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Abstract

Homomorphic Encryption (HE) based secure Neural Networks(NNs) inference is
one of the most promising security solutions to emerging Machine Learning as a
Service (MLaaS). In the HE-based MLaaS setting, a client encrypts the sensitive
data, and uploads the encrypted data to the server that directly processes the
encrypted data without decryption, and returns the encrypted result to the client.
The client’S data privacy is preserved since only the client has the private key.
Existing HE-enabled Neural Networks (HENNs), however, suffer from heavy
computational overheads. The state-of-the-art HENNs adopt ciphertext packing
techniques to reduce homomorphic multiplications by packing multiple messages
into one single ciphertext. Nevertheless, rotations are required in these HENNs
to implement the sum of the elements within the same ciphertext. We observed
that HENNs have to pay significant computing overhead on rotations, and each of
rotations is ∼ 10× more expensive than homomorphic multiplications between
ciphertext and plaintext. So the massive rotations have become a primary obstacle
of efficient HENNs.
In this paper, we propose a fast, frequency-domain deep neural network called
Falcon, for fast inferences on encrypted data. Falcon includes a fast Homomor-
phic Discrete Fourier Transform (HDFT) using block-circulant matrices to ho-
momorphically support spectral operations. We also propose several efficient
methods to reduce inference latency, including Homomorphic Spectral Convolu-
tion and Homomorphic Spectral Fully Connected operations by combining the
batched HE and block-circulant matrices. Our experimental results show Falcon
achieves the state-of-the-art inference accuracy and reduces the inference latency
by 45.45% ∼ 85.34% over prior HENNs on MNIST and CIFAR-10.

1 Introduction
Homomorphic Encryption (HE)-enabled neural networks (NNs) [1, 2, 3] are designed for secure
Machine Learning as a Service (MLaaS). In HE-enabled MLaaS, a client encrypts his/her data and
uploads the encrypted data to a server in the cloud. The server computes inferences on the encrypted
data and returns the encrypted output to the client. The server cannot decrypt the encrypted input or
output during an inference. However, HE naturally supports only linear layers of a neural network.
Some interactive HE-enabled NNs (HENNs) [4, 5, 6] take advantage of multi-party computation
(MPC) to get the client involved in the computation of activation layers by exchanging several
gigabyte data with the client during an inference, while other non-interactive HENNs [1, 2, 3]
approximate activations by a square function to perform secure inferences without involving the

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



client. A non-interactive HE-enabled NN is a practical MLaaS solution with competitive accuracy for
particular clients who have limited computing power and small network bandwidth.

However, both interactive and non-interactive HE-enabled inferences are slow. An inference of
state-of-the-art HENNs [5, 3] on an encrypted CIFAR-10 image costs several hundred seconds. Their
long inference latency is caused by expensive HE rotations. Modern HE cryptosystems, e.g., BFV [7],
pack a vector consisting of small integers into a single large integer, so that they can allow concurrent
HE arithmetic operations to happen on individual integers by performing a single operation on
the large integer. The single instruction multiple data (SIMD) computing style of HE significantly
reduces inference latency of HENNs from multiple hours to several hundred seconds. However,
each accumulation in linear layers of a HE-enabled NN requires a rotation operation to shuffle small
integers packed into a large integer. As a result, rotations consume > 90% of inference latency of a
HE-enabled NN on an encrypted CIFAR-10 image.

Recent interactive HENNs [4, 8] use frequency-domain convolutions [9, 10] to perform only element-
wise multiplications in their linear layers to eliminate expensive HE rotations. A plaintext image
of a client is first converted to its frequency-domain representation by discrete Fourier transform
(DFT), encrypted to a ciphertext, and then sent to a cloud server. Instead of HE multiply-accumulate
(MAC) operations, only HE element-wise multiplications are required to perform frequency-domain
convolutions on the server. After receiving the encrypted frequency-domain linear layer output, the
client decrypts it and converts the plaintext frequency-domain output to a normal linear layer output
by inverse DFT (IDFT). At last, the client performs activations on the normal linear layer output, and
then moves to the next layer. The frequency-domain convolutions greatly reduce inference latency of
interactive HENNs by 30% ∼ 40%.

However, naïvely using frequency-domain convolutions in non-interactive HENNs prolongs inference
latency. Each HE operation introduces a certain amount of noise into the encrypted data. When the
accumulated noise in the encrypted data is larger than the noise budget of a HENN, the encrypted
data cannot be correctly decrypted. Therefore, the total number of HE operations along the critical
path of a HENN decides the noise budget. A larger noise budget increases the latency of each HE
operation. In interactive HENNs, the server sends the output to the client at the end of each linear
layer. The client has to participate the computation of each activation layer. The client performs
DFT and IDFT on plaintext data, and thus does not increase the number of HE operations at all.
On the contrary, non-interactive HENNs homomorphically compute all linear and activation layers
on the server without involving client. DFT and IDFT applied in non-interactive HENNs happen
on the encrypted data, and thus should be homomorphic. Homomorphic DFT and IDFT greatly
increase the noise budget of a non-interactive HENN by adding more HE operations to its critical
path. Based on our estimation, the enlarged noise budget significantly prolongs inference latency of a
frequency-domain non-interactive HENN by > 100%.

In this paper, we propose Falcon for fast non-interactive privacy-preserving inference. Our contribu-
tions can be summarized as follows.

• We propose a novel HE DFT algorithm to homomorphically and efficiently convert an
encrypted input to its encrypted frequency-domain representation.

• We propose a fast HE-enable convolution technique and a fully-connected technique on
spectral domain using block circulant weight matrices.

• We consider the improvements and overhead of proposed techniques on both HE noise
growth and HE parameters selection. Our experiments prove that Falcon reduces the
inference latency by 45.45% ∼ 85.34% over prior HENNs on MNIST and CIFAR-10.
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Figure 1: Different HENNs schemes.
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2 Background
2.1 Secure Neural Network Inference

Recent works [1, 2, 3, 4, 5, 6] use HE to implement linear layers of a HENN for MLaaS. However,
HE cannot support non-linear activation layers. As Figure 1(a) shows, interactive HENNs [4, 5, 6]
take advantage of MPC and secrete sharing to make the server to send the output to the client at the
end of each linear layer, and get the client involved in the computation of each activation layer. In
contrast, non-interactive HENNs [1, 2, 3] approximate activations by a square function to compute an
entire secure inference without involving the client, as shown in Figure 1(b). Compared to interactive
HENNs, non-interactive HENNs have a lower requirement on the computing power and network
bandwidth of the client, thereby becoming more friendly to low-power mobile devices. A state-of-
the-art interactive HENN, Delphi [5], has to exchange 2GB data between the client and server for
only a ResNet-32 inference on an encrypted CIFAR-10 image. In this paper, we focus on accelerating
non-interactive HENNs. Particularly, we select LoLa [3] implemented by BFV [7] as our baseline,
due to its state-of-the-art inference accuracy and latency. Compared to other HE cryptosystems such
as CKKS [11], the BFV-based LoLa improves inference latency by 30%.

2.2 Homomorphic Encryption

Homomorphic Encryption. HE allows operations on encrypted data without requiring access to
the secret key [7]. Given a public key pk, a private key sk, an encryption function ε(), and a
decryption function σ(), a HE operation ⊗ can be defined if there is another operation × such that
σ(ε(x1, pk) ⊗ ε(x2, pk), sk) = σ(ε(x1 × x2, pk), sk), where x1 and x2 are plaintexts. Each HE
operation introduces a certain amount of noise into encrypted data. When the accumulated noise is
larger than a noise budget, errors happen during HE decryption. A bootstrapping operation [12] is
extremely expensive, although it can reduce the noise in encrypted data. Prior HENNs use leveled
HE defining a noise budget to compute only a limited number of HE operations.

SIMD and Rotation. Modern HE cryptosystems, e.g., BFV [7], support single instruction multiple
data (SIMD) vectors by encoding multiple integers into a larger integer based on Chinese Remainder
Theorem. For instance, as Figure 2 shows, an encrypted input integer vector [x0, x1, x2, x3] can
be encrypted into mx, while another weight integer vector [w0, w1, w2, w3] can be encrypted into
mw. By computing a HE multiplication between mx and mw, four HE multiplications are simul-
taneously performed on individual integers, i.e., [x0 · w0, x1 · w1, x2 · w2, x3 · w3]=[y0, y1, y2, y3].
A HE cryptosystem also supports rotations to shuffle individual integers in a packed vector. For
instance, rotating the vector [y0, y1, y2, y3] by 2 results in the vector [y2, y3, y0, y1]. A HE rotation is
computationally expensive [4] and introduces non-trivial noise into the encrypted data.

Homomorphic Multiply-Accumulate. The major operation in linear layers of a HENN is homomorphic
MAC, as shown in Figure 2. For a fully-connected (FC) layer, we assume the encrypted input vector
x includes n elements, the encrypted output vector y has m elements, and the plaintext weight matrix
w has a dimension of n×m. For instance, for each row of wj (0 ≤ j ≤ m− 1) and [x], we have
[yj ] = [wj · x] is computed as

[yj] =MulPC(wj, [x]), [yj ] =

log2n∑
i=1

rot([y],
n

2i
) (1)

where MulPC indicates a HE SIMD multiplication between a packed plaintext and a packed
ciphertext; and rot means a HE rotation. As Equation 1 describes, log2n HE rotations are required to
accumulate an element of y. We summarized the HE operation number and noise of a FC layer of
LoLa in Table 1. Among all HE operations, rotations dominate inference latency of LoLa. In this
paper, we focus on eliminating HE rotate-and-accumulate operations.

2.3 Frequency-Domain Convolution

Interactive HENNs. Prior interactive HENNs [4, 8] use frequency-domain convolutions [9, 10] to
perform only element-wise multiplications in their HE linear layers to reduce rotation overhead,
as shown in Figure 1(a). Based on Convolution Theorem, the convolutions in space domain are
equivalent to element-wise products in frequency domain. Therefore, we have

y = w ∗ x = IDFT (DFT (w) ·DFT (x)), (2)
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Figure 3: A block-circulant weight matrix.

where IDFT means inverse DFT. Frequency-domain convolutions greatly reduce inference latency
of interactive HENNs, since unencrypted DFT and IDFT performed by the client introduce small
computing overhead.

Scheme MulPC AddCC rot noise

LoLa nc nc · log2na nc · log2na η0ηmna + ηr(na-1)
LoLa+DFT 3n′c 2n′c · log2n

′
a 2n′c · log2n

′
a 3η0ηmn′a + 2ηr(n

′
a-1)

Table 1: The comparison of non-interactive HENN convolution schemes. The width, height and
channels of convolution input, output: Iw, Ih, Ic and Ow, Oh, Oc; The input channels, output chan-
nels, width and height of kernels: Ic, Oc, f, f . N is ciphertext slots number. (MulCP : HE SIMD
multiplications between plaintext and ciphertext; AddCC: HE SIMD additions between ciphertext
and ciphertext; rot: HE rotation; nc = d f

2·Ic·Iw·Ih
N e and n′c = d (Ic·Iw·Ih)

2

N e: ciphertext numbers
of LoLa and LoLa+DFT; na = Ic · f2 and n′a = Ic · Iw · Ih : accumulation numbers of LoLa and
LoLa+DFT, where dxe is for roundup x to the nearest integer. η0: initial noise; ηm: MultPC noise;
and ηr: rotation noise).

Non-interactive HENNs. Unlike interactive HENNs, non-interactive HENNs shown in Figure 1(b)
have to use homomorphic DFT (HDFT) and IDFT (HIDFT), since the entire inference occurs on the
server. Though a CKKS-based homomorphic DFT function with bootstrapping [11] exists, there is
no BFV-based DFT or IDFT function. Even if we have BFV-based DFT and IDFT functions, the total
HE number and noise of a non-interactive HENN will be greatly increased by HDFT and HIDFT that
also require HE rotate-and-accumulate operations. DFT and IDFT can be summarized as

DFT (x)t =

n−1∑
i=0

xi · ωit
n ; IDFT (x)t =

1

n

n−1∑
i=0

xi · ω−it
n (3)

where ωn = e2πi/n. As Table 1 shows, if we naïvely apply HDFT and HIDFT on LoLa, LoLa+DFT
increases more than 2× rotations since n′a > na and n′c > nc, and thus introduces more noises. To
maintain a larger noise budget for the noises, LoLa+DFT has to enlarge the HE encryption parameters,
i.e., the ciphertext modulus q, and the polynomial degree N , which in turn prolong the latency of
each MulPC, AddCC, and rot operation.

2.4 Block-Circulant Weight Matrices

Recent works [13] compresses a weight filter of a plaintext NN into multiple blocks-circulant matrices
to reduce inference computing overhead. The n ×m weight matrix is divided into p × q square
blocks, each of which (wi,j) contains k × k elements, where 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ p− 1. We
have p = m

k and q = n
k . The k × k elements in a block can be derived by only k elements with shift

operations. The input vector is divided into q parts, while the output vector is divided into p parts. To
compute each part of the output vector (yi) as shown in Figure 3, we can use

yi =

q∑
j=0

IDFT (DFT (wi,j) ·DFT (xj)) (4)

The computational complexity of a FC layer is O(pqklogk).
2.5 Comparison against Prior Works

Table 2 shows the comparison of existing HENNs. A non-interactive HENNs, E2DM, is proposed to
compute secure matrix multiplications using HE and MPC schemes. LoLa and CHET achieve the
state-of-the-art performance in the non-interactive HENNs using HE ciphertext batching techniques.
However, they still suffer from the long inference latency, due to massive and expensive homomorphic
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Features E2DM [14] LoLa [3] CHET [15] ENSEI [16] MPCHE [8] Ours

Non-interactive HENNs 7 3 3 7 7 3

Spectral Convolution & FC 7 7 7 7 7 3

Efficient homomorphic DFT 7 7 7 7 7 3

Table 2: The comparison of HENNs.

rotations. ENSEI and MPCHE are proposed to reduce homomorphic rotations of interactive HENNs
using spectral-domain convolutions. Nevertheless, their methods based on convolution theorem
can not be applied to fully-connected operations. In addition, both ENSEI and MPCHE focus on
interactive HENNs and cannot perform DFT and IDFT homomorphically. They enforce clients to
process DFT and IDFT on the unencrypted data. Directly applying their methods on non-interactive
HENNs prolongs the inference latency, due to the huge overhead of homomorphic DFT. Our Falcon
includes an efficient homommorphic DFT technique and supports both spectral convolutions and FC
operations, which significantly reduces the inference latency of non-interactive HENNs.

3 Falcon
3.1 BFV-based Homomorphic DFT

Algorithm 1: Homomorphic DFT (HDFT).
Input: a stacked input ciphertext [x]; the block size k
Output: a spectral ciphertext [x̂];
[x̂] =MultPC([x], ω)
for i = 1; i <= log2k; i++ do

[x̂i] = rot([x̂], k
2i
)

[x̂] = AddCC([x̂i], [x̂])
end
return [x̂]
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Figure 5: A Homomorphic Fully-Connected Layer.

To support homomorphic DFT shown in Equation 3 using BFV scheme, we should firstly quantize
and encode the complex numbers (wi,j) of DFT conversion matrix.

Quantization. State-of-the-art non-interactive HENNs, e.g., LoLa, rely on the BFV protocol that
supports only integer. The inputs, weights, activations, and outputs of the non-interactive HENNs are
all integers. So xi of HDFT and HIDFT in Equation 3 is an integer. ωitn can be quantized as

Q(ωit
n ) = dS1ω

it
n c = dS1 cos(

2πt

n
)c − jdS1 sin(

2πt

n
)c, (5)

where d·c is the rounding function converting a real number to an integer; and S1 is an integer
scaling factor. Through multiplying S1, the real inputs, weights, and ωitn of a HENN are scaled to
keep more digits after their decimal point during the rounding process. We quantized the inputs,
activations, weights, and ωitn of a HENN with 8-bit. We integrated the quantized HENN into the
forward propagation of the training to minimize the accuracy loss.

Encoding Complex Numbers. Unlike HEAAN [11], the BFV protocol cannot naturally support com-
plex number. We encode the real part (Re) dS1 cos(

2πt
n )c and the imaginary part (Im) dS1 sin(

2πt
n )c

ofQ(ωitn ) in Equation 5 by two SIMD slots of a BFV ciphertext, so we haveC = Re+jIm. For a HE
complex addition (C0+C1), we have (Re0+Re1)+j(Im0+Im1). For a HE complex multiplication
(C0×C1), we have ((Re0+Im0)Re1−(Re1+Im1)Im0)+j((Re0+Im0)Re1−(Re1+Im1)Re0).

Homomorphic DFT and IDFT. We present a BFV-based homomorphic DFT in Algorithm 1 to
homomorphically convert an encrypted integer vector [x] to its encrypted frequency-domain vector
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y=[x̂]. Here ω is the quantized DFT twiddle factors and its entries can be stacked and permuted in an
offline phase. Table 3 shows a comparison of computational complexity between prior homomorphic
DFT (FTHDFT) [17] and our Algorithm 1 when they both use the block circulant matrix technique.
Algorithm 1 needs (log2k) rotations and additions, and 1 MultPC operations for each real-part
vector (Re) and imaginary-part vector (Im) of input vector x. Figure 4 shows an example of our
algorithm 1 with k = 2, and this example requires 1 multiplication, rotation and addition for each
real-part vector (Re) and imaginary-part vector (Im).

Scheme #MulPC #AddCC #rot #Depth noise

FHDFT 3× log2k 3× log2k 2× log2k 3× log2k η′3×log2k

Ours 1 2× log2k 2× log2k 1 η′

Table 3: The comparison of homomorphic DFT schemes with k points. Here η′ = η0ηmk+ηr(k−1).

3.2 Homomorphic Spectral FC Layer

Algorithm 2 shows our proposed homomorphic fully-connected (HFC) layer, which takes a spatial
domain vector x as the input, and outputs the encrypted results [y] = [x] · W , where W is the
weight matrix at a FC layer. If a FC layer is not the first layer, x already is packed into l = Nc(

O
k )

ciphertexts. In this paper, we set Nc(x) = d I·xN e be the ciphertext numbers to hold x× stacked
inputs with size I , where N is ciphertext slots number and dye is a function to roundup y into
the nearest integer. If N is large enough, x only requires one single ciphertext. Algorithm 2 then
uses HDFT to homomrophically convert each ciphertext [xi] to its spectral-domain value [x̂i].
Then a homomorphical element-wise multiplication between spectral input [x̂i] and weight Ŵi

is performed by one single MultPC operation, where Ŵi can be pre-computed. According to
Equation 4 and Figure 3, we do not need to accumulate the result entries inside a block, but we still
need to accumulate the entries between log2 Ik blocks. Therefore, log2 Ik rotations and additions are
required to accumulate these blocks. Then we perform an inverse HDFT step to convert the spectral
result [v̂i] into its spatial value [vi]. At last, we can use AddCC to add the partial sums into one
ciphertext. Table 4 compares the computational overheads and noise growth between LoLa and our
Falcon. Falcon requires 2log2

I
k · Nc(

O
k ) rotations, but LoLa needs log2I · Nc(O) rotations. Our

experiments show that When k >= 2, Falcon costs less computations than LoLa. For noise growth,
we set η′ = η0ηmI + ηr(I − 1). When k > 1, Falcon reduces the noise accumulation, thereby
potentially enabling more efficient HE parameters. Figure 5 shows an example why our Algorithm 2
is better than our baseline LoLa. In this example, k = 2, I = 2, O = 2 and N = 2, LoLa requires
Nc(O) = 2 ciphertexts and 2 × log2(I) = 2 additions, rotations and multiplications. Our Falcon
only requires Nc(Ok ) = 1 ciphertext and 1× log2( I2 ) = 0 rotations. This is only a toy example and
we should add the overhead of HDFT into our method. In practice, when I , O and N are very large,
the overhead of HDFT is tiny compared to the other computations within a spectral FC, which is
shown in section 5.

Algorithm 2: Homomorphic FC
Layer (HFC).
Input: an input vector x with size I ,

FC weights W with size I ·O,
the block size k;

Output: an output ciphertext
[y] = [x] ·W ;

x is packed to l = Nc(
O
k
) ciphertexts

{[x0], [x1], ..., [xl−1]};
for i = 0; i < l; i++ do

[x̂i] = HDFT ([xi]);
[v̂i] =MultPC([x̂i], Ŵi);
for j = log2

I
k

; j > 0; j −− do
[ŷi] = rot([v̂i], j);
[v̂i] = AddCC([ŷi], [v̂i]);

end
[vi] = inverse HDFT ([v̂i]);
[yi] = AddCC([yi], [vi]);

end
return [y] from [yi] to [yl−1];

Algorithm 3: Homomorphic Convolutional Layer.
Input: an input tensor x with size Ic · Iw · Ih, Kernels W with

size Ic ·Oc · f · f , block size k;
Output: the convolution result [y];
x is packed to l =Mc(

O′

k
) ciphertexts {[x0], [x1], ..., [xl−1]};

for i = 0; i < l; i++ do
[x̂i] = HDFT ([xi]);
[x̂i] =MultPC([x̂i], Ŵi);
for jc = 1; jc <= log2Ic; jc = jc + kc do

[x̂i] = rot([x̂i],
Iw·Ih·Ic

2jc
); [x̂i] = AddCC([x̂i], [x̂i]);

end
for jw = 1; jw <= log2f ; jw = jw + kw do

[x̂i] = rot([x̂i],
Ih·f
2jw

) ; [x̂i] = AddCC([x̂i], [x̂i]);
end
for jh = 1; jh <= log2f ; jh = jh + kh do

[x̂i] = rot([x̂i],
f

2jh
); [x̂i] = AddCC([x̂i], [x̂i]);

end
[yi] = inverse HDFT ([x̂i]);

end
return [y] from [yi] to [yl−1];
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Scheme #MulPC #AddCC #rot #Depth noise

LoLa Nc(O) log2I ·Nc(O) log2I ·Nc(O) 1 η′

Ours 3Nc(
O
k ) 2log2

I
k ·Nc(

O
k ) 2log2

I
k ·Nc(

O
k ) 1 η′

k

Table 4: The comparison of homomorphic FC operations with I inputs and O outputs.

3.3 Homomorphic Spectral Convolution Layer

Algorithm 3 shows how to perform a homomorphic spectral convolution. In this paper, Ic, Iw
and Ih are the input channel number, input width and input height, respectively; kernel size and
kernel output channel number are f and Oc; The output channel number, height and width are
Oc, Oh and Ow. We set Mc(x) = d Ic·Ih·Iw·xN e be the ciphertext numbers to hold x× stacked
input. During a convolution, each input’s sliding window with size of I ′ = f2 · Ic will perform
a dot-product operation. Each convolution needs O′ = Oc·f2

s2 dot-products, where s is the stride
size. Previous works use Mc(O

′) ciphertexts to pack O′× stacked inputs, so that one homomorphic
convolution operation is converted to O′× homomorphic dot-product operations on each sliding
window with size I ′. Table 5 shows that previous work requires log2I ′ ·Mc(O

′) rotations, and noise
growth is η′ = η0ηmI

′ + ηr(I
′ − 1). By using the block-circulant matrix technique, we only need

Mc(
O′

k ) ciphertexts as shown in Algorithim 3, which potentially reduces k× homomorphic rotations,
multiplications and additions. In addition, the dot-product of each ciphertext in Algorithm 3 only
needs to accumulate entries between blocks, which is implemented by setting kc · kw · kh = k. Thus,
each dot-product with size I ′ only requires I′

k additions and rotations to accumulate its partial results.
Table 5 concludes the computational overheads and noise growth of LoLa and our Falcon. Falcon
reduces ∼ k·log2(k)

2 rotations, additions and multiplications over LoLa. Flacon has k× less noise
increase than LoLa.

Scheme #MulPC #AddCC #rot #Depth noise

LoLa Mc(O
′) log2I

′ ·Mc(O
′) log2I

′ ·Mc(O
′) 1 η′

Ours 3Mc(
O′
k ) 2log2

I′
k ·Mc(

O′
k ) 2log2

I′
k ·Mc(

O′
k ) 1 η′

k

Table 5: The comparison of homomorphic convolution schemes.

4 Experimental Methodology
Dataset, Networks and Operation Details. Our datasets include MNIST [18] and CIFAR-10 [19].
The network architecture for MNIST dataset is same to LoLa [20], but we replace the spatial-domain
middle layers into frequency domain. The network architecture and operations are summarized
in Table 6. The block size k of circulant matrix is set as 8 so that accuracy is not decreased. We
evaluated a 3-layer CNN same to LoLa [20] on CIFAR-10. To keep original accuracy, the block size
k = 16 of circulant matrix is used.

Cryptosystems Settings. We use BFV scheme in SEAL [21] to implement Falcon. For MNIST and
CIFAR-10, the plaintext modulus t = 2148728833× 2148794369× 2149810177, modulus degree
N = 16384, coefficient modulus Q =∼ 440 bits. More specific encryption parameters settings
are shown in Table 7 and Table 8. The security level is larger than 128 bits which is verified by
lwe_estimator [22]. To have fair comparisons with baselines, We ran all experiments on the same
Azure standard B8ms virtual machine with 8 vCPUs and 32GB DRAM.

5 Results and Analysis
We compared Falcon against the state-of-the-art works including CryptoNets [23], Faster CryptoNets
(FCryptoNets) [24], nGraph-HE [25], CHET [15] and LoLa [20]. The homomorphic operation
numbers (HOPs), encryption parameter bits, message size, latency and accuracy are summarized
in Table 7. HOPs is the sum of all homomorphic operation number including MultPC, MultCC,
AddCC and rot. Message size is the size of encrypted input and output that the client needs to
transmit.

5.1 MNIST

As Table 7 shows, CryptoNets runs one MNIST image inference in 205 seconds, since it uses an
inefficient encoding method. Specifically, CryptoNets encodes a pixel into a single message, therefore
a 28 × 28 MNIST image is encoded and encrypted into 784 ciphertexts. nGraph-HE reduces 34%
inference latency of CryptoNets by multiple compiler optimizations. FCryptoNets makes use of the
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Layer Input size Representation Falcon HE operation #Rot

convolution layer

(f2=25,Oc=5)
25× 169 convolution convolution vector - row major multiplication 0
5× 169 dense combine to one vector using 4 rotations and additions 4

square layer 1× 845 dense square 0
DFT 1× 845 dense homomorphic DFT 12
FC layer
(I=845,O=100)

1× 845 dense stack vectors using 2log2
O
k rotations and additions 8

1× (845×Ok ) stacked homomorphic FC 14
Inverse DFT 1× 100 interleave inverse homomorphic DFT 12
square layer 1× 100 interleave square 0
FC layer (O=100,O=10) 1× 100 interleave interleaved vector - row major multiplication 70
output 1× 10 sparse

Table 6: Falcon message representations and operations on MNIST. Falcon only replaces the first FC
layer by HSFC. Falcon only uses (12+8+14+12)=46 rotations, reducing 70% rotation numbers in the
first FC layer compared to LoLa which consumes 151 rotations.

weights sparsity in neural networks to speedup the MNIST inference into 39.1 seconds. However,
due to the inefficient encoding method, they still suffer from huge HOPs (> 67K) and big message
size (> 368MB). LoLa is proposed to efficiently encode one image’s multiple pixels into a single
message so that one ciphertext is able to contain all 784 MNIST pixels. In practice, LoLa encodes
f2=25 messages, each of them contains Ow ·Oh=169 pixels, to fast process first-layer convolution
operations. Althought EVA [26] and LoLa significantly reduce HOPs and inference latency, they
introduce 2K and 225 expensive rotations, respectively. Rotations are the computational bottleneck
of LoLa. LoLa directly uses the over-pessimistic encryption parameters generated in SEAL [21], e.g.
440-bit Q and 14-bit N . According to the noise analysis in Table 4 and Table 5, {40, 60, 80, 60, 70}
noise bits are accumulated by convolution, square, FC, square, FC layers respectively. So 340-bit
Q and 14-bit N are required to guarantee a 128-bit security level. Using 340-bit Q, LoLa’ is able
to reduce 0.1-second latency of LoLa. Compared to LoLa’, our work Falcon reduces ∼10-bit noise
bits using block-circulant matrix, but introduces 100-bit noise bits because of DFT and inverse DFT,
thereby Falcon consumes 430-bit Q. Our work Falcon reduces 56% rotation numbers and achieves
the MNIST inference latency in ∼ 1 seconds without accuracy decrease as shown in Table 7.

Table 6 reports the batching representations and operations that Falcon applies in each layer. These
batching representations are defined in LoLa. Since the second FC layer of LoLa occupies ∼ 63%
of the total latency, we replace this layer by our Homomorphic FC operations and keep the other
layers same to LoLa. Falcon performs a convolution vector - row major multiplication in the
first layer without rotations, generating 5 dense ciphertexts. These 5 dense ciphertexts can be
combined into one ciphertext by 4 rotations and additions. This ciphertext is squared using a single
multiplication, outputting a dense ciphertext, which is homomorphically converted into a frequency-
domain ciphertext by our HDFT algorithm shown in Algorithm 1.Then 13 copies of the spectral
ciphertext are stacked before applying the Homomorphic FC layer, which is done using 16 rotations
when we support complex-number encoding. Then only 1 round HSFC is performed to generate 1×
100 interleaved ciphertext. The interleaved ciphertext is then squared by one single multiplication.
The last operations is an interleaved vector - row major multiplication, which requires 70 rotations.
Falcon only uses 46 rotations, reducing 70% rotation numbers in the first FC layer compared to LoLa
which consumes 151 rotations. Falcon needs 120 rotations in total for MNIST inference, reducing
47% rotations compared to the 225 rotations in the LoLa, thereby Falcon reduces 45% latency.

Scheme HOPs AddCC MultPC MultCC Rot N (bits) Q(bits) Message Size Latency(s) Acc(%)

CryptoNets 612K 312K 296K 945 0 - - 368MB 205 98.95
nGraph-HE 612K 312K 296K 945 0 14 350 - 135 98.95
FCryptoNets 67K 38K 24K 945 0 13 219 411MB 39.1 98.71
EVA 10K 4K 4K 3 2K 15 480 63MB 121.5 99.05
LoLa 798 393 178 2 225 14 440 51MB 2.2 98.95
LoLa’ 798 393 178 2 225 14 340 51MB 2.1 98.95
Falcon 626 312 204 2 120 14 430 51MB 1.2 98.95

Table 7: The MNIST results.
5.2 CIFAR-10

Table 8 shows the inference latency, accuracy and HOPs of existing works on CIFAR-10. nGraph-HE
implements CIFAR-10 inference in 1628 seconds with 62.1% accuracy. FCryptoNets improves 14.6%
accuracy compared to nGraph-HE with a deeper and more complex neural network architecture, but
it suffers from huge latency with 39K seconds. EVA and LoLa support same vector representations
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and operations, but they are based on HEAAN and BFV respectively and encryption parameters,
thereby they have different latency. LoLa introduces 53K expensive rotations, each of rotations has
∼ 10× latency of multiplication MultPC. Our work Falcon removes 86% rotations and reduces the
latency from 730 seconds to 107 seconds. Table 9 reports the batching representations and operations
that Falcon applies in each layer. Since the second FC layer of LoLa occupies ∼ 97% of the total
latency, we replace this layer by our homomorphic convolution and keep the other layers same to
LoLa. Falcon uses 7674 rotations, reducing 86% rotation numbers in the second convolution layer
compared to LoLa which consumes 52975 rotations. Our baseline LoLa can be improved by LoLa’
using more proper encryption parameter Q.

Scheme HOPs AddCC MultPC MultCC Rot N (bits) Q(bits) Message Size Latency(s) Acc(%)

EVA 150K 67K 67K 9 16K 16 1225 63MB 3062 81.5
LoLa 123K 61K 8.2K 2 53K 14 440 210MB 730 76.5
LoLa’ 123K 61K 8.2K 2 53K 14 330 210MB 730 76.5
Falcon 21K 10k 11.9K 2 7.9K 14 430 210MB 107 76.5

Table 8: The CIFAR-10 results.

Layer Input size Representation Falcon homomorphic operation #Rot

convolution
(f2=64,Oc=83)

64× 196 convolution convolution vector - row major multiplication 0
83× 196 dense combine to one vector using 82 rotations and additions 82

square 1× 16268 dense square 0
DFT 1× 16268 dense homomorphic DFT 12
convolution
(f2=25,Oc=163)

1× 16268 dense Homomorphic convolution 7650
4075
k × k sparse combine to one vector using 4075

k -1 additions 0
inverse DFT 1× 4075 dense homomorphic DFT 12
square 1× 4075 dense square 0
FC (I=4075,O=10) 1× 4075 dense 10 dense vector-row major multiplication 120
output 1× 10 sparse

Table 9: Falcon operations on CIFAR-10. Falcon replaces the second convolution layer by HSConv.
Falcon only uses (12+7650+12)=7674 rotations, reducing 86% rotation numbers in the second
convolution layer compared to LoLa which consumes 52975 rotations.

6 Conclusion
In this paper, we propose Falcon, a low-latency deep neural network on encrypted data, which consists
of a homomorphic DFT unit, a Homomorphic FC unit and a Homomorphic convolution unit based
on block-circulant matrix. Our experimental results show Falcon reduces the inference latency by
45.45% ∼ 85.34% over prior HENNs on various datasets. Falcon is the first frequency-domain
non-interactive HENNs.

Broader Impact
Falcon enables a low-latency privacy-preserving neural network inference on encrypted data. With
Falcon, users can enjoy low-latency secure inference services. In particular, users are able to receive
low-latency and powerful machine learning inference services by uploading their sensitive data
without concerning data privacy. Falcon has no negative impact on our society. If our proposed
method fails, the latency of secure inferences will be prolonged.
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