface of ice. This temperature corresponds to 20 °C below 192
131 This annealing process allows the dimensions of the ice block the melting point of the TIP4P-D water model used here for 193
132 to adjust to the increasing temperature. Afterward, the the classical MD (following the experimental works of Deck et 194
B https://dx.doi.org/10.1021/acs.jpcc.0c04273
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Figure 1. (a) Free energy profiles as a function of the C1’—C1’ end-to-end distance for CCUUCGGG single-strand RNA on the basal surface of
ice at 229 K (solid green line) and in bulk water at 274 K (solid red and blue lines, respectively). The methodology for assigning error bars to free
energy profiles obtained by metadynamics is still an open question in the community:*>**" here, we have followed the approach in ref 52 and the
shadow region in the figure represents three standard deviations (~2 kJ/mol). (b,c) Top view of representative structures in liquid water and on the
air/basal-ice surface, respectively, at dc,'_c;r ~ 1 nm (in liquid water) and dc; _c;» ~ 3.2 nm (on ice). (d) Profile view of (c).

al*! and Attwater et al.*?). The initial structures used for the
MTD runs are included in the Supporting Information.

As already pointed out in the literature,””*** even at room
temperatures and with single strands of eight nucleotides,
simulations of hundreds of microseconds are needed to
properly sample the conformational changes among different
RNA structures and, at the same time, to provide a quantitative
description of the free energy differences among those
structures. This becomes even more challenging at low
temperatures considered in this work, where the dynamics
are much slower. For this reason, to probe the robustness of
our free energy profiles, we also performed an unbiased (i.e.,
without any driving potential) 1 ys MD simulation for the
RNA on ice using as the starting condition a configuration with
dcy—crr ~ 44 nm, that is, slightly stretched out from the value
at the global minimum. After ~460 ns, the RNA structure on
the basal air/ice interface converges to its global minimum at
dcr—cr ~ 3.2 nm (Figure S3a). This supports the reliability of
the free energy profile obtained here as a qualitative assessment
of the global and local minima of different RNA structures on
ice.

In addition, during the MTD runs, we also tracked eRMSD
metrics™ for the system (Figure S4). The eRMSD is a metric
based on the difference in the orientation and position of the
nucleobases between two RNA structures. This metric has
been proven to provide a more reliable description of RNA
structures compared to the standard rmsd metrics’>® and to
be capable of discriminating between RNA structures with and
without base pairing.’” The native reference structure for the
eRMSD metric was the CCUUCGGG strand in its tetraloop
arrangement taken from the PDB structure 1FTY, residues 7—

226 14. The default cutoff value of 2.4 for eRMSD was adopted.

All simulations were performed using GROMACS 2018.6,°
employing the leap-frog integration algorithm®” with a time
step of 2 fs. The Lennard-Jones potential and the real part of
the Coulomb interactions were truncated at 1 nm. The long-
range part of the electrostatic and Lennard-Jones interactions
were treated by the particle mesh Ewald method,*®* as
implemented in GROMACS, using a relative tolerance of 10~°,
fourth-order cubic interpolation, and a Fourier spacing
parameter of 0.12. Two stochastic velocity rescaling thermo-
stats,”” one for the RNA and one for the water solvent, each
with a time constant of 0.1 ps, were used to control the
temperature. The Berendsen barostat®" with a time constant of
2 ps was used to control the pressure during the NPT runs of
equilibration. The SETTLE algorithm®” was used to constrain
the TIP4P-D water geometry, and the LINCS algorithm®® was
exploited to constrain hydrogen bonds in the RNA. PLUMED
2.5°" was used to bias the MD simulations and for the
postprocessing analysis; both eRMSD and d¢, ¢ are
implemented in PLUMED.”

Mono- and divalent ions are known to affect the structure
and dynamics of RNA in water in such a way that, at the
present date, classical force fields are still not able to capture
properly.”> To compensate for the negative charge of the
single-strand RNA, in the ice simulations, we placed seven
sodium (Na*) counterions on the ice/air interface opposite the
interface hosting the RNA. The charge neutralization was
needed to avoid artefacts in the simulation of the
inhomogeneous system by using compensating background
charge and Ewald summation.”® During the simulation time,
the Na* ions did not cross the slab or evaporate from the
interface to the other, and thus, they did not affect the
structure or dynamics of the RNA. In simulations of single-

https://dx.doi.org/10.1021/acs.jpcc.0c04273
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259 strand RNA in bulk liquid water where no inhomogeneity was

: . . . LI L AL N S B R
260 present, we did not add any counterions, allowing a - Tow -
261 comparison between the bulk and ice simulations at the 2.5/~ BACKBONE .
262 same (zero) ionic concentrations. As suggested in ref 65, in 2: _ SBI‘,{(S;QSR ]
263 bulk simulation and at physiological concentrations, the _ i
264 number of water molecules interacting with the RNA at any S -
265 instant is much larger than the number of ions, making - y
266 simulations more sensitive to the water model rather than ions. 1 i
267 Thus, for our purposes, omission of ions would not materially 05 .
268 alter the conclusions drawn from MD runs in bulk water. 0- | \ N\ T
0 04 08 12 16 2

260 Il RESULTS a

270 Figure 1a shows the free energy of CCUUCGGG single-strand
271 RNA on ice as a function of the strand’s end-to-end distance,
272 dcy_cy- A single clear minimum is found within a steep energy
273 well, at dcy_c;r ~ 3.2 nm. This free energy profile is quite
274 different from that of bulk water at 274 K (also shown in
275 Figure la), where dg_c;' can more easily sample a wider
276 range of values, that is, from ~1.0 to 3 nm. In bulk water at 274
277 K, we sometimes observed d¢;/_c;r < 0.5 nm. This structure
278 (Figure SS) originates by the z-stacking interaction of the
279 aromatic group of the first, C, and the last, G, nucleotides.
280 Figure 1b,c illustrates the conformation of the RNA in 274 K
281 bulk water at di;_c;r ~ 1 nm and on ice at d¢y/_¢yr ~ 3.2 nm
282 (i.e, the global minimum structure on ice), illustrating how
283 much more extended this RNA is on ice. A side view of this
284 global minimum structure is also shown in the profile view of (b)

[

3

]

285 Figure 1d (for clarity, ice molecules are not shown). During

286 the course of our MD/MTD runs, the eRMSD was always Figure 2. (a) Probability density profile as a function of the
287 greater than 1.7 (see Figure S4), both on ice and in bulk water, coordinate perpendicular to the ice surface (z). The probability
288 indicating that the RNA never explored configurations with distribution has been computed by collecting the center of mass
289 significant base-pairing. On ice, the single-strand RNA explores position of water (solid blue line), phosphate backbone (orange),
290 a wider range of dc; _c,, as shown in Figure S4c,d. sugar (yellow), and bases (red) over the last 540 ns of 1 us of MD

trajectory in the global minimum. (b) Snapshot taken from the last
frames of the trajectory. The underlying ice lattice is depicted via a
stick model, and the single-strand RNA is depicted using a ball-and-
stick model, with bases and sugar moieties superimposed as red and
yellow polygons, respectively. Atoms (and the corresponding colors)

291  Molecular level details about the solvation of the single-
292 strand RNA on the surface of ice are shown in Figure 2. Figure
203 2a shows the probability distributions of various moieties
294 collected over the last 500 ns of the 1 us unbiased MD

205 simulation in the neighborhood of its global minimum are as follows: P (orange), O (red), H (white), N (blue), and C
296 structure, dcy_c; ~ 3.2 nm (Figure 1c), as a function of (gray).
297 position within the crystalline ice lattice. The origin (at 0 nm)
298 is judged to be far enough from the air/ice interface that it As mentioned in the Methods section, we also performed an 320
299 represents bulk crystalline ice. For example, we note that the unbiased (i.e, without any driving potential) 1 gs MD 321
300 probability distribution for the oxygens on water molecules of simulation for the RNA on ice using as a starting configuration 322
301 ice (OW; blue curve) exhibits a symmetrical doublet at 0.4 nm, at dcy_cy ~ 4.4 nm, that is, slightly stretched out from the 323
302 corresponding to an intact ice bilayer. As one proceeds to the value at the global minimum: the RNA structure on the basal 324
303 right, closer to the air/ice interface, the degradation of the air/ice interface converges to its global minimum at d¢; _¢c; ~ 325
304 symmetry of these doublets indicates a transition to the QLL. 3.2 nm after ~460 ns (Figure S3a). This demonstrates the 326
305 The figure reveals that the phosphates (BACKBONE; orange reliability of the free energy profile obtained here as a 327
306 curve) prefer to occupy positions within the bilayers centered qualitative assessment of the global and local minima of 32s
307 at 1.1 nm. Ribose moieties (SUGAR; yellow curve) are seen to different RNA structures on ice. Moreover, during the entire 329
308 prefer the next bilayer, at 1.5 nm, whose degraded doublet course of the 400 ns MTD runs, the eRMSD was found to 330
309 symmetry strongly suggests a QLL structure. The bases range between 1.7 and 2.1 nm, indicating a negligible 331
310 (BASES; red) are seen to position themselves at the outermost occurrence of intrastrand pairing (i.e, between bases on the 332
311 edge of the QLL, where the density of the QLL falls off to zero. RNA), as shown in Figure S4. 333
312 Figure 2b, a snapshot from the last part of the trajectory, is Figure 3 investigates the structure and kinetics of solvated 33413
313 consistent with this interpretation. These results suggest that single-strand RNA phosphodiesters. Figure 3a shows a 335
314 the RNA finds in the underlying crystalline structure of the ice- snapshot of hydrogen bonding configurations of two anionic 336
315 QLL a template that favors an extended structure, with a phosphodiester oxygens most deeply embedded in the ice 337
316 specific value of dgy_c;. This is quite distinct from the lattice. It is evident that bonds around these oxygens are 338
317 structure characterizing single-strand RNA in bulk water, arranged in tetrahedral geometry, in which one bond is 339
318 which prefers a more compressed end-to-end distance (i, covalently bonded to phosphorus and the other three are 340
319 dcy_cy in the range 1.5—3.0 nm, Figure la). hydrogen bonded to nearby (ice-like) water molecules. It is 341
D https://dx.doi.org/10.1021/acs.jpcc.0c04273
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Figure 3. Hydrogen bonding between water molecules and anionic phosphate oxygens. (a) Snapshot showing hydrogen bonding interactions of
two out-of-ribbon oxygens. (b) Autocorrelation functions between water molecules and phosphate groups for the solvated single-strand RNA
collected over the last 350 ns of a 1 s MD trajectory initiated at the RNA-on-ice global Gibbs energy minimum structure (green solid line) and
over the last 350 ns of 700 ns run in bulk supercooled bulk water (blue solid line). For both cases, the temperature was kept at 229 K.

342 also evident from the figure that these interactions involve
343 significant structuring of the solvent water—for example, all
344 three adjacent water molecules are acting as hydrogen bond
345 donors to the phosphodiester oxygen atoms. Statistical analysis
346 of our RNA-on-ice MD trajectory results indicates that each
347 phosphodiester oxygen forms 2.7 hydrogen bonds on average.
348 It is also of interest to consider the longevity of these bonds. A
349 hydrogen bonding autocorrelation function, C(t), is shown in
350 Figure 3b. C(t) is defined as the probability of the hydrogen
351 bond that forms between the solvent and an anionic
352 phosphodiester oxygen remaining intact over time.”” A
353 comparison between the two C(f) curves displayed in the
3s4 figure reveals a striking difference—assuming first-order
355 kinetics in hydrogen bond breaking and reforming,°® the
3s6 results imply an average hydrogen bond lifetime on ice of ~14
357 ns, compared to a lifetime of only ~1 ns in supercooled bulk
358 water, at the same degree of supercooling.

359 In combination, the results shown in Figures 2 and 3
360 constitute compelling evidence that the anionic phosphodiest-
361 er oxygens of our RNA anchor to water molecules belonging to
362 the ice lattice underlying the QLL, rather than attaching to
363 QLL water solvent. This is significant because anchoring of the
364 nucleotide chain in the underlying crystalline structure would
365 tend to lock in geometry, putting a brake on geometrical
366 rearrangements associated with hydrolysis, and thereby
367 favoring the maintenance of the phosphodiester link. This
368 mechanistic brake on hydrolysis would not be operative in bulk
369 aqueous single-strand RNA.

370 We turn next to what our MD results tell us about kinetic
371 precursors of hydrolysis, as shown in Figure 4. Hydrolysis of
372 RNA polynucleotides is initiated by attachment of the
373 deprotonated 2'-OH group of the sugar moiety to the adjacent
374 phosphorus atom, resulting in breakage of the phoiphodiester
375 link. The process occurs spontaneously and rapidly® once the
376 2’-OH group is deprotonated by nucleophilic attachment of
377 the water oxygen or hydroxyl ion. Our MD simulations do not
378 permit covalent bond formation or breakage, but they do allow
379 us to investigate the contact frequencies of participants in this
380 reaction. Specifically, we monitor the number of contacts
381 between the 2'-OH hydrogen of the ribose sugar and the
382 solvent water oxygen, defining as a contact whenever the
383 distance, d, between water oxygen and the Hp, hydrogen
384 atoms reaches 0.35 nm or less. Because such contacts must
38s precede the hydrolysis reactions by deprotonating the 2'-OH
386 group, we can assume that the reaction rate, r, is proportional
387 to the number of these contacts. Although this is a crude

T

I T I I T I
28

24

‘ill!, L) 4, lh,j i

ol |

— Air/Ice Interface
8= Bulk Water
] | ! | ] | 1 | [

0 200 400 600 800 1000
t(ns)

Figure 4. Number of contacts (d < 0.35 nm) between the Ho,
hydrogen and the water oxygen as a function of time. The green solid
line is the number of contacts over the 1 ys MD trajectory initiated at
the RNA-on-ice global Gibbs energy minimum structure (green solid
line) and the analogous curve for bulk supercooled bulk water (blue
solid line). For both cases, the temperature was kept at 229 K.

approximation, it has been used successfully in the literature to 3ss
provide qualitative assessment of the reaction of polyaromatic 389
hydrocarbons and ozone on air/ice interfaces at different 390
temperatures and reactant concentrations.*””’ Figure 4 shows 391
the average number of contacts (d < 0.35 nm) between the 39
Hg, hydrogen and the water oxygen during the simulation of 393
RNA on ice and in liquid water, where both are at 229 K. The 394
average number of contacts, n, calculated over the last 350 ns 395
of the 1 ys MD simulations of the RNA on ice and over the last 396
350 ns of the 700 ns MD simulations in bulk water at 229 K, 397
are n, = 162 and n,,, = 19.6, respectively. This implies that 398
Twat/ Tice ~ 1.2, that is, initiation of hydrolysis would be 20% less 399
frequent on ice compared to bulk liquid water at the same 400
temperature (229 K). 401

B DISCUSSION AND CONCLUSIONS 402

The molecular picture emerging from this work supports the 403
view that single-strand RNA solvated on ice is more resistant 404
to hydrolysis than its bulk aqueous counterpart. Specifically, 40s
our kinetic evidence shows that the contact between solvent 406
water and the 2'-OH hydrogen of the ribose sugar occurs less 407
frequently for ice-solvated RNA than for aqueous RNA at the 408
same temperature. As this contact is an initial step in 409
hydrolysis, it follows that hydrolysis is less likely to be initiated 410
in ice-solvated RNA. We also find that anionic phosphodiester 411
oxygen atoms bind preferentially with water belonging to the 412
underlying ice lattice, in a geometry reminiscent of the strongly 413

—_
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414 kosmotropic phosphate ion (i.e., in which each anionic oxygen
415 forms hydrogen bonds with approximately three water
416 molecules in a tetrahedral arrangement35’37’38). The resulting
417 alignment with the ice lattice confers a structural rigidity to the
418 RNA that would, we infer, strongly resist completion of
419 hydrolysis (among other effects). Kinetic evidence supports
420 this inference, in that the average hydrogen bond lifetime
421 between anionic phosphodiester oxygens and the surrounding
422 water molecules is at least 1 order of magnitude longer for ice-
423 solvated single-strand RNA than in the bulk aqueous solution.
424  Shifting focus to the “air” side of the air/ice interface, it is
425 worth noting possible implications of solvation of hydrophobic
426 bases in the topmost layer of the ice-QLL, exposed to (or near
427 to) the gas phase (see Figure 2). Such exposure would make
428 these bases more available to react with trace gases of a
429 primordial atmosphere, compared to being fully solvated in
430 water. Moreover, in a water-restricted environment such as the
431 topmost layers of the air/ice interface, the bases could be more
432 prone to base-stacking, enabling the correct base pairing with
433 other free nucleotides located in the topmost part of the ice-
434 QLL where the water diffusivity is faster,”" although this is
435 speculative. In addition, as the synthesis of building blocks for
436 nucleotide synthesis has been shown to be plausible under
437 prebiotic aqueous conditions,"*’*”? an immobilized and
438 extended RNA on ice could be more prone to polymerization
439 and self-replication with free nucleotides diffusing in the ice-
440 QLL than a compact arrangement, especially in the absence of
441 protein-assisted replicase. To some extent, this was already
442 demonstrated by the experimental findings of Deck et al,*’
443 who observed the growth of daughter RNA strands from an
444 immobilized RNA template at low temperatures.

445 More broadly, the idea of a “cold start” for the evolution of
446 life on Earth has been suggested because of the reduced
447 luminosity of the young Sun, which might have induced ice
ss formation more extensively than thought previously.”* In our
449 view, the role of ice in this evolution does not preclude the role
450 of liquid water, but rather it expands the range of possibilities
451 in several ways. For instance, the ice-QLL itself provides
452 diverse physicochemical properties (e.g., rigidity of the
453 crystalline structure, water diffusivity, viscosit;r, and so on) as
454 a function of depth and temperature’"”’>~’” that are not
455 obtainable in liquid water. In addition, some of the features
456 observed here at the air/ice interface would also occur at ice/
457 liquid interfaces within grain boundaries. Finally, as the
4s8 structure of the underlying ice lattice varies greatly from
459 facet to facet, the geometrical constraints on RNA at the air/
460 ice interface would likely vary from those explored here. Lines
461 of future research indicated by the results presented here
462 include a computational first-principles MD study of
463 phosphodiester hydrolysis and polarized second harmonic
464 generation experiments directed at extracting detailed surface
465 orientation information of RNA on ice surfaces.”®”” In
466 addition, Figure 2 highlights the fact that the phosphate
467 group of single-strand RNA could sample different layers of the
468 ice-QLL, suggesting that alternative or additional collective
469 variables, other than d¢,'_c;- or eRMSD, are needed for a more
470 quantitative assessment of the free energy landscape of single-
471 strand RNA on ice.

472 In conclusion, we have found that the air/ice interfacial
473 environment has a distinctive impact on the orientation of
474 surface-solvated single-strand RNA. The crystalline structure
475 underlying the interfacial ice-QLL offers a template for
476 immobilization of the RNA’s phosphodiester groups, while
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its bases are exposed to the gas phase. Kinetic analysis of 477
precursors to hydrolysis—for example, the number of contacts 478
between water molecules and Hg, hydrogens of the sugar 479
moieties—as well as structural constraints owing to the 480
alignment of the RNA backbone with the ice lattice, indicate 481
a resilience to hydrolysis being greater than that of supercooled 4s2
bulk aqueous RNA. This work is, to the best of our knowledge, 483

the first MD study of RNA on ice. 484
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