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Abstract

Variational inference has become an increas-

ingly attractive fast alternative to Markov chain

Monte Carlo methods for approximate Bayesian

inference. However, a major obstacle to the

widespread use of variational methods is the lack

of post-hoc accuracy measures that are both the-

oretically justified and computationally efficient.

In this paper, we provide rigorous bounds on the

error of posterior mean and uncertainty estimates

that arise from full-distribution approximations,

as in variational inference. Our bounds are

widely applicable, as they require only that the

approximating and exact posteriors have poly-

nomial moments. Our bounds are also compu-

tationally efficient for variational inference be-

cause they require only standard values from

variational objectives, straightforward analytic

calculations, and simple Monte Carlo estimates.

We show that our analysis naturally leads to a

new and improved workflow for validated varia-

tional inference. Finally, we demonstrate the util-

ity of our proposed workflow and error bounds

on a robust regression problem and on a real-data

example with a widely used multilevel hierarchi-

cal model.

1 Introduction

Exact Bayesian statistical inference is known for providing

point estimates with desirable decision-theoretic properties

as well as coherent uncertainties. Using Bayesian methods

in practice, though, typically requires approximating these

quantities. Therefore, it is crucial to quantify the error in-

troduced by any approximation. There are two, essentially

complementary, options: (1) rigorous a priori characteriza-

tion of accuracy for finite data and (2) tools for evaluating

approximation accuracy a posteriori. First, consider option
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#1. Markov chain Monte Carlo (MCMC) methods are the

gold standard for sound approximate Bayesian inference

in part due to their flexibility and strong a priori theoret-

ical guarantees on quality for finite data. However, these

guarantees are typically asymptotic in running time, and

computational concerns have motivated a spate of alterna-

tive Bayesian approximations. Within the machine learn-

ing community, variational approaches (Blei et al., 2017;

Wainwright et al., 2008) such as black-box and automatic

differentiation variational inference (Kingma and Welling,

2014; Kucukelbir et al., 2015; Ranganath et al., 2014) are

perhaps the most widely used. While these methods have

empirically demonstrated computational gains on problems

of interest, they do not come equipped with guarantees on

the approximation accuracy of point estimates and uncer-

tainties. There has been some limited but ongoing work in

developing relevant a priori guarantees for common vari-

ational approaches (Alquier and Ridgway, 2017; Alquier

et al., 2016; Chérief-Abdellatif and Alquier, 2018; Pati

et al., 2018; Wang and Blei, 2018, 2019). There has also

been work in developing (boosting) variational algorithms

for which it may be possible to obtain a priori guarantees

on convergence of the approximating distribution to arbi-

trary accuracy (Campbell and Li, 2019; Guo et al., 2016;

Locatello et al., 2018a,b; Miller et al., 2017; Wang, 2016).

The examples above typically either have no guarantees or

purely asymptotic guarantees – or require non-convex op-

timization. Thus, in every case, reliable evaluation tools

(option #2) would provide an important bulwark for data

analysis (as demonstrated by the widespread use of con-

vergence diagnostics for MCMC (Gelman et al., 2013)).

In any particular data analysis, such tools could determine

if the approximate point estimates and uncertainties are to

be trusted. Gorham and Mackey (2015, 2017); Gorham

et al. (2019); Yao et al. (2018) have pioneered initial work

in developing evaluation tools applicable to variational in-

ference. However, current methods are either heuristic or

cannot be applied in an automated way.

In this paper, we provide the first rigorous, automated, and

computationally efficient error bounds on the quality of

posterior point and uncertainty estimates for variational ap-

proximations. We highlight three practical aspects of our

bounds here: (A) computational efficiency, (B) weak tail

restrictions, and (C) relevant targets. For A, we use only
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standard values computed in the course of variational in-

ference, straightforward analytic calculations, and simple

Monte Carlo (not MCMC) estimates. For B, we require

only that the approximating and exact posteriors have poly-

nomial moments – though we show even tighter bounds

when exponential moments exist. For C, note that practi-

tioners typically report posterior means for point estimates

– and they report posterior variance, standard deviation, or

mean absolute deviation for uncertainties (Gelman et al.,

2013; Robert, 1994). So we directly bound the error in

these quantities. We demonstrate the importance of bound-

ing error in these output quantities directly, rather than

bounding divergences between distributions, with illustra-

tive counterexamples; namely, we show that common vari-

ational objectives such as the Kullback–Leibler (KL) diver-

gence and α-divergences can be very small at the same time

that mean and variance estimates are arbitrarily wrong.

To obtain our bounds, we make three main technical con-

tributions, which may all be of independent interest beyond

Bayesian methods. First, we show how to bound mean

and uncertainty differences in terms of Wasserstein dis-

tance. Second, we develop novel bounds on the Wasser-

stein distance in terms of α-divergences – including the

KL divergence – and moment bounds on the variational

approximation. The moment conditions allow us to relate

(scale-free) α-divergences to (scale-sensitive) Wasserstein

distances. Finally, we derive efficiently computable bounds

on α-divergences in terms of the objectives already widely

used for variational inference – in particular, the evidence

lower bound (ELBO) and χ upper bound (CUBO) (Dieng

et al., 2017). By combining all three contributions, we ob-

tain efficiently computed bounds on means and uncertain-

ties in terms of the ELBO, CUBO, and certain polynomial

or exponential moments of the variational approximation.

Our methods give rise to a new and improved workflow

for validated variational inference. We illustrate the useful-

ness of our bounds as well as the practicality of our new

workflow on a toy robust regression problem and a real-

data example with a widely used multilevel hierarchical

model. A python package for carrying out our work-

flow – including doing black-box variational inference and

computing the bounds we develop in this paper – is avail-

able at https://github.com/jhuggins/viabel.

The same repository also contains code for reproducing all

of our experiments. Proofs of all our results are in Ap-

pendix D.

2 Preliminaries

Bayesian inference. Let θ ∈ Rd denote a parameter vec-

tor of interest, and let z denote observed data. A Bayesian

model consists of a prior measure π0(dθ) and a likelihood

ℓ(z; θ). Together, the prior and likelihood define a joint

distribution over the data and parameters. The Bayesian

posterior distribution π is the conditional in θ with fixed

data z.1 To write this conditional, we define the unnormal-

ized posterior measure π∗(dθ) := ℓ(z; θ)π0(dθ) and the

marginal likelihood, or evidence, M :=
∫
dπ∗. Then the

posterior is π := π∗/M.

Typically, practitioners report summaries – e.g., point es-

timates and uncertainties – of the posterior rather than the

full posterior. Such summaries include the mean mπ , co-

variance Σπ , ith component marginal standard deviation

σπ,i, and mean absolute deviation MADπ,i: for ϑ ∼ π,

mπ := E(ϑ), MADπ,i := E(|ϑi −mπ,i|),
σπ,i := Σ

1/2
π̂,ii, Σπ := E{(ϑ−mπ)(ϑ−mπ)

⊤}.

Variational inference. In most applications of interest, it is

infeasible to efficiently compute these summaries with re-

spect to the posterior distribution in closed form or via sim-

ple Monte Carlo. Therefore, one must use an approximate

inference method, which produces an approximation π̂ to

the posterior π. The summaries of π̂ may in turn be used

as approximations to the summaries of π. One approach,

variational inference, is widely used in machine learning.

Variational inference aims to minimize some measure of

discrepancy Dπ(·) over a tractable family Q of potential

approximation distributions (Blei et al., 2017; Wainwright

et al., 2008):

π̂ = argmin
ξ∈Q

Dπ(ξ).

The variational family Q is chosen to be tractable in the

sense that, for any ξ ∈ Q, we are able to efficiently cal-

culate relevant summaries either analytically or using inde-

pendent and identically distributed samples from ξ.

KL divergence. The classical choice for the discrepancy

in variational inference is the Kullback–Leibler (KL) diver-

gence (or relative entropy) (Bishop, 2006):

KL(ξ | π) :=
∫

log

(
dξ

dπ

)
dξ.

Note that the KL divergence is asymmetric in its argu-

ments. The direction Dπ(ξ) = KL(ξ | π) is most typ-

ical in variational inference, largely out of convenience;

the unknown marginal likelihood M appears in an additive

constant that does not influence the optimization, and com-

puting gradients requires estimating expectations only with

respect to ξ ∈ Q, which is chosen to be tractable. Mini-

mizing KL(ξ | π) is equivalent to maximizing the evidence

lower bound (ELBO; Bishop, 2006):

ELBO(ξ) :=

∫
log

(
dπ∗

dξ

)
dξ.

1Since the data z are always fixed throughout this work, we
have suppressed the dependence on z in the notation.
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Rényi’s α-divergence. Another choice of discrepancy for

variational inference (Bui et al., 2017; Dieng et al., 2017;

Hernández-Lobato et al., 2016; Li and Turner, 2016) is

Rényi’s α-divergence, which for α ∈ (0, 1) ∪ (1,∞) is

defined as

Dα(π | ξ) := 1

α− 1
log

∫ (
dπ

dξ

)α−1

dπ.

The α-divergence is typically used in variational inference

with Dπ(ξ) = Dα(π | ξ) for α > 1; again, the unknown

marginal likelihood M does not influence the optimization,

and estimating gradients is tractable. Variational inference

with the α-divergence is equivalent to minimizing a quan-

tity known as the χ upper bound (CUBO; Dieng et al.,

2017):

CUBOα(ξ) := (1− α−1)Dα(π | ξ)− logM.

The ELBO and CUBO are so-named since they respec-

tively provide a lower and upper bound for logM ; see Ap-

pendix D.8. The α-divergence generalizes the KL diver-

gence since Dα(π | ξ) := limα→1 Dα(π | ξ) = KL(π | ξ)
(Cichocki and Amari, 2010). Note, however, that here

the KL divergence has the order of its arguments switched

when compared to how it is used for variational inference.

Wasserstein distance. The Wasserstein distance is a mea-

sure of discrepancy that, unlike the previous two diver-

gences, is influenced by a metric on the space on which

the distributions are defined. It is widely used in the anal-

ysis of MCMC and large-scale data asymptotics (e.g., Dur-

mus and Moulines, 2019; Durmus et al., 2019; Eberle and

Majka, 2019; Joulin and Ollivier, 2010; Madras and Sezer,

2010; Rudolf and Schweizer, 2018; Vollmer et al., 2016).

The p-Wasserstein distance between ξ and π is given by

Wp(ξ, π) := inf
γ∈Γ(ξ,π)

{∫
‖θ − θ′‖p2γ(dθ, dθ′)

}1/p

,

where Γ(ξ, π) is the set of couplings between ξ and π, i.e.,

Borel measures γ on Rd × Rd such that ξ = γ(·,Rd) and

π = γ(Rd, ·) (Villani, 2009, Defs. 6.1 & 1.1). The Wasser-

stein distance is difficult to use as a variational objective

due to the (generally intractable) infimum over couplings,

although there is recent work in this direction (Claici et al.,

2018; Cuturi and Doucet, 2014; Srivastava et al., 2018).

2.1 Previous work on validating variational

approximations

Stein discrepancies. Computable Stein discrepancies pro-

vide one approach for evaluating variational approxima-

tions (Gorham and Mackey, 2015, 2017; Gorham et al.,

2019). That is, the Stein discrepancy between the poste-

rior and variational approximation could be approximated

using samples from the variational approximation. How-

ever, Stein discrepancy-based bounds on the Wasserstein

distance require knowledge of certain properties of the pos-

terior (e.g., one-sided Lipschitz constants) that are usu-

ally unavailable without additional analytic effort. Thus,

there is not yet an automated way to apply an appropriate

Stein operator that guarantees control of the Wasserstein

distance (Erdogdu et al., 2018; Gorham et al., 2019).

Pareto-smoothed importance sampling and k̂. Pareto-

smoothed importance sampling (PSIS; Vehtari et al., 2019)

is a method for reducing the variance of importance sam-

pling estimators. The key quantity computed in PSIS is k̂,

which is an estimate of k := inf{k′ | D1/k′(π | π̂) < ∞}.

Yao et al. (2018) suggest using k̂ as a measure of the qual-

ity of π̂. Based on the empirical results and informal argu-

ments of Vehtari et al. (2019), they propose that k̂ ≤ 0.5 in-

dicates a good variational approximation and k̂ ∈ [0.5, 0.7]
indicates minimal acceptability. In all cases the authors

suggest using PSIS to improve estimates of posterior ex-

pectations. However, the link between a small k̂ value and a

high-quality posterior approximation is only heuristic. We

find empirically in Section 5 and Section 5.2 that poor pos-

terior approximations can have small k̂ values.

3 Error bounds via posterior discrepancies

Given the concern with posterior summaries, a meaningful

measure of posterior approximation quality should control

the error in each of these summaries, i.e., ‖mπ̂ − mπ‖2,

|MADπ̂,i −MADπ,i |, ‖Σπ̂ −Σπ‖2, and |σπ̂,i − σπ,i|. To

be practical, this measure should also be computationally

efficient. We start by focusing on the former challenge:

finding a discrepancy that controls the error of these sum-

maries. In particular, we (1) provide counterexamples to

show that KL(π̂ | π) and Dα(π | π̂) by themselves cannot

be relied upon to control these errors, and (2) prove that

the Wasserstein distance does provide the desired control.

We address the latter challenge, computational efficiency,

in Section 4.

KL divergence. Unfortunately, as we show in the follow-

ing examples, even when KL(π̂ | π) is small, posterior

summary approximations provided by π̂ can be arbitrarily

poor. To get a sense of scale for the KL divergence, we note

that the KL divergence from a variational approximation to

the exact posterior can easily range from 1 to nearly 500.

See Appendix A for further discussion. First we note that

the exact posterior standard deviation σπ is a natural scale

for the posterior mean error since changing the posterior

mean by σπ or more could fundamentally change practical

decisions made based on the posterior. Our first example

shows that even when KL(π̂ | π) is small, the mean error

can be arbitrarily large, whether measured relative to σπ or

σπ̂ .

Proposition 3.1 (Arbitrarily poor mean approximation).

For any t > 0, there exist (A) one-dimensional, unimodal

distributions π̂ and π such that KL(π̂ | π) < 0.9 and
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(mπ̂ − mπ)
2 > tσ2

π , and (B) one-dimensional, unimodal

distributions π̂ and π such that KL(π̂ | π) < 0.3 and

(mπ̂ −mπ)
2 > tσ2

π̂.

In more detail, let Weibull(k, 1) denote the Weibull distri-

bution with shape k > 0 and scale 1. For (A), for any

t > 0, we can choose k = k(t), π = Weibull(k, 1), and

π̂ = Weibull(k/2, 1), where k(t) ց 0 as t → ∞. We

exchange the two distributions for (B).

Our second example shows that KL(π̂ | π) can remain

small even when the variance difference is arbitrarily large.

Proposition 3.2 (Arbitrarily poor variance approxima-

tion). For any t ∈ (1,∞], there exist one-dimensional,

mean-zero, unimodal distributions π̂ and π such that

KL(π̂ | π) < 0.12 but σ2
π ≥ tσ2

π̂ .

Here, for any t > 0 we let h = h(t), π = Th (standard t-
distribution with h degrees of freedom), and π̂ = N (0, 1)
(standard Gaussian), where h(t) ց 2 as t → ∞.

Rényi’s α-divergence. We similarly demonstrate that

small Dα(π | π̂) does not imply accurate mean or variance

estimates. We focus on the canonical case α = 2, which

will also play a key role in our analyses below.

Proposition 3.3 (Arbitrarily poor mean and variance ap-

proximation). For any t > 0, there exist one-dimensional,

unimodal distributions π̂ and π with D2(π | π̂) < 0.4 such

that σ2
π̂ ≥ tσ2

π and (mπ̂ −mπ)
2 ≥ tσ2

π .

We again take π = Weibull(k, 1) and π̂ = Weibull(k/2, 1)
with k = k(t) ց 0 as t → ∞.

Wasserstein distance. In contrast to both the KL and

α-divergences, the Wasserstein distance accounts for the

metric on the underlying space. Intuitively, the Wasser-

stein distance is large when the mass of two distributions is

“far apart.” Thus, it is a natural choice of discrepancy for

bounding the error in the approximate posterior mean and

uncertainty, since these quantities also depend on the un-

derlying metric. Our next result confirms that the Wasser-

stein distance controls the error in these quantities.

Theorem 3.4. If W1(π̂, π) ≤ ε or W2(π̂, π) ≤ ε, then

‖mπ̂ −mπ‖2 ≤ ε and max
i

|MADπ̂,i −MADπ,i | ≤ 2ε.

If W2(π̂, π) ≤ ε, then, for S :=
√
min{‖Σπ̂‖2 , ‖Σπ‖2} ,

max
i

|σπ̂,i − σπ,i| ≤ ε and ‖Σπ̂ − Σπ‖2 < 2ε(S + ε).

Remark 3.5. The Wasserstein distance can also be used to

bound the difference between expectations of any smooth

function. More precisely, if the function φ satisfies |φ′| ≤
L and W1(π̂, π) ≤ ε, then |

∫
φ dπ̂ −

∫
φ dπ| ≤ εL.

While our focus is on parameter inference, there are many

cases when we are interested in predictive accuracy, in-

cluding in Bayesian deep learning. In such cases, Wasser-

stein bounds on the posterior remain useful. Assuming

f(znew | θ) is the distribution for new data given param-

eter θ, the posterior predictive distribution is µ(znew) :=∫
f(znew | θ)π(dθ), with the approximate posterior predic-

tive µ̂ defined analogously.

Proposition 3.6. If Wp(f(· | θ), f(· | θ′)) ≤ C ‖θ − θ′‖2
for some C ≥ 0 and Wp(π̂, π) ≤ ε, then Wp(µ̂, µ) ≤ εC.

Remark 3.7. The assumption on f(· | θ) in Proposi-

tion 3.6 holds for many commonly used distributions in-

cluding Gaussian distributions with fixed variance and the

Bernoulli distribution with softmax parameterization.

4 A complete workflow for validated

variational inference

In this section, we develop a comprehensive approach to

variational inference with rigorously validated output. First

we prove a number of new results which let us bound the

Wasserstein distance between the variational and true pos-

teriors in terms of quantities that can be efficiently com-

puted or upper-bounded. These Wasserstein bounds, when

combined with ideas from importance sampling, provide

the tools for formulating our proposed workflow.

4.1 Computationally efficient error bounds

In this section we return to the question of computationally

efficient posterior error bounds. In particular, although we

have shown that the Wasserstein distance provides direct

control of the error in approximate posterior summaries of

interest, it itself is not tractable to compute or estimate. Our

general strategy in this section is use standard variational

objectives – namely, the ELBO and CUBO – to bound the

Wasserstein distance. We thereby achieve bounds on the

error of posterior summaries by Theorem 3.4. More detail

about our results in this section and related work can be

found in, respectively, Appendices B and C.

Our process consists of two steps. First, we use tail proper-

ties of the distribution ξ ∈ Q to arrive at bounds on the

Wasserstein distance via the KL or α-divergence. Sec-

ond, we use ELBO and CUBO to bound the KL and α-

divergences.

A key challenge in realizing our goal is bounding a scale-

dependent distance (the Wasserstein distance) with a scale-

invariant divergence (the KL or α-divergence). To see the

scale-invariance, we note a broader result: these diver-

gences are invariant to reparameterization. For a transfor-

mation T : Rd → Rd, let T#η denote the pushforward

measure of η, which is the distribution of the random vari-

able T (ϑ) for ϑ ∼ η.

Lemma 4.1. The KL and α-divergence are invariant under

a smooth, invertible transformation T , i.e., Dα(η | ν) =
Dα(T#η | T#ν) and KL(η | ν) = KL(T#η | T#ν).

Yao et al. (2018) make a similar observation. A simple
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example illustrates that the Wasserstein distance is not in-

variant to reparameterization. For σ > 0, let νσ(θ) :=
σ−dν(θ/σ) define the rescaled version of ν (with ησ de-

fined analogously). Then Wp(ησ, νσ) = σWp(η, ν). It

follows that any bound of a scale-dependent distance such

as the Wasserstein distance using a scale-invariant diver-

gence must incorporate some notion of scale. Toward that

end, we start by defining the moment constants CPI
p (ξ) and

CEI
p (ξ) and associated tail behaviors. For p ≥ 1, we say

that ξ is p-polynomially integrable if

CPI
p (ξ) := 2 inf

θ0

{∫
‖θ − θ0‖p2ξ(dθ)

} 1

p < ∞

and that ξ is p-exponentially integrable if

CEI
p (ξ) := 2 inf

θ0,ǫ>0

[
1
ǫ

{
3
2 + log

∫
eǫ‖θ−θ0‖p

2ξ(dθ)
}] 1

p

< ∞.

Assuming the variational approximation π̂ has polynomial

(respectively, exponential) tails, our next result provides a

bound on the p-Wasserstein distance using the 2-divergence

(respectively, the KL divergence).

Proposition 4.2. If π ≪ π̂,2 then

Wp(π̂, π) ≤ CPI
2p (π̂) [exp {D2(π | π̂)} − 1]

1

2p

and

Wp(π̂, π) ≤ CEI
p (π̂)

[
KL(π | π̂) 1

p + {KL(π | π̂)/2} 1

2p

]
.

Our next results confirm that, even though Proposition 4.2

uses KL and α-divergences, our bounds capture the growth

in Wasserstein distance, as desired, and thus do not suffer

the pathologies observed in Propositions 3.1 to 3.3.

Proposition 4.3 (cf. Propositions 3.1 and 3.3). For a

fixed k ∈ (0,∞), let η = Weibull(k/2, 1) and ν =
Weibull(k, 1). Then, for α > 1, Dα(η | ν) = ∞. On the

other hand, Dα(ν | η) < ∞; but, as k ց 0, the moment

constant from Proposition B.2 satisfies CPI
p (η) ր ∞.

Proposition 4.4 (cf. Proposition 3.2). If η is a standard

normal measure and ν = Th is a standard t-distribution

with h ≥ 2 degrees of freedom, then Dα(η | ν) < ∞.

However, as h ց 2, we have CPI
p (ν) ր ∞.

Next, we turn to showing how we can use the ELBO and

CUBO to bound the KL and α-divergences that appear in

Proposition 4.2. For α > 1 and any distribution η, define

Hα(ξ, η) :=
α

α−1 {CUBOα(ξ)− ELBO(η)} .

Lemma 4.5. For any distribution η such that π ≪ η,

KL(π | π̂) ≤ Dα(π | π̂) ≤ Hα(π̂, η).

2
π ≪ π̂ denotes π is absolutely continuous with respect to π̂.

Then, combining Proposition 4.2 and Lemma 4.5 yields the

desired bounds on the p-Wasserstein distance given only

the quantities CPI
2p (π̂), C

EI
p (π̂), CUBOα(π̂), and ELBO(η),

all of which can be either efficiently estimated or bounded

(with high probability); we address these computational is-

sues in detail in Section 4.3.

Theorem 4.6. For any p ≥ 1 and any distribution η, if

π ≪ π̂, then

Wp(π̂, π) ≤ CPI
2p (π̂)

[
exp {H2(π̂, η)} − 1

] 1

2p

and

Wp(π̂, π) ≤ CEI
p (π̂)

[
H2(π̂, η)

1

p + {H2(π̂, η)/2}
1

2p

]
.

4.2 Importance sampling

Before presenting our workflow for validated variational

inference, we briefly discuss a final ingredient: importance

sampling. Standard importance sampling with importance

distribution π̂ operates as follows. After obtaining sam-

ples θ1, . . . , θT ∼ π̂, we can define importance weights

wt := π∗(θt)/π̂(θt) and self-normalized weights w̃t :=

wt/
∑T

t=1 wt. Then, the importance sampling estimator

for
∫
φ dπ is

∑T
t=1 w̃tφ(θt). Importance sampling can de-

crease the bias at the cost of some additional variance rel-

ative to the simple Monte Carlo estimate T−1
∑T

t=1 φ(θt).
Recall from Section 2.1 that Pareto-smoothed importance

sampling (PSIS) can improve upon standard importance

sampling by significantly reducing variance without much

extra bias. In additional, PSIS provides a crucial diagnostic

quantity, k̂. When k̂ > 0.7, the importance weights are too

high-variance to be reliable, even when using PSIS.

Our approach to bounding the Wasserstein distance in

terms of the α-divergence has intriguing connections to

the theory of importance sampling. As pointed out by Di-

eng et al. (2017), minimizing the 2-divergence is equivalent

to minimizing the variance of the (normalized) importance

weight π(θt)/π̂(θt), which is equal to exp{D2(π | π̂)}−1.

Moreover, the estimation error of importance sampling can

be bounded as a function of KL(π | π̂) (Chatterjee and Dia-

conis, 2018), which is upper bounded by D2(π | π̂). Thus,

minimizing the 2-divergence simultaneously leads to bet-

ter importance distributions and smaller Wasserstein error

– as long as the moments of the variational approximation

do not increase disproportionately to the 2-divergence de-

crease. In practice such pathological behavior appears to

be unusual; see Section 5 and Dieng et al. (2017, §3).

4.3 A workflow for black box variational inference

The usual approach to black box variational inference is

(1) to choose Dπ(ξ) = KL(ξ | π) (i.e., to maximize

ELBO(ξ)), and (2) to use (products of) Gaussians as the

variational family Q (Carpenter et al., 2017a; Kucukelbir
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et al., 2015; Ranganath et al., 2014; Salvatier et al., 2016).

Based on Theorem 4.6 and our discussion in Section 4.2,

we suggest a number of deviations from the typical vari-

ational inference procedure, including integrating checks

based on our novel bounds. We first provide an outline of

our default workflow recommendation, then discuss each

step in detail – along with some potential refinements. We

show the workflow in action in Section 5. We write QT
h to

denote the mean-field variational family consisting of prod-

uct of t-distributions with h degrees of freedom.

Algorithm 1: Validated variational workflow

1 Set Q to be QT
40

2 Find π̂ ∈ Q that minimizes CUBO2(ξ)

3 if k̂ > 0.7 then

Refine choice of Q or reparameterize the model

Return to step 2

4 Find η ∈ Q that maximizes ELBO(ξ)
5 Estimate ELBO(η) and CUBO2(π̂) via Monte Carlo

6 Use Lemma 4.5 to compute bound δ̄2 ≥ D2(π | π̂)
7 Use Theorem 4.6 to compute bound w̄2 ≥ W2(π, π̂)
8 if δ̄2 and w̄2 are large then

Refine choice of Q or reparameterize the model

Return to step 2

else if δ̄2 and w̄2 are very small then
approximate π with π̂

else when δ̄2 and w̄2 are moderately small
Use PSIS to refine the posterior expectations

produced by π̂

For step 1, we choose a heavy-tailed variational family to

ensure that the 2-divergence (and hence CUBO2(ξ)) is fi-

nite (that is, such that D2(π | ξ) < ∞ for all ξ ∈ Q).

The choice of 40 degrees of freedom is somewhat arbitrary.

Slightly different choices should produce similar results. It

is also possible to select a different variational family spe-

cific to the problem at hand as long as the 2-divergence

is guaranteed to be finite. For step 2, we minimize the

CUBO to obtain as tight a bound as possible when we ap-

ply Theorem 4.6 (though note that usually the CUBO ob-

jective – like the negative ELBO – is non-convex, so we

may not be able to find the global minimum). Toward the

same end, in step 4 we separately find the distribution η
that results in largest ELBO. However, before going to the

effort of finding η, in step 3 we check that k̂ ≤ 0.7, since

otherwise our estimate of CUBO2(π̂) is not reliable and

thus we should not trust any bounds on the 2-divergence or

Wasserstein distance computed using Lemma 4.5 and The-

orem 4.6. How precisely to refine the choice of Q or repa-

rameterize the model is problem-dependent. One possibil-

ity is to use multivariate t-distributions with h degrees of

freedom for Q; unlike QT
h , the multivariate versions can

capture correlations in the posterior.

For step 5, we can use simple Monte Carlo to compute

high-accuracy estimates for ELBO(η) and CUBO2(π̂):

ĈUBO2(π̂) :=
1
2 log

[
1
T

∑T
t=1

{
dπ∗

dπ̂ (θπ̂t )
}2]

, (θπ̂t )
T
t=1

i.i.d.∼ π̂

ÊLBO(η) := 1
T

∑T
t=1 log

dπ∗

dη (θηt ), (θηt )
T
t=1

i.i.d.∼ η.

Ensuring the accuracy of ĈUBO2(π̂) and ÊLBO(η) reduces

to the well-studied problem of estimating the accuracy of

a simple Monte Carlo approximation (e.g., Koehler et al.,

2009). We can also convert these estimates into high-

probability upper bounds using standard concentration in-

equalities (Boucheron et al., 2013). For step 6, we use

Lemma 4.5 to obtain the estimated 2-divergence bound

δ̄2 := Ĥ2(π̂, η) := 2
{
ĈUBO2(π̂)− ÊLBO(η)

}
.

For step 7, to compute Wasserstein bounds using The-

orem 4.6, we can bound CPI
2p (π̂) using the central mo-

ments of the distribution: if π̂ =
∏d

i=1 Th(µi, σi) and

Ch := h/(h− 2), then

CPI
2 (π̂) ≤ 2Ch

∑d
i=1 σ

2
i

CPI
2 (π̂) ≤ 2C2

h

{
2(h−1)
h−4

∑d
i=1 σ

2
i + (

∑d
i=1 σ

2
i )

2
}
.

Since ĈEI
p (π̂) = ∞ for t-distribution variational families,

we cannot use the second bound from Theorem 4.6. For

variational families without analytically computable mo-

ments, we can bound the moment constants CPI
p (π̂) and

CEI
p (π̂) by fixing any θ0, ǫ and sampling from π̂. We can

intuitively think of θ0 as the “center” of the distribution, so

a natural choice is setting it equal to the mean of π̂.

For step 8, what qualifies as a moderately or very small

w̄2 value will depend on the desired accuracy and natu-

ral scale of the problem. δ̄2 has a more universal scale; in

particular, δ̄2 < 4.6 could be treated as moderately small

since the variance of the importance weights is exp{D2(π̂ |
π))}−1 < 100, so PSIS with a reasonable number of sam-

ples should be effective; for some δ∗ ≪ 1 (for example,

δ∗ = 0.01), δ̄2 < δ∗ could be treated as very small, since

the term multiplying CPI
p (ξ) in Proposition 4.2 and Theo-

rem 4.6 will be less than δ
1/p
∗ .

5 Two case studies

Next we demonstrate our variational inference workflow

and the usefulness of our bounds through two case studies.

5.1 Case study #1: the eight schools model

We apply our variational workflow to approximate the pos-

terior for the eight schools data and model (Gelman et al.,

2013, Sec. 5.5), a canonical example of a Bayesian hierar-

chical analysis. Yao et al. (2018) previously considered this

model in the setting of evaluating variational inference. In
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some p ≥ 1. Then for all η ≪ ν,

Wp(η, ν) ≤ CEI
p (ν)

[
KL(η | ν) 1

p + {KL(η | ν)/2} 1

2p

]
.

However, many posteriors of interest have much heavier tails – often with at most polynomial decay.

For example, neither inverse Gamma distributions nor t-distributions with h < ∞ degrees of freedom

have exponential tails. Moreover, bounding the 2-Wasserstein distance with Proposition B.1 requires the

problematic Gaussian tails assumption.

In contrast to these past results, our work provides bounds on Wasserstein distances assuming only

polynomial tail decay. We achieve these bounds by incorporating more general α-divergences; we call

these new bounds transportation–divergence inequalities. For example, Proposition B.2 is a particularly

simple bound on the p-Wasserstein distance in terms of just the 2-divergence when ν has finite (2p)th
moment. We use this result, together with Lemma 4.5 and Proposition B.1, to prove Theorem 4.6 above.

Proposition B.2. Assume ν is 2p-polynomially integrable for some p ≥ 1. Then for all η ≪ ν,

Wp(η, ν) ≤ CPI
2p (ν) [exp {D2(η | ν)} − 1]

1

2p .

Next, we show how to achieve tighter bounds than Proposition B.2 via two additional novel

transportation–entropy inequalities; these can be combined with Lemma 4.5 to arrive at results like

Theorem 4.6, at the price of additional complexity in the statements of the bounds.

Our first result offers a better dependence on moments in the exponential tails case by using both KL

divergence and α-divergence (cf. just KL divergence in Proposition B.1); however, the bound is more

complex than Proposition B.1. In particular, if ν has exponential tails and we can bound the α-divergence

for any α > 1, then we can bound the 2-Wasserstein distance.

Theorem B.3. Assume ν ∈ EIp/2(ǫ) (Definition C.2) for some p ≥ 1 and ǫ > 0 and let EI∗p(ν, ǫ) be

defined as in Definition C.5. Let

C(α, η, ν) := inf
ǫ>0

{
6

ǫ2

[(
3α

α− 1

)2

+ 6 + 2EI∗p/2(ν, ǫ)
2 +Dα(η | ν)2

]}1/p

.

Then for α > 1 and η ≪ ν,

Wp(η, ν) ≤ C(α, η, ν)KL(η | ν) 1

2p .

Our second result requires only that ν have a finite (2pq)th moment in order to bound the p-Wasserstein

distance by the relative entropy and the α-divergence. Here, q = q(α) := α/(α − 1) is the conjugate

exponent for α. Thus, this result has a higher moment dependence than our Proposition B.2, but it uses

the α-divergence with α < 2 (cf. α = 2 in Proposition B.2) and thereby could produce tighter bounds.

Theorem B.4. Fix p ≥ 1 and α > 1, and let q = q(α) := α/(α−1). Assume that ν is 2pq-polynomially

integrable, as defined in Section 4.1, and let

C(α, η) := inf
θ′

[(∫
m(θ′, θ)2pν(dθ)

)1/2

+

(
1

22q−2q

∫
‖θ′ − θ‖2pq2 ν(dθ) +

4e(α−1)Dα(η|ν)

α

)1/2
]1/p

.

Then for all η ≪ ν,

Wp(η, ν) ≤ 2C(α, η) KL(η | ν) 1

2p .
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C Transportation–entropy inequality results

Classical transportation–entropy inequalities take the following form.

Definition C.1. For p ≥ 1 and ρ > 0, the distribution ν satisfies a p-transportation–entropy (or p-

Talagrand) inequality with constant ρ (denoted ν ∈ WpH(ρ)) if for all η ≪ ν,

Wp(η, ν) ≤
{
2KL(η | ν)

ρ

}1/2

.

When p = 1 there are interpretable necessary and sufficient conditions for ν ∈ W1H(ρ). The most

important is the p-exponential integrability condition, which we denote by ν ∈ EIp(ǫ):

Definition C.2 (cf. Section 4.1). For p ≥ 1 and ǫ > 0 the distribution ν is p-exponentially integrable

with parameter ǫ (denoted ν ∈ EIp(ǫ)) if

inf
θ0

[∫
eǫ‖θ−θ0‖p

2ν(dθ)

]
< ∞.

In particular, the following result shows that ν satisfies a 1-transportation–entropy inequality if and

only if it has Gaussian tails. Moreover, the ǫ parameter in the corresponding 2-exponential integrability

condition essentially determines the precision of the transportation–entropy inequality.

Theorem C.3 (Bobkov and Götze (1999, Theorem 3.1), Djellout et al. (2004, Theorem 2.3)). The fol-

lowing conditions are equivalent:

1. For some ρ > 0, ν ∈ W1H(ρ), as defined in Definition C.1.

2. For some ǫ > 0, ν ∈ EI2(ǫ), as defined in Definition C.2.

3. There exists a constant c > 0 such that for every φ : Rd → R with ‖φ‖L ≤ 1 (where ‖·‖L denotes

the Lipschitz constant) and every t ∈ R,

ν(etφ) ≤ ect
2

.

Moreover, we may take c = ρ−1 and

c ≤ 2

ǫ
sup
k≥1

{
(k!)2

(2k)!

∫ ∫
eǫ‖θ−θ′‖2

2ν(dθ)ν(dθ′)

}1/k

.

Remark C.4. Let ϑ ∼ ν and for a Lipschitz function φ : Rd → R, let cφ := 2 ‖φ‖2L c. Condition (3)

implies that the random variable φ(ϑ) is cφ-sub-Gaussian (Boucheron et al., 2013, §2.3). In particular,

we have the concentration inequality

P{φ(ϑ)− ν(φ) > t} ≤ e
− t2

2cφ .

The implication (2) =⇒ (1) from Theorem C.3 can be generalized to cover p > 1.

Definition C.5. For p ≥ 1, the optimal p-exponential integrability constant is given by

EI∗2p(ν, ǫ) := inf
θ′

log

∫
eǫ‖θ−θ′‖p

2ν(dθ).

Proposition C.6 (Bolley and Villani (2005, Corollary 2.4)). Assume ν ∈ EI2p(ǫ) (Definition C.2) for

some p ≥ 1 and ǫ > 0 and let

C := 2 inf
ǫ>0

[
1

2ǫ

{
1 + EI∗2p(ν, ǫ)

}] 1

2p

< ∞,

for EI∗2p(ν, ǫ) defined in Definition C.5. Then for all η ≪ ν,

Wp(η, ν) ≤ C KL(η | ν) 1

2p .
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If one can establish that ν ∈ WpH(ρ), then the pushforward measure under a Lipschitz transformation

also satisfies a p-transportation–entropy inequality.

Lemma C.7. Assume that for some ρ > 0, ν ∈ WpH(ρ), and that Ψ : Rd → Rd is L-Lipschitz; i.e.,

‖Ψ(θ)−Ψ(θ′)‖2 ≤ L ‖θ − θ′‖2 θ, θ′ ∈ R
d.

Then Ψ#ν ∈ WpH(ρ/L2).

We close with the interesting connection that ν ∈ W2H(ρ) is equivalent to ν satisfying a dimension-free

Gaussian concentration inequality (cf. Remark C.4). While the concentration condition is not necessarily

easy to check, it does offer insight into what it means for ν ∈ W2H(ρ).

Theorem C.8 (Gozlan (2009, Theorem 1.3)). For a set A ⊆ (Rd)n, let At := {θ ∈ (Rd)n | ∃θ′ ∈ A :∑n
i=1 ‖θi − θ′i‖22 ≤ t2}. The following conditions are equivalent:

1. For some ρ > 0, ν ∈ W2H(ρ).

2. There exist a > 0, b > 0 such that for all n ∈ N and measurable A ⊆ En, with ν⊗n(A) ≥ 1/2, the

probability measure ν⊗n satisfies

ν⊗n(At) ≥ 1− be−at2 .

D Proofs

D.1 Proofs of Propositions 3.1 to 3.3

For Proposition 3.1(A), we let π̂ = Weibull(k/2, 1) and π = Weibull(k, 1). Let γ be the Euler-

Mascheroni constant and Γ be the gamma function. We obtain (Bauckhage, 2013)

KL(π̂ | π) = − log(2) + γ + Γ (3)− 1 < 0.9.

Using the well-known formulas for the mean and variance of the Weibull distribution, we have mπ̂ =
Γ(1+2/k), mπ = Γ(1+1/k), and σ2

π = Γ(1+2/k)−{Γ(1+1/k)}2. Hence, limkց0(mπ̂−mπ)
2/σ2

π =
∞.

For Proposition 3.1(B), let π̂ = Weibull(k, 1) and π = Weibull(k/2, 1). We obtain

KL(π̂ | π) = log(2)− γ/2 + Γ(3/2)− 1 < 0.3.

By the same argument as above, limkց0(mπ̂ −mπ)
2/σ2

π̂ = ∞.

For Proposition 3.2, we let π̂ be standard normal and π = Th be a standard t-distribution with h degrees

of freedom. Let ϑ ∼ π̂. It is straightforward to show that

KL(π̂ | π) = log[Γ(h/2)h1/2/Γ{(h+ 1)/2}]− 0.5 log(2e) + 0.5(h+ 1)E
{
log
(
1 + ϑ2/h

)}
.

For h = 2, this quantity can be numerically evaluated and is less than 0.12. By continuity of the function

h 7→ KL(π̂ | Th), there exists some ǫ > 0, such that for all h ∈ [2, 2 + ǫ), KL(π̂ | Th) < 0.12. Finally,

we observe that limhց2 σ
2
Th

= ∞.

For Proposition 3.3, we choose π = Weibull(k, 1) and π̂ = Weibull(k/2, 1) for k > 0. Note that

limk↓0
σ2

π̂

σ2
π
= ∞ and limk↓0(mπ̂ −mπ)

2/σ2
π = ∞. On the other hand, letting fπ̂ and fπ be the densities

of π̂ and π, respectively, we have

∫ ∞

0

(fπ(x))
2
(fπ̂(x))

−1
dx

= 2k

∫ ∞

0

x3k/2−1 exp
(
−2xk + xk/2

)
dx

y=xk/2

= 4

∫ ∞

0

y2 exp
(
−2y2 + y

)
dy < 1.47752
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and so

D2(π | π̂) = log

∫ ∞

0

(fπ(x))
2
(fπ̂(x))

−1
dx < 0.391.

Therefore, for any t > 0, there exist two distributions π̂ and π with D2(π | π̂) bounded by 0.391 yet

such that σ2
π̂ ≥ tσ2

π and (mπ̂ −mπ)
2 ≥ tσ2

π .

D.2 Proof of Proposition 4.3

Let α > 1. Then η and ν have the following densities w.r.t. the Lebesgue measure

fη(x) =
k

2
xk/2−1e−xk/2

I[x ≥ 0], fν(x) = kxk−1e−xk

I[x ≥ 0]

and

Dα(η | ν) = 1

α− 1
log

∫ ∞

0

(fη(x))
α
(fν(x))

1−α
dx.

Note that

∫ ∞

0

(fη(x))
α
(fν(x))

1−α
dx

=
k

2α

∫ ∞

0

xk−1−kα/2 exp
(
−αxk/2 + (α− 1)xk

)
dx

y=xk/2

=
1

2α−1

∫ ∞

0

y1−α exp
(
−αy + (α− 1)y2

)
dy

= ∞.

Therefore, for α > 1, Dα(η | ν) = ∞.

Similarly,

∫ ∞

0

(fν(x))
α
(fη(x))

1−α
dx

= 2α−1k

∫ ∞

0

xkα/2+k/2−1 exp
(
−αxk − xk/2 + αxk/2

)
dx

y=xk/2

= 2α
∫ ∞

0

yα exp
(
−αy2 + (α− 1)y

)
dy < ∞.

Therefore, for α > 1, Dα(ν | η) < ∞. However,

∫ ∞

0

|x− x′|2η(dx) = Γ

(
1 +

4

k

)
− 2x′Γ

(
1 +

2

k

)
+ (x′)2.

Minimizing this over x′ gives us that the minimum is achieved at x′ = Γ
(
1 + 2

k

)
. But

lim
kց0

[
Γ

(
1 +

4

k

)
− 2

(
Γ

(
1 +

2

k

))2

+

(
Γ

(
1 +

2

k

))2
]
= ∞

and so CPI
p (η) ր ∞ as k ց 0.
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D.3 Proof of Proposition 4.4

Letting fη and fν be the corresponding densities, we have

∫ ∞

−∞
(fη)

α
(fν)

1−α
dx

=
1

(2π)α/2

(
Γ ((h+ 1)/2)√

hπ Γ(h/2)

)1−α ∫ ∞

−∞
e−αx2/2

(
1 +

x2

h

)(h+1)(α−1)/2

dx.

≤ 1

(2π)α/2

(
Γ ((h+ 1)/2)√

hπ Γ(h/2)

)1−α ∫ ∞

−∞
e−x2/2dx < ∞,

because, for h ≥ 2,
(
1 + x2

h

)(h+1)(α−1)/2

≤ e(α−1)x2/2. Therefore, Dα(η | ν) < ∞. However, for

h > 2,

∫ ∞

−∞
|x− x′|2ν(dx) = h

h− 2
+ (x′)2 ≥ h

h− 2

hց2−−−→ ∞

and CPI
p (ν) ր ∞ as h ց 2.

D.4 Proof of Lemma 4.1

First assume that η and ν have densities fη and fν with respect to Lebesgue measure. Note that the

densities of the pushforward measures T#η and T#ν are given by

x 7→ fη ◦ T−1(x)
∣∣detJxT

−1(x)
∣∣ and x 7→ fν ◦ T−1(x)

∣∣detJxT
−1(x)

∣∣ ,

respectively, where Jx denotes the Jacobian. Therefore, for any α > 0,

∫ (
d (T#η)

d (T#ν)

)α

d (T#ν) =

∫ (
fη ◦ T−1(x)

∣∣detJxT
−1(x)

∣∣
fν ◦ T−1(x) |detJxT−1(x)|

)α

fν ◦ T−1(x)
∣∣detJxT

−1(x)
∣∣ dx

=

∫ (
fη ◦ T−1(x)

fν ◦ T−1(x)

)α

fν ◦ T−1(x)
∣∣detJxT

−1(x)
∣∣ dx

y=T−1(x)
=

∫ (
fη(y)

fν(y)

)α

fν(y)dy

=

∫ (
dη

dν

)α

dν.

and so, for α 6= 1, Dα(η | ν) = Dα(T#η | T#ν). Similarly,

∫
log

(
d (T#η)

d (T#ν)

)
d (T#η) =

∫
log

(
fη ◦ T−1(x)

fν ◦ T−1(x)

)
fη ◦ T−1(x)

∣∣detJxT
−1(x)

∣∣ dx

=

∫
log

(
fη(y)

fν(y)

)
fη(y)dy

=

∫
log

(
dη

dν

)
dν.

and so D1(T#η | T#ν) = KL(T#ξ | T#π) = KL(ξ | π) = D1(η | ν).
More generally, without assuming that η and ν are absolutely continuous with respect to Lebesgue mea-

sure, we note that if η ≪ ν then

d (T#η)

d (T#ν)
=

dη

dν
◦ T−1. (3)
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Indeed, for any measurable set A, we have
∫

A

dη

dν
◦ T−1 d (T#ν) =

∫

T−1(A)

dη

dν
dν = (T#η) (A).

Using Eq. (3) and the fact that T is bijective, we have that

∫ (
d (T#η)

d (T#ν)

)α

d (T#ν) =

∫ (
dη

dν
◦ T−1

)α

d (T#ν) =

∫ (
dη

dν

)α

dν. (4)

Similarly,

∫ (
d log (T#η)

d (T#ν)

)
d (T#η) =

∫
log

(
dη

dν
◦ T−1

)
d (T#η) =

∫
log

(
dη

dν

)
dη. (5)

Eq. (4) and Eq. (5) prove that Dα(η | ν) = Dα(T#η | T#ν) for any α > 0.

D.5 Proof of Theorem 3.4

We begin by considering the case d = 1, dropping the component indexes from our notation.

Theorem D.1. Assume d = 1. If W1(ν, η) ≤ ε, then |mν −mη| ≤ ε and |MADν −MADη | ≤ 2ε. On

the other hand, if W2(ν, η) ≤ ε, then W1(ν, η) ≤ ε,

|σν − ση| ≤ ε,

and

|σ2
ν − σ2

η| ≤ 2min(σν , ση)ε+ 2ε2.

The proof of Theorem D.1 is deferred to the next section. To generalize to the case of d > 1, for

a random variable ϑ ∼ η on Rd with distribution η and any vector v ∈ Rd, let mη,v = E(v⊤ϑ),
σ2
η,v = E{(v⊤ϑ−mη,v)

2}, and MADη,v = E(|v⊤ϑ−mη,v|).

Corollary D.2. Let v ∈ Rd satisfy ‖v‖2 ≤ 1. If W1(ν, η) ≤ ε then |mν,v − mη,v| ≤ ε and

|MADν,v −MADη,v | ≤ 2ε. On the other hand, if W2(ν, η) ≤ ε, then

|σν,v − ση,v| ≤ ε, |σ2
ν,v − σ2

η,v| ≤ 2min(σν,v, ση,v)ε+ 2ε2.

Proof. Let ϑ ∼ ν, let ϑv = v⊤ϑ and let νv denote the distribution of ϑv . Define ϑ̂, ϑ̂v , and ηv anal-

ogously in terms of η. By the Cauchy-Schwarz inequality and the assumption that ‖v‖2 ≤ 1, we have

that, for any p ≥ 1,

E(|ϑv − ϑ̂v|p) = E(|v⊤ϑ− v⊤ϑ̂|p) ≤ E(‖ϑ− ϑ̂‖p2).

Hence Wp(νv, ηv) ≤ Wp(ν, η). The corollary now follows from Theorem D.1.

Lemma D.3. For probability measures ξ, ν, η, we have ‖mν −mη‖2 = sup‖v‖
2
≤1 |mν,v − mη,v|,

‖Σξ‖2 = sup‖v‖
2
≤1 σ

2
ξ,v , and ‖Σν − Ση‖2 = sup‖v‖

2
≤1 |σ2

ν,v − σ2
η,v|.

Proof. The first result follows since mν,v − mη,v = v⊤(mν − mη) and for any w ∈ Rd,

sup‖v‖
2
≤1 v

⊤w = ‖w‖2. For the second result, since Σξ is positive semi-definite,

‖Σξ‖2 = sup
‖v‖

2
≤1

v⊤Σξv = sup
‖v‖

2
≤1

E{v⊤(X −mξ)(X −mξ)
⊤v} = sup

‖v‖
2
≤1

σ2
ξ,v;

The third result follows by an analogous argument.

By taking v = ei, the ith canonical basis vector of Rd, Corollary D.2 implies the bounds in Theo-

rem 3.4 on |MADν,i −MADη,i | and |σν,i − ση,i|. Corollary D.2 and Lemma D.3 yield the bounds in

Theorem 3.4 on ‖mν −mη‖2 and ‖Σν − Ση‖2.
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D.6 Proof of Theorem D.1

Throughout we will always assume that ϑ ∼ ν and ϑ̂ ∼ η are distributed according to the optimal cou-

pling for the p-Wasserstein distance under consideration. We will also assume without loss of generality

that mν = 0 since if not we could consider the random variables ϑ′ = ϑ−mν and ϑ̂′ = ϑ̂−mν instead.

The 1-Wasserstein distance can be written as (Villani, 2009, Rmk. 6.5)

W1(ν, η) = sup
φ : ‖φ‖L≤1

|ν(φ)− η(φ)|. (6)

By Jensen’s inequality,

Wq(ν, η) ≤ Wp(ν, η) (1 ≤ q ≤ p < ∞). (7)

Eqs. (6) and (7) together imply that for any p ≥ 1, if Wp(ν, η) ≤ ε, then for any L-Lipschitz function φ,

|ν(φ)− η(φ)| ≤ Lε.

Assume W1(ν, η) ≤ ε. By Eq. (6), for any Lipschitz function φ,

|E(φ(ϑ)− φ(ϑ̂))| ≤ ε ‖φ‖L .

Hence, taking φ(t) = t, we have that |mν − mη| = |mη| ≤ ε. For the mean absolute deviation, using

the fact that φ(t) = |t| is 1-Lipschitz, we have

|MADν −MADη | = |E(|ϑ| − |ϑ̂−mη|)| ≤ |E(|ϑ| − |ϑ̂|)|+ |mη| ≤ 2ε.

Assume W2(ν, η) ≤ ε. By Jensen’s inequality W1(ν, η) ≤ ε as well. Let ς2ν = E(ϑ2) = σ2
ν and ς2η =

E(ϑ̂2). It follows from the Cauchy-Schwarz inequality that (ςν − ςη)
2 ≤ E

(
(ϑ− ϑ̂)2

)
= (W2(ν, η))

2

and so

|ςν − ςη| ≤ ε. (8)

Using Eq. (8), we also have

|σ2
ν − σ2

η| = |ς2ν − ς2η +m2
η| ≤ |ς2ν − ς2η |+ |m2

η| ≤ ε(ςν + ςη) + ε2 (9)

Moreover, note that

(W2(ν, η))
2
= E

(
ϑ2
)
+ E

(
ϑ̂2
)
− 2E

(
ϑϑ̂
)
= σ2

ν + σ2
η +m2

η − 2σϑϑ̂.

From Cauchy-Schwarz, σϑϑ̂ ≤ σνση , so that (σν − ση)
2
+m2

η ≤ (W2(ν, η))
2

and so

|σν − ση| ≤ ε.

Starting from Eq. (9) and using Eq. (8), we have

|σ2
ν − σ2

η| ≤ ε(ςν + ςη) + ε2 ≤ ε(2ςν + ε) + ε2 = ε(2σν + ε) + ε2 = 2σνε+ 2ε2.

D.7 Proof of Proposition 3.6

Let γ∗
θ,θ′ denote the optimal p-Wasserstein coupling for f(· | θ) and f(· | θ′). Then we have

Wp(µ̂, µ)
p = inf

γ∈Γ(µ̂,µ)

{∫
‖z − z′‖p2γ(dz, dz′)

}

≤ inf
γ∈Γ(π̂,π)

{∫ ∫
‖z − z′‖p2γ∗

θ,θ′(dz, dz′)γ(dθ, dθ′)

}

= inf
γ∈Γ(π̂,π)

{∫
Wp(f(· | θ), f(· | θ′))pγ(dθ, dθ′)

}

≤ inf
γ∈Γ(π̂,π)

{
cpf

∫
‖θ − θ′‖p2 γ(dθ, dθ′)

}

= cpfWp(π̂, π)
p.
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D.8 Proof of Lemma 4.5

Proof. First, note that the ELBO(ξ) provides a lower bound for logM since KL(ξ | π) ≥ 0:

ELBO(ξ) :=

∫
log

(
dπ′

dξ

)
dξ

= logM −KL(ξ | π) ≤ logM. (10)

Second, Jensen’s inequality implies that CUBOα(ξ) is an upper bound for logM :

CUBOα(ξ) := log

{∫ (
dπ′

dξ

)α

dξ

}1/α

≥ log

{∫
dπ′

dξ
dξ

}
= logM.

The α-divergence is monotone in α, i.e., α ≤ α′ implies that Dα(π | π̂) ≤ Dα′(π | π̂) (Cichocki and

Amari, 2010). Thus, by the definition of CUBOα(π̂) and Eq. (10), we have

KL(π | π̂) = D1(π | π̂) ≤ Dα(π | π̂)
=

α

α− 1
(CUBOα(π̂)− logM)

≤ α

α− 1
(CUBOα(π̂)− ELBO(η)) .

D.9 Proof of Theorem B.3

Theorem D.4. Let ϕ be a nonnegative measurable function on E and let δ > 0. Then we have

‖ϕ(η − ν)‖TV ≤
(
27

(
1 + δ

δ

)2

+ 18 + 5

(
log

∫

E

e
√
2ϕ dν

)2

+ 3D1+δ(η | ν)2
)
KL(η | ν)1/2.

Corollary B.3 follows from Theorem D.4 and the fact that

Wp(η, ν)
p ≤ 2p−1‖m(ϑ′, ·)p(η − ν)‖TV ,

proved, for instance, in Villani (2003, Proposition 7.10). Indeed, it suffices to use ϕ = ǫ2

2 m(ϑ′, ·)p in

Theorem D.4 to obtain the assertion.

D.10 Proof of Theorem D.4

We first assume, without loss of generality, that η is absolutely continuous with respect to ν, with density

f . We set u := f − 1 so that

η = (1 + u)ν

and note that u ≥ −1 and
∫
E
udν = 0. We also define

h(v) := (1 + v) log(1 + v)− v, v ∈ [−1,+∞)

so that

KL(η | ν) =
∫

E

h(u)dν. (11)

We note that h ≥ 0. We split the total variation in the following way:

∫
ϕd|η − ν| =

∫
ϕ|u| dν =

∫

{−1≤u≤4}
ϕ|u| dν +

∫

{u>4}
ϕu dν. (12)
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First part of the proof. In the first part, the first term (u ≤ 4) in (12) is bounded. This part is an

adaptation of the first part of the proof of Bolley and Villani (2005, Theorem 1).

By Cauchy-Schwarz,

∫

{u≤4}
ϕ|u|dν ≤

(∫

{u≤4}
ϕ2 dν

)1/2(∫

{u≤4}
u2 dν

)1/2

.

On the other hand, from the elementary inequality,

−1 ≤ v ≤ 4 =⇒ v2 ≤ 4h(v)

(a consequence of the fact that h(v)/v is nondecreasing), we deduce

∫

{u≤4}
u2 dν ≤ 4

∫

{u≤4}
h(u) dν.

Combining this with the nonnegativity of h and (11), we find that

∫

{u≤4}
ϕ|u| dν ≤ 2

(∫

E

ϕ2 dν

)1/2(∫

E

h(u) dν

)1/2

= 2

(∫

E

ϕ2 dν

)1/2

KL(η | ν)1/2. (13)

Now, since the function t 7→ exp(
√
2 t1/4) in increasing and convex on

[
92

22 ,+∞
)

, we can write

exp

[
√
2

(∫

E

ϕ2 dν

)1/4
]

≤ exp


√2

(∫

E

(
ϕ+

9

2

)2

dν

)1/4



≤
∫

E

exp


√2

((
ϕ+

9

2

)2
)1/4


 dν

=

∫

E

e
√
2ϕ+9 dν

≤
∫

E

e
√
2ϕ +3dν.

In other words,

√
2

(∫

E

ϕ2 dν

)1/4

≤ 3 + log

∫

E

e
√
2ϕ dν

and so

2

(∫

E

ϕ2 dν

)1/2

≤
(
3 + log

∫

E

e
√
2ϕ dν

)2

.

Plugging this into (13), we conclude that

∫

{u≤4}
ϕ|u| dν ≤

(
3 + log

∫

E

e
√
2ϕ dν

)2

KL(η | ν)1/2. (14)
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Second part of the proof. Instead of following the logic of the second part of the proof of Bolley and

Villani (2005, Theorem 1), which fails to provide the result we are seeking, we can note the following:

∫

u>4

ϕu dν ≤ 1

(log(5)− 1)1/2

∫

u>4

ϕ(u+ 1) (log(u+ 1)− 1)
1/2

dν

≤ 2

(∫

u>4

ϕ2(u+ 1) dν

)1/2(∫

u>4

[(u+ 1) (log(u+ 1)− 1) + 1] dν

)1/2

= 2

(∫

u>4

ϕ2 dη

)1/2(∫

u>4

h(u) dν

)1/2

≤ 2

(∫

E

ϕ2 dη

)1/2

KL(η | ν)1/2. (15)

Now, since the function t 7→ exp
(√

2 δ
1+δ t

1/4
)

in increasing and convex on
[
81(1+δ)4

4δ4 ,+∞
)

, we can write

exp

[√
2 δ

1 + δ

(∫

E

ϕ2 dη

)1/4
]

≤ exp



√
2 δ

1 + δ

(∫

E

(
ϕ+

9(1 + δ)2

2δ2

)2

dη

)1/4



≤
∫

E

exp



√
2 δ

1 + δ

((
ϕ+

9(1 + δ)2

2δ2

)2
)1/4


 dη

=

∫

E

e
√

2δ2ϕ/(1+δ2)+9 dη

≤
∫

E

eδ
√
2ϕ /(1+δ)+3dη.

In other words, √
2 δ

1 + δ

(∫

E

ϕ2 dη

)1/4

≤ 3 + log

∫

E

eδ
√
2ϕ /(1+δ) dη

and so

2

(∫

E

ϕ2 dη

)1/2

≤
(
1 + δ

δ

)2(
3 + log

∫

E

eδ
√
2ϕ /(1+δ) dη

)2

.

Moreover, using Hölder’s inequality,

∫

E

eδ
√
2ϕ /(1+δ) dη ≤

(∫

E

e
√
2ϕ dν

)δ/(1+δ)(∫

E

f1+δdν

)1/(1+δ)

and so

∫

u>4

ϕu dν ≤
(
1 + δ

δ

)2(
3 +

δ

1 + δ
log

∫

E

e
√
2ϕ dν +

1

1 + δ
log

∫

E

f1+δdν

)2

KL(η | ν)1/2

≤
(
27

(
1 + δ

δ

)2

+ 3

(
log

∫

E

e
√
2ϕ dν

)2

+ 3 (D1+δ(η|ν))2
)
KL(η | ν)1/2

Combining this with (14), we obtain the required result.

D.11 Proof of Theorem B.4

We have the following more general result, which we prove in the next section:
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Theorem D.5. Let ϕ be a nonnegative measurable function on E and let q, q′ > 1 be such that 1
q+

1
q′ = 1.

Then we have

‖ϕ(η−ν)‖TV ≤
[
2

(∫

E

ϕ2 dν

)1/2

+ 2

(
1

q

∫

E

ϕ2qdν +
1

q′
exp ((q′ − 1)Dq′(η|ν))

)1/2
]
KL(η | ν)1/2.

As described in more detail in Appendix D.9, Theorem B.4 follows immediately from Theorem D.5

when we use ϕ = 1
2m(ϑ′, ·).

D.12 Proof of Theorem D.5

We again assume, without loss of generality, that η is absolutely continuous with respect to ν, with

density f . We set u := f − 1 so that

η = (1 + u)ν

and note that u ≥ −1 and
∫
E
udν = 0. We also define

h(v) := (1 + v) log(1 + v)− v, v ∈ [−1,+∞)

so that

KL(η | ν) =
∫

E

h(u)dν.

We note that h ≥ 0. We split the total variation in the following way:

∫
ϕd|η − ν| =

∫
ϕ|u| dν =

∫

{−1≤u≤4}
ϕ|u| dν +

∫

{u>4}
ϕu dν. (16)

Using (13), we have that

∫

{u≤4}
ϕ|u| dν ≤ 2

(∫

E

ϕ2 dν

)1/2

KL(η | ν)1/2. (17)

Furthermore, using (15), we have

∫

u>4

ϕu dν ≤ 2

(∫

E

ϕ2 dη

)1/2

KL(η | ν)1/2. (18)

Using Young’s inequality, we obtain

∫

E

ϕ2 dη =

∫

E

ϕ2f dν ≤ 1

q

∫

E

ϕ2qdν +
1

q′

∫

E

fq′dν =
1

q

∫

E

ϕ2qdν +
1

q′
exp ((q′ − 1)Dq′(η|ν)) ,

which, together with (16), (17) and (18) gives the assertion.

D.13 Proof of Proposition B.2

As described in more detail in Appendix D.9, Proposition B.2 follows immediately from the following

result:s

Theorem D.6. Let ϕ be a nonnegative measurable function on E and suppose that η and ν are probability

measures and η ≪ ν. Then

‖ϕ(η − ν)‖TV ≤
(∫

ϕ2 dν

)1/2

(exp {D2(η|ν)} − 1)
1/2

.
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Proof. Let f = dη
dν . We set u := f − 1 so that

η = (1 + u)ν.

Note that the total variation can be expressed in the following way

∫
ϕd|η − ν| =

∫
ϕ|u| dν

≤
(∫

ϕ2 dν

)1/2(∫
u2 dν

)1/2

≤
(∫

ϕ2 dν

)1/2(∫
(f2 − 2f + 1) dν

)1/2

=

(∫
ϕ2 dν

)1/2(∫
f2 dν − 1

)1/2

=

(∫
ϕ2 dν

)1/2

(exp {D2(η|ν)} − 1)
1/2

.
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