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Abstract

Variational inference has become an increas-
ingly attractive fast alternative to Markov chain
Monte Carlo methods for approximate Bayesian
inference. However, a major obstacle to the
widespread use of variational methods is the lack
of post-hoc accuracy measures that are both the-
oretically justified and computationally efficient.
In this paper, we provide rigorous bounds on the
error of posterior mean and uncertainty estimates
that arise from full-distribution approximations,
as in variational inference. Our bounds are
widely applicable, as they require only that the
approximating and exact posteriors have poly-
nomial moments. Our bounds are also compu-
tationally efficient for variational inference be-
cause they require only standard values from
variational objectives, straightforward analytic
calculations, and simple Monte Carlo estimates.
We show that our analysis naturally leads to a
new and improved workflow for validated varia-
tional inference. Finally, we demonstrate the util-
ity of our proposed workflow and error bounds
on a robust regression problem and on a real-data
example with a widely used multilevel hierarchi-
cal model.

1 Introduction

Exact Bayesian statistical inference is known for providing
point estimates with desirable decision-theoretic properties
as well as coherent uncertainties. Using Bayesian methods
in practice, though, typically requires approximating these
quantities. Therefore, it is crucial to quantify the error in-
troduced by any approximation. There are two, essentially
complementary, options: (1) rigorous a priori characteriza-
tion of accuracy for finite data and (2) tools for evaluating
approximation accuracy a posteriori. First, consider option
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#1. Markov chain Monte Carlo (MCMC) methods are the
gold standard for sound approximate Bayesian inference
in part due to their flexibility and strong a priori theoret-
ical guarantees on quality for finite data. However, these
guarantees are typically asymptotic in running time, and
computational concerns have motivated a spate of alterna-
tive Bayesian approximations. Within the machine learn-
ing community, variational approaches (Blei et al., 2017;
Wainwright et al., 2008) such as black-box and automatic
differentiation variational inference (Kingma and Welling,
2014; Kucukelbir et al., 2015; Ranganath et al., 2014) are
perhaps the most widely used. While these methods have
empirically demonstrated computational gains on problems
of interest, they do not come equipped with guarantees on
the approximation accuracy of point estimates and uncer-
tainties. There has been some limited but ongoing work in
developing relevant a priori guarantees for common vari-
ational approaches (Alquier and Ridgway, 2017; Alquier
et al.,, 2016; Chérief-Abdellatif and Alquier, 2018; Pati
et al., 2018; Wang and Blei, 2018, 2019). There has also
been work in developing (boosting) variational algorithms
for which it may be possible to obtain a priori guarantees
on convergence of the approximating distribution to arbi-
trary accuracy (Campbell and Li, 2019; Guo et al., 2016;
Locatello et al., 2018a,b; Miller et al., 2017; Wang, 2016).

The examples above typically either have no guarantees or
purely asymptotic guarantees — or require non-convex op-
timization. Thus, in every case, reliable evaluation tools
(option #2) would provide an important bulwark for data
analysis (as demonstrated by the widespread use of con-
vergence diagnostics for MCMC (Gelman et al., 2013)).
In any particular data analysis, such tools could determine
if the approximate point estimates and uncertainties are to
be trusted. Gorham and Mackey (2015, 2017); Gorham
et al. (2019); Yao et al. (2018) have pioneered initial work
in developing evaluation tools applicable to variational in-
ference. However, current methods are either heuristic or
cannot be applied in an automated way.

In this paper, we provide the first rigorous, automated, and
computationally efficient error bounds on the quality of
posterior point and uncertainty estimates for variational ap-
proximations. We highlight three practical aspects of our
bounds here: (A) computational efficiency, (B) weak tail
restrictions, and (C) relevant targets. For A, we use only
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standard values computed in the course of variational in-
ference, straightforward analytic calculations, and simple
Monte Carlo (not MCMC) estimates. For B, we require
only that the approximating and exact posteriors have poly-
nomial moments — though we show even tighter bounds
when exponential moments exist. For C, note that practi-
tioners typically report posterior means for point estimates
— and they report posterior variance, standard deviation, or
mean absolute deviation for uncertainties (Gelman et al.,
2013; Robert, 1994). So we directly bound the error in
these quantities. We demonstrate the importance of bound-
ing error in these output quantities directly, rather than
bounding divergences between distributions, with illustra-
tive counterexamples; namely, we show that common vari-
ational objectives such as the Kullback—Leibler (KL) diver-
gence and a-divergences can be very small at the same time
that mean and variance estimates are arbitrarily wrong.

To obtain our bounds, we make three main technical con-
tributions, which may all be of independent interest beyond
Bayesian methods. First, we show how to bound mean
and uncertainty differences in terms of Wasserstein dis-
tance. Second, we develop novel bounds on the Wasser-
stein distance in terms of a-divergences — including the
KL divergence — and moment bounds on the variational
approximation. The moment conditions allow us to relate
(scale-free) a-divergences to (scale-sensitive) Wasserstein
distances. Finally, we derive efficiently computable bounds
on a-divergences in terms of the objectives already widely
used for variational inference — in particular, the evidence
lower bound (ELBO) and x upper bound (CUBO) (Dieng
et al., 2017). By combining all three contributions, we ob-
tain efficiently computed bounds on means and uncertain-
ties in terms of the ELBO, CUBO, and certain polynomial
or exponential moments of the variational approximation.

Our methods give rise to a new and improved workflow
for validated variational inference. We illustrate the useful-
ness of our bounds as well as the practicality of our new
workflow on a toy robust regression problem and a real-
data example with a widely used multilevel hierarchical
model. A python package for carrying out our work-
flow — including doing black-box variational inference and
computing the bounds we develop in this paper — is avail-
ableat https://github.com/jhuggins/viabel.
The same repository also contains code for reproducing all
of our experiments. Proofs of all our results are in Ap-
pendix D.

2 Preliminaries

Bayesian inference. Let § € R? denote a parameter vec-
tor of interest, and let z denote observed data. A Bayesian
model consists of a prior measure 7o (df) and a likelihood
£(z;0). Together, the prior and likelihood define a joint
distribution over the data and parameters. The Bayesian

posterior distribution 7 is the conditional in 6 with fixed
data z.! To write this conditional, we define the unnormal-
ized posterior measure 7*(df) := {(z;6)mo(df) and the
marginal likelihood, or evidence, M := f dn*. Then the
posterior is m := 7* /M.

Typically, practitioners report summaries — e.g., point es-
timates and uncertainties — of the posterior rather than the
full posterior. Such summaries include the mean m., co-
variance Y., ith component marginal standard deviation
or i, and mean absolute deviation MAD,, ;: for ¢ ~ m,

My = E(ﬁ), MADﬂ-)i = E(Wl — mﬂ—,il),
Onyi = nl/2 Ypi=E{( —mg) (0 —my) " }.

R i)
Variational inference. In most applications of interest, it is
infeasible to efficiently compute these summaries with re-
spect to the posterior distribution in closed form or via sim-
ple Monte Carlo. Therefore, one must use an approximate
inference method, which produces an approximation 7 to
the posterior 7. The summaries of 7 may in turn be used
as approximations to the summaries of 7. One approach,
variational inference, is widely used in machine learning.
Variational inference aims to minimize some measure of
discrepancy D, (-) over a tractable family Q of potential
approximation distributions (Blei et al., 2017; Wainwright
et al., 2008):

7 = arg min D (§).
§eQ

The variational family Q is chosen to be tractable in the
sense that, for any £ € O, we are able to efficiently cal-
culate relevant summaries either analytically or using inde-
pendent and identically distributed samples from €.

KL divergence. The classical choice for the discrepancy
in variational inference is the Kullback—Leibler (KL) diver-
gence (or relative entropy) (Bishop, 2006):

KL(¢ | ) = /log (jf;) de.

Note that the KL divergence is asymmetric in its argu-
ments. The direction D,(§) = KL(§ | 7) is most typ-
ical in variational inference, largely out of convenience;
the unknown marginal likelihood M appears in an additive
constant that does not influence the optimization, and com-
puting gradients requires estimating expectations only with
respect to & € Q, which is chosen to be tractable. Mini-
mizing KL(¢ | 7) is equivalent to maximizing the evidence
lower bound (ELBO; Bishop, 2006):

ELBO(¢) := /log (‘Zg) dé.

ISince the data z are always fixed throughout this work, we
have suppressed the dependence on z in the notation.
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Rényi’s a-divergence. Another choice of discrepancy for
variational inference (Bui et al., 2017; Dieng et al., 2017;
Hernandez-Lobato et al., 2016; Li and Turner, 2016) is
Rényi’s a-divergence, which for a € (0,1) U (1,00) is
defined as

1 dm\ 7!
Du(m | &) = ﬁlog/ <d§> dm.

The a-divergence is typically used in variational inference
with D (§) = Dy (7 | §) for @ > 1; again, the unknown
marginal likelihood M does not influence the optimization,
and estimating gradients is tractable. Variational inference
with the a-divergence is equivalent to minimizing a quan-
tity known as the x upper bound (CUBO; Dieng et al.,
2017):

CUBO,(¢) := (1 —a ! )Dy(m | £) — log M.

The ELBO and CUBO are so-named since they respec-
tively provide a lower and upper bound for log M ; see Ap-
pendix D.8. The a-divergence generalizes the KL diver-
gence since D (7 | §) :=limg—1 Do(7 | ) = KL(7 | &)
(Cichocki and Amari, 2010). Note, however, that here
the KL divergence has the order of its arguments switched
when compared to how it is used for variational inference.

Wasserstein distance. The Wasserstein distance is a mea-
sure of discrepancy that, unlike the previous two diver-
gences, is influenced by a metric on the space on which
the distributions are defined. It is widely used in the anal-
ysis of MCMC and large-scale data asymptotics (e.g., Dur-
mus and Moulines, 2019; Durmus et al., 2019; Eberle and
Majka, 2019; Joulin and Ollivier, 2010; Madras and Sezer,
2010; Rudolf and Schweizer, 2018; Vollmer et al., 2016).
The p-Wasserstein distance between ¢ and 7 is given by

1/p
. . /|P /

e = nt_{ [0 o1granan}
where I'(¢, ) is the set of couplings between & and T, i.e.,
Borel measures y on R? x R? such that ¢ = (-, R?) and
7 = (R%, ) (Villani, 2009, Defs. 6.1 & 1.1). The Wasser-
stein distance is difficult to use as a variational objective
due to the (generally intractable) infimum over couplings,
although there is recent work in this direction (Claici et al.,
2018; Cuturi and Doucet, 2014; Srivastava et al., 2018).

2.1 Previous work on validating variational
approximations

Stein discrepancies. Computable Stein discrepancies pro-
vide one approach for evaluating variational approxima-
tions (Gorham and Mackey, 2015, 2017; Gorham et al.,
2019). That is, the Stein discrepancy between the poste-
rior and variational approximation could be approximated
using samples from the variational approximation. How-
ever, Stein discrepancy-based bounds on the Wasserstein

distance require knowledge of certain properties of the pos-
terior (e.g., one-sided Lipschitz constants) that are usu-
ally unavailable without additional analytic effort. Thus,
there is not yet an automated way to apply an appropriate
Stein operator that guarantees control of the Wasserstein
distance (Erdogdu et al., 2018; Gorham et al., 2019).

Pareto-smoothed importance sampling and k. Pareto-
smoothed importance sampling (PSIS; Vehtari et al., 2019)
is a method for reducing the variance of importance sam-
pling estimators. The key quantity computed in PSIS is k,
which is an estimate of k := inf{k’ | Dy s/ (7 | 7) < oo}.
Yao et al. (2018) suggest using k as a measure of the qual-
ity of 7. Based on the empirical results and informal argu-
ments of Vehtari et al. (2019), they propose that k <0.5in-
dicates a good variational approximation and ke [0.5,0.7]
indicates minimal acceptability. In all cases the authors
suggest using PSIS to improve estimates of posterior ex-
pectations. However, the link between a small k value and a
high-quality posterior approximation is only heuristic. We
find empirically in Section 5 and Section 5.2 that poor pos-
terior approximations can have small k values.

3 Error bounds via posterior discrepancies

Given the concern with posterior summaries, a meaningful
measure of posterior approximation quality should control
the error in each of these summaries, i.e., |[mz — mx|2,
|MAD7~T)Z* — MADW’,* |, HE;T — Zﬂ—HQ, and |0'7i—)1; — O'ﬂ—)il. To
be practical, this measure should also be computationally
efficient. We start by focusing on the former challenge:
finding a discrepancy that controls the error of these sum-
maries. In particular, we (1) provide counterexamples to
show that KL(7 | 7) and D, (7 | #) by themselves cannot
be relied upon to control these errors, and (2) prove that
the Wasserstein distance does provide the desired control.
We address the latter challenge, computational efficiency,
in Section 4.

KL divergence. Unfortunately, as we show in the follow-
ing examples, even when KL(# | ) is small, posterior
summary approximations provided by 7 can be arbitrarily
poor. To get a sense of scale for the KL divergence, we note
that the KL divergence from a variational approximation to
the exact posterior can easily range from 1 to nearly 500.
See Appendix A for further discussion. First we note that
the exact posterior standard deviation o is a natural scale
for the posterior mean error since changing the posterior
mean by o, or more could fundamentally change practical
decisions made based on the posterior. Our first example
shows that even when KL(# | ) is small, the mean error
can be arbitrarily large, whether measured relative to o, or
O#.

Proposition 3.1 (Arbitrarily poor mean approximation).
For any t > 0, there exist (A) one-dimensional, unimodal
distributions T and m such that KL(7 | w) < 0.9 and
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(ms — my)? > to2, and (B) one-dimensional, unimodal
distributions & and 7 such that KL(7 | m) < 0.3 and

(msz —mg)? > to.

In more detail, let Weibull(k, 1) denote the Weibull distri-
bution with shape £ > 0 and scale 1. For (A), for any
t > 0, we can choose k = k(t), 7 = Weibull(k, 1), and
7 = Weibull(k/2,1), where k(t) \, 0 as ¢ — oco. We
exchange the two distributions for (B).

Our second example shows that KL(# | 7) can remain
small even when the variance difference is arbitrarily large.

Proposition 3.2 (Arbitrarily poor variance approxima-
tion). For any t € (1,00|, there exist one-dimensional,
mean-zero, unimodal distributions © and ™ such that
KL(# | ) < 0.12 but 02 > to?.

Here, for any ¢t > 0 we let h = h(t), 7 = T}, (standard ¢-
distribution with h degrees of freedom), and # = A/(0,1)
(standard Gaussian), where h(t) \, 2 as t — oo.

Rényi’s a-divergence. We similarly demonstrate that
small D, (7 | 7) does not imply accurate mean or variance
estimates. We focus on the canonical case o = 2, which
will also play a key role in our analyses below.

Proposition 3.3 (Arbitrarily poor mean and variance ap-
proximation). For any t > 0, there exist one-dimensional,
unimodal distributions 7 and w with Do(7 | ) < 0.4 such
that o2 > to2 and (mz — my)? > to2.

We again take w7 = Weibull(k, 1) and # = Weibull(k/2,1)
with k = k(t) \ 0 as t — oo.

Wasserstein distance. In contrast to both the KL and
a-divergences, the Wasserstein distance accounts for the
metric on the underlying space. Intuitively, the Wasser-
stein distance is large when the mass of two distributions is
“far apart.” Thus, it is a natural choice of discrepancy for
bounding the error in the approximate posterior mean and
uncertainty, since these quantities also depend on the un-
derlying metric. Our next result confirms that the Wasser-
stein distance controls the error in these quantities.

Theorem 3.4. I[f W, (7, m) < e or Wa(7r,m) < ¢, then

|msz — mzl|ly < e and max|MAD;; — MAD, ;| < 2e.

IfWs(7t, ) < g, then, for S == \/rnin{||2fr||2 e st
max |0x; — 04| <€ and [|X; —Xr|ly <2e(S+e¢).

Remark 3.5. The Wasserstein distance can also be used to
bound the difference between expectations of any smooth
function. More precisely, if the function ¢ satisfies |¢'| <
Land Wi (7t,7) <e,then| [ ¢dit — [¢dn| <eL.

While our focus is on parameter inference, there are many
cases when we are interested in predictive accuracy, in-
cluding in Bayesian deep learning. In such cases, Wasser-
stein bounds on the posterior remain useful. Assuming

f(2new | 0) is the distribution for new data given param-
eter 0, the posterior predictive distribution is pu(2zpew) =
J f(znew | 0)(d@), with the approximate posterior predic-
tive /i defined analogously.

Proposition 3.6. If W, (f(-|6),f(-16)) <C|6—-¢,
for some C > 0 and W, (7, ) < ¢, then Wy(fi, 1) < eC.
Remark 3.7. The assumption on f(- | €) in Proposi-
tion 3.6 holds for many commonly used distributions in-
cluding Gaussian distributions with fixed variance and the
Bernoulli distribution with softmax parameterization.

4 A complete workflow for validated
variational inference

In this section, we develop a comprehensive approach to
variational inference with rigorously validated output. First
we prove a number of new results which let us bound the
Wasserstein distance between the variational and true pos-
teriors in terms of quantities that can be efficiently com-
puted or upper-bounded. These Wasserstein bounds, when
combined with ideas from importance sampling, provide
the tools for formulating our proposed workflow.

4.1 Computationally efficient error bounds

In this section we return to the question of computationally
efficient posterior error bounds. In particular, although we
have shown that the Wasserstein distance provides direct
control of the error in approximate posterior summaries of
interest, it itself is not tractable to compute or estimate. Our
general strategy in this section is use standard variational
objectives — namely, the ELBO and CUBO - to bound the
Wasserstein distance. We thereby achieve bounds on the
error of posterior summaries by Theorem 3.4. More detail
about our results in this section and related work can be
found in, respectively, Appendices B and C.

Our process consists of two steps. First, we use tail proper-
ties of the distribution ¢ € Q@ to arrive at bounds on the
Wasserstein distance via the KL or a-divergence. Sec-
ond, we use ELBO and CUBO to bound the KL and «-
divergences.

A key challenge in realizing our goal is bounding a scale-
dependent distance (the Wasserstein distance) with a scale-
invariant divergence (the KL or a-divergence). To see the
scale-invariance, we note a broader result: these diver-
gences are invariant to reparameterization. For a transfor-
mation 7' : R? — R?, let T#n denote the pushforward
measure of 1, which is the distribution of the random vari-
able T'(9) for ¢ ~ n.

Lemma 4.1. The KL and a-divergence are invariant under
a smooth, invertible transformation T, i.e., Do(n | v) =
Do(T#n | T#v) and KL(n | v) = KL(T#n | T#v).

Yao et al. (2018) make a similar observation. A simple
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example illustrates that the Wasserstein distance is not in-
variant to reparameterization. For o > 0, let v,(0) =
o079 (0/0) define the rescaled version of v (with 7, de-
fined analogously). Then W,(n,,vs) = oW,(n,v). It
follows that any bound of a scale-dependent distance such
as the Wasserstein distance using a scale-invariant diver-
gence must incorporate some notion of scale. Toward that
end, we start by defining the moment constants C}f 1(¢) and
CFL(€) and associated tail behaviors. For p > 1, we say
that £ is p-polynomially integrable if

CRY(€) 1= 2int {116 — 6oll5¢(d6)}* < o

and that £ is p-exponentially integrable if

CEl(g) = 2 inf [l{g + logfe€”9*90|\5§(d9)}} P oo,

0p,e>0
Assuming the variational approximation 7 has polynomial
(respectively, exponential) tails, our next result provides a
bound on the p-Wasserstein distance using the 2-divergence
(respectively, the KL divergence).

Proposition 4.2. If 7 < #,> then
1
Wy (7, m) < Copy () [exp {Da(m | 7)} — 1]
and

W (im) < CFU(3) [KL(r | %) + (KL(r | #)/2}% ] .

Our next results confirm that, even though Proposition 4.2
uses KL and a-divergences, our bounds capture the growth
in Wasserstein distance, as desired, and thus do not suffer
the pathologies observed in Propositions 3.1 to 3.3.

Proposition 4.3 (cf. Propositions 3.1 and 3.3). For a
fixed k € (0,00), let n = Weibull(k/2,1) and v =
Weibull(k,1). Then, for o > 1, Dy(n | v) = oo. On the
other hand, D, (v | n) < oo; but, as k \, 0, the moment
constant from Proposition B.2 satisfies C’Ilf I(n) /oo

Proposition 4.4 (cf. Proposition 3.2). If n is a standard
normal measure and v = Ty, is a standard t-distribution
with h > 2 degrees of freedom, then Dy (n | v) < oo.
However, as h "\, 2, we have C’gl(u) A oo

Next, we turn to showing how we can use the ELBO and
CUBO to bound the KL and a-divergences that appear in
Proposition 4.2. For « > 1 and any distribution 7, define

Ha (€, n) i= 327 {CUBOL(¢) — ELBO()} .

Lemma 4.5. For any distribution 1 such that m < n,

KL(r | #) < Da(r | #) < Ha(7,7).

21 <« # denotes 7 is absolutely continuous with respect to 7.

Then, combining Proposition 4.2 and Lemma 4.5 yields the
desired bounds on the p-Wasserstein distance given only
the quantities C3) (7), CE*(#), CUBO, (#), and ELBO(),
all of which can be either efficiently estimated or bounded
(with high probability); we address these computational is-
sues in detail in Section 4.3.

Theorem 4.6. For any p > 1 and any distribution 1), if
T K T, then

W (. 7) < CEN) [exp {Ha (A, m)} — 1]
and

e =0 ot + e %]

4.2 Importance sampling

Before presenting our workflow for validated variational
inference, we briefly discuss a final ingredient: importance
sampling. Standard importance sampling with importance
distribution 7 operates as follows. After obtaining sam-
ples 61,...,0p ~ 7, we can define importance weights
wy = 7w*(0;)/7(0;) and self-normalized weights w; :=
wy/ Zthl wy. Then, the importance sampling estimator
for [ ¢dmis 3, w:(6;). Importance sampling can de-
crease the bias at the cost of some additional variance rel-
ative to the simple Monte Carlo estimate 7'~! Zthl d(6).
Recall from Section 2.1 that Pareto-smoothed importance
sampling (PSIS) can improve upon standard importance
sampling by significantly reducing variance without much
extra bias. In additional, PSIS provides a crucial diagnostic
quantity, k. When k > 0.7, the importance weights are too
high-variance to be reliable, even when using PSIS.

Our approach to bounding the Wasserstein distance in
terms of the a-divergence has intriguing connections to
the theory of importance sampling. As pointed out by Di-
eng et al. (2017), minimizing the 2-divergence is equivalent
to minimizing the variance of the (normalized) importance
weight w(60;) /7 (0;), which is equal to exp{Da (7 | 7)} —1.
Moreover, the estimation error of importance sampling can
be bounded as a function of KL (7 | #) (Chatterjee and Dia-
conis, 2018), which is upper bounded by Do (7 | 7). Thus,
minimizing the 2-divergence simultaneously leads to bet-
ter importance distributions and smaller Wasserstein error
— as long as the moments of the variational approximation
do not increase disproportionately to the 2-divergence de-
crease. In practice such pathological behavior appears to
be unusual; see Section 5 and Dieng et al. (2017, §3).

4.3 A workflow for black box variational inference

The usual approach to black box variational inference is
(1) to choose D,(§) = KL(¢ | m) (i.e., to maximize
ELBO(£)), and (2) to use (products of) Gaussians as the
variational family Q (Carpenter et al., 2017a; Kucukelbir
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et al., 2015; Ranganath et al., 2014; Salvatier et al., 2016).
Based on Theorem 4.6 and our discussion in Section 4.2,
we suggest a number of deviations from the typical vari-
ational inference procedure, including integrating checks
based on our novel bounds. We first provide an outline of
our default workflow recommendation, then discuss each
step in detail — along with some potential refinements. We
show the workflow in action in Section 5. We write Q] to
denote the mean-field variational family consisting of prod-
uct of ¢-distributions with h degrees of freedom.

Algorithm 1: Validated variational workflow

1 Set Q to be Q7
2 Find 7 € Q that minimizes CUBO3 (&)

3 if k > 0.7 then
Refine choice of Q or reparameterize the model
Return to step 2

Find n € Q that maximizes ELBO(&)
Estimate ELBO(#) and CUBO2(7) via Monte Carlo
Use Lemma 4.5 to compute bound d > Do(r | 7)
Use Theorem 4.6 to compute bound wy > Wh(7, 7)
if 05 and Wy are large then

‘ Refine choice of Q or reparameterize the model

Return to step 2

else if 65 and w- are very small then

| approximate w with 7
else when - and w- are moderately small

L Use PSIS to refine the posterior expectations

produced by 7

® N & A

For step 1, we choose a heavy-tailed variational family to
ensure that the 2-divergence (and hence CUBO4(&)) is fi-
nite (that is, such that Da(7 | ) < oo for all £ € Q).
The choice of 40 degrees of freedom is somewhat arbitrary.
Slightly different choices should produce similar results. It
is also possible to select a different variational family spe-
cific to the problem at hand as long as the 2-divergence
is guaranteed to be finite. For step 2, we minimize the
CUBO to obtain as tight a bound as possible when we ap-
ply Theorem 4.6 (though note that usually the CUBO ob-
jective — like the negative ELBO — is non-convex, so we
may not be able to find the global minimum). Toward the
same end, in step 4 we separately find the distribution 7
that results in largest ELBO. However, before going to the
effort of finding 7, in step 3 we check that k < 0.7, since
otherwise our estimate of CUBOy(7) is not reliable and
thus we should not trust any bounds on the 2-divergence or
Wasserstein distance computed using Lemma 4.5 and The-
orem 4.6. How precisely to refine the choice of Q or repa-
rameterize the model is problem-dependent. One possibil-
ity is to use multivariate ¢-distributions with i degrees of
freedom for Q; unlike Q7 , the multivariate versions can
capture correlations in the posterior.

For step 5, we can use simple Monte Carlo to compute

high-accuracy estimates for ELBO(7) and CUBOq(7):

o —

~ * 7 2 # iid. A
CUBO.(#) =3 log [+ 1, {5 (6D} ] (6), ¥ 7

— T - iid.
ELBO(n) :=% >, log (6, O "~

Ensuring the accuracy of CUBO, () and EB\O(U) reduces
to the well-studied problem of estimating the accuracy of
a simple Monte Carlo approximation (e.g., Koehler et al.,
2009). We can also convert these estimates into high-
probability upper bounds using standard concentration in-
equalities (Boucheron et al., 2013). For step 6, we use
Lemma 4.5 to obtain the estimated 2-divergence bound

5y := Ha(#,7) := 2{CUBO,(#) — ELBO(n)}.

For step 7, to compute Wasserstein bounds using The-
orem 4.6, we can bound C3)(7) using the central mo-

ments of the distribution: if # = H?zl Tn (i, 0;) and
Ch = h/(h — 2), then

C5'(%) < 20 Yo, 0
C5'(7) < 203 { =R T o2 + (D 02

Since CF!(#) = oo for t-distribution variational families,
we cannot use the second bound from Theorem 4.6. For
variational families without analytically computable mo-
ments, we can bound the moment constants C;f I(#) and
Cfl(fr) by fixing any 6y, € and sampling from 7. We can
intuitively think of y as the “center” of the distribution, so
a natural choice is setting it equal to the mean of 7.

For step 8, what qualifies as a moderately or very small
wy value will depend on the desired accuracy and natu-
ral scale of the problem. 8- has a more universal scale; in
particular, 6o < 4.6 could be treated as moderately small
since the variance of the importance weights is exp{Da (7 |
7))} —1 < 100, so PSIS with a reasonable number of sam-
ples should be effective; for some §, < 1 (for example,
5. = 0.01), 83 < &, could be treated as very small, since
the term multiplying C}(€) in Proposition 4.2 and Theo-

rem 4.6 will be less than 62/7.

5 Two case studies

Next we demonstrate our variational inference workflow
and the usefulness of our bounds through two case studies.

5.1 Case study #1: the eight schools model

We apply our variational workflow to approximate the pos-
terior for the eight schools data and model (Gelman et al.,
2013, Sec. 5.5), a canonical example of a Bayesian hierar-
chical analysis. Yao et al. (2018) previously considered this
model in the setting of evaluating variational inference. In
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Figure 1: Approximate posteriors for CHIVI variational
approximations (blue) and for HMC (black; ground truth).

the eight schools data, we have observations corresponding
to the mean y,, and standard deviation o,, of a treatment
effect at each of eight schools, indexed by n € {1,...,8}.
The goal is to estimate the overall treatment effect p, the
standard deviation 7 of school-level treatment effects, and
the true school-level treatment effects 6,,. There are two
standard ways to parameterize the model. The centered pa-
rameterization is

Yn |9nNN(9n;0n)a On ‘M,TNN(M,T), (D
o~ N(0,5), 7 ~ half-Cauchy(0, 5).

The non-centered parameterization decouples ¢ and 7
through the transformation 0,, = (6,, — u,,) /7 and replaces
Eq. (1) with

Yn | 0, NN(,U,+7'0~”), 0, ~ N(0,1).

The standard deviation of the y,, is 9.8 and the median o,
value is 11, which suggests the overall scale of the problem
is roughly 10.

Diagnosing a poorly parameterized model. We begin by
considering the centered parameterization. Following steps
1 and 2, we use Q = QZB and minimize the CUBO using
CHIVI (Dieng et al., 2017) to obtain 7. The results appear
in the first column of Table 1. Since k& > 0.7, according to
step 3 we should either reparameterize the model or choose
a different Q. If we compute 52 and wo, then we reach the
same conclusion. Thus, these diagnostics correctly deter-
mine that 7 is a poor approximation to the posterior and
that PSIS does not provide an improvement.

Correctly validating an improved parameterization.
Fig. la compares approximate posteriors from CHIVI and
Hamiltonian Monte Carlo (HMC; Neal, 2011) — namely the
dynamic HMC implementation in Stan (Carpenter et al.,
2017b; Hoffman and Gelman, 2014). The HMC samples
serve as ground truth. This comparison illustrates why the
centered parameterization is not conducive to variational
inference when using a mean-field variational family: the
conditional variance of any 6, is strongly dependent on 7.
We can remedy this issue by using the non-centered pa-
rameterization. Repeating steps 1 and 2, we now find that
k=0.55<0.7, suggesting the variational approximation

centered non-centered
df =40 df =40 df=8
D5 bound 95 14 1.6 3.8
k 0.88 0.55  0.40
W5 bound wo 983 15 29
mean error 0.10 0.14 0.18
with PSIS 0.40 0.04 0.03
std. dev. error 1.1 0.03 0.25
with PSIS 1.2 0.03 0.02
covariance error 8.4 0.95 1.3
with PSIS 54 0.45 0.32

Table 1: Results for eight schools model for the param-
eter vector (u,logT,61,...,0g). The mean and standard
deviation errors are defined as, respectively,
and |lox — 0z,

Mx — Milly
The covariance error is defined as
1= — Zﬁ—“;/ . We use the square root for the covari-
ance error in order to place it on the same scale as the
mean error, standard deviation error, and the 2-Wasserstein
bound. To provide a sense of the overall scale, we note that
1/2
Ill5* = 9.7.

is at least acceptable as an importance distribution (step 3).
However, d5 and @- remain at best moderately small, so
the variational approximation should not be used directly
(steps 4-8). These diagnostic results are confirmed graphi-
cally in Fig. 1b and quantitatively in the second column of
Table 1. Furthermore, applying PSIS does reduce approxi-
mation error, as expected.

Limitations of k. So far k, d2, and w, have all pro-
vided similar diagnostic information. To see how they
can diverge, we repeat our workflow, but this time we use
Q = Qg. The results appear in the final column of Ta-
ble 1. Variational approximations with heavier tails should
decrease k and k since the importance weights will have

mean-field mean-field full-rank
KLVI CHIVI KLVI
D5 bound 8.7 4.9 6 x 1073
k 0.92 0.34 -0.93
W5 bound 44 8.4 0.39
mean error 0.01 < 0.01 0.01
with PSIS 0.06 0.01 0.01
std. dev. error 0.73 0.09 < 0.01
with PSIS 0.49 < 0.01 < 0.01
covariance error 0.92 0.72 <.1
with PSIS 0.82 0.11 <.1

Table 2: Results for robust regression. See Table 1 for fur-
ther explanation. To provide a sense of the overall scale,
we note that ||E7TH;/2 = 0.93.
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Figure 2: For robust regression, approximate posteriors for variational approximations (KLVI red, CHIVI blue) and for the

exact posterior (black).

more finite moments. While & € Q;r has a small k value
(0.40), its accuracy is worse than the non-centered 7 € QL)
(lAc = 0.55). The lower quality of 7 € Qg is, however,
accurately reflected in the larger 5o and 1w values. The ac-
curacy of PSIS using 7 € QgT, however, is better than that
of PSIS using the non-centered 7 € QZ;). In sum, while k
does provide a useful diagnostic for when 7 will serve as
a good importance distribution, it does not provide a reli-
able heuristic for the accuracy of 7 as an approximation to
7. Hence, our workflow uses k only to validate the use of
importance sampling, but not the quality of 7.

5.2 Case study #2: robust regression

A second example of our variational inference workflow
confirms our findings in the eight schools example and fur-
ther clarifies the differences between £ and our bounds.
Specifically, we consider the posterior of the toy robust re-
gression model with coefficients # € R? and observed data

(xlayl)a ceey (.rN,yN) c RI+1.
6; ~ N(0,10), Yn | Tn, 0 ~ ﬁo(ﬁTmn, ). 2

We take d = 2 and N = 25. We generate data according to
Eq. (2) with 8 = (-2, 1) and each x,, Gaussian-distributed,
with var(z,;) = 1 and cov(zp1, Tn2) = 0.75.

A poor quality approximation. For illustrative purposes,
first we approximate the posterior with standard black-box
variational inference (i.e., by maximizing the ELBO). We
refer to this method as KLVI. As before, we use Q = Q7.
The results appear in the first column of Table 2. The vari-
ational approximation is poor due to the strong posterior
correlation between 6, and 0, (Fig. 2a), and PSIS is unable
to correct for the underdispersion of the posterior approxi-
mation. The large values of d_g, Ws, and k accurately reflect
these findings.

k does not detect a poor quality CHIVI approximation.
Next, we instead use CHIVI with Q7. The results appear
in the second column of Table 2. The variational approxi-
mation is in some sense better because it no longer underes-

timates the marginal variances (Fig. 2b), which is reflected
in the smaller standard deviation error. However, since the
mean-field family cannot capture the posterior correlation
structure, the covariance error remains large. The poor co-
variance approximation is reflected in large dy and 105 val-
ues; however, it is not reflected in the small k value (0.34).

The complementary roles of 6, and w, versus k. We
have just seen that the small k value when using CHIVI
with a mean-field family does not reflect the quality of
the variational approximation. However, the PSIS errors
are small, so k does accurately capture the fact that the
CHIVI approximation is a good importance sampling dis-
tribution. Thus, & provide complementary information to
09 and wy. This complementarity is further illustrated when
using KLVI with a full-rank variational family (Fig. 2c and
the final column of Table 2). Now the posterior approxi-
mation is very accurate, which is reflected in the very small
d value and fairly small w5 value. Step 8 of our workflow
suggests not using PSIS when dy and w, are small since it
will be difficult to improve the posterior approximation ac-
curacy. Applying PSIS confirms that importance sampling
is not necessary: although the k value is extremely small
(in fact, negative), PSIS and 7 provide nearly identical ac-
curacy.

6 Conclusion

In conclusion, as we have shown through both theory and
experiment, our workflow for validated variational infer-
ence potentially provides a framework for making varia-
tional methods more competitive with Markov chain Monte
Carlo. We end by noting that our work complements re-
cent proposals for making variational approximations arbi-
trarily accurate (Campbell and Li, 2019; Guo et al., 2016;
Locatello et al., 2018a,b; Miller et al., 2017; Wang, 2016)
since our bounds can provide a stopping criteria for when a
variational approximation no longer needs to be improved.
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Figure 3: (a) KL divergence between optimal mean-field variational Gaussian approximation and Gaussian with the speci-
fied dimension (x-axis) and correlation (legend). (b) 2-dimensional Gaussian with specified correlation (black) and mean-
field variational Gaussian approximation (blue).

A KL divergence and variational inference

The KL divergence from a variational approximation to a posterior distribution can vary greatly in size.
A KL divergence value depends on the complexity of the posterior distribution, the flexibility of the
variational family, and the optimization procedure employed. For example, Baqué et al. (2017) report
KL divergences ranging from approximately 1 to nearly 500 depending on the model and variational
family used.

In Fig. 3, we consider correlated Gaussians as the target distribution. We vary the dimension and pair-
wise correlation. And we plot the KL divergence from the optimal Gaussian mean-field variational
approximation to the correlated Gaussian. Gaussians offer a reasonable representation of many typical
posteriors. They may arise, for instance, (1) in conjugate linear regression or similar geometries or (2)
due to the Bernstein—Von Mises theorem (i.e., Bayesian central limit theorem) (Kleijn and van der Vaart,
2012; van der Vaart, 1998). Moreover, we might expect that observed KL divergence values given Gaus-
sian targets may be smaller than we might observe for more complex targets. Except in settings when
the dimension and correlation are both fairly small, we observe KL divergence values greater than 1 in
Fig. 3.

B Transportation—divergence inequalities

In this section we develop a deeper understanding of our bound in Theorem 4.6 and its proof. We show
that our new theory — including variations on our main bound Theorem 4.6 — avoids the strong tail
assumptions of existing related work. Our results in this section are potentially of independent interest
beyond Bayesian inference, so we use the notation 7 and v to represent two arbitrary distributions; in the
Bayesian setting, we would choose 7 = i and 7 = v.

There are a number of existing bounds on W, (n,v) via KL(p | v), generally referred to as
transportation—entropy inequalities (with reference to the other name for KL divergence, relative en-
tropy). As discussed in Section 4.1, these require a scale parameter to modulate the bound. Existing
bounds, however, are not sufficient for our present purposes since they typically require impractically
strong tail assumptions. In particular, Theorem C.3 in Appendix C, due to Bobkov and Gétze (1999);
Djellout et al. (2004), requires that v be 2-exponentially integrable and hence have lighter or equal tails
to a Gaussian. The following theorem — which we use in Theorem 4.6 — requires only exponential tails
to bound the 1-Wasserstein distance.

Proposition B.1 (Bolley and Villani (2005, Corollary 2.3)). Assume v is p-exponentially integrable for
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some p > 1. Then foralln < v,

Wp(n,v) < CE'(v) [KL(n | )7 + {KL(n | v)/2}%

However, many posteriors of interest have much heavier tails — often with at most polynomial decay.
For example, neither inverse Gamma distributions nor ¢-distributions with h < oo degrees of freedom
have exponential tails. Moreover, bounding the 2-Wasserstein distance with Proposition B.1 requires the
problematic Gaussian tails assumption.

In contrast to these past results, our work provides bounds on Wasserstein distances assuming only
polynomial tail decay. We achieve these bounds by incorporating more general a-divergences; we call
these new bounds transportation—divergence inequalities. For example, Proposition B.2 is a particularly
simple bound on the p-Wasserstein distance in terms of just the 2-divergence when v has finite (2p)th
moment. We use this result, together with Lemma 4.5 and Proposition B.1, to prove Theorem 4.6 above.

Proposition B.2. Assume v is 2p-polynomially integrable for some p > 1. Then for all n < v,
Wy (1, v) < C3,(v) [exp {Da(n | v)} = 1]% .

Next, we show how to achieve tighter bounds than Proposition B.2 via two additional novel
transportation—entropy inequalities; these can be combined with Lemma 4.5 to arrive at results like
Theorem 4.6, at the price of additional complexity in the statements of the bounds.

Our first result offers a better dependence on moments in the exponential tails case by using both KL
divergence and a-divergence (cf. just KL divergence in Proposition B.1); however, the bound is more
complex than Proposition B. 1. In particular, if v has exponential tails and we can bound the a-divergence
for any o > 1, then we can bound the 2-Wasserstein distance.

Theorem B.3. Assume v € El,/5(¢) (Definition C.2) for some p > 1 and € > 0 and let EL(v, €) be
defined as in Definition C.5. Let

1/p
6T 32 \? . 2 2
C(a,n,v) = igg {62 [ (a—l) + 6+ 2EL} 5 (v,€)" + Da(n | v) }} .

Then for o > 1 and n < v,

W, (n,v) < Cla,n, v)KL(n | v)%.

Our second result requires only that v have a finite (2pq)th moment in order to bound the p-Wasserstein
distance by the relative entropy and the «-divergence. Here, ¢ = ¢(«) := «/(a — 1) is the conjugate
exponent for a. Thus, this result has a higher moment dependence than our Proposition B.2, but it uses
the a-divergence with o < 2 (cf. o = 2 in Proposition B.2) and thereby could produce tighter bounds.

Theorem B.4. Fixp > 1and o > 1, and let ¢ = q(«) := o/ (a—1). Assume that v is 2pq-polynomially
integrable, as defined in Section 4.1, and let

sola—DDalnln)\ /2117
@ ) '

Ol n) = inf K/me’,m%mm)m + (22;2(]/”9/ — 0|21(d0) +

Then for all n < v,

W, (n,v) < 2C(a,n) KL(n | v)%.
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C Transportation-entropy inequality results

Classical transportation—entropy inequalities take the following form.

Definition C.1. For p > 1 and p > 0, the distribution v satisfies a p-transportation—entropy (or p-
Talagrand) inequality with constant p (denoted v € W,H(p)) if for all n < v,

2KL(n | v) }/

W) < { 250

When p = 1 there are interpretable necessary and sufficient conditions for v € W1H(p). The most
important is the p-exponential integrability condition, which we denote by v € EI,(¢):

Definition C.2 (cf. Section 4.1). For p > 1 and € > 0 the distribution v is p-exponentially integrable
with parameter e (denoted v € EI,(¢)) if

inf [/ eﬁlaaolgv(dﬂ)] < 00.

0o

In particular, the following result shows that v satisfies a 1-transportation—entropy inequality if and
only if it has Gaussian tails. Moreover, the € parameter in the corresponding 2-exponential integrability
condition essentially determines the precision of the transportation—entropy inequality.

Theorem C.3 (Bobkov and Gotze (1999, Theorem 3.1), Djellout et al. (2004, Theorem 2.3)). The fol-
lowing conditions are equivalent:

1. For some p > 0, v € W1H(p), as defined in Definition C.1.
2. For some € > 0, v € Els(¢), as defined in Definition C.2.

3. There exists a constant ¢ > 0 such that for every ¢ : RY — Rwith ||¢||, < 1 (where ||-||, denotes
the Lipschitz constant) and every t € R,

v(et?) < et

-1

Moreover, we may take c = p~~ and

o< Tom{ [ tanman)

Remark C.4. Let ¥ ~ v and for a Lipschitz function ¢ : R? — R, let ¢y = 2 Hq5||2L c. Condition (3)
implies that the random variable ¢(4) is cg-sub-Gaussian (Boucheron et al., 2013, §2.3). In particular,
we have the concentration inequality

+2

P{o(9) — v(g) > t} <e .

The implication (2) = (1) from Theorem C.3 can be generalized to cover p > 1.

Definition C.5. For p > 1, the optimal p-exponential integrability constant is given by
EL, (v, €) := igl/flog/ee||97‘9,“§y(d9).

Proposition C.6 (Bolley and Villani (2005, Corollary 2.4)). Assume v € Ely,(€) (Definition C.2) for
some p > 1 and € > 0 and let

1 . Z
C:= 2:2% {26 {1+EL, (v, 6)}] < 00,
for EL;, (v, €) defined in Definition C.5. Then for all n < v,

Wyp(n,v) < CKL(n | v)?».
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If one can establish that v € W,H(p), then the pushforward measure under a Lipschitz transformation
also satisfies a p-transportation—entropy inequality.

Lemma C.7. Assume that for some p > 0, v € W,H(p), and that ¥ : R?® — R% is L-Lipschitz; i.e.,
1(9) —w(@)ll, <L[l6 -9, 6,6'€cR".

Then U#v € W,H(p/L?).

We close with the interesting connection that v € WoH(p) is equivalent to v satisfying a dimension-free

Gaussian concentration inequality (cf. Remark C.4). While the concentration condition is not necessarily
easy to check, it does offer insight into what it means for v € WoH(p).

Theorem C.8 (Gozlan (2009, Theorem 1.3)). For a set A C (RY)", let At := {# € (RH)" | 30’ € A :
Yo 16 — 6 H; < t2}. The following conditions are equivalent:

1. For some p > 0, v € WyH(p).

2. There exist a > 0,b > 0 such that for all n € N and measurable A C E"™, with v®"(A) > 1/2, the
probability measure v®™ satisfies

(AN > 1 - be ="

D Proofs

D.1 Proofs of Propositions 3.1 to 3.3

For Proposition 3.1(A), we let # = Weibull(k/2,1) and 7 = Weibull(k,1). Let 7 be the Euler-
Mascheroni constant and I' be the gamma function. We obtain (Bauckhage, 2013)

KL(7 | ) = —log(2) +v+T'(3) —1 < 0.9.

Using the well-known formulas for the mean and variance of the Weibull distribution, we have m; =
L(1+42/k),m, =(1+1/k),and 02 = T'(142/k)—{T'(1+1/k)}?. Hence, limj~ o(ms —mn)? /02 =
0.

For Proposition 3.1(B), let # = Weibull(k, 1) and 7 = Weibull(k/2,1). We obtain
KL(7 | 7) = log(2) —v/2+T(3/2) — 1 < 0.3.
By the same argument as above, limy o(ms — my)?/02 = .

For Proposition 3.2, we let 7 be standard normal and ™ = 7T}, be a standard ¢-distribution with h degrees
of freedom. Let ¢ ~ 7. It is straightforward to show that

KL(# | m) = log[['(h/2)h/? /T{(h + 1)/2}] — 0.510g(2¢) + 0.5(h + 1)E {log (1 +9¥*/h) } .

For h = 2, this quantity can be numerically evaluated and is less than 0.12. By continuity of the function
h — KL(7 | Tp,), there exists some € > 0, such that for all h € [2,2 + €), KL(7 | 7) < 0.12. Finally,
we observe that limp\ > a%l = oo.

For Proposition 3.3, we choose m = Weibull(k,1) and # = Weibull(k/2,1) for & > 0. Note that
2

limy o 2§ = oo and limyo(ms — mx)? /02 = co. On the other hand, letting f; and f, be the densities

of 7 and m, respectively, we have

[ @ st

0

o /oo 23/2-1 oxp (_2xk _|_l,k/2) da
0

k/2

v L 4/ y% exp (—2y2 + y) dy < 1.47752
0
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and so
Dy(r | #) = 1og/000 (f=(2))? (f2(z)) " dz < 0.391.

Therefore, for any ¢t > 0, there exist two distributions & and 7 with Da(7 | 7) bounded by 0.391 yet
such that 02 > to2 and (msz — my)? > to2.

D.2 Proof of Proposition 4.3

Let o > 1. Then 1 and v have the following densities w.r.t. the Lebesgue measure
k k/2—1_—a*/? k—1_—aP
folz) = PR e I[z > 0], fu(z) = ka" e " Tz > 0]

and

Note that

/ T @) (@) da

k oo
= 5a a1k 2 exp (—amk/Z + (o — 1)xk) dzx
“Jo
—p) 1 o o
v=Z %7_1/ y' " Yexp (—ay + (a — 1)y?) dy
0
= 0.

Therefore, for « > 1, D (n | v) = 0.

Similarly,

/0 (o () (o))}~ da
_ 2a—1k/°° RO 2HE/21 gy (_axk gk amk/Z) Az
0

k

y=a*/? OO 2
= 2“/ y“ exp (—ay + (a— l)y) dy < oo.
0

Therefore, for « > 1, D, (v | n) < co. However,

/0C>O |z — a'[’n(de) =T (1 + 2) —22'T (1 T 2) ¥ ()2

Minimizing this over =’ gives us that the minimum is achieved at ' =T (1 + %) But

EDEIUCHIRUCHIES

and so CJ(n) /oo as k N\, 0.

lim
ENO
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D.3 Proof of Proposition 4.4

Letting f,, and f, be the corresponding densities, we have

AR

271-)04/2 h/2 - h .
11—« o0
1 1)/2)
+ )/2) e~ 24y < 0,
= (2m)o/? r'(h/2) oo

(h+1)(a—1)/2
because, for h > 2, ( %) < ela=D)a?/2,

h > 2,

Therefore, D, (1 | v) < co. However, for

x —2'|2v(dz :LJr $/22Lh—\—2—>00
h—2 h—2

and C(v) S ooas h\, 2.

D.4 Proof of Lemma 4.1

First assume that 7 and v have densities f, and f, with respect to Lebesgue measure. Note that the
densities of the pushforward measures T#n and T'#v are given by

x> froT (2) ’dethTfl(m)’ and 2+ f, 0T '(x) ‘dethTfl(xﬂ ,

respectively, where .J, denotes the Jacobian. Therefore, for any o > 0,

d(T#n)\" [ (o T @) [det, T (@) “ — .
/<d(T#V)) a(T# )_/<fl,OT (z) [detJ, T (x)|> fooT™H () |detJ, T (z)| d

oT1(z)\”
_/<fnTE§ fooT™ V(@) |detJ, T~ (z)| du

).
)

and so, for « # 1, D (n | v) = Do (T#n | T#v). Similarly,

/log (jgm) d(T#n) = /log (W) fnoT7 (z) |det], T~ (z)| da
- [ (25 5o
= /log (32) dv.
and so Dy (T'#n | T#v) = KL(T#¢ | T#m) = KL({ | 7) = Di(n [ v).

More generally, without assuming that 7 and v are absolutely continuous with respect to Lebesgue mea-
sure, we note that if n < v then

d(T#n) _ dn

d(T#v) dv T )
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Indeed, for any measurable set A, we have
dn 1 / dn
— o T d(TH#v) = —dv = (T#n) (A).
| % @)= [ Gl = T @

Using Eq. (3) and the fact that T is bijective, we have that

/(jgm)ad@#u):/(i’joT—1>ad(T#u):/<;hy7>adu. )
Similarly,

Eq. (4) and Eq. (5) prove that D, () | v) = Do (T#n | T#v) for any a > 0.

D.5 Proof of Theorem 3.4

We begin by considering the case d = 1, dropping the component indexes from our notation.

Theorem D.1. Assume d = 1. If Wi (v,n) < ¢, then |m, — my,| < € and | MAD, — MAD,, | < 2¢. On
the other hand, if Wa(v,n) < g, then Wy (v,n) < ¢,

‘UV - U7I| < &

and

o2 — Jf]\ < 2min(o,,0,)e + 262,

The proof of Theorem D.1 is deferred to the next section. To generalize to the case of d > 1, for
a random variable ¥ ~ n on R? with distribution 7 and any vector v € R%, let m,, = E(v'4),
0'72],1) =E{(vTd - mn,v)z}, and MAD,, , = E(jvTd — Mayv|)-

Corollary D.2. Let v € R satisfy ||v|, < 1. If Wi(v,n) < e then |my, — my,

|MAD, , — MAD,, ,, | < 2¢. On the other hand, if Wa(v,n) < ¢, then

< ¢ and

2

|ov0 — ol <é&, 000 — O’Z’U| < 2min(oy,y,0p,0)e + 2e2.

Proof Let® ~ v, let ¥, = v’ and let v, denote the distribution of ¥4,. Define 9, 1§U, and 7, anal-
ogously in terms of 7. By the Cauchy-Schwarz inequality and the assumption that ||v[|, < 1, we have
that, for any p > 1,

E(|0y —0uf?) = E(loT9 — vTIP) < E(||9 - J|I5).
Hence W, (vy, 1w) < W,y (v,n). The corollary now follows from Theorem D.1. O
Lemma D.3. For probability measures &,v,1, we have |[m, —myll, = supj,. <1 (M0 — Myl

1Zelly = supyyy, <1 02,0 and |2y — 2yl = supy,. <1 log,, — o7 .

Proof. The first result follows since m,, — m,, = v'(m, — m,) and for any w € R4,

SUP|jy|, <1 v"w = ||w||,. For the second result, since X is positive semi-definite,

1Zell, = sup v Sev= sup E{v' (X —me)(X —me) v} = sup of,;
lvll,<1 lloll,<1 loll,<1

The third result follows by an analogous argument. O

By taking v = e;, the ith canonical basis vector of R, Corollary D.2 implies the bounds in Theo-
rem 3.4 on | MAD, ; — MAD,, ;| and |0, ; — 0y,;|. Corollary D.2 and Lemma D.3 yield the bounds in
Theorem 3.4 on ||m, — my||, and ||X, — X, ||,.
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D.6 Proof of Theorem D.1

Throughout we will always assume that ¥} ~ v and 0~ n are distributed according to the optimal cou-
pling for the p-Wasserstein distance under consideration. We will also assume without loss of generality
that m,, = 0 since if not we could consider the random variables ¥ = ¢ —m,, and 0 =19 — m,, instead.

The 1-Wasserstein distance can be written as (Villani, 2009, Rmk. 6.5)

Wi(v,n) = sup  [v(é) —n(d)]- (6)
¢:lloll <1
By Jensen’s inequality,
Wq(l/7 77) § WP(”? 77) (1 § q S p < OO) (7)

Egs. (6) and (7) together imply that for any p > 1, if W, (v, 1) < ¢, then for any L-Lipschitz function ¢,
[v(¢) = n(¢)| < Le.

Assume W (v, 1) < €. By Eq. (6), for any Lipschitz function ¢,
E($(9) — ¢(0)] < <l

Hence, taking ¢(t) = t, we have that |m, — m,| = |m,| < e. For the mean absolute deviation, using
the fact that ¢(¢) = |¢| is 1-Lipschitz, we have

|MAD,, — MADy, | = [E(|J] — [ — my|)| < [E(|9] — [9])] + [my] < 2e.
Assume Wo(v, 1) < e. By Jensen’s inequality Wi (v,7) < ¢ as well. Let 7 = E(9?) = o7 and ¢ =

E(§2). It follows from the Cauchy-Schwarz inequality that (, — ¢,)> < E ((19 - 19)2> = Wa(v,n))?
and so

s — Gl < e ®)
Using Eq. (8), we also have
lop — o2l =) —ap +ml| <o) — |+ |mi| <els + ) +&° )
Moreover, note that
Wa(v,n)? =E (0°) +E (192) —2E (1919) =02+ 0727 + m% —2045-
From Cauchy-Schwarz, 05 < 0,0y, so that (o, — an)Q + m% < Wa(v, n))2 and so
lo, —oy] <e.
Starting from Eq. (9) and using Eq. (8), we have
o2 — 072,| <elsy+oy) +e2<e(2 +¢e) +e? =¢(20, +¢) + % =20,¢ + 27

D.7 Proof of Proposition 3.6

Let 75 4 denote the optimal p-Wasserstein coupling for f(- | #) and f(- | ¢'). Then we have

Wy = nt [ 1s- s

YEL (fi,)

< inf {//z—z'”é”yg Gl(dz,dz’)v(dG,dG’)}
YEL(%,m) ’

— inf {/W AL (d9,d9’)}
el (7t,m)

inf { /He 0|2 (a8, d@)}
’YGF(

= Wy (7, m)P.
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D.8 Proof of Lemma 4.5

Proof. First, note that the ELBO(&) provides a lower bound for log M since KL(¢ | ) > 0:

ELBO(¢) := /log (‘Z; > de

=logM —KL(¢ | 7) < log M. (10)

Second, Jensen’s inequality implies that CUBO,, (£) is an upper bound for log M:

CUBO, (¢) := log{/ (iz’)adf}l/a

d !
> 1og{/d72dg} = log M.

The a-divergence is monotone in «, i.e., &« < o implies that D, (7 | #) < Dy (7w | #) (Cichocki and
Amari, 2010). Thus, by the definition of CUBO,,(7) and Eq. (10), we have

KL(7 | #) = Dy( | #) < Dao(m | 7)
& (CUBO(#) — log M)

a—1
«

a—1

< (CUBO, (%) — ELBO()).

D.9 Proof of Theorem B.3

Theorem D.4. Let ¢ be a nonnegative measurable function on E and let § > 0. Then we have
1+46)° V2 ? 2 1/2
lo(n —v)llrv < | 27 5 +18+5(log | eV*¥ dv| +3Diss(n]|v) | KL(n|v)"/=.
E

Corollary B.3 follows from Theorem D.4 and the fact that
Wp(i,v)P < 227 Hm (', )P (n = ) 7v,

proved, for instance, in Villani (2003, Proposition 7.10). Indeed, it suffices to use ¢ = %m(ﬁ’ ,-)P in
Theorem D.4 to obtain the assertion.

D.10 Proof of Theorem D.4

We first assume, without loss of generality, that n is absolutely continuous with respect to v, with density
f- Wesetu := f — 1 so that
n=(1+uy

and note that v > —1 and [}, udv = 0. We also define
h(v) == (1+v)log(l4+v)—v, wve€[-1,+00)

so that

KL(n|v) = /Eh(u)du. 11

We note that h > 0. We split the total variation in the following way:

/god|77—u| = /<p|u|dl/:/ go|u|d1/—|—/ pudv. (12)
{—1<u<4} {u>4}



Validated Variational Inference via Practical Posterior Error Bounds

First part of the proof. In the first part, the first term (v < 4) in (12) is bounded. This part is an
adaptation of the first part of the proof of Bolley and Villani (2005, Theorem 1).

By Cauchy-Schwarz,

1/2 1/2
/ pluldr < / ©* dv / u? dv .
{u<4} {u<4} {u<4}

On the other hand, from the elementary inequality,
—1<v<4 = 2 <4h(v)

(a consequence of the fact that h(v)/v is nondecreasing), we deduce

/ wWdv < 4/ h(u) dv.
{u<a} {u<a}

Combining this with the nonnegativity of 4 and (11), we find that

1/2 1/2 1/2
/ oluldrv <2 </ ©* du) (/ h(u) dV) =2 (/ ©? du) KL(n | )2 (13)
{u<4} E E B

. . . . . 2 .
Now, since the function ¢ — exp(\/? L/ 4) in increasing and convex on [3—2, +oo> , We can write

exp l\/f ( /E ©? dy)lM]
<exp ﬁ(/E (¢+2>2dy>
g/Eexp ﬁ<(¢+g>2>1/4 dv

z/ eV du
E

1/4

< / eV H3qy,
E

In other words,

1/4
\/5(/ 902du> SS—Hog/emdy
E E

1/2 2
2 </ > dl/) < (3 +log/ emdl/) .
E E

Plugging this into (13), we conclude that

and so

2
/ pluldr < (3 —l—log/ eV du) KL(n | v)Y/2. (14)
{u<4} E
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Second part of the proof. Instead of following the logic of the second part of the proof of Bolley and
Villani (2005, Theorem 1), which fails to provide the result we are seeking, we can note the following:

1 1 e
uy<—/ plu+1)(log(u+1) —1 dv
/u>4 (log(5) — 1)1/2 <4 ( ) (log( ) )

<2 (/M & (u+ l)dz/)l/Q (/M [(u+1) (log(u+ 1) — 1) + 1] du)1/2

([ o) (] o)

1/2
<2 (/ ©? dn) KL(n | v)'/2. (15)
E

81(1+48)*

@tl/‘*) in increasing and convex on [ oy +oo), we can write

1+0

V([ )
1+6 \Jp

V28 9(1 4 0)2\?
SeXp 1+6 L(¢+ (262))(177

1/4
V2§ 9(1+0)2\°
< -
—/Eexp 110 (SH 257 ) N

_ / VIR g
E

Now, since the function ¢ — exp (

exp

1/4

< / IVEZ (14843
E

In other words,

1/4
\/5‘5 /302 d?] S3+1Og/ 66m/<1+6) d’l]

1/2 146 2 2
2(/ ¢2dn> < <5> <3+log/ edV2e/(149) dn) .
E E

Moreover, using Holder’s inequality,

5/(1+6) 1/(1436)
/ V20 (146) dn < (/ emdy> (/ f1+5dy>
E E E
and so

/ pudy < 1+ : 3+ d log/emdu—l— ! log/f1+‘sdu 2KL(n\y)l/2

= (27 (T) 3 (l‘)g/ﬁm d“)2 + 3(D1+6(77|V))2> KL(n | v)"/?

and so

Combining this with (14), we obtain the required result.

D.11 Proof of Theorem B.4

We have the following more general result, which we prove in the next section:
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Theorem D.5. Ler ¢ be a nonnegative measurable function on E and let q, ¢' > 1 be such that %—i—% =1
Then we have

leGr—1)llrv < [2 ( /E ¢2du)1/2+2(; [E wdwql,exp<<q/—1>DqI<n|v>>)l/2 KL(n | v)"/2,

As described in more detail in Appendix D.9, Theorem B.4 follows immediately from Theorem D.5
when we use ¢ = im(¢', ).

D.12 Proof of Theorem D.5

We again assume, without loss of generality, that 7 is absolutely continuous with respect to v, with
density f. We set u := f — 1 so that

n=(1+u

and note that v > —1 and fE udrv = 0. We also define
h(v) :== (1 +v)log(l +v) —v, v € [-1,+00)
so that

KL(n|v) = /Eh(u)dl/.

We note that i > 0. We split the total variation in the following way:

/(pd|n— v| = /gp|u|d1/ :/ <p|u|d1/+/ oudp. (16)
{~1<u<4} (u>4}

Using (13), we have that

1/2
/ lu|dr < 2 (/ > du) KL(n | u)1/2. a7n
{u<4} E
Furthermore, using (15), we have
1/2
/ pudy <2 (/ ©? dn) KL(n | v)Y/2. (18)
u>4 E

Using Young’s inequality, we obtain
2 2 1 29 1 q L 2q 1 ’
pdn= [ ¢ fdv< - [ pMdv+— | fTdv=~ [ ¢™dv+ —exp((¢ —1)Dy(n|v)),
E E q9JE q9 JE q9JE q
which, together with (16), (17) and (18) gives the assertion.

D.13 Proof of Proposition B.2

As described in more detail in Appendix D.9, Proposition B.2 follows immediately from the following
result:s

Theorem D.6. Let © be a nonnegative measurable function on E and suppose that ) and v are probability
measures and n < v. Then

1/2
ot — v)llzv < ( [# du) (exp {Da(nlo)} — 1)1/2.
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Proof. Let f = S—Z. We set u := f — 1 so that
n=(14u)r

Note that the total variation can be expressed in the following way
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