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Abstract

Leave-one-out cross-validation (LOOCV)
can be particularly accurate among cross-
validation (CV) variants for machine learning
assessment tasks – e.g., assessing methods’
error or variability. But it is expensive
to re-fit a model N times for a dataset
of size N . Previous work has shown that
approximations to LOOCV can be both fast
and accurate – when the unknown parameter
is of small, fixed dimension. But these ap-
proximations incur a running time roughly
cubic in dimension – and we show that,
besides computational issues, their accuracy
dramatically deteriorates in high dimensions.
Authors have suggested many potential and
seemingly intuitive solutions, but these
methods have not yet been systematically
evaluated or compared. We find that all but
one perform so poorly as to be unusable for
approximating LOOCV. Crucially, though,
we are able to show, both empirically
and theoretically, that one approximation
can perform well in high dimensions – in
cases where the high-dimensional parameter
exhibits sparsity. Under interpretable as-
sumptions, our theory demonstrates that the
problem can be reduced to working within an
empirically recovered (small) support. This
procedure is straightforward to implement,
and we prove that its running time and error
depend on the (small) support size even
when the full parameter dimension is large.

1 Introduction

Assessing the performance of machine learning meth-
ods is an important task in medicine, genomics, and
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other applied fields. Experts in these areas are inter-
ested in understanding methods’ error or variability
and, for these purposes, often turn to cross valida-
tion (CV); see, e.g., Saeb et al. [2017], Powers et al.
[2019], Carrera et al. [2009], Joshi et al. [2009], Chan-
drasekaran et al. [2011], Biswal et al. [2001], Roff and
Preziosi [1994]. Even after decades of use [Stone, 1974,
Geisser, 1975], CV remains relevant in modern high-
dimensional and complex problems. In these cases, CV
provides, for example, better out-of-sample error esti-
mates than simple test error or training error [Stone,
1974]. Moreover, among variants of CV, leave-one-out
CV (LOOCV) offers to most closely capture perfor-
mance on the dataset size of interest. For instance,
LOOCV is particularly accurate for out-of-sample er-
ror estimation [Arlot and Celisse, 2010, Sec. 5].1

Modern datasets, though, pose computational chal-
lenges for CV. For instance, CV requires running a ma-
chine learning algorithm many times, especially in the
case of LOOCV. This expense has led to recent propos-
als to approximate LOOCV [Obuchi and Kabashima,
2016, 2018, Beirami et al., 2017, Rad and Maleki, 2020,
Wang et al., 2018, Giordano et al., 2019b, Xu et al.,
2019]. Theory and empirics demonstrate that these
approximations are fast and accurate – as long as the
dimension D of the unknown parameter in a problem
is low. Unfortunately a number of issues arise in high
dimensions, the exact case of modern interest. First,
existing error bounds for LOOCV approximations ei-
ther assume a fixed D or suffer from poor error scaling
when D grows with N . One might wonder whether
the theory could be improved, but our own experi-
ments (see, e.g., Fig. 1) confirm that LOOCV approx-
imations can suffer considerable error degradation in
high dimensions in practice. Second, even if the ap-
proximations were accurate in high dimensions, these
approximations require solving a D-dimensional linear
system, which incurs an O(D3) cost.

Previous authors have proposed a number of potential
solutions for one or both of these problems, but these

1In the case of linear regression, LOOCV provides the
least biased and lowest variance estimate of out-of-sample
error among other CV methods [Burman, 1989].
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experiments in Appendix H confirm that approximate
CV for model selection exhibits complex behavior. We
thus expect significant further work, outside the scope
of the present paper, to be necessary to develop a theo-
retical understanding of approximate CV for model se-
lection. Indeed, to the best of our knowledge, all exist-
ing theory for the accuracy of approximate CV applies
only to model assessment [Beirami et al., 2017, Rad
and Maleki, 2020, Giordano et al., 2019b, Xu et al.,
2019, Koh et al., 2019].

2 Overview of Approximations

Let θ ∈ Θ ⊆ R
D be an unknown parameter of inter-

est. Consider a dataset of size N , where n ∈ [N ] :=
{1, 2, . . . , N} indexes the data point. Then a number
of problems – such as maximum likelihood, general M-
estimation, and regularized loss minimization – can be
expressed as solving

θ̂ := argmin
θ∈Θ

1

N

N∑

n=1

fn(θ) + λR(θ), (1)

where λ ≥ 0 is a constant, and R : Θ → R+ and
fn : Θ → R are functions. For instance, fn might
be the loss associated with the nth data point, R the
regularizer, and λ the amount of regularization. Con-
sider a dataset where the nth data point has covari-
ates xn ∈ R

D and response yn ∈ R. In what follows,
we will be interested in taking advantage of sparsity.
With this in mind, we focus on generalized linear mod-
els (GLMs), where fn(θ) = f(xTnθ, yn), as they offer a
natural framework where sparsity can be expressed by
choosing many parameter dimensions to be zero.

In LOOCV, we are interested in solutions of the same
problem with the nth data point removed.3 To that
end,4 define θ̂\n := argminθ∈Θ

1
N

∑
m:m 6=n fm(θ) +

λR(θ). Computing θ̂\n exactly across n usually re-
quires N runs of an optimization procedure – a pro-
hibitive cost. Various approximations, detailed next,
address this cost by solving Eq. (1) only once.

Two approximations. Assume that f and R are
twice differentiable functions of θ. Let F (θ) :=
(1/N)

∑
n f(x

T
nθ, yn) be the unregularized objective,

and let H(θ) := ∇2
θF (θ) + λ∇2

θR(θ) be the Hessian
matrix of the full objective. For the moment, we as-
sume appropriate terms in each approximation below
are invertible. Beirami et al. [2017], Rad and Maleki
[2020], Wang et al. [2018], Koh et al. [2019] approxi-

3See Appendix A for a brief review of CV methods.
4Note our choice of 1/N scaling here – instead of

1/(N − 1). While we believe this choice is not of par-
ticular importance in the case of LOOCV, this issue does
not seem to be settled in the literature; see Appendix B.

mate θ̂\n by taking a Newton step (“NS”) on the ob-

jective (1/N)
∑

m:m 6=n fm + λR starting from θ̂; see
Appendix D.4 for details. We thus call this approxi-
mation ÑS\n(R) for regularizer R:

ÑS\n(R) := θ̂ +
1

N

(
H(θ̂)− 1

N
∇2

θfn(θ̂)

)−1

∇θfn(θ̂).

(2)
In the case of GLMs, Theorem 8 of Rad and Maleki
[2020] gives conditions on xn and f(·, ·) that imply,

for fixed D, the error of ÑS\n(R) averaged over n is
o(1/N) as N → ∞.

Koh and Liang [2017], Beirami et al. [2017], Giordano
et al. [2019b], Koh et al. [2019] consider a second ap-
proximation. As their approximation is inspired by
the infinitesimal jackknife (“IJ”) [Jaeckel, 1972, Efron,

1982], we denote it by ĨJ\n(R); see Appendix D.1.

ĨJ\n(R) := θ̂ +
1

N
H(θ̂)−1∇θfn(θ̂). (3)

Giordano et al. [2019b] study the case of λ = 0, and, in
their Corollary 1, show that the accuracy of Eq. (3) is
bounded by C/N in general or, in the case of bounded
gradients ‖∇θf(x

T
nθ, yn)‖∞ ≤ B, by C ′B/N2. The

constants C,C ′ may depend on D but not N . Our
Proposition 2 in Appendix D.3 extends this result to
the regularized case, λ ≥ 0. Still, we are left with the
fact that C and C ′ depend on D in an unknown way.

In what follows, we consider both ÑS\n(R) and

ĨJ\n(R), as they have complimentary strengths. Em-

pirically, we find that ÑS\n(R) performs better in our

LOOCV GLM experiments. But ĨJ\n(R) is compu-
tationally efficient beyond LOOCV and GLMs. E.g.,
for general models, computation of ÑS\n(R) requires

inversion of a new Hessian for each n, whereas ĨJ\n(R)

needs only the inversion of H(θ̂) for all n. In terms of

theory, ÑS\n(R) has a tighter error bound of o(1/N)

for GLMs. But the theory behind ĨJ\n(R) applies
more generally, and, given a good bound on the gra-
dients, may provide a tighter rate.

3 Problems in high dimensions

In the above discussion, we noted that there exists en-
couraging theory governing the behavior of ÑS\n(R)

and ĨJ\n(R) when D is fixed and N grows large. We

now describe issues with ÑS\n(R) and ĨJ\n(R) when
D is large relative to N . The first challenge for both
approximations given large D is computational. Since
every variant of CV or approximate CV requires run-
ning the machine learning algorithm of interest at least
once, we will focus on the cost of the approximations
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after this single run. Given θ̂, both approximations
require the inversion of a D ×D matrix. Calculation
of ĨJ\n(R) across n ∈ [N ] requires a single matrix in-
version and N matrix multiplications for a runtime in
O(D3 + ND2). In general, calculating ÑS\n(R) has
runtime of O(ND3) due to needing an inversion for
each n. In the case of GLMs, though, ∇2

θfn is a rank-
one matrix, so standard rank-one updates give a run-
time of O(D3 +ND2) as well.

The second challenge for both approximations is the
invertibility of H(θ̂) and H(θ̂) − (1/N)∇2

θf(x
T
nθ, yn)

that was assumed in defining ÑS\n(R) and ĨJ\n(R).

We note that, if ∇2R(θ̂) is only positive semidefinite,
then invertibility of both matrices may be impossible
when D ≥ N ; see Appendix D.2 for more discussion.

The third and final challenge for both approximations
is accuracy in high dimensions. Not only do existing
error bounds behave poorly (or not exist) in high di-
mensions, but empirical performance degrades as well.
To create Fig. 1, we generated datasets from a sparse
logistic regression model with N ranging from 500 to
5,000. For the blue lines, we set D = 2, and for the
red lines we set D = N/10. In both cases, we see that
error is much lower when D is small and fixed.

We recall that for large N and small D, training error
often provides a fine estimate of the out-of-sample er-
ror (e.g., see [Vapnik, 1992]). That is, CV is needed
precisely in the high-dimensional regime, and this case
is exactly where current approximations struggle both
computationally and statistically. Thus, we wish to
understand whether there are high-D cases where ap-
proximate CV is useful. In what follows, we consider
a number of options for tackling one or more of these
issues and show that only one method is effective in
high dimensions.

Proposal #1: Use randomized solvers to reduce
computation. Previously, Koh and Liang [2017] have

utilized ĨJ\n(R) for qualitative purposes, in which they
are interested in its sign and relative magnitude across
different n. They tackle the O(D3) scaling of ĨJ\n(R)
by using the randomized solver from Agarwal et al.
[2017]. While one might hope to replicate the success
of Koh and Liang [2017] in the context of approximate
CV, we show in Appendix C that this randomized
solver performs poorly for approximating CV: while
it can be faster than exactly solving the needed linear
systems, it provides an approximation to exact CV
that can be an order of magnitude less accurate.

3.1 Sparsity via ℓ1 regularization.

Intuitively, if the exact θ̂\n’s have some low “effec-
tive dimension” Deff ≪ D, we might expect approx-

imate CV’s accuracy to depend only on Deff . One
way to achieve low Deff is sparsity: i.e., we have
D̂eff := |supp θ̂| ≪ D, where Ŝ := supp θ̂ collects the

indices of the non-zero entries of θ̂. A way to achieve
sparsity is choosing R(θ) = ‖θ‖1. However, note that

ÑS\n(R) and ĨJ\n(R) cannot be applied directly in this
case as ‖θ‖1 is not twice-differentiable. Proposal #2:
Rad and Maleki [2020], Wang et al. [2018] propose the
use of a smoothed approximation to ‖ · ‖1; however, as
we show in Section 5, this approach is often multiple
orders of magnitude more inaccurate and slower than
Proposal #4 below.

Proposal #3: Subsample exact CV. Another op-
tion is to bypass all the problems of approximate CV
in high-D by uniformly subsampling a small collection
of LOOCV folds. This provides an unbiased estimate
of exact CV and can be used with exact ℓ1 regulariza-
tion. However, our experiments (Section 5) show that,
under a time budget, the results of this method are
so variable that their error is often multiple orders of
magnitude higher than Proposal #4 below.

Proposal #4: Use the sparsity from θ̂. Instead,
in what follows, we take the intuitive approach of ap-
proximating CV only on the dimensions in supp θ̂.
Unlike all previously discussed options, we show that
this approximation is fast and accurate in high dimen-
sions in both theory and practice. For notation, let
X ∈ R

N×D be the covariate matrix, with rows xn. For
S ⊂ [D], let X·,S be the submatrix of X with column

indices in S; define xnS and θS similarly. Let D̂
(2)
n :=[

d2f(z, yn)/dz
2
]
z=xT

n θ̂
, and define the restricted Hes-

sian evaluated at θ̂: HŜŜ := XT
·,Ŝdiag{D̂

(2)
n }X·,Ŝ .

Further define the LOO restricted Hessian, H
\n
ŜŜ

:=

HŜŜ − [∇2
θf(x

T
n θ̂, yn)]ŜŜ . Finally, without loss of gen-

erality, assume Ŝ = {1, 2, . . . , D̂eff}. We now define

versions of ÑS\n(R) and ĨJ\n(R) restricted to the en-

tries in supp θ̂:

NS\n :=

(
θ̂Ŝ + (H

\n
ŜŜ

)−1
[
∇θf(x

T
n θ̂, yn)

]
Ŝ

0

)
(4)

IJ\n :=

(
θ̂Ŝ +H−1

ŜŜ

[
∇θf(x

T
n θ̂, yn)

]
Ŝ

0

)
. (5)

Other authors have previously considered NS\n. Rad
and Maleki [2020], Wang et al. [2018] derive NS\n
by considering a smooth approximation to ℓ1 and
then taking the limit of ÑS\n(R) as the amount of
smoothness goes to zero. In Appendix E, we show a
similar argument can yield IJ\n. Also, Obuchi and
Kabashima [2016, 2018], Beirami et al. [2017] directly

propose NS\n without using ÑS\n(R) as a starting
point. We now show how NS\n and IJ\n avoid the
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three major high-dimensional challenges with ÑS\n(R)

and ĨJ\n(R) we discussed above.

The first challenge was that compute time for ÑS\n(R)

and ĨJ\n(R) scaled poorly with D. That NS\n and
IJ\n do not share this issue is immediate from their
definitions.

Proposition 1. For general fn, the time to compute
NS\n or IJ\n scales with D̂eff , rather than D. In
particular, computing NS\n across all n ∈ [N ] takes

O(ND̂3
eff) time, and computing IJ\n across all n ∈ [N ]

takes O(D̂3
eff + ND̂2

eff) time. Furthermore, when fn
takes the form of a GLM, computing NS\n across all

n ∈ [N ] takes O(D̂3
eff +ND̂2

eff) time.

The second high-dimensional challenge was thatH and
H\n may not be invertible when D ≥ N . Notice the
relevant matrices in NS\n and IJ\n are of dimension

D̂eff = |Ŝ|. So we need only make the much less restric-
tive assumption that D̂eff < N , rather than D < N .
We address the third and final challenge of accuracy
in the next section.

4 Approximation quality in high
dimensions

Recall that the accuracy of ÑS\n(R) and ĨJ\n(R) in
general has a poor dependence on dimension D. We
now show that the accuracy of NS\n and IJ\n de-

pends on (the hopefully small) D̂eff rather than D.
We start by assuming a “true” population parame-
ter5 θ∗ ∈ R

D that minimizes the population-level loss,
θ∗ := argminEx,y[f(x

T θ, y)], where the expectation is
over x, y from some population distribution. Assume
θ∗ is sparse with S := supp θ∗ and Deff := |S|. Our
parameter estimate would be faster and more accurate
if an oracle told us S in advance and we worked just
over S:

φ̂ := argmin
φ∈R

Deff

1

N

N∑

n=1

f(xTnSφ, yn) + λ ‖φ‖1 . (6)

We define φ̂\n as the leave-one-out variant of φ̂ (as θ̂\n
is to θ̂). Let RNS\n and RIJ\n be the result of applying
the approximation in NS\n or IJ\n to the restricted
problem in Eq. (6); note that RNS\n and RIJ\n have
accuracy that scales with the (small) dimension Deff .

Our analysis of the accuracy of NS\n and IJ\n will de-

pend on the idea that if, for all n, NS\n, IJ\n, and θ̂\n
run over the same Deff -dimensional subspace, then the

5This assumption may not be necessary to prove the

dependence of NS\n and IJ\n on D̂eff , but it allows us to
invoke existing ℓ1 support results in our proofs.

accuracy of NS\n and IJ\n must be identical to that
of RNS\n and RIJ\n. In the case of ℓ1 regularization,
this idea specializes to the following condition, under
which our main result in Theorem 1 will be immediate.

Condition 1. For all n ∈ [N ], we have supp IJ\n =

suppNS\n = supp θ̂\n = S.

Theorem 1. Assume Condition 1 holds. Then for all
n, θ̂\n and IJ\n are (1) zero outside the dimensions
S and (2) equal to their restricted counterparts from
Eq. (6):

θ̂\n =

(
θ̂\n,S
0

)
=

(
φ̂\n
0

)
,

IJ\n =

(
IJ\n,S

0

)
=

(
RIJ\n

0

)
. (7)

It follows that the error is the same in the full problem
as in the low-dimensional restricted problem: ‖θ̂\n −
IJ\n‖2 = ‖φ̂\n − RIJ\n‖2. The same results hold for
IJ\n and RIJ\n replaced by NS\n and RNS\n.

Taking Condition 1 as a given, Theorem 1 tells us that
for ℓ1 regularized problems, IJ\n and NS\n inherit the

fixed-dimensional accuracy of ĨJ\n(R) and ÑS\n(R)
shown empirically in Fig. 1 and described theoreti-
cally in the references from Section 1. Taking a step
further, one could show that IJ\n and NS\n are ac-
curate for model assessment tasks by using results on
the accuracy of exact CV for assessment (e.g., [Abou-
Moustafa and Szepesvári, 2018, Steinberger and Leeb,
2018, Barber et al., 2019]).

Again, Theorem 1 is immediate if one is willing to as-
sume Condition 1, but when does Condition 1 hold?
There exist assumptions in the ℓ1 literature under
which supp θ̂ = S [Lee et al., 2014, Li et al., 2015].
If one took these assumptions to hold for all F \n :=
(1/N)

∑
m:m 6=n fm, then Condition 1 would directly

follow. However, it is not immediate that any mod-
els of interest meet such assumptions. Rather than
taking such uninterpretable assumptions or just tak-
ing Condition 1 as an assumption directly, we will give
a set of more interpretable assumptions under which
Condition 1 holds.

In fact, we need just four principal assumptions in
the case of linear and logistic regression; we conjec-
ture that similar results hold for other GLMs. The
first assumption arises from the intuition that, if indi-
vidual data points are very extreme, the support will
certainly change for some n. To avoid these extremes
with high probability, we assume that the covariates
follow a sub-Gaussian distribution:

Definition 1. [e.g., Vershynin [2018]] For cx >
0, a random variable V is cx-sub-Gaussian if
E
[
exp

(
V 2/c2x

)]
≤ 2.
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Assumption 1. Each xn ∈ R
D has zero-mean i.i.d.

cx-sub-Gaussian entries with E[x2nd] = 1.

We conjecture that the unit-variance part of the as-
sumption is unnecessary. Conditions on the distri-
butions of the responses yn will be specific to linear
and logistic regression and will be given in Assump-
tions 5 and 6, respectively. Our results below will hold
with high probability under these distributions. Note
there are reasons to expect we cannot do better than
high-probability results. In particular, Xu et al. [2012]
show that there exist worst-case training datasets for
which sparsity-inducing methods like ℓ1 regularization
are not stable as each datapoint is left out.

Our second principal assumption is an incoherence
condition.

Assumption 2. The incoherence condition holds with
high probability over the full dataset:

Pr
[∥∥∥∇F (θ∗)Sc,S

(
∇2F (θ∗)SS

)−1
∥∥∥
∞
< 1− α

]
≤ e−25,

Authors in the ℓ1 literature often assume that inco-
herence holds deterministically for a given design ma-
trix X – starting from the introduction of incoherence
by Zhao and Yu [2006] and continuing in more recent
work [Lee et al., 2014, Li et al., 2015]. Similarly, we
will take our high probability version in Assumption 2
as given. But we note that Assumption 2 is at least
known to hold for the case of linear regression with an
i.i.d. Gaussian design matrix (e.g., see Exercise 11.5 of
Hastie et al. [2015]). We next place some restrictions
on how quickly D and Deff grow as functions of N .

Assumption 3. As functions of N , D and Deff sat-
isfy: (1) D = o(eN ), (2) Deff = o([N/ logN ]2/5), and

(3) D
3/2
eff

√
logD = o(N).

The constraints on D here are particularly loose.
While those on Deff are tighter, we still allow poly-
nomial growth of Deff in N for some lower powers of
N . Our final assumption is on the smallest entry of
θ∗S . Such conditions – typically called beta-min con-
ditions – are frequently used in the ℓ1 literature to
ensure Ŝ = S [Wainwright, 2009, Lee et al., 2014, Li
et al., 2015].

Assumption 4. θ∗ satisfies mins∈S |θ∗s | >√
DeffTminλ, where Tmin is some constant relat-

ing to the objective function f ; see Assumption 15 in
Appendix I.1 for an exact description.

4.1 Linear regression

We now give the distributional assumption on the re-
sponses yn in the case of linear regression and then
show that Condition 1 holds.

Assumption 5. ∀n, yn = xTnθ
∗+εn, where the εn are

i.i.d. cε-sub-Gaussian random variables.

Theorem 2 (Linear Regression). Take Assumptions 1
to 5. Suppose the regularization parameter λ satisfies

λ ≥ C

α−Mlin

(√
c2xc

2
ε logD

N
+

25c2xc
2
ε

N

+
4cxcε(log(ND) + 26)

N

)
, (8)

where C > 0 is a constant in N,D,Deff , cx, and cε,
and Mlin is a scalar given by Eq. (36) in Appendix I
that satisfies, as N → ∞, Mlin = o(1). Then for N
sufficiently large, Condition 1 holds with probability at
least 1− 26e−25.

A full statement and proof of Theorem 2, including the
exact value ofMlin, appears in Appendix I. A corollary
of Theorem 1 and Theorem 2 together is that, under
Assumptions 1 to 5, the LOOCV approximations IJ\n
and NS\n have accuracy that depends on (the ideally
small) Deff rather than (the potentially large) D.

It is worth considering how the allowed values of λ in
Eq. (8) compare to previous results in the ℓ1 literature

for the support recovery of θ̂. We will talk about a
sequence of choices of λ scaling with N denoted by
λN . Theorem 11.3 of Hastie et al. [2015] shows that
λN ≥ c

√
log(D)/N (for some constant c in D and N)

is sufficient for ensuring that supp θ̂ ⊆ S with high
probability in the case of linear regression. Thus, we
ought to set λN ≥ c

√
log(D)/N to ensure support

recovery of θ̂. Compare this constraint on λN to the
constraint implied by Eq. (8). We have that Mlin =
o(1) as N → ∞, so that, for large N , the bound in
Eq. (8) becomes λN ≥ c′

√
log(D)/N for some constant

c′. Thus, the sequence of λN satisfying Eq. (8) scales

at exactly the same rate as those that ensure supp θ̂ ⊆
S. The scaling of λN is important, as the error in θ̂,
‖θ̂ − θ∗‖22, is typically proportional to λN . The fact
that we have not increased the asymptotic scaling of
λN therefore means that we can enjoy the same decay
of ‖θ̂ − θ∗‖22 while ensuring supp θ̂\n = S for all n.

4.2 Logistic regression

We now give the distributional assumption on the re-
sponses yn in the case of logistic regression.

Assumption 6. ∀n, we have yn ∈ {±1} with

Pr [yn = 1] = 1/(1 + e−xT
nθ∗

).

We will also need a condition on the minimum eigen-
value of the Hessian.

Assumption 7. Assume for some scalar Lmin that
may depend on N,Deff , and cx, we have

Pr
[
λmin

(
∇2

θF (θ
∗)SS

)
≤ Lmin

]
≤ e−25.
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A Cross-validation methods

In this appendix, we review standard cross-validation (CV) for optimization problems of the form:

argmin
θ∈Θ

N∑

n=1

fn(θ) + λR(θ),

where Θ ⊆ R
D. By leave-one-out cross-validation (LOOCV), we mean the process of repeatedly computing:

θ̂\n :=
∑

m:m 6=n

fm(θ) + λR(θ).

The parameter estimates {θ̂\n}Nn=1 might then be used to produce an estimate of variability or out-of-sample

error; e.g., to estimate the out-of-sample error, one computes (1/N)
∑

n fn(θ̂\n). By K-fold cross-validation, we
mean the process of splitting up the dataset into K disjoint folds, S1, . . . , SK with S1 ∪ · · · ∪ SK = [N ]. One
then estimates the parameters:

θ̂\Sk
:= argmin

θ∈Θ

∑

n:n 6∈Sk

fn(θ) + λR(θ).

The parameter estimates {θ̂\Sk
}Kk=1 might then be used to produce an estimate of variability or out-of-sample

error.

B Scaling of the leave-one-out objective

We defined θ̂\n as the solution to the following optimization problem:

θ̂\n := argmin
θ∈Θ

1

N

∑

m:m 6=n

fm(θ) + λR(θ).

An alternative would be to use the objective 1/(N − 1)
∑

m:m 6=n fm + λR in order to keep the scaling between
the regularizer and the objective the same as in the full-data problem. Indeed, all existing theory that we are
aware of for CV applied to ℓ1 regularized problems seems to follow the 1/(N − 1) scaling [Homrighausen and
McDonald, 2014, 2013, Miolane and Montanari, 2018, Chetverikov et al., 2020]. On the other hand, all existing
approaches to approximate LOOCV for regularized problems have used the 1/N scaling that we have given
[Beirami et al., 2017, Rad and Maleki, 2020, Wang et al., 2018, Xu et al., 2019, Obuchi and Kabashima, 2016,
2018]. Note that the scaling is not relevant in Giordano et al. [2019b], as they do not consider the regularized
case. As our work is aimed at identifying when existing approximations work well in high dimensions, we have
followed the 1/N choice from the literature on approximate LOOCV. The different results from using the two
scalings may be insignificant when leaving only one datapoint out. But one might expect the difference to be
substantial for, e.g., K-fold CV. We leave an understanding of what the effect of this scaling is (if any) to future
work.

C Approximately solving ĨJ\n(R) and ÑS\n(R)

We have seen ĨJ\n(R) and ÑS\n(R) are in general not accurate for high-dimensional problems. Even worse,
they can become prohibitively costly to compute due to the O(D3) cost required to solve the needed linear
systems. One idea to at least alleviate this computational burden, proposed by Koh and Liang [2017] in a
slightly different context, is to use a stochastic inverse Hessian-vector-product from Agarwal et al. [2017] to

approximately compute ĨJ\n(R) and ÑS\n(R). Although this method works well for the purposes of Koh and
Liang [2017], we will see that in the context of approximate CV, it adds a large amount of extra error on top of

the already inaccurate ÑS\n(R) and ĨJ\n(R).

We first describe this stochastic inverse Hessian-vector-product technique and argue that it is not suitable for
approximating cross-validation. The main idea from Agarwal et al. [2017] is to use the series:

H−1 =

∞∑

k=0

(I −H)k,
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Figure 6: Stochastic Hessian experiments from Appendix C. We show percent error of approximation versus
compute time for two different dataset sizes. We show three techniques for computing CV: exactly computing
CV (black dot, which naturally has 0% error), ĨJ\n(R) with exactly computing the needed linear systems (red

dot), and ĨJ\n(R) with the stochastic solves described in Appendix C (blue dots, one for each setting of the
parameters K and M). Values of M and K used are described in Appendix C; we use an extended range of
settings for the smaller dataset to more extensively illustrate the approximation’s behavior. Settings of K and
M for which the stochastic solves are roughly as fast as exactly computing ĨJ\n(R) result in a significantly less
accurate approximation of CV.

which holds for any positive definite H with ‖H‖op ≤ 1. Now, we can both truncate this series at some level K
and write it recursively as:

H−1 ≈ H−1
K := I + (I −H)H−1

K−1,

where H−1
0 = I. Next, to avoid computing H explicitly, we can note that if Ak is some random variable with

E[Ak] = H, we can instead just sample a new Ak at each iteration to define:

H̄−1
k := I + (I −Ak)H̄

−1
K−1.

In our case, we pick a random nk ∈ [N ] and set Ak = ∇2
θf(x

T
nk
θ, ynk

) + (1/N)λ∇2R(θ). Finally, Agarwal et al.

[2017] suggest taking M samples of H̄−1
K and averaging the results to lower the variance of the estimator. This

leaves us with two parameters to tune: M and K. Increasing either will make the estimate more accurate
and more expensive to compute. Koh and Liang [2017] use this approximation to compute ĨJ\n(R) for high
dimensional models such as neural networks; however, we remark that their interest lies in the qualitative
properties of ĨJ\n(R), such as signs and relative magnitudes across various values of n. It remains to be seen
whether this stochastic solver can be successfully used to approximate CV.

To test the application of this approximation to approximate CV, we generated a synthetic logistic regression

dataset with covariates xnd
i.i.d.∼ N(0, 1). We use R(θ) = ‖θ‖22. In Fig. 6, we show that for two settings of N and

D there are no settings of M and K for which using H̄−1
K to compute ĨJ\n(R) provides a both fast and accurate

approximation to CV. Specifically, we range K ∈ {1, 20, 30, 50, 60, 80, 100, 120} and M ∈ {2, 25} and see that
when the stochastic approximation is faster, it provides only a marginal speedup while providing a significantly
worse approximation error.

D Further details of Eq. (2) and Eq. (3)

In Section 2, we briefly outlined the approximations ÑS\n(R) and ĨJ\n(R) to θ̂\n; we give more details about these

approximations and their derivations here. Recall that we defined H(θ̂) := (1/N)
∑N

n=1 ∇2
θf(x

T
n θ̂, yn)+λ∇2

θR(θ̂).
We first restate the “infinitesimal jackknife” approximation from the main text, which was derived by the same
approach taken by Giordano et al. [2019b]:
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θ̂\n ≈ ĨJ\n(R) := θ̂ +
1

N
H(θ̂)−1∇θf(x

T
n θ̂, yn). (11)

The “Newton step” approximation, similar to the approach in Beirami et al. [2017] and identical to the approx-
imation in Rad and Maleki [2020], Wang et al. [2018], is:

θ̂\n ≈ ÑS\n(R) := θ̂ +
1

N

(
H(θ̂)− 1

N
∇2

θf(x
T
n θ̂, yn)

)−1

∇θf(x
T
n θ̂, yn). (12)

D.1 Derivation of ĨJ\n(R)

We will see in Appendix D.3 that, after some creative algebra, ĨJ\n(R) is an instance of θ̂IJ from Definition 2
of Giordano et al. [2019b]. However, this somewhat obscures the motivation for considering Eq. (11). As an
alternative to jamming our problem setup into that considered by Giordano et al. [2019b], we can more directly
obtain the approximation in Eq. (11) by a derivation only slightly different from that in Giordano et al. [2019b].

We begin by defining θ̂w as the solution to a weighted optimization problem with weights wn ∈ R:

θ̂w := argmin
θ∈Θ

G(w, θ) := argmin
θ∈Θ

1

N

N∑

n=1

wnf(x
T
nθ, yn) + λR(θ), (13)

where we assume G to be twice continuously differentiable with an invertible Hessian at θ̂1 (where θ̂1 is the

solution in Eq. (13) with all wn = 1). For example, we have that θ̂\n = θ̂w if w is the N -dimensional vector of

all ones but with a zero in the nth coordinate. We will form a linear approximation to θ̂w as a function of w.
To do so, we will need to compute the derivatives dθ̂w/dwn for each n. To compute these derivatives, we begin
with the first order optimality condition of Eq. (13) and take a total derivative with respect to wn:

∂G

∂θ

∣∣∣
w=1,θ=θ̂1

= 0

=⇒ d

dwn

∂G

∂θ

∣∣∣
w=1,θ=θ̂1

=
∂2G

∂θ∂wn

∣∣∣
w=1,θ=θ̂1

dwn

dwn
+
∂2G

∂θ2

∣∣∣
w=1,θ=θ̂1

dθ̂w

dwn

∣∣∣
w=1

= 0.

Re-arranging, defining H(θ̂1) := ∇2
θG(w, θ̂

1), and using the assumed invertibility of H(θ̂1) gives:

dθ̂

dwn

∣∣∣
w=1

= −
(
∂2G

∂θ2

∣∣∣
w=1,θ=θ̂1

)−1
∂2G

∂wn∂θ

∣∣∣
w=1,θ=θ̂1

= − 1

N
H(θ̂)−1∇θf(x

T
n θ̂, yn). (14)

In the final equality, we used the fact that θ̂1 = θ̂. Now, by a first order Taylor expansion around w = (1, 1, . . . , 1),
we can write:

θ̂w ≈ θ̂ +

N∑

n=1

dθ̂

dwn

∣∣∣
w=1

(wn − 1) (15)

= θ̂ − 1

N

N∑

n=1

H(θ̂)−1∇θf(x
T
n θ̂, yn)(wn − 1). (16)

For the special case of w being the vector of all ones with a zero in the nth coordinate (i.e., the weighting for
LOOCV), we recover Eq. (11).

D.2 Invertibility in the definition of ÑS\n(R) and ĨJ\n(R)

In writing Eqs. (2) and (3) we have assumed the invertibility of H(θ̂) and H(θ̂)− (1/N)∇θf(x
T
nθ, yn). We here

note a number of common cases where this invertibility holds. First, if ∇2R is positive definite for all θ (as in the

case of R = ‖ · ‖22), then these matrices are always invertible. If R is merely convex, H(θ̂)− (1/N)∇θf(x
T
nθ, yn)

is invertible if Span {xm}m:m 6=n = R
D. This condition on the span holds almost surely if the xn are sampled

from a continuous distribution and D ≤ N .
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D.3 Accuracy of ĨJ\n(R) for regularized problems

As noted in the main text, Giordano et al. [2019b] show that the error of ĨJ\n(R) is bounded by C/N for some
C that is constant in N . However, their results apply only to the unregularized case (i.e., λ = 0). We show
here that their results can be extended to the case of λ > 0 with mild additional assumptions; the proof of
Proposition 2 appears below.

Proposition 2. Assume that the conditions for Corollary 1 of Giordano et al. [2019b] are satisfied by F (θ).
Furthermore, assume that we are restricted to θ in some compact subset Θ of RD, λ = O(1/

√
N), F+λR is twice

continuously differentiable for all θ, and that ∇2R(θ) is positive definite for all θ ∈ Θ. Then ĨJ\n(R) can be seen
as an application of the approximation in Definition 2 of Giordano et al. [2019b]. Furthermore, the assumptions
of their Corollary 1 are met, which implies:

max
n∈[N ]

‖ψ̃\n
IJ − θ̂\n‖2 ≤ C ′

N2
sup
θ∈Θ

max
n∈[N ]

∥∥∇θf(x
T
nθ, yn)

∥∥
∞ ≤ C

N
, (17)

where C and C ′ are problem-specific constants independent of N that may depend on D.

Proposition 2 provides two bounds on the error ‖ĨJ\n(R)− θ̂\n‖2: either C ′/N2 times the maximum of the gra-
dient or just C/N . One bound or the other may be easier to use, depending on the specific problem. It is worth
discussing the conditions of Proposition 2 before going into its proof. The first major assumption is that θ is re-
stricted to some compact set Θ. Although this assumption may not be satisfied by problems of interest, one may
be willing to assume that θ lives in some bounded set in practice. In any case, such an assumption seems neces-
sary to apply the results of Giordano et al. [2019b] to most unregularized problems, as they, for example, require
supθ∈Θ F (θ) to be bounded. We will require the compactness of Θ to show that supθ∈Θ F (θ)+λR(θ) is bounded.

The second major assumption of Proposition 2 is that λ = O(1/
√
N). We need this assumption to en-

sure that the term λR(θ) is sufficiently well behaved. In practice this assumption may be somewhat limiting;
however, we note that for fixed D, such a scaling is usually assumed – and in some situations is necessary – to
obtain standard theoretical results for ℓ1 regularization (e.g., Wainwright [2009] gives the standard scaling for
linear regression, λ = Ω(

√
log(D)/N)). Our Theorems 2 and 3 also satisfy such a scaling when D is fixed. In

any case, we stress that this assumption – as well as the assumption on compactness – are needed only to prove
Proposition 2, and not any of our other results. We prove Proposition 2 to demonstrate the baseline results that
exist in the literature so that we can then show how our results build on these baselines.

Proof. We proceed by showing that the regularized optimization problem in our Eq. (1) can be written in
the framework of Eq. (1) of Giordano et al. [2019b] and then showing that the re-written problem satisfies the
assumptions of their Corollary 1. First, the framework of Giordano et al. [2019b] applies to weighted optimization
problems of the form:

θ̂w := θ ∈ Θ s.t.
1

N

N∑

n=1

wngn(θ) = 0. (18)

In order to match this form, we will rewrite the gradient of the objective in Eq. (1) as a weighted sum with N+1
terms, where the first term, with weight w0 = 1, will correspond to R(θ):

1

N + 1
w0(N + 1)λ∇R(θ) + 1

N + 1

N∑

n=1

wn
N + 1

N
∇f(xTnθ, yn). (19)

We will also need a set of weight vectors W ⊆ R
N+1 for which we are interested in evaluating θ̂w. We choose

this set as follows. In the set, we include each weight vector that is equal to one everywhere except wn = 0 for
exactly one of n ∈ {1, . . . , N}. Thus, for each n, there is a w ∈ W such that θ̂w = θ̂\n. Finally, then, we can
apply Definition 2 of Giordano et al. [2019b] to find the approximation θIJ(w) for the w that corresponds to

leaving out n. We see that θIJ(w) in this case is exactly equal to ĨJ\n(R) in our notation here.

Now that we know our approximation is actually an instance of θIJ(w), we need to check that Eq. (19) meets
the assumptions of Corollary 1 of Giordano et al. [2019b] to apply their theoretical analysis to our problem. We
check these below, first stating the assumption from Giordano et al. [2019b] and then covering why it holds for
our problem.
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1. (Assumption 1 ): for all θ ∈ Θ, each gn is continuously differentiable in θ.
For our problem, by assumption, R(θ) and f(xTnθ, yn) are twice continuously differentiable functions of θ,
so this assumption holds.

2. (Assumption 2 ): for all θ ∈ Θ, the Hessian matrix, H(θ, 1) := (1/N)
∑

n ∂gn(θ)/∂θ
T is invertible and

satisfies supθ∈Θ ‖H−1(θ, 1)‖op ≤ Cop < ∞ for some constant Cop, where ‖ · ‖op denotes the operator norm
on matrices with respect to the ℓ2 norm (i.e., the maximum eigenvalue of the matrix).
For our problem, by assumption, the inverse matrix (∇2F (θ))−1 exists and has bounded maximum eigenvalue
for all θ ∈ Θ. Also by assumption, R has a positive semidefinite Hessian for all θ, which implies:

sup
θ∈Θ

∥∥H−1(θ, 1)
∥∥
op

= sup
θ∈Θ

∥∥∥
(
∇2F (θ) + λ∇2R(θ)

)−1
∥∥∥
op

≤ sup
θ∈Θ

∥∥∥
(
∇2F (θ)

)−1
∥∥∥
op
.

To see that the inequality holds, first note that for a positive semi-definite (PSD) matrix A, ‖A−1‖op =
1/λmin(A). The inequality would then follow if λmin(∇2F (θ) + λ∇2R(θ)) ≥ λmin(∇2F (θ)). To see that
this holds, take any two D ×D PSD matrices A and B. Let λd(·) be the dth eigenvalue of a matrix with
λ1 = λmin. Then:

λd(A+B) = min
E⊆R

D

dimE=d

max
x∈E

‖x‖
2
=1

xT (A+B)x ≥ min
E⊆R

D

dimE=d

max
x∈E

‖x‖
2
=1

xTAx = λd(A),

where the inequality holds because B is PSD. So, λmin(A + B) ≥ λmin(A), which finishes the proof. We
have thus showed that the operator norm of H−1(θ, 1) is bounded by that of ∇2F (θ)−1 for all θ ∈ Θ.

3. (Assumption 3 ): Let g(θ) and h(θ) be the (N + 1) × D stack of gradients and (N + 1) × D × D stack of
Hessians, respectively. That is, g(θ)nd := (∇θf(x

T
nθ, yn))d for n = 1, . . . , N and g(θ)N+1,d := (∇θR(θ))d,

with h defined similarly. Let ‖g(θ)‖2 be the ℓ2 norm of g flattened into a vector with ‖h(θ)‖2 defined similarly.
Then assume that there exist constants Cg and Ch such that:

sup
θ∈Θ

1√
N + 1

‖g(θ)‖2 ≤ Cg <∞

sup
θ∈Θ

1√
N + 1

‖h(θ)‖2 ≤ Ch <∞

To see that this holds for our problem, we have that:

‖g(θ)‖2 :=

[
D∑

d=1

(
(λ(N + 1)∇R(θ)d)2 +

N∑

n=1

(
N + 1

N

)2

(∇f(xTnθ, yn)d)2
)]1/2

≤ λ(N + 1) ‖∇R(θ)‖2 +
N + 1

N

[
D∑

d=1

N∑

n=1

(∇f(xTnθ, yn)d)2
]1/2

.

We need to show this is bounded by
√
N + 1Cg for some constant Cg. By assumption in the statement

of Proposition 2, we have 1√
N+1

‖∇F (θ)‖2 ≤ 1√
N
‖∇F (θ)‖2 ≤ C

(1)
g for some constant C

(1)
g . Because λ is

O(1/
√
N), the first term is equal to O(

√
N)‖∇R(θ)‖2. The compactness of Θ and the continuity of ∇R(θ)

imply that ‖∇R(θ)‖2 is bounded by a constant for all θ ∈ Θ. So, we know that O(
√
N)√

N+1
‖∇R(θ)‖2 ≤ C

(2)
g

for some constant C
(2)
g . Thus, we have that the assumption on ‖g(θ)‖2 holds with Cg = (N+1)

N C
(1)
g + C

(2)
g .

That the condition on ‖h(θ)‖2 holds follows by the same reasoning.

4. (Assumption 4 ): There exists some ∆θ > 0 and Lh < ∞ such that if
∥∥∥θ − θ̂

∥∥∥
2

≤ ∆θ, then

1√
N+1

∥∥∥h(θ)− h(θ̂)
∥∥∥
2
≤ Lh

∥∥∥θ − θ̂
∥∥∥
2
.
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We can show this holds for our problem by:
∥∥∥h(θ)− h(θ̂)

∥∥∥
2
:=
∥∥∥∥
N + 1

N
∇2F (θ) + λ(N + 1)∇2R(θ)− N + 1

N
∇2F (θ̂)− λ(N + 1)∇2R(θ̂)

∥∥∥∥
2

≤ (N + 1)λ
∥∥∥∇2R(θ)−∇2R(θ̂)

∥∥∥
2
+
N + 1

N

∥∥∥∇2F (θ)−∇2F (θ̂)
∥∥∥
2
,

where we have abused notation to denote
∥∥∇2F (θ)

∥∥
2
:=
√∑D

i,j=1

∑N
n=1 ∇2

θ(f(x
T
nθ, yn)ij)

2. Now, we want

to show that this quantity divided by
√
N + 1 is bounded by Lh‖θ − θ̂‖2 for some constant Lh. By as-

sumption in the statement of Proposition 2, we have that Assumption 4 holds for F ; this implies that
N+1

(
√
N+1)(N)

∥∥∥∇2F (θ)−∇2F (θ̂)
∥∥∥
2
≤ L

(1)
h ‖θ− θ̂‖2 for some constant L

(1)
h . As R is twice continuously differen-

tiable and the condition of Assumption 4 needs only to hold over a compact set of θ’s, we know that ∇2R(θ)
is Lipschitz over this domain. Using this along with the assumption that λ is O(1/

√
N), we have that:

λ(N + 1)√
N + 1

∥∥∥∇2R(θ)−∇2R(θ̂)
∥∥∥
2
= O(1)

∥∥∥∇2R(θ)−∇2R(θ̂)
∥∥∥
2

≤ L
(2)
h

∥∥∥θ − θ̂
∥∥∥
2
,

for some constant L
(2)
h . So, Assumption 4 holds with constant Lh = L

(1)
h + L

(2)
h .

5. (Assumption 5): For all w ∈ W , we have 1√
N+1

‖w‖2 ≤ Cw for some constant Cw. This is immediately

true for our definition of W , which, for all w ∈W , has ‖w‖2 =
√
N .

D.4 Derivation of ÑS\n(R)

Wang et al. [2018] and Rad and Maleki [2020] derive ÑS\n(R) in Eq. (12) by taking a single Newton step on

the objective F \n + λR starting at the point θ̂. For completeness, we include a derivation here. Recall that the
objective with one datapoint left out is:

F \n(θ) + λR(θ) :=
1

N

N∑

m=1

f(xTmθ, ym)− 1

N
f(xTnθ, yn) + λR(θ), (20)

which has H(θ) − (1/N)∇2
θf(x

T
nθ, yn) as its Hessian. Now consider approximating θ̂\n by performing a single

Newton step on F \n starting from θ̂:

θ̂\n ≈ θ̂ −
(
H(θ̂)− 1

N
∇2

θf(x
T
n θ̂, yn)

)−1
(

1

N

N∑

m=1

∇θf(x
T
mθ̂, ym)− 1

N
∇θf(x

T
n θ̂, yn) + λ∇R(θ̂)

)
. (21)

Using the fact that, by definition of θ̂, (1/N)
∑N

n=1 ∇θf(x
T
n θ̂, yn) + λ∇R(θ̂) = 0, we have that this simplifies to:

θ̂\n ≈ θ̂ +
1

N

(
H(θ̂)− 1

N
∇2

θf(x
T
n θ̂, yn)

)−1

∇θf(x
T
n θ̂, yn), (22)

which is exactly ÑS\n(R).

As ÑS\n(R) can be interpreted as a single Newton step on the objective F \n + λR, it follows that ÑS\n(R) is

exactly equal to θ̂\n in the case that F \n + λR is a quadratic, as noted by Beirami et al. [2017]. For example,

ℓ2 regularized linear regression has ÑS\n(R) = θ̂\n for all n. We further note that somewhat similar behavior

can hold for ℓ1 regularized linear regression. Specifically, when signθ̂ = signθ̂\n, we have that the objective

F \n + λ ‖·‖1 is a quadratic when restricted to the dimensions in Ŝ. In this case, NS\n can be interpreted as

taking a Newton step on F \n + λ ‖·‖1 restricted to the dimensions in Ŝ. It follows that NS\n = θ̂\n when

signθ̂ = signθ̂\n for ℓ1 regularized linear regression.
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D.5 Computation time of approximations

There is a major computational difference between Eq. (12) and Eq. (11): the former requires the inversion of a

D ×D matrix for each θ̂\n approximated, while the latter requires a single D ×D matrix inversion for all θ̂\n
inverted, which incurs a cost of O(ND3) versus a cost of O(D3). Even for small D, this is a significant additional
expense.

However, as noted by Rad and Maleki [2020], Wang et al. [2018], Eq. (12) is much cheaper when considering the
special case of generalized linear models. In this case, ∇2

θfn is some scalar times xnx
T
n – a rank one matrix. The

Sherman-Morrison formula then allows us to cheaply compute the needed inverse in Eq. (12) given only H−1;
this is how Equation 8 in Rad and Maleki [2020] and Equation 21 in Wang et al. [2018] are derived. Even though
we only consider GLMs in this work, we still study Eq. (11) with the hope of retaining scalability in more general
problems.

E Derivation of IJ\n and NS\n via smoothed approximations

As noted in Section 2, Rad and Maleki [2020], Wang et al. [2018] derive the NS\n approximation by considering

ÑS\n(R
η) with Rη being some smoothed approximation to the ℓ1 norm, and then taking the limit of ÑS\n(R

η)
as the amount of smoothness goes to zero. We review this approach and then state our Proposition 4, which
says that the same technique can be used to derive IJ\n.

We first give two possible ways to smooth the ℓ1 norm. The first is given by Rad and Maleki [2020]:

‖θ‖1 ≈ Rη(θ) :=
D∑

d=1

1

η

(
log(1 + eηθd) + log(1 + e−ηθd)

)
, (23)

The second option is to use the more general smoothing framework described by Wang et al. [2018]. They allow
selection of a function q : R → R satisfying: (1) q has compact support, (2)

∫
q(u) du = 1, q(0) > 0, and q ≥ 0,

and (3) q is symmetric around 0 and twice continuously differentiable on its domain, and then define a smoothed
approximation:

Rη(θ) := η
D∑

d=1

∫ ∞

−∞
|u|q

(
η(θd − u)

)
du, (24)

In both Eqs. (23) and (24), we have limη→∞ = ‖θ‖1. Notice that either choice of Rη is twice differentiable for

any η < ∞, so one can consider the approximations ÑS\n(R
η), ĨJ\n(R

η). We now state two assumptions, both
of which are given by Rad and Maleki [2020], Wang et al. [2018], under which one can show the limits of these
approximations as η → ∞ are equal to NS\n and IJ\n.

Assumption 8. For any element ẑ ∈ R
D of the subdifferential ∂ ‖θ‖1 evaluated at θ̂ such that ∇F (θ̂) + λẑ = 0,

we have
∥∥ẑŜc

∥∥
∞ < 1.

Assumption 9. For any yn ∈ R, f(z, yn) is a twice continuously differentiable function as a function of z ∈ R.

Proposition 3 (Theorem 1 of Rad and Maleki [2020]; Theorem 4.2 of Wang et al. [2018]). Take Assumptions 8

and 9. Suppose HŜŜ has strictly positive eigenvalues. Let H
\n
ŜŜ

:= HŜŜ − [∇2
θf(x

T
n θ̂, yn)]ŜŜ, and suppose that,

for all n, H
\n
ŜŜ

is invertible. Then, for Rη as in Eq. (23) or Eq. (24),

NS\n := lim
η→∞

ÑS\n(R
η) =

(
θ̂Ŝ + (H

\n
ŜŜ

)−1
[
∇θf(x

T
n θ̂, yn)

]
Ŝ

)
. (25)

As noted in the main text, we show that a very similar result holds for the limit of ĨJ\n(R
η):

Proposition 4. Take Assumptions 8 and 9. Suppose HŜŜ is invertible. Then for Rη as in Eq. (23) or Eq. (24):

IJ\n := lim
η→∞

ĨJ\n(R
η) =

(
θ̂Ŝ +H−1

ŜŜ

[
∇θf(x

T
n θ̂, yn)

]
Ŝ

0

)
. (26)

The proof of Proposition 4 is a straightforward adaptation of the proof of Proposition 3. We prove it separately
for the two different forms of Rη in the next two subsections.
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E.1 Proof of Proposition 4 using Eq. (23)

This proof is almost identical to the proof of Theorem 1 from Rad and Maleki [2020]. First we will need some

notation. Let θ̂η be the solution to Eq. (1) using Rη from Eq. (23) as the regularizer. Let Ŝη :=
{
i : |θ̂η| > c/η

}

for some constant c. We know from the arguments in Appendix A.2 of Rad and Maleki [2020] that for an

appropriately chosen c and η > C for some large constant C > 0, we have Sη = Ŝ =: supp θ̂. Next, define the

scalars D̂
(1,η)
n and D̂

(2,η)
n as the derivatives of f evaluated at θ̂η:

D̂(1,η)
n :=

df(z, yn)

dz

∣∣∣
z=xT

n θ̂η
, D̂(2,η)

n :=
d2f(z, yn)

dz2

∣∣∣
z=xT

n θ̂η
. (27)

Finally, divide the Hessian of the smoothed problem up into blocks by defining:

A := XT
·,Ŝη

diag
{
D̂(2,η)

n

}
X·,Ŝη

+ λ∇2Rη(θ̂η), B := XT
·,Ŝc

η

diag
{
D̂(2,η)

n

}
X·,Ŝη

+ λ∇2Rη(θ̂η)

C := XT
·,Ŝc

η

diag
{
D̂(2,η)

n

}
X·,Ŝc

η
+ λ∇2Rη(θ̂η), D := (A−BC−1BT )−1

We can then compute the block inverse of the Hessian of the smoothed problem, H−1
η as:

H−1
η =

(
A B
BT C

)−1

=

(
D −DBC−1

−C−1BTD A−1 +A−1BDBTA−1

)
. (28)

Rad and Maleki [2020] show that all blocks of H−1
η converge to zero as η → ∞ except for the upper left, which

has D → XT
·,Ŝdiag

{
D̂

(2)
n

}
X·,Ŝ . So, we have that the limit of ĨJ\n(R

η) is:

lim
η→∞

ĨJ\n(R
η) = lim

η→∞
H−1

η D̂(1,η)
n xn = D̂(1)

n

(
(XT

·,Ŝdiag
{
D̂

(2)
n

}
X·,Ŝ)

−1 0

0 0

)(
xnŜ
xnŜc

)
, (29)

where we used that θ̂η → θ̂ by Lemma 15 of Rad and Maleki [2020], which gives that D̂
(1,η)
n → D̂

(1)
n by

Assumption 9. The resulting approximation is exactly that given in the statement of Proposition 4 by noting

that D̂
(1)
n xnŜ = [∇θf(x

T
n θ̂, yn)]Ŝ .

E.2 Proposition 4 using Eq. (24)

This proof proceeds along the exact same direction as when using Eq. (23). In their proof of their Theorem 4.2,
Wang et al. [2018] provide essentially all the same ingredients that Rad and Maleki [2020] do, except for the
general class of smoothed approximations given by Eq. (24). This allows the same argument of taking the limit
of each block of the Hessian individually and finishing by taking the limit as in Eq. (29).

F The importance of correct support recovery

Theorem 1 shows that each θ̂\n having correct support (i.e., supp θ̂\n = supp θ∗) is a sufficient condition for
obtaining the fixed-dimensional error scaling shown in blue in Fig. 1. Here, we give some brief empirical evidence
that this condition is necessary in the case of linear regression when using IJ\n as an approximation. For values
of N ranging from 1,000 to 8,000, we set D = N/10 and generate a design matrix with i.i.d. N(0, 1) entries.
The true θ∗ is supported on its first five entries, with the rest set to zero. We then generate observations

yn = xTnθ
∗ + εn, for εn

i.i.d.∼ N(0, 1).

To examine what happens when the recovered supports are and are not correct, we use slightly different values
of the regularization parameter λ. Specifically, the results of Wainwright [2009] (especially their Theorem 1) tell
us that the support recovery of ℓ1 regularized linear regression will change sharply around λ ≈ 4

√
log(D)/N,

where lower values of λ will fail to correctly recover the support. With this in mind, we choose two settings
of λ: 1.0

√
log(D)/N and 10.0

√
log(D)/N . As expected, the righthand side of Fig. 7 shows that the accuracy

of IJ\n is drastically different in these two situations. The lefthand plot of Fig. 7 offers an explanation for

this observation: the support of supp θ̂\n grows with N under the lower value of λ, whereas the larger value
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of λ ensures that |supp θ̂\n| = |supp θ∗| = const. Empirically, these results suggest that, for high-dimensional
problems, approximate CV methods are accurate estimates of exact CV only when taking advantage of some
kind of low “effective dimensional” structure.
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Figure 7: Illustration of the role of support recovery in the accuracy of IJ\n in the case of linear regression. Left :

Points show the average of |supp θ̂\n| over random values of n. Error bars show the min and max |supp θ̂\n| over
these n. For λ = 10.0

√
log(D)/N (blue), the mean recovered support is constant withN . For λ = 1.0

√
log(D)/N

(red), |supp θ̂\n| grows with N , and varies dramatically for different values of n. Right : Percent error (Eq. (10))
as D scales with N . When the support recovery is constant, we recover an error scaling of roughly 1/N2, whereas
a growing support results in a much slower decay.

That the approximation quality relies so heavily on the exact setting of λ is somewhat concerning. However,
we emphasize that sensitivity exists for ℓ1 regularization in general; as previously noted, Wainwright [2009]

demonstrated similarly drastic behavior of supp θ̂ in the same exact linear regression setup that we use here.
On the other hand, Homrighausen and McDonald [2014] do show that using exact LOOCV to select λ for ℓ1
regularized linear regression gives reasonable results. In Appendix H, we empirically show this is sometimes, but
not always, the case for our and other approximate CV methods.

Accuracy of approximate CV by optimization error. In early experiments, we used the Python bindings
for the glmnet package [Friedman et al., 2009] to solve our ℓ1 regularized problems. However, we found that both
IJ\n and NS\n failed to recover the roughly 1/N2 scaling present in fixed-dimensional problems (e.g. as shown in
Fig. 1 of Section 1) that we would expect given our theoretical results. We found that this was due to the relatively
loose convergence tolerance with which glmnet is implemented (e.g. parameter changes of ≤ 1 × 10−4 between
iterations), which seems to be an issue for approximate CV methods and related approximations [Giordano et al.,
2019b, 2015]. We implemented our own ℓ1 solver in Python using many of the speed-ups proposed in Friedman

et al. [2009] and set a convergence theshold of 1× 10−10 for the initial fit of θ̂. This solver was used to produce
all of our results, including Fig. 7, which shows the expected roughly 1/N2 accuracy of IJ\n in blue.

G Details of real experiments

We use three publicly available datasets for our real-data experiments in Section 5:

1. The “Gisette” dataset Guyon et al. [2004] is available from the UCI repository at https://archive.ics.
uci.edu/ml/datasets/Gisette. The dataset is constructed from the MNIST handwritten digits dataset.
Specifically, the task is to differentiate between handwritten images of either “4” or “9.” There areN = 6,000
training examples, each of which has D = 5,000 features, some of which are junk “distractor features” added
to make the problem more difficult.

2. The “bcTCGA” bcTCGA [2018] is a dataset of breast cancer samples from The Cancer Genome Atlas,
which we downloaded from http://myweb.uiowa.edu/pbreheny/data/bcTCGA.html. The dataset consists
of N = 536 samples of tumors, each of which has the real-valued expression levels of D = 17,322 genes.
The task is to predict the real-valued expression level of the BRCA1 gene, which is known to correlate with
breast cancer.
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3. The “RCV1” dataset Lewis et al. [2004] is a dataset of Reuters’ news articles given one of four cat-
egorical labels according to their subject: “Corporate/Industrial,” “Economics,” “Government/Social,”
and “Markets.” We use a pre-processed binarized version from https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/binary.html, which combines the first two categories into a “positive” label and
the latter two into a “negative” label. The full dataset contains N = 20,242 articles, each of which has
D = 47,236 features. Running exact CV on this dataset would have been prohibitively slow, so we created a
smaller dataset. First, the covariate matrix X is extremely sparse (i.e., most entries are zero), so we selected
the top 10,000 most common features and threw away the rest. We then randomly chose 5,000 documents
to keep as our training set. After throwing away any of the 10,000 features that were now not observed in
this subset, we were left with a dataset of size N = 5,000 and D = 9,836.

In order to run ℓ1 regularized regression on each of these datasets, we first needed to select a value of λ. Since
all of these datasets are fairly high dimensional, our experiments in Appendix H suggests our approximation will
be inaccurate for values of λ that are “too small.” In an attempt to get the order of magnitude for λ correct,
we used the theoretically motivated value of λ = C

√
log(D)/N for some constant C (e.g., Li et al. [2015] shows

this scaling of λ will recover the correct support for both linear and logistic regression). Section 5 suggests that
the constant C can be very important for the accuracy of our approximation, and our experiments there suggest
that inaccuracy is caused by too large a recovered support size |supp θ̂|. For the RCV1 and Gisette datasets,
both run with logistic regression, we guessed a value of C = 1.5, as this sits roughly in the range of values that
give support recovery for logistic regression on synthetic datasets. After confirming that |supp θ̂| was not too
large (i.e., of size ten or twenty), we proceeded with these experiments. Although we found linear regression
on synthetic data typically needed a larger value of C than logistic regression on synthetic data, we found that
C = 1.5 also produced reasonable results for the bcTCGA dataset.

H Selection of λ

Our work in this paper is almost exclusively focused on approximating CV for model assessment. However, this
is not the only use-case of CV. CV is also commonly used for model selection, which, as a special case, contains
hyperparameter tuning. Previous authors have used approximate CV methods for hyperparameter tuning in the
way one might expect: for various values of λ, compute θ̂ and then use approximate CV to compute the out-of-
sample error of each θ̂; the λ leading to the lowest out-of-sample error is then selected [Obuchi and Kabashima,
2016, 2018, Beirami et al., 2017, Rad and Maleki, 2020, Wang et al., 2018, Giordano et al., 2019b]. While many
of these authors theoretically study the accuracy of approximate CV, we note that they only do so in the context
of model assessment and only empirically study approximate CV for hyperparameter tuning. In this appendix,
we add to these experiments by showing that approximate CV can exhibit previously undemonstrated complex
behavior when used for hyperparameter tuning.

We generate two synthetic ℓ1 regularized logistic regression problems with N = 300 observations and D =
{75, 150} dimensions. The matrix of covariates X has i.i.d. N(0, 1) entries, and the true θ∗ has its first five
entries drawn i.i.d. as N(0, 1) with the rest set to zero. As a measure of the true out of sample error, we

construct a test set with ten thousand observations. For a range of values of λ, we find θ̂, and measure the train,
test, exact LOOCV, and approximate LOOCV errors via both NS\n and IJ\n; the results are plotted in Fig. 8.
NS\n (blue dashed curve) is an extremely close approximation to exact CV (red curve) in both datasets and
selects a λ that gives a test error very close to the λ selected by exact CV. On the other hand, IJ\n (solid blue
curve) performs very differently on the two datasets. For D = 75, it selects a somewhat reasonable value for λ;
however, for D = 150, IJ\n goes disastrously wrong by selecting the obviously incorrect value of λ = 0. While
the results in Fig. 8 come from using our IJ\n to approximate CV for an ℓ1 regularized problem, we note that
this issue is not specific to the current work; we observed similar behavior when using ℓ2 regularization and the
pre-existing ĨJ\n(ℓ2).

While NS\n performs far better than IJ\n in the experiments here, it too has a limitation when D > N . In

particular, when λ is small enough, we will eventually recover |Ŝ| = N . At this point, the matrix we need to
invert in the definition of NS\n in Eq. (5) will be a N ×N matrix that is the sum of N −1 rank-one matrices. As
such, it will not be invertible, meaning that we cannot compute NS\n for small λ when D > N . Even when D
is less than – but still close to – N , we have observed numerical issues in computing NS\n when λ is sufficiently
small; typically, these issues show up as enormously large values for ALOO for small values of λ.
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Given the above discussion, we believe that an understanding of the behavior of IJ\n and NS\n for the purposes
of hyperparameter tuning is a very important direction for future work.
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Figure 8: Experiment for selecting λ from Appendix H. (Top:) Despite being very accurate for higher values
of λ, the degredation of the accuracy of IJ\n for lower values of λ (which corresponds to a larger Ŝ) causes the
selection of a λ that is far from optimal in terms of test loss. (Bottom:) For a lower dimensional problem, the
curve constructed by IJ\n much more closely mirrors that of exact CV for all values of λ. In both cases, NS\n
performs well.

I Proofs from Section 4

As mentioned in the main text, there exist somewhat general assumptions in the ℓ1 literature under which
supp θ̂ = S [Lee et al., 2014, Li et al., 2015]. By taking these assumptions for all leave-one-out problems, we

immediately get that supp θ̂\n = S for all n. Our method for proving Theorems 2 and 3 will be to show that the
assumptions of those theorems imply those from the ℓ1 literature for all leave-one-out problems.

I.1 Assumptions from Li et al. [2015]

We choose to use the conditions from Li et al. [2015], as we find them easier to work with for our problem.

Li et al. [2015] gives conditions on F = (1/N)
∑

n f(x
T
nθ, yn) under which supp θ̂ = S. We are interested in

supp θ̂\n, so we state versions of these conditions for F \n := (1/N)
∑

m:m 6=n f(x
T
mθ, yn).

Assumption 10 (LSSC). ∀n, F \n satisfies the (θ∗,RD) locally structured smoothness condition (LSSC)8 with
constant K. We recall this condition, due to Li et al. [2015], in Appendix I.2.

Assumption 11 (Strong convexity). For a matrix A, let λmin(A) be the smallest eigenvalue of A. Then, ∀n
and for some constant Lmin, the Hessian of F \n is positive definite at θ∗ when restricted to the dimensions in
S: λmin

(
∇2F \n(θ∗)SS

)
≥ Lmin > 0.

Assumption 12 (Incoherence). ∀n and for some γ > 0,

∥∥∥∥∇
2F \n(θ∗)Sc,S

(
∇2F \n(θ∗)SS

)−1
∥∥∥∥
∞
< 1− γ. (30)

Assumption 13 (Bounded gradient). For γ from Assumption 12, ∀n, the gradient of F \n evaluated at the true
parameters θ∗ is small relative to the amount of regularization:

∥∥∇F \n(θ∗)
∥∥
∞ ≤ (γ/4)λ.

Assumption 14 (λ sufficiently small). For K,Lmin and γ as in Assumptions 10 to 12, the regularization
parameter is sufficiently small: λ < L2

minγ/(4(γ + 4)2DeffK), where there is no constraint on λ if K = 0.

We see in Appendix I.3 that a minor adaptation of Theorem 5.1 from Li et al. [2015] tells us that Assumptions 10

to 14 imply ∀n, supp θ̂\n ⊆ S. To prove the accuracy of NS\n and IJ\n, though, we further need that supp θ̂\n ⊆ Ŝ

8Readers familiar with the LSSC may see choosing the neighborhood of θ∗ as R
D to be too restrictive. This choice is

not necessary for our results; we state Assumption 10 this way only for simplicity. See Appendix I.2 for an explanation.
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so that all LOOCV problems run over the same low-dimensional space as the full-data problem. It will be easier
to state conditions for a stronger result, that supp θ̂\n = Ŝ = S. This will follow from an assumption on the
smallest entry of θ∗S , which we stated as Assumption 4 in the main text. We stated Assumption 4 using the
quantity Tmin to avoid stating Assumptions 11 and 12 in the main text. We can now state its full version.

Assumption 15 (full version of Assumption 4). For Lmin and γ from Assumptions 11 and 12, mins∈S |θ∗s | >
(
√
Deff(γ + 4)/Lmin)λ.

Proposition 5. If Assumptions 10 to 15 hold, then ∀n, supp θ̂\n = Ŝ = S.

Proof. This is immediate from Theorem 5.1 of Li et al. [2015].

I.2 Local structured smoothness condition (LSSC)

We now define the local structured smoothness condition (LSSC). The LSSC was introduced by Li et al. [2015]
for the purpose of extending proof techniques for the support recovery of ℓ1 regularized linear regression to
more general ℓ1 regularized M -estimators. Essentially, it provides a condition on the smoothness of the third
derivatives of the objective F (θ) near the true sparse θ∗. One can then analyze a second order Taylor expansion
of the loss and use the LSSC to show that the remainder in this expansion is not too large. To formalize the
LSSC, we need to define the third order derivative of F evaluated along a direction u ∈ R

D:

D3F (θ)[u] := lim
t→0

∇2F (θ + tu)−∇2F (θ)

t
.

In the cases considered in this paper, this is just a D × D matrix. We can then naturally define the scalar
D3F (θ)[u, v, w] as an outer product on this matrix:

D3[u, v, w] := vT
(
D3F (θ)[u]

)
w

Definition 2 (LSSC). Let F : RD → R be a continuously three-times differentiable function. For θ∗ ∈ R
D and

Nθ∗ ⊆ R
D, the function F satisfies the (θ∗, Nθ∗) LSSC with constant K ≥ 0 if for any u ∈ R

D:

|D3f(θ∗ + δ)[u, u, ej ]| ≤ K ‖u‖22 , (31)

where ej ∈ R
D is the jth coordinate vector, and δ ∈ R

D is any vector such that θ∗ + δ ∈ Nθ∗ .

We note that this definition is actually different from the original definition given in Li et al. [2015], who prove
the two to be equivalent in their Proposition 3.1. Li et al. [2015] go on to prove bounds on the LSSC constants
for linear and logistic regression, which we state as Proposition 11 and Proposition 13 below.

Note that Assumption 10 in the main text states that the LSSC holds with Nθ∗ = R
D. We state Assumption 10

in this form purely for conciseness; we will only consider checking Assumption 10 for linear and logistic regression,
both of which satisfy the LSSC with Nθ∗ = R

D. Going beyond these cases, it is easily possible to state a version
of our results with Nθ∗ 6= R

D; however, this will require an extra assumption along the lines of Condition 7 of
Theorem 5.1 in Li et al. [2015], which is trivially satisfied when Nθ∗ = R

D. In order to avoid stating an extra
assumption that is trivially satisfied in the cases we consider, we chose to simply state the LSSC with Nθ∗ = R

D.

I.3 Assumptions 10 to 14 imply supp θ̂\n ⊆ S for all n

Theorem 5.1 of Li et al. [2015] gives conditions on F under which supp θ̂ = S. So, if these conditions hold for

all F \n, then we have supp θ̂\n = S for all n. Their Theorem 5.1 actually has two extra assumptions beyond
Assumptions 10 to 14. The first is their Assumption 7; however, this is immediately implied by the fact that we
assume the LSSC holds with Nθ∗ = R

D. The second is their analogue of our Assumption 15; however, they use
this condition to imply that θ̂ = S after having shown that θ̂ ⊆ S.

I.4 Useful results for proving Theorems 2 and 3

Before going on to Theorems 2 and 3, we will give a few useful results. We first define a sub-Exponential random
variable:
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Definition 3 (Vershynin [2018]). A random variable V is cx-sub-Exponential if E[exp(V/cx)] ≤ 2.

We will frequently use the fact that if X is cx-sub-Gaussian, then X2 is c2x-sub-Exponential. Now we state a few
existing results about the maxima of sub-Gaussian and sub-Exponential random variables that will be useful in
our proofs.

Lemma 1 (Lemma 5.2 from van Handel [2016]). Suppose that we have real valued random variables Z1, . . . , ZN

that satisfy logE[eλZn ] ≤ ψ(λ) for all n = 1, . . . , N and all λ ≥ 0 for some convex function ψ : R → R with
ψ(0) = ψ′(0) = 0. Then for any u ≥ 0 :

Pr

[
max

n=1,...,N
Zn ≥ ψ∗−1(logN + u)

]
≤ e−u.

where ψ∗−1 is the inverse of the Legendre dual of ψ.

Remembering the definition of a sub-Gaussian random variable from Definition 1, Lemma 1 can be used to show
the following:

Corollary 1. Let Z1, . . . , ZN be i.i.d. sub-Gaussian random variables with parameter cx. Then:

Pr

[
max

n=1,...,N
Zn ≥ E[Zn] +

√
2Cc2x logN + u

]
≤ e

−C u2

2c2x (32)

Pr

[
max

n=1,...,N
Z2
n ≥ E[Z2

n] + Cc2x(logN + 1 + u)

]
≤ e−u (33)

Proof. For the first inequality, the definition of a sub-Gaussian random variable is that logEeλZn ≤ λ2cx/2 =:
ψ(λ), which has ψ∗(y) = y2/(2Cc2x) and ψ

∗−1(x) =
√
2Cc2xx. We use the upper bound:

ψ∗−1(logN + u) =
√
2Cc2x(logN + u) ≤

√
2Cc2x logN +

√
2Cc2xu,

Using this upper bound with Lemma 1 and changing variables u 7→ u2/(2Cc2x) gives the first inequality.

For the second inequality, use the fact that Z2
n is sub-Exponential with parameter c2x so that it satisfies

logEeλZ
2

n ≤ ψ(λ), where:

ψ(λ) :=

{
λCc2x, 0 ≤ t ≤ 1/c2x
∞, o.w.

.

For x ≥ 0, this ψ has inverse Legendre dual ψ∗−1(x) = Cc2x(x+ 1). Plugging into Lemma 1 gives the result.

Proposition 6. Let x1, . . . , xN be random vectors in R
D with i.i.d. cx-sub-Gaussian components and E[x2nd] = 1.

Then:

Pr

[
max

n=1,...,N
‖xn‖2 ≥

√
D +

√
2Cc4x logN + u

]
≤ e

−C u2

2c4x , (34)

where C > 0 is some global constant, independent of cx, D, and N .

Proof. From Theorem 3.1.1 of Vershynin [2018], we have that ‖xn‖2 −
√
D is sub-Gaussian with parameter Cc2x,

where C is some constant. Using the first part of Corollary 1 gives the result.

I.5 Proof of Theorem 2 (Linear Regression)

Recall Assumptions 1 and 5: we assume a linear regression model yn = xTnθ
∗ + εn, where xn ∈ R

D has i.i.d.
cx-sub-Gaussian components with E[x2nd] = 1 and εn is cε-sub-Gaussian. For notation throughout this section,
we will let C denote an absolute constant independent of any aspect of the problem (N,D,Deff , cx, or cε) that
will change from line to line (e.g. we may write 5C2 = C). We will frequently use X·,S to denote the N ×Deff

matrix formed by taking the columns of X that are in S, xnS to denote the coordinates of the nth vector of
covariates xn that are in the set S, and X\n,S to denote the matrix X·,S with the nth row removed. We will
show the following theorem, stated more concisely as Theorem 2 in the main text:
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Theorem 4 (Restated version of Theorem 2 from main text). Take Assumptions 1 to 3, 5 and 15. Suppose the
regularization parameter λ satisfies:

λ ≥ 1

α−Mlin

√
c2xc

2
ε logD

NC
+

25c2xc
2
ε

NC
+

4cxcε(log(ND) + 26)

N(α−Mlin)
, (35)

where C is a constant in N,D,Deff , cx and cε, and Mlin is defined as:

Mlin =

CDeff

(√
50c2x +

√
2c2x log(N(D −Deff))

)(√
Deff +

√
50c4x +

√
2c4x logN

)

N − 3c2x
√
N
(√
Deff + 5

) +

CDeff

(
Deff +Deffc

2
x(logN + 26)

) (√
N +

√
50c4x +

√
2c4x log(D −Deff)

)(√
NDeff +

√
50c4x

)

(
N − 3c2x

√
N
(√
Deff + 5

))2 (36)

Then for N sufficiently large, Condition 1 holds with probability at least 1− 26e−25, where the probability is over
the random data {(xn, yn)}Nn=1.

Proof. For a fixed regularization parameter λ and random data {xn, yn}Nn=1, we are interested in the probability
that any of Assumptions 10 to 14 are violated, as Proposition 5 then proves the result. For convenience in writing
the incoherence condition, define Jnd ∈ R

D, for d ∈ Sc, as:

Jnd :=
(
XT

\n,SX\n,S
)−1

XT
\n,SX\n,d. (37)

It is easiest to show that each of Assumptions 10 to 14 hold with high probability separately, rather than all
together, so we apply a union bound to get:

Pr [any assumption violated] ≤

Pr
[
min
n
λmin(X

T
\n,SX\n,S) = 0

]

+ Pr

[
max
n

max
d∈Sc

‖Jnd‖1 ≥ 1

]

+ Pr

[
max
n

∥∥∇F\n
∥∥
∞ >

λ
(
1−maxn maxd∈Sc ‖Jnd‖1

)

4

]

+ Pr

[
minn λ

2
min(X

T
\n,SX\n,S)

4
((
1−maxn maxd∈Sc ‖Jnd‖1

)
+ 4
)2

(
1−maxn maxd∈Sc ‖Jnd‖1

)

DeffK
≤ λ

]

We will bound each term by appealing to the Lemmas and Propositions proved below. Using Lemma 2 and
Lemma 4, the first and third terms are bounded by 16−25. As noted in Proposition 11, we have Pr[K = 0] = 1,
so the final probablity is equal to zero (as the event reduces to ∞ < λ). To bound the second probability, we
have that Lemma 3 says that:

Pr

[
max
n

max
d∈Sc

‖Jnd‖1 ≥ 1− α+Mlin

]
≤ 9e−25.

As α > 0, if Mlin = o(1) as N → ∞, we will we have that 1 − α +Mlin < 1 for large enough N . This would
imply the third probability is ≤ 9e−25 for N large enough. Under our conditions on the growth of Deff and D,
we can show that Mlin = o(1). We have, hiding constants and lower order terms in N,D, and Deff :

Mlin = O



Deff

√
log(N) + log(D)

(√
Deff +

√
log(N)

)

N −
√
NDeff

+
D

5/2
eff log(N)

(√
N +

√
log(D)

)√
N

(N −
√
NDeff)2




= O



Deff

(√
Deff log(N) +

√
Deff log(D) + log(N) +

√
log(N) log(D)

)

N −
√
NDeff

+
D

5/2
eff N log(N)

(N −
√
NDeff)2


 , (38)
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where the second statement follows from using
√
log(N) + log(D) ≤

√
log(N)+

√
log(D) and D = o(eN ). Now,

given that Deff = o([N/ log(N)]2/5), the second term in Eq. (38) is o(1). The first term is also o(1) by combining

Deff = o([N/ log(N)]2/5) with D
3/2
eff

√
log(D) = o(N). Thus, Mlin = o(1), which completes the proof.

What remains is to prove Lemmas 2 to 4 and Proposition 11 needed to prove Theorem 4. We do this in the
following four subsections.

I.6 Linear regression: minimum eigenvalue

All we want to bound right now is the probability that the minimum eigenvalue is actually equal to zero; however,
it will be useful later to show that it is Ω(N) with high probability. The lemma we prove in this section shows
exactly this. We will start with two propositions.

Proposition 7. If X·,S is an N ×Deff matrix with independent cx-sub-Gaussian entries with unit second mo-
ments, then:

Pr
[
λmin(X

T
·,SX·,S) ≤ N − 2Cc2x

√
N(
√
Deff + 5)

]
≤ 2e−25, (39)

where C > 0 is a global constant.

Proof. Theorem 4.6.1 of Vershynin [2018] gives a concentration inequality for the minimum singular value,
smin(X·,S), of X·,S :

Pr
[
smin(X·,S) ≤

√
N − Cc2x(

√
Deff + t)

]
≤ 2e−t2 . (40)

Using the fact that the minimum eigenvalue of XT
·,SX·,S is the square of the minimum singular value of X·,S and

putting in t = 5:

Pr
[
λmin(X

T
·,SX·,S) ≤ N − 2Cc2x

√
N(
√
Deff + 5) + C2c4x(

√
Deff + 5)2

]
≤ 2e−25.

Dropping the C2c4x(
√
Deff + 5)2 gives the result.

Proposition 8. If X\n,S is the N − 1×Deff matrix formed by removing the nth row from X·,S, we have:

λmin(X
T
\n,SX\n,S) ≥ λmin(X

T
·,SX·,S)− ‖xnS‖22 , (41)

where xn is the nth row of X·,S.

Proof. Looking at the variational characterization of the minimum eigenvalue:

λmin(X
T
\n,SX\n,S) = min

z∈R
Deff : ‖z‖

2
=1

[
zTXT

·,SX·,Sz − zTxnSx
T
nSz

]

≥ min
z
zTXT

·,SX·,Sz −max
z

zTxnSx
T
nSz

= λmin(X
T
·,SX·,S)− ‖xnS‖22 .

The above two propositions now allow us to prove the bound we want on minn λmin(X
T
\n,SX\n,S). In the

following lemma, we will assume that Deff = o(N/ log(N)). While we ultimately will have the more restrictive
requirement that Deff = o([N/ log(N)]2/5) in Assumption 3, the current result can be stated with the less
restrictive requirement of o(N/ log(N)).

Lemma 2. Suppose X·,S is a N×Deff matrix with independent cx-sub-Gaussian entries and Deff is o(N/ log(N))
as function of N . Then we have for N sufficiently large:

Pr

[
min

n=1,...N
λmin(X

T
\n,SX\n,S) ≤ N − 3Cc2x

√
N
(√

Deff + 5
)]

≤ 3e−25 (42)
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Proof. In what follows, and repeatedly throughout the rest of our proofs, we will make use of the following
generic inequality for any events A and B:

Pr[A] = Pr[A | B] Pr[B] + Pr[A | Bc] Pr[Bc]

≤ Pr[A | B]Pr[B] + Pr[Bc], (43)

Calling the probability on the left hand side of Eq. (42) P , we can break P down as, for some constant Lmin:

P ≤

Pr

[
min

n=1,...N
λmin(X

T
\n,SX\n,S) ≤ N − 3Cc2x

√
N
(√

Deff + 5
) ∣∣∣∣ λmin(X

T
·,SX·,S) ≥ Lmin

]
Pr
[
λmin(X

T
·,SX·,S) ≥ Lmin

]

+ Pr
[
λmin(X

T
·,SX·,S) ≤ Lmin

]

≤ Pr

[
min

n=1,...N
Lmin − ‖xnS‖22 ≤ N − 3Cc2x

√
N
(√

Deff + 5
) ∣∣∣∣ λmin(X

T
·,SX·,S) ≥ Lmin

]
Pr
[
λmin(X

T
·,SX·,S) ≥ Lmin

]

+ Pr
[
λmin(X

T
·,SX·,S) ≤ Lmin

]

≤ Pr
[
max
n

‖xnS‖22 ≥ Lmin −N + 3Cc2x
√
N
(√

Deff + 5
)]

+ Pr
[
λmin(X

T
·,SX·,S) ≤ Lmin

]

Picking Lmin = N − 2Cc2x
√
N
(√
Deff + 5

)
, we have that the second probability at most 2e−25 by Proposition 8.

Now to control the maxn ‖xnS‖22, note that ‖xnS‖22 is Deffc
2
x-sub-Exponential, and choose u = 25 in the second

statement of Corollary 1; this tells us that the first probability is at most e−25 if E[‖xnS‖22] +Cc2x(logN +26) =

Deff + Cc2x(logN + 26) is less than Cc2x
√
N
(√
Deff + 5

)
, which, for Deff being o(N/ log(N)), is satisfied for N

large enough.

I.7 Linear regression: incoherence

The following proposition will be useful in proving Lemma 3 below:

Proposition 9. Let z ∈ R
N be any vector and z\n ∈ R

N−1 the same vector with the nth coordinate removed.
Also let X·,S ∈ R

N×Deff be some matrix with X\n,S the same matrix with the nth row removed. Define, for any
vector z ∈ RN :

Jnz :=
(
XT

\n,SX\n,S
)−1

XT
\n,Sz\n, (44)

and Jz the same but with no row removed. Then:

‖Jnz − Jz‖1 ≤Deff
|zn| ‖xnS‖2

λmin

(
XT

\n,SX\n,S
)

+Deff
‖xnS‖22

λ2min

(
XT

\n,SX\n,S
) ‖z‖2 ‖X·,S‖2 ,

where ‖X·,S‖2 :=
√∑N

n=1

∑
s∈S X

2
ns.

Proof. We can rewrite Jz = (XT
·,SX·,S)−1XT

·,Sz by noting that XT
·,SX·,S and XT

\n,SX\n,S differ by a rank one
update and then applying the Sherman-Morrison formula:

Jz = (XT
·,SX·,S)

−1XT
·,Sz (45)

=

(
(XT

\n,SX\n,S)
−1 −

(XT
\n,SX\n,S)

−1xnSx
T
nS(X

T
\n,SX\n,S)

−1

1 + xTnS(X
T
\n,SX\n,S)−1xnS

)
XT

·,Sz (46)

=
(
Jnz + (XT

\n,SX\n,S)
−1xnSzn

)
−

(XT
\n,SX\n,S)

−1xnSx
T
nS(X

T
\n,SX\n,S)

−1

1 + xTnS(X
T
\n,SX\n,S)−1xnS

XT
·,Sz (47)

To cleanup notation a bit, let B := XT
\n,SX\n,S . We can continue to rewrite the above as:

=
(
Jnz +B−1xnSzn

)
− B−1xnS

1 + xTnSB
−1xnS

N∑

m=1

zmx
T
nSB

−1xmS (48)
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Now, we are interested in ‖Jnz − Jz‖1, which we will bound by subtracting Jnz from both sides of the above
equation and then examine each coordinate by multiplying by the ith unit vector ei:

|eTi (Jnz − Jz)| ≤ |eTi B−1xnS ||zn|+
|eTi B−1xnS |

1 + xTnSB
−1xnS

N∑

m=1

|zm||xTnSB−1xmS | (49)

≤ |zn|λmax(B
−1) ‖xnS‖2 +

λ2max(B
−1) ‖xnS‖22

1 + λmin(B−1) ‖xnS‖22

N∑

m=1

|zm| ‖xmS‖2 (50)

The λmin(B
−1) ‖xnS‖22 is strictly positive, so we can drop it from the denominator for a further upper bound.

Using the fact that, for the positive semidefinite matrix B we have λmin(B
−1) = 1/λmax(B) and λmax(B

−1) =
1/λmin(B), we get:

|eTi (Jnz − Jz)| ≤
|zn| ‖xnS‖2
λmin(B)

+
‖xnS‖22
λ2min(B)

N∑

m=1

|zm| ‖xmS‖2 . (51)

Finally, use Cauchy-Schwarz to get
∑N

m=1|zm| ‖xmS‖2 ≤ ‖z‖2 ‖X·,S‖2, where ‖X·,S‖2 :=
(∑N

m=1

∑
s∈S x

2
ms

)1/2
.

Notice that our upper bound is now independent of the index i; this means we have a bound on any coordinate
i of |(Jnz − Jz)|. So, multiplying this bound by Deff upper bounds ‖Jnz − Jz‖1, which gives the result.

To get a high probability upper bound on ‖Jnd‖1, the idea will be to use ‖Jnd‖1 ≤ ‖Jd‖1 + ‖Jnd − Jd‖1, and
then put high probability bounds on the bound given by Proposition 9.

Lemma 3. Take Assumptions 1, 2 and 5. Then, for the scalar Mlin defined in Theorem 2, we have:

Pr

[
max

n=1,...,N
max
d∈Sc

‖Jnd‖1 ≥ 1− α+Mlin

]
≤ 10e−25, (52)

where Jnd is defined in Eq. (37) above.

Proof. First, for any n and d, we have ‖Jnd‖1 ≤ ‖Jd‖1 + ‖Jnd − Jd‖1. We can upper bound ‖Jnd − Jd‖1 using
Proposition 9 and then apply a high probability upper bound. Following the same idea of conditioning and
peeling off terms as in the proof of Lemma 2, we can condition on the following events, the complement of each
of which has a small constant probability:

{
min
n
λmin(X

T
\n,SX\n,S) ≥ N − 3Cc2x

√
N
(√

Deff + 5
)}

(53)
{
‖X·,S‖2 ≤

√
NDeff +

√
50Cc4x

}
(54)

{
max
n

‖xnS‖2 ≤
√
Deff +

√
50Cc4x +

√
2Cc4x logN

}
(55)

{
max
d∈Sc

‖X·,d‖2 ≤
√
N +

√
50Cc4x +

√
2Cc4x log(D −Deff)

}
(56)

{
max
n

max
d∈Sc

|xn,d| ≤
√
50Cc2x +

√
2c2x log(N(D −Deff))

}
(57)

{
max
n

‖xnS‖22 ≤ Deff + c2xDeff(logN + 26)
}

(58)

The probability of the complement of the first event is ≤ 3e−25 by Lemma 2, the second is ≤ e−25 by noting
that ‖X·,S‖2 −

√
NDeff is a Cc2x-sub-Gaussian random variable and applying a standard sub-Gaussian bound,

the third is ≤ e−25 by applying Proposition 6, the fourth is ≤ e−25 by the same reasoning as the third, and
the fifth is ≤ 2e−25 by the first part of Corollary 1. Finally, the sixth is ≤ e−25 by noting that ‖xnS‖22 is a
c2xDeff -sub-Exponential random variable, to which we can apply Corollary 1. All in all, these probabilities sum
up to 9e−25. Conditioned on all these events, we can upper bound the upper bound on ‖Jnd − Jd‖1 given by
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Proposition 9 to get:

‖Jnd − Jd‖1 ≤

CDeff

(√
50c2x +

√
2c2x log(N(D −Deff))

)(√
Deff +

√
50c4x +

√
2c4x logN

)

N − 3c2x
√
N
(√
Deff + 5

) +

CDeff

(
Deff +Deffc

2
x(logN + 26)

) (√
N +

√
50c4x +

√
2c4x log(D −Deff)

)(√
NDeff +

√
50c4x

)

(
N − 3c2x

√
N
(√
Deff + 5

))2

Call the entire quantity on the right-hand side of this inequality Mlin, and call the union of the above six events
the event F . Then by conditioning on F and the event {maxd∈Sc ‖Jd‖1 < 1− α}, we get:

Pr

[
max
n∈[N ]

max
d∈Sc

‖Jnd‖1 ≥ 1− α+Mlin

]
≤ (59)

Pr

[
max
n

max
d∈Sc

‖Jnd − Jn‖1 ≥Mlin | F
]
+ Pr [F c] + Pr

[
max
d∈Sc

‖Jd‖1 ≥ 1− α

]
(60)

By the definition of Mlin above, we know that the first probability is zero, by the argument above and a union
bound we know Pr[F c] ≤ 9e−25, and the third is ≤ e−25 by Assumption 2.

I.8 Linear regression: bounded gradient

We need to bound the probability

Pr

[
max
n∈[N ]

∥∥∥∇F \n(θ∗)
∥∥∥
∞

≥ λ
(
1−maxn maxd∈Sc ‖Jnd‖1

)

4

]

≤Pr

[
max
n∈[N ]

(
‖∇F (θ∗)‖∞ +

∥∥∥∥
1

N
∇f(xTnθ∗, yn)

∥∥∥∥
∞

)
≥ λ

(
1−maxn maxd∈Sc ‖Jnd‖1

)

4

]

Conditioning on the event that ‖∇F (θ∗)‖∞ ≤ BG for some number BG and the event that
maxn maxd∈Sc ‖Jnd‖1 ≤ 1− α+Mlin, we get that this probability is less than or equal to:

≤Pr

[
max

n=1,...,N

∥∥∥∥
1

N
∇f(xTnθ∗, yn)

∥∥∥∥
∞

≥ λ(α−Mlin)

4
−BG

]

+ Pr [‖∇F (θ∗)‖∞ ≥ BG] + Pr

[
max
n

max
d∈Sc

‖Jnd‖1 ≥ 1− α+Mlin

]
(61)

The following proposition gives a reasonable value for BG:

Proposition 10. In the above setup for linear regression,

Pr

[
‖∇F (θ∗)‖∞ ≥

[
c2xc

2
ε logD

NC
+

25c2xc
2
ε

NC

]1/2]
≤ e−25 (62)

Proof. The dth coordinate of the gradient is (∇F (θ∗))d = 1/N
∑

n εnxnd. First, we have that 1/N
∑

n εnxnd is
a cxcε-sub-Exponential random variable. By Bernstein’s inequality (see Theorem 2.8.1 from Vershynin [2018]),
we have:

Pr

[
1

N
|
N∑

n=1

εnxnd| ≥
[
c2xc

2
ε logD

NC
+

25c2xc
2
ε

NC

]1/2]
≤ e−25−logD

If we union bound over the D dimensions of ∇F (θ∗), we get that the probability in the proposition’s statement
is ≤ De−25−logD = e−25, as claimed.

Now we can prove the lemma we need, which bounds the probability that any
∥∥∇F \n(θ∗)

∥∥
∞ is large:
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Lemma 4. For the above setup for linear regression and the λ given in Theorem 2, we have:

Pr

[
max

n=1,...,N

∥∥∥∇F \n(θ∗)
∥∥∥
∞

≥ λ
(
1−maxn maxd∈Sc ‖Jnd‖1

)

4

]
≤ 13e−25 (63)

Proof. We can first apply the bound worked out in Eq. (61). Picking BG to be the value given in Proposition 10,
the second probability is ≤ e−25 by Proposition 10, and the third is ≤ 10e−25 by Lemma 3. To analyze the first
probability, note that we can write the event as:

Pr

[
1

N
max
n

max
d

|εnxnd| ≥
λ(α−Mlin)

4
−BG

]
.

Looking at the form of λ given in Theorem 2, we get that this is equal to:

= Pr

[
1

N
|max

n
max

d
εnxnd| ≥ 4cxcε(log(ND) + 26)

]
.

The event we’re considering is just the absolute value of the max of ND sub-Exponential variables with parameter
cxcε. Plugging into Corollary 1 gives that this probability is ≤ 2e−25.

I.9 Linear regression: λ small enough

To check the bound in Assumption 14, we need to know the LSSC constant K for linear regression:

Proposition 11 ([Li et al., 2015]). For the linear regression setup in Theorem 4, the loss F (θ) satisfies the
(θ∗, Nθ∗) LSSC with constant K = 0 for any θ∗, Nθ∗ , and any data X,Y .

Proof. This follows from the fact that F (θ) = 1
2 ‖Xθ − Y ‖22 has zero third derivatives, implying that

D3F (θ)[u, u, ej ] = 0 for any θ, u ∈ R
D and coordinate vector ej ∈ R

D.

As linear regression has a LSSC constant K that is deterministically equal to zero, the only constraint implied
by the bound in Assumption 14 is that λ <∞, which is always satisfied by the value of λ given in Theorem 4.

I.10 Proof of Theorem 3 (Logistic Regression)

Recall Assumptions 1 and 6: we assume a logistic regression model such that the responses yn ∈ {−1, 1} with

Pr [yn = 1] = 1/(1 + e−xT
nθ∗

). The derivatives are slightly more complicated here than in the case of linear
regression. In particular, defining:

D(1)
n :=

−yn
1 + eynxT

nθ∗
, D(2)

n :=
ex

T
nθ∗

(1 + ex
T
nθ∗

)2
, (64)

the derivatives of F are:

∇θF (θ
∗) =

1

N

N∑

n=1

D(1)
n xn, ∇2

θF (θ
∗) =

1

N

N∑

n=1

D(2)
n xnx

T
n . (65)

For comparison, things were easier for linear regression because D
(2)
n = 1 and D

(1)
n = εn for some sub-Gaussian

noise εn. Still, we will be able to extend basically all our proof techniques for linear regression by using the fact

that |D(2)
n | and |D(1)

n | are both ≤ 1, allowing us to drop them in many of our upper bounds. This will allow us
to prove a very similar result to Theorem 2. Again, we will let C denote an absolute constant independent of
any aspect of the problem (N,D,Deff , cx,) that will change from line to line (e.g. we may write 5C2 = C).

Theorem 5. Take Assumptions 1 to 3, 6, 7 and 15. Suppose the regularization parameter is set as:

λ ≥ C

α−Mlogr

(√
c2x

25 + logD

N
+

√
2c2x log(ND) +

√
50c2x

N

)
, (66)
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where C is a constant in N,D, and cx, and Mlogr is defined similarly to Mlin from Theorem 4, but with different
denominators:

Mlogr =

CDeff

(√
50c2x +

√
2c2x log(N(D −Deff))

)(√
Deff +

√
50c4x +

√
2c4x logN

)

Lmin − c2x
√
N
(√
Deff + 5

) +

CDeff

(
Deff +Deffc

2
x(logN + 26)

) (√
N +

√
50c4x +

√
2c4x log(D −Deff)

)(√
NDeff +

√
50c4x

)

(
Lmin − c2x

√
N
(√
Deff + 5

))2 (67)

Then for N sufficiently large, Condition 1 holds with probability at least 1− 43e−25, where the probability is over
the random data {(xn, yn)}Nn=1.

Proof. The proof is exactly the same as that of Theorem 4 – we bound the probability that any of Assumptions 10
to 14 are violated by a union bound – except that we use Lemmas 5 to 7 and Proposition 13 below to bound
each term. Note that we have Mlogr = o(1) by Assumptions 3 and 7.

I.11 Logistic regression: lambda min

Lemma 5. Take Assumption 7. Further suppose that Deff grows as o(N/ log(N)). Then for N sufficiently large:

Pr

[
min

n=1,...,N
λmin(∇2

θF
\n(θ∗)SS) ≤ Lmin − Cc2x

√
N
(√

Deff + 5
)]

≤ 3e−25, (68)

where Lmin is the constant from Assumption 7.

Proof. We have by Proposition 8 and the fact that |D(2)
n | ≤ 1 :

λmin(∇2
θF

\n(θ∗)SS) ≥ λmin(∇2
θF (θ

∗)SS)− ‖xnS‖22 |D(2)
n |

≥ λmin(∇2
θF (θ

∗)SS)− ‖xnS‖22 .

The rest of the proof is now exactly the same as that of Lemma 2.

I.12 Logistic regression: incoherence

We can get exactly the same bound as in Lemma 3. To do so, we first note that Proposition 9 is only written

to deal with Hessians of the form XTX; however, if we rewrite our data as x̄n :=

√
D

(2)
n xn, the Hessian for

logistic regression is equal to X̄T X̄. We can further upper bound the upper bound in Proposition 9 by noting

that |D(2)
n | ≤ 1 =⇒ ‖x̄n‖2 ≤ ‖xn‖2. Applying this reasoning, we get an identical lemma to Lemma 3

Lemma 6. Take Assumptions 1, 2, 6 and 7. Then for the scalar Mlogr defined in Theorem 3, we have:

Pr

[
max

n=1,...,N
max
d∈Sc

‖Jnd‖1 ≥ 1− α+Mlogr

]
≤ 10e−25, (69)

where Jnd is defined in Eq. (37).

Proof. The proof is very similar to that of Lemma 3. To prove Lemma 3, we wrote ‖Jnd‖1 ≤ ‖Jd‖1+‖Jnd−Jd‖1.
To bound ‖Jd‖1 with high probability, we applied Assumption 2. To bound ‖Jnd − Jd‖1, we used the bound
from Proposition 9, and then conditioned on a number of high-probability events to give an overall bound. We
can condition on all of the same events, except we replace the event in Eq. (53) by:

{
min

n=1,...,N
λmin

(
∇2

θF
\n
SS

)
≥ Lmin − Cc2x

√
N(
√
Deff + 5)

}
. (70)

By Lemma 5, the complement of this event has probability at most 3e−25. We condition on the rest of the events
in the proof of Lemma 3 and finish the proof along the same lines.
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I.13 Logistic regression: bounded gradient

Again, we are interested in bounding:

Pr

[
max

n=1,...,N

∥∥∥∇F \n(θ∗)
∥∥∥
∞

≥ λ
(
1−maxn maxd∈Sc ‖Jnd‖1

)

4

]

The same reasoning that led to Eq. (61) gives us the same bound:

≤Pr

[
max

n=1,...,N

∥∥∥∥
1

N
∇θf(x

T
nθ

∗, yn)

∥∥∥∥
∞

≥ λ(α−Mlogr)

4
−BG

]

+ Pr [‖∇F (θ∗)‖∞ ≥ BG] + Pr

[
max
n

max
d∈Sc

‖Jnd‖1 ≥ 1− α+Mlogr

]
(71)

Just as in the case of linear regression, we can first pick a reasonable value for BG:

Proposition 12. For the logistic regression setup above, we have:

Pr

[
‖∇F (θ∗)‖∞ ≥ cx

√
25 + logD

CN

]
≤ 2e−25. (72)

Proof. The dth coordinate of the gradient is (∇F (θ∗))d = 1/N
∑

nD
(1)
n xnd, where

D(1)
n =

−yn
1 + eynxT

nθ∗
.

Noting that this satisfies |D(1)
n | ≤ 1:

Pr

[
| 1
N

N∑

n=1

D(1)
n xnd| ≥ cx

√
25 + logD

CN

]

≤ Pr

[
N∑

n=1

|xnd| ≥ cx

√
N

25 + logD

C

]

≤ 2e−25−logD,

where the final inequality comes from noting that |xnd| is also cx-sub-Gaussian and using Hoeffding’s inequality
(Theorem 2.6.2 from Vershynin [2018]). Union bounding over all D dimensions of ∇F (θ∗) gives the result.

Lemma 7. For the above setup for logistic regression and the λ given in Theorem 3, we have:

Pr

[
max
n∈[N ]

∥∥∥∇F \n(θ∗)
∥∥∥
∞

≥ λ
(
1−maxn maxd∈Sc ‖Jnd‖1

)

4

]
≤ 14e−25 (73)

Proof. Just as in the proof of Lemma 4, we will apply the upper bound in Eq. (71) and then bound each term.
The second probability in Eq. (71) is ≤ 10e−25 by Lemma 6. The second term is ≤ 2e−25 by Proposition 12. We
now just need to analyze the first term:

Pr

[
max
n∈[N ]

∥∥∥∥
1

N
∇θf(x

T
nθ

∗, yn)

∥∥∥∥
∞

≥ λ(α−Mlogr)

4
−BG

]
.

Plugging in the λ given in Theorem 5, and using ‖∇θf(x
T
nθ

∗, yn)‖∞ ≤ ‖xn‖∞, we can further upper bound this
probability:

≤ Pr

[
max
n∈[N ]

‖xn‖∞ ≥
(√

2Cc2x logN +
√
50Cc2x

)]
.

By part 1 of Corollary 1, this probability is ≤ 2e−25.
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I.14 Logistic regression: λ small enough

In the case of linear regression, the LSSC held with K = 0, so there was no work to be done in checking the
bound in Assumption 14; this is not the case for logistic regression. Li et al. [2015] prove that the LSSC holds
here:

Proposition 13 ([Li et al., 2015]). The logistic regression model given above satisfies the (θ∗, Nθ∗) LSSC for

any θ∗ and Nθ∗ = R
D with a data-dependent constant K = 1/4(maxn ‖xn‖∞)(maxn ‖xnS‖22).

Proof. This is proved in Section 6.2 of Li et al. [2015].

We first show that this random K is not too large with high probability under our random design:

Proposition 14. For xn ∈ R
D comprised of i.i.d. cx-sub-Gaussian random variables, the random variable

K = 1/4(maxn ‖xn‖∞)(maxn ‖xnS‖22) satisfies:

Pr

[
K ≥ 1

4

(√
2c2x log(ND) +

√
50c2x

) (
Deff + c2xDeff(logN + 26)

)]
≤ 3e−25 (74)

Proof. First, Corollary 1 implies that maxn ‖xn‖∞ ≥
√
2c2x log(ND) +

√
50c2x with probability at most 2e−25,

so the probability we are interested in is bounded by:

≤ Pr
[
max
n

‖xnS‖22 ≥ Deff + c2xDeff(logN + 26)
]
+ 2e−25. (75)

Noting that ‖xnS‖22 is the sum of Deff c
2
x-sub-Exponential random variables, ‖xnS‖22 is a Deffc

2
x-sub-Exponential

random variable. Corollary 1 then gives us that Eq. (75) is bounded above by 3e−25.

We can now prove the result we need, which is that λ satisfies the upper bound in Assumption 14 with high
probability.

Lemma 8. Take Assumptions 1 to 3 and 7. Then, for the logistic regression setup in Assumption 6 and λ as
given in Theorem 3 and large enough N , we have:

Pr

[
λ ≥ minn λ

2
min(∇2

θF
\n(θ∗)SS)

4
((
1−maxn maxd∈Sc ‖Jnd‖1

)
+ 4
)2

4
(
1−maxd∈Sc ‖Jnd‖1

)

K

]
≤ 16e−25 (76)

Proof. Using Lemma 5, Lemma 6, and Proposition 14, the desired probability is ≤ 16e−25 if the following
deterministic inequality holds:

λ ≤ 4(α−Mlogr)

4(α−Mlogr + 4)2
(Lmin − Cc2x

√
DeffN)2(√

2c2x log(ND) +
√

50c2x

)
(Deff + c2xDeff(logN + 26))

(77)

We will lower bound the right hand side and show that λ is less than this lower bound. Throughout, C will be
a generic constant that changes from line-to-line. First, as noted in the proof of Theorem 3, Mlogr = o(1) as
N → ∞, so that for large enough N , we have (α−Mlogr)/(α−Mlogr + 4)2 ≥ (α/2)/(α/2 + 4)2. Next, for large
enough N , Lemma 5 implies the denominator is greater than CN . Also for large enough N , the denominator is
less than CDeff logN

√
log(ND). We are left with checking the condition:

λ ≤ C
α/2

(α/2 + 4)2
N2

Deff logN
√
log(ND)

. (78)

Under Assumption 3, we can upper bound the denominator to get a further lower bound on the right hand side:

λ ≤ C
α/2

(α/2 + 4)2
log2/5(N)N2

N2/5 logN
√
log(N) +N

. (79)

Now, the right hand side goes to infinity as N gets large, while the λ given in Theorem 3 goes to 0 as N gets
large. Thus, for sufficiently large N , Eq. (77) holds.


	Introduction
	Overview of Approximations
	Problems in high dimensions
	Sparsity via 1 regularization.

	Approximation quality in high dimensions
	Linear regression
	Logistic regression

	Experiments
	Conclusions and future work
	Cross-validation methods
	Scaling of the leave-one-out objective
	Approximately solving  and 
	Further details of modifiedApproximation and regularApproximation
	Derivation of 
	Invertibility in the definition of  and 
	Accuracy of  for regularized problems
	Derivation of 
	Computation time of approximations

	Derivation of  and  via smoothed approximations
	Proof of prop-restrictedApproximation using radSmoother
	prop-restrictedApproximation using wangSmoother

	The importance of correct support recovery
	Details of real experiments
	Selection of 
	Proofs from sec-theory
	Assumptions from li:2015:sparsistency
	Local structured smoothness condition (LSSC)
	assum:LSSC,assum:lambdaMin,assum:incoherence,assum:boundedGradient,assum:lambdaSmall imply suppS for all n
	Useful results for proving linearRegressionTheorem,logisticRegressionTheorem
	Proof of linearRegressionTheorem (Linear Regression)
	Linear regression: minimum eigenvalue
	Linear regression: incoherence
	Linear regression: bounded gradient
	Linear regression:  small enough
	Proof of logisticRegressionTheorem (Logistic Regression)
	Logistic regression: lambda min
	Logistic regression: incoherence
	Logistic regression: bounded gradient
	Logistic regression:  small enough


