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Abstract

Machine learning systems are often used in settings where individuals adapt their
features to obtain a desired outcome. In such settings, strategic behavior leads to a
sharp loss in model performance in deployment. In this work, we aim to address
this problem by learning classifiers that encourage decision subjects to change their
features in a way that leads to improvement in both predicted and true outcome.
We frame the dynamics of prediction and adaptation as a two-stage game, and
characterize optimal strategies for the model designer and its decision subjects. In
benchmarks on simulated and real-world datasets, we find that classifiers trained
using our method maintain the accuracy of existing approaches while inducing
higher levels of improvement and less manipulation.

1 Introduction

Individuals subject to a classifier’s predictions may act strategically to influence their predictions.
Such behavior, often referred to as strategic manipulation [1], may lead to sharp deterioration in
classification performance. However, not all strategic behavior is detrimental: in many applications,
model designers stand to benefit from strategic adaptation if they deploy a classifier that incentivizes
decision subjects to perform adaptations that improve their true outcome [2, 3]. For example:

Lending: In lending, a classifier predicts a loan applicant’s ability to repay their loan. If the
classifier is designed so as to incentivize the applicants to improve their income, it will also
improve the likelihood of repayment.

Content Moderation: In online shopping, a recommender system suggests products to customers
based on their relevance. Ideally, the algorithm should incentivize the product sellers to publish
accurate product descriptions by aligning this with improved recommendation rankings.

In this work, we study the following mechanism design problem: a model designer must train a
classifier that will make predictions over decision subjects who will alter their features to obtain a
specific prediction. Our goal is to learn a classifier that is accurate and that incentivizes decision
subjects to adapt their features in a way that improves both their predicted and true outcomes.

Our main contributions are as follows:

1.

We introduce a new approach to handle strategic adaptation in machine learning, based on a new
concept we call the constructive adaptation risk, which trains classifiers that incentivize decision
subjects to adapt their features in ways that improve true outcomes. We provide formal evidence
that this risk captures both the strategic and constructive dimensions of decision subjects’ behavior.

We characterize the dynamics of strategic decision subjects and the model designer in a classifi-
cation setting using a two-player sequential game. Concretely, we provide closed-form optimal
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strategies for the decision subjects (Theorem 1). The implications (Section 3.3) reveal insights
about the decision subjects’ behaviors when the model designer uses non-causal features (features
that don’t affect the true outcome) as predictors.

3. We formulate the problem of training such a desired classifier as a risk minimization problem. We
evaluate our method on simulated and real-world datasets to demonstrate how it can be used to
incentivize improvement or discourage adversarial manipulation. Our empirical results show that
our method outperforms existing approaches, even when some feature types are misspecified.

1.1 Related work

Our paper builds on the strategic classification literature in machine learning [1, 4-10]. We study
the interactions between a model designer and decision subjects using a a sequential two-player
Stackelberg game [see e.g., 1, 11, 12,7, 10, for similar formulations].

We consider a setting where strategic adaptation can consist of manipulation as well as improvement.
Our broader goal of designing a classifier that encourages improvement is characteristic of recent
work in this area [see e.g., 13, 2, 3, 14]. In general, it’s hard to distinguish causal features (features
that affect the true outcome) from non-causal features: Miller et al. [15] show that designing an
improvement-incentivizing model requires solving a non-trivial causal inference problem.

This paper also broadly relates to work on recourse [16-21] in that we aim to fit models that provide
constructive recourse, i.e. actions that allow decision subjects to improve both their predicted and true
outcomes. Our approach may be useful for mitigating the disparate effects of strategic adaptation [22—
24] that stem from differences in the cost of manipulation (see Proposition 4). Lastly, our results may
be helpful for developing robust classifiers in dynamic environments, where both decision subjects’
features and the deployed models may vary across time periods [25, 3, 26].

Also relevant is the recent work on performative prediction [27-30], in which the choice of model
itself affects the distribution over instances. However, this literature differs from ours in that we focus
on inducing constructive adaptations from decision subjects, rather than finding a policy that incurs
the minimum deployment error. In addition, our formulation arguably requires less knowledge, is
more intuitive and deployable, and requires fewer assumptions on the loss function.

2 Problem statement

In this section, we describe our approach to training a classifier that encourages constructive recourse
in settings with strategic adaptation.

2.1 Preliminaries

We consider a standard classification task of training a classifier A : R — {—=1,+1} from a dataset
of n examples (x;,y;)i—1, where example i consists of a vector of d features x; € R and a binary
label y; € {—1,+1}. Example i corresponds to a person who wishes to receive a positive prediction
h(x;) = +1, and who will alter their features to obtain such a prediction once the model is deployed.

We formalize these dynamics as a sequential game between the following two players:
1. A model designer, who trains a classifier h : X — {—1, 41} from a hypothesis class H.

2. Decision Subjects, who adapt their features from 2 to 2’ so as to be assigned h(z') = +1 if
possible. We assume that decision subjects incur a cost for altering their features, which we

represent using a cost functionc : X x X — R*.

We assume that each player has complete information: decision subjects know the model designer’s
classifier, and the model designer knows the decision subjects’ cost function. Decision subjects alter
their features based on their current features z, the cost function ¢, and the classifier h, so that their
altered features can be written x,, = A(x; h, ¢) where A(+) is the best response function.

We allow adaptations that alter the true outcome y. To describe these effects, we refer to the true
label function y : X — {—1,41}, such that y; = y(x;). In practice, y(-) is unknown; however, our
approach will involve assumptions about how altering a feature affects the true outcome.



2.2 Background

In a standard prediction setting, a model designer trains a classifier that minimizes the empirical risk:

hERM € arg min RERM (h)
heH

where Rgpy(h) = E,p[L1(h(x) # y)]. This classifier performs poorly in a setting with strategic
adaptation, since the model is deployed on a population with a different distribution over X (as
decision subjects alter their features) and y (as changes in features may alter true outcomes).

Existing approaches in strategic classification tackle these issues by training a classifier that is robust
to all adaptation. This approach treats all adaptation as undesirable, and seeks to maximize accuracy
by discouraging it entirely. Formally, they train a classifier that minimizes the strategic risk:

hgc € argmin Rgg(h)
heH

where Rsc(h) = E,p[l(h(z,) # v)], and z, = A(x, h;c) denotes the features of a decision
subject after adaptation. However, this classifier still has suboptimal accuracy because y changes as a
result of the adaptation in x. Further, this design choice misses the opportunity to encourage a profile
z to truly improve to change their y.

2.3 CA risk: minimizing error while encouraging constructive adaptation

In many applications, model designers are better off when decision subjects adapt their features in
a way that yields a specific true outcome, such as y = +1. Consider a typical lending application
where a model is used to predict whether a customer will repay a loan. In this case, a model designer
benefits from y = +1, as this means that a borrower will repay their loan.

To help explain our proposed approach, we assume that we can write x = [z | zy | 2] Where ),
x)p and zy denote the following categories of features:

o Immutable features (zy), which cannot be altered (e.g. race, age).

 Improvable features (x)), which can be altered in a way that will either increase or decrease the true
outcome (e.g. education level, which can be increased to improve the probability of repayment).

e Manipulable features (z);), which can be altered without changing the true outcome (e.g. social
media presence, which can be used as a proxy for influence). Notice that it is the change in these
features that is undesirable; the features themselves may still be useful for prediction.

There may also be features that can be altered but whose effect is unknown. In this work, we treat
them as manipulable features.

We also use xp = [ | 2] to denote the actionable features, and dp to denote its dimension.

Note that the question of how to decide which features are of which type is beyond the scope of
the present work; however, this is the topic of intense study in the causal inference literature [15].
Analogously, we define the following variants of the best response function A:

o 2, = A(x, h;c): the improving best response, which involves an adaptation that only alters
improvable features.

o 2 = Ap(z, h; c): the manipulating best response, which involves an adaptation that only alters
manipulable features.

Note that in reality, a decision subject can still alter both types of features, which means that they will
perform A(z, h; ¢), unless the model designer explicitly forbids changing certain features. However,
it still worth distinguishing different types of best responses when the model designer designs the
classifier: we can think of the improving best response A, as the best possible adaptation which
only consists of honest improvement, while the manipulating best response Ay is the worst possible
adaptation that consists of pure manipulation. The model designer would like to design a classifier
such that for the decision subjects, A(z, h; ¢) appears to be close to A((z, h; ¢).

We train a classifier that balances between robustness to manipulation and incentivizing improvement:
hca = argmin[Ry(h) + A - Ry(h)], (D
heH



The first term, Ry(h) = E,p[L(h(z}) # y)], is the manipulation risk, which penalizes pure
manipulation. The second term, R)(h) = E, p[1(h(z)) = +1)], is the improvement risk, which
rewards decision subjects for playing their improving best response. The parameter A > 0 trades off
between these competing objectives. Setting A — 0 results in an objective that simply discourages
manipulation, whereas increasing A\ — oo yields a trivial classifier that always predicts +1.

The two terms in the objective function can also be viewed as proxies for other familiar notions. In
Section 4.1, we show that under reasonable conditions, the following hold:

o The first term, Ry (h), is an upper bound on Rgg(h). Thus minimizing the manipulation risk also
minimizes the traditional strategic risk.

« A decrease in the second term, R;(h) reflects an increase in Pr(y(z},) = +1). Thus improvement
in the prediction outcome aligns with improvement in the true qualification.

3 Decision subjects’ best response

In this section, we characterize the decision subjects’ best response function. Proofs for all results are
included in Appendix B.

3.1 Setup

We restrict our analysis to the setting in which a model designer trains a linear classifier h(x) =
sign(w' ), where w = [wp, wy, . .., wy] € R*™ denotes a vector of d + 1 weights.

We capture the cost of altering « to 2’ through the Mahalanobis norm of the (:hanges:1

e(,2') = [ (2a — 22) T8 (2a — )

Here, S~' € R x R™ isa symmetric cost covariance matrix in which S ,i represents the cost of
altering features j and k simultaneously. To ensure that ¢(-) is a valid norm, we require S “!tobe
positive definite, meaning xATS 71xA > 0forallzp #0 € R%. Additionally, to prevent correlations
between improvable and manipulable features, we assume S “lisa diagonal block matrix of the form

7S

(st o . o
ST = ,  which also implies S = 0 Sy 2)

0 Sy

Otherwise, we allow the cost matrix to contain non-zero elements on non-diagonal entries. This
means that our results hold even when there are interaction effects when altering multiple features.
This generalizes prior work on strategic classification in which the cost is based on the /, norm of the

changes, which is tantamount to setting S ~1 = I, and therefore assumes the change in each feature
contributes independently to the overall cost [see e.g., 1, 2].

3.2 Decision subject’s best response model

Given the assumptions of Section 3.1, we can define and analyze the decision subjects’ best response.
We start by defining the decision subject’s payoff function. Given a classifier h, a decision subject
who alters their features from z to " derives total utility

Ux,2') = h(z') — c(x,2")
Naturally, a decision subject tries to maximize their utility; that is, they play their best response:

Definition 3.1 (F-Best Response Function). Let F € {I,M, A}, and let X¥ (x) denote the set of
vectors that differ from x only in features of type F. Let Ag : X — X denote the F-best response of a
decision subject with features x to h, defined as:

Ap(x) = argmax U (x,2)
z’ €XF (x)

'Since immutable features v cannot be altered, the cost function involves only the actionable features xx.



Setting F = | gives the improving best response A(x), in which the adaptation changes only the
improvable features; setting F = M yields the manipulating best response Ay (x), in which only
manipulable features are changed. Setting F = A, we get the standard unconstrained best response
Ap(z) in which any actionable features can be changed. As we mentioned earlier, we will also use
2, := Ap(z) as shorthand for the F-best response, and we denote A(x) := Ap(z).

Intuitively, the cost of manipulation should be smaller than the cost of actual improvement. For
example, improving one’s coding skills should take more effort, and thus be more costly, than simply
memorizing answers to coding problems. As a result, one would expect the gaming best response
Ap(z) and the unconstrained best response A(x) to flip a negative decision more easily than the
improving best response A|(z). In Section 3.3, we formalize this notion (Proposition 2).

We prove the following theorem characterizing the decision subject’s different best responses:

Theorem 1 (F-Best Response in Closed-Form). Given a linear threshold function h(z) = sign(w' z)
and a decision subject with features x such that h(x) = —1, reorder the features so that x =

[za\F | ¢ | 2], and let Q = wg' Spwg. Then z has F-best response

T T
TE — wgffSFwF} | zavF | Zims lfl\i;él <2

x, otherwise

Ap(z) = 3)

with corresponding cost

\me| R M
C(x7AF($)): ﬁ’ lf\/Q*FSQ

0 otherwise

Example: When F = M, 2 = ) and 2o\ = [z | 7] . After reordering features, we get the
following closed-form expression for the manipulating best response:

| 2 — 2 Sy | if '“'<2
Z|Tm Qu "MWM | Tim

Ap(z) = A
x, otherw1se
with corresponding cost
if Lo ml <2
c(z, Ay(z)) = v Vi
0 otherw1se

3.3 Discussion

In Proposition 1, we demonstrate a basic limitation for the model designer: if the classifier uses any
manipulable features as predictors, then decision subjects will find a way to exploit them. Hence the
only way to avoid any possibility of manipulation is to train a classifier without such features.

Proposition 1 (Preventing Manipulation is Hard). Suppose there exists a manipulated feature 2™

whose weight in the classifier w,&m) is nonzero. Then for almost every x € X, A (z) # 2™,
Next, we show that the unconstrained best response A(x) dominates the improving best response
A (z), thus highlighting the difficulty of inducing decision subjects to change only their improvable
features when they are also allowed to change manipulable features.

Proposition 2 (Unconstrained Best Response Dominates Improving Best Response). Suppose there
exists a manipulable feature 2™ whose weight in the classifier w;m) is nonzero. Then, if a decision
subject can flip her decision by playing the improving best response, she can also do so by playing
the unconstrained best response. The converse is not true: there exist decision subjects who can flip

their predictions through their unconstrained best response but not their improving best response.

Next, we show how correlations between features affect the cost of adaptation. This can be demon-
strated by looking at any cost matrix and adding a small nonzero quantity 7 to some ¢, j-th and j, ¢-th
entries. Such a perturbation can reduce every decision subject’s best-response cost:



Proposition 3 (Correlations between Features May Reduce Cost). For any cost matrix S ! and any
nontrivial classifier h, there exist indices k,{ € [dp] and T € R such that every feature vector x has

lower best-response cost under the cost matrix S -t given by

-1 iy .
&—1 _ &—1 _ S+, ifi=kjg={
S =55 = {S{jl, otherwise

than under S~ ; that is, cg-1(7,A(x)) < cg-1(z, A(w)) for all x.

In many applications, decision subjects may incur different costs for modifying their features, resulting
in disparities in prediction outcomes [see 22, for a discussion]. To formalize this phenomenon,
suppose ® and ¥ are two groups whose costs of changing improvable features are identical, but
members of ® incur higher costs for changing manipulable features. Let ¢ € ® and ) € ¥ be two
people from these groups who share the same profile, i.e. z, = x,,. We show the following:

Proposition 4 (Cost Disparities between Subgroups). Suppose there exists a manipulated feature

2™ whose corresponding weight in the classifier w'(o‘m) is nonzero. Then if decision subjects are

allowed to modify any features, ¢ must pay a higher cost than 1 to flip their classification decision.
Proposition 4 highlights the importance for a model designer to account for these differences when

serving a population with heterogeneous subgroups.

4 Constructive adaptation risk minimization

In this section we analyze the training objective for the model designer, formulating it as an empirical
risk minimization (ERM) problem. Any omitted details can be found in Appendix D.

4.1 The model designer’s program

The model designer’s goal is to publish a classifier & that maximizes the classification accuracy while
incentivizing individuals to change their improvable features. By Theorem 1, we have

.
\

T
o {-TI | 2m — G Swwm | le} lf\l;ﬂiwl <2 @
=
x, otherwise
x—ﬁSw\x | © ifM<2
7 = | Q PIY M M| > /*QI > (5)
*
x, otherwise

Recall from Section 2.3 that the model designer’s optimization program is as follows:
min - Eyop [1(A(z}) # y)] + ABawp [L(h(2)) # +1)]
s.t. 2 in Eq. (4), ) in Eq. (5) (6)

Interpreting the objective. The two terms in the objective function can be viewed as proxies
for two other familiar objectives. The first term, E,_p [1(h(x}) # y)], directly penalizes pure
manipulation. But as the following proposition suggests, minimizing this term also minimizes the
traditional strategic risk when the true qualification does not change:

Proposition 5. Assume that the manipulating best response is more likely to result in a positive
prediction than the unconstrained best response, given that the true labels do not change. Then

E,wp [L[h(z,) # y] | Ay) = y] <E,up [L(A(2Y) £ y)] -

The second term, E,.p [L(h(z},) # +1)], explicitly rewards decision subjects for playing their
improving best response (closely related to the notion of recourse). Of course, without positing a
causal graph, we cannot know when A|(Y") = +1; however, in the setting of covariate shift, in which
the distribution of X may change but not the conditional label distribution Pr(Y'|X'), we can show
that an increase in Pr(h(X) = +1) reflects an increase in Pr(Y = +1). This gives formal evidence
that our prediction outcome aligns with improvement in the true qualification.



Proposition 6. Let D be the new distribution after decision subject’s best response. Denote
wy(x) = %ﬁ:ﬁ)) denote the amount of adaptation induced at feature vector x. Suppose y(X)
and h(X) are both positively correlated with wy,(X), and that Pr(Y'| X) is the same before and after
adaptation (the covariate shift assumption). Then the following are equivalent:

Pr{h(,) = +1] > Prfh(z) = +1] <= Prly(sl) = +1] > Prly(x) = +1].

Proofs of Propositions 5 and 6 can be found in Appendix D.1 and D.2.

4.2 Making the program tractable

By substituting in the closed-form best responses for the decision subjects and making further
mathematical steps (see Appendix D.3 for details), we can turn the model designer’s constrained
optimization problem in (6) into the following unconstrained problem:

miglEmNDl— (2 1 [wa > 9 QM} - 1) y—22-1 {wa > —2\/5.} 1 )
weR

The optimization problem in (7) is intractable since both the objective and the constraints are non-
convex. To overcome this difficulty, we train our classifier by replacing the 0-1 loss function with a

convex surrogate loss o(x) = log (Hi’“ ) This results in the following ERM problem:

n

Ry (h,\) = min lz [—O’ (yl . (wT-:L'i—FQM)) —)\'a(wT'xi+2\/§|) (8)

weRT N

i=1

Directionally Actionable Features. An additional challenge arises when some features can be
changed in either a positive or negative direction, but not both (e.g. has_phd can only go from false
to true). In Appendix D.4, we show how to augment the above objective to enforce such constraints.

S Experiments

In this section, we present empirical results to benchmark our method on synthetic and real-world
datasets. We test the effectiveness of our approach in terms of its ability to incentivize improvement
(or disincentivize manipulation) and compare its performance with other standard approaches. Our
submission includes all datasets, scripts, and source code used to reproduce the results in this section.

Table 1: Performance metrics for different specifications (Spec.) in
e @ which features may be misspecified. ST denotes Static, DF denotes
DropFeatures, MP denotes ManipulationProof, and CA denotes our
method. For each method, we report test error, deployment error, and
a improvement rate. In Full, the model designer has full knowledge of the
causal DAG. In Mis. I, M; is mistaken for an improvable feature. In
Mis. II, the improvable feature X; is miscategorized as manipulable.
U METHODS
Figure 1: A causal DAG for the Spec.  Metrics ST _DF MP CA
toy dataset. Z; and Z, are causal test error 10.29 28.0 11.91 10.19
features that determine the true qual- Full  deployment error ~ 35.79 3515 24.1 ~ 20.61
ification Y, X; = Z,, and X, is a improvement rate  11.54 13.13 14.63 23.49
noisy proxy for Z;. We can directly test error 11.39 1052 11.26 11.04

observe X, and X, but not Z; or Mis. I deployment error  37.37 1053 19.79 25.30
7. M. and M. are non-causal fea improvement rate  37.23 39.74 0.62 23.04
2. My 2 - -

tures that correlate with Y but do ) test error 10.58 35.77 29.52 10.80
not influence it. Mis. I deployment error  12.37 4151 27.68 23.58

improvement rate  1.12 574 336  19.82

5.1 Setup

Datasets. We consider five datasets: toy, a synthetic dataset based on the causal DAG in Fig. 1;
credit, a dataset for predicting whether an individual will default on an upcoming credit pay-
ment [31]; adult, a census-based dataset for predicting adult annual incomes; german, a dataset



to assess credit risk in loans; and spambase, a dataset for email spam detection. The last three are
from the UCI ML Repository [32]. We provide a detailed description of each dataset along with a
partitioning of features in Table 3 in the Appendix. We assume the cost of manipulation is lower than
that of improvement, and that there are no correlations within the two types of adaptation; specifically,
we use cost matrices Sfl = I and SM71 = 0.2]. In our context, all we require is the knowledge
that X, X5 are the factors that causally affect Y, rather than complete knowledge of the DAG.

Methods. We fit linear classifiers for each dataset using the following methods:

e Static: a classifier trained using ¢,-logistic regression without accounting for strategic adaptation.
e DropFeatures: a classifier trained using ¢,-logistic regression without any manipulated features.

e ManipulationProof: a classifier that considers the agent’s unconstrained best response during
training, as typically done in the strategic classification literature [1].

e OurMethod: a linear logistic regression classifier that results from solving the optimization program
in Eq. (8) using the BFGS algorithm [33]. This model represents our approach.

Evaluation Criteria. We run each method with 5-fold cross-validation and report the mean and
standard deviation for each classifier on each of the following metrics:

e Test Error: the error of a classifier after training but before decision subjects’ adaptations, i.e.
o (Worst-Case) Deployment Error: the test error of a classifier after decision subjects play their
manipulating best response, i.e. B, ,\ p1[h(}) # y].

e (Best-Case) Improvement Rate: the percent of improvement, defined as the proportion of the
population who originally would be rejected but are accepted if they perform constructive adaptation
(improving best response), i.e. E, ) pl[h(z}) = +1|y(z) = —1].

5.2 Controlled experiments on synthetic dataset

We perform controlled experiments using a synthetic toy dataset to test the effectiveness of our
model at incentivizing improvement in various situations. As shown in Fig. 1, we set Z; and Z, as
improvable features, X; and X, as their corresponding noisy proxies, M; and M, as manipulable
features, and Y as the true outcome. Since we have full knowledge of this DAG structure, we can
observe the changes in the true outcome after the decision subject’s best response. As shown in
Table 1, Our method achieves the lowest deployment error (20.11%) and improvement rate (23.04%)
when the model designer has full knowledge of the causal graph.

We also run experiments in which some features are misspecified, simulating realistic scenarios in
which the model designer may not be able to observe all the improvable features [2, 3], or mistakes
one type of feature for another. We model these situations by changing M into an improvable feature
and X, into a manipulable feature; the results, shown in Table 1, show that our classifier maintains a
relatively high improvement rate in these cases, without sacrificing much deployment accuracy.

5.3 Results

We summarize the performance of each method in Table 2. Here are some key takeaways:

e Our method produces classifiers that achieve almost the highest deployment accuracy while
providing the highest percentage of improvement across all four datasets.

o The static classifier, which does not account for adaptations, is vulnerable to strategic manipulation
and consequently has the highest deployment error on every dataset.

e Naively cutting off the manipulated features may harm the accuracy at test time — DropFeatures
incurs high test errors on Adult (33.55%) and German (36.10%).

e The strategic classifier ManipulationProof induces the lowest improvement rates on the Credit
(25.26%) and German (29.10%) datasets.



Table 2: Performance metrics (mean = standard deviation) for all methods on 4 data sets. ST indicates
Static, DF indicates DropFeatures, MP indicates ManipulationProof, and CA indicates our method.
METHODS
Dataset Metrics ST DF MP CA

test error 29.52 £ 0.37 29.66 £0.40  29.86 £0.52 29.60 £0.44
CREDIT deployment error ~ 34.69 + 3.23 29.66 £0.40 36.85+1.59 29.4140.39
improvement rate 43.70 £2.04  40.82+2.81 34.62+0.41 55.50 £ 4.03

test error 23.05 £ 0.47 33.55£0.73  24.944+0.52 27.2240.65
ADULT deployment error ~ 49.15 +£ 7.36 33.55+0.73 28.62+1.39 28.98£0.68
improvement rate  26.04 £2.93 61.68 £19.12 31.93+4.13 52.07£6.04
test error 30.85 £ 0.82 36.10£1.97 33.25+1.44 34.70£2.15

GERMAN deployment error ~ 39.30 £ 4.74 36.10+£1.97 37.10+£3.70 34.15+2.64
improvement rate  31.70 £ 5.94 34.00 £9.87 29.10+2.85 53.00 £ 7.81

test error 7.11+£0.52 10.18 £0.45  11.52+0.12 14.37£0.24
seaMBASE  deployment error 3888 £11.37 10.18 £0.45 16.07+2.12 14.704+0.46
improvement rate  27.50 = 11.24 16.88 £11.33 18.22+6.04 39.84 £8.61

5.4 Effect of trade-off parameter \

Fig. 2 shows the performance of linear classifiers for different values of A on four real datasets.
Note that, since the objective function is non-convex, the trends for test error at deployment are
not necessarily monotonic. In general, we observe a trade-off between the improvement rate and
deployment error: both increase as \ increases from 0.01 to 10 in all four datasets.
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Figure 2: Trade-off between test error at deployment and improvement rate.

6 Conclusion remarks

In this work, we study how to train a linear classifier that encourages constructive adaption. We
characterize the equilibrium behavior of both the decision subjects and the model designer, and prove
other formal statements about the possibilities and limits of constructive adaptation. Finally, our
empirical evaluations demonstrate that classifiers trained via our method achieve favorable trade-offs
between predictive accuracy and inducing constructive behavior.

Our work has several limitations:

1. We assume the published classifier is linear; indeed, this is ultimately what allows for a closed-
form best response (Theorem 1) even with a relatively general cost function. However, this is
clearly not true of many models actually in deployment.

2. In order to focus on the strategic aspects of constructive adaptation, we assume that the feature
taxonomy is simply given; however, distinguishing improvable features from non-improvable
features is an interesting question in its own right, and has been shown to be reducible to a
nontrivial causal inference problem [15].

3. Our formulation of the classification setting as a two-step process gives decision subjects only
one chance to adapt their features. We suspect that extending this formalism to more rounds may
create more opportunities for constructive behavior in the long term, especially for agents who
cannot improve their true qualification in one round.
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Appendix

A Organization of the Appendix

The Appendix is organized as follows.

e Section A provides the organization of the appendix.

e Section B provides the proof of Theorem 1.

e Section C includes notations and proofs for the discussion in section 3.3.
e Section D includes the proofs and derivations for section 4.

e Section E presents additional related works.

e Section F shows additional experimental details and results, including basic information on each
dataset, the computing infrastructure, and the flipsets.

B Proof of Theorem 1

In this section, we provide the proof of Theorem 1. To simplify our discussion, we focus on the
unconstrained best response, i.e. the case in which F = A. The proofs for the other two types of best
response (F = M, F = |) follow the same arguments.

We first prove two lemmas that allow us to reformulate the best response as an optimization problem.
The first states that the decision subject’s goal is to maximize their utility, but they are unwilling to
pay a cost greater than 2:

Lemma 1 (Decision Subject’s Best-Response Function). Given a classifier h : X — {—1,4+1}, a
cost function ¢ : X X X — R, and a set of realizable feature vectors X T C X, the best response of a
decision subject with features x € X T is the solution to the following optimization program:

max U(x,2’) st c(z,2') <2

z'ex’

Proof. Since the classifier in our game outputs a binary decision (—1 or +1), decision subjects only
have an incentive to change their features from z to 2’ when ez, x/) < 2. To see this, notice that an
decision subject originally classified as —1 receives a default utility of U(z,z) = f(z) — 0= —1
by presenting her original features z. Since costs are always non-negative, she can only hope to
increase her utility by flipping the classifier’s decision. If she changes her features to some =’ such
that f(z") = +1, then the new utility will be given by

U(xaxl) = f(x,) - C(‘T7I/) =1- C(I,I/)
Hence the decision subject will only change her features if 1 — c(z,2) > f(x) = —1, or ¢(z, 2") <

2. O

The next lemma turns the above maximization program into a minimization program, in which the
decision subject seeks the minimum-cost change in x that crosses the decision boundary. If the cost
exceeds 2, which is the maximum possible gain from adaptation, they would rather not modify any
features.

Lemma 2. Let ™ be an optimal solution to the following optimization problem:

* . /
2" = argmin c(x,x’)
z' eXy (z)

s.t. sign(wa/) =1
If no solution is returned, we say an x* such that c(x,x”") = oc is returned. Define A(x) as follows:

Alr) = { if clz,2") <2

x, otherwise

Then A(x) is an optimal solution to the optimization problem in Lemma 1.
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Proof. Recall that the utility function of the decision subject is U(x,z') = f(z') — c¢(x,2"), and
that, by Lemma 1, they will only modify their features if the utility increases, i.e. if they achieve
f(z") = +1 and while incurring cost c(x,2") < 2.

Consider two cases for 2’ # x:
1. When c(z,z") > 2, there are no feasible points for the optimization problem of Lemma 1.

2. When c(z,z") < 2, we only need to consider those feature vectors z’ that satisfy f(z') = 1,
because if f(z') = —1, the decision subject with features = would prefer not to change anything.
Since maximizing U (z,2") = f(2") — c(x,2") is equivalent to minimizing c(xz, z") if f(z') = 1,
we conclude that when c(z, ") < 2, the optimum of the program of Lemma 1 is the same as the
optimum of the program in Lemma 2.

O

Lemma 2 enables us to re-formulate the objective function as follows. Recall that c(x,z') =

\/(IA — a:A')TS71 (zp — xp') where S~ is symmetric positive definite. Thus S~ ' has the following

diagonalized form, in which @ is an orthogonal matrix and Alisa diagonal matrix:
ST=QIATQ=(ATFQ AT Q)
With this, we can re-write the cost function as
el ') =/ (wa — o) (n — 74)
= Va2 (A 2T (A2 Q) (a2
= A2 QGn— 1) (A Q(rn — a0)

1
= [[AT2Q(zp — ")z
Meanwhile, the constraint in Lemma 2 can be written

sign(w - 2') = sign(wa - za" + Wi - Tm)

. /
= sign(wp - za" — (—wim - Tm)) =1
Hence the optimization problem can be reformulated as

min_ (472 Q(za = 2a") ©)
s.t. sign(wp - za" — (—wpy - M) = 1 (10)

The above optimization problem can be further simplified by getting rid of the sign(-):

Lemma 3. If x5 is an optimal solution to Eq. (9) under constraint Eq. (10), then it must satisfy
LAt — (= . =0
WA~ TA (—wim - zm) -

Proof. We prove by contradiction. Let x is an optimal solution to Eq. (9) and suppose towards

contraction that waz{ > —wyy - Tjy. Since the original feature vector = was classified as —1, we
have

IF
WA = Tp > —WM - TIM, WA - TA < —WM * T )M

By the continuity properties of linear vector space, there exists i € (0, 1) such that:
WA (M xat +(1- M)$A> = —WM - Tim

Let zp” = p-2aT 4 (1 — p)2a. Then sign(wazpa” — (—wim - 2m)) = 1, i.e., 24 also satisfies the
constraint. Since 25" is an optimum of Eq. (9), we have

_1 _1
IZ72Qza™ — )| <172 Q2" — @)
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However, we also have:

172 Qea" — 2wl = 572 QUu-2a™ + (L= w)za —za)]
= I=72Q(u- (xaT — zp))
= S 2Q(zaT — zp)|
<|IZ72Q(zAT — zp)|

contradicting our assumption that zi\F is optimal. Therefore a:;\F must satisfy wa;F = —w-Tm- U

As a result of Lemma 3, we can replace the constraint in Eq. (9) with its corresponding equality

constraint without changing the optimal solution.” The decision subject’s best-response program
from Lemma 1 is therefore equivalent to

min_[[(A72Q(za — za)ll2 (1)
zp €EX Y
S.t. Wp - IA/ - (7w|M . le) =0 (12)

The following lemma gives us a closed-form solution for the above optimization problem:
Lemma 4. The optimal solution to the optimization problem defined in Eq. (11) and Eq. (12)
has the following closed form:

T
w T
,TC/_\¥ =xp — SwA.

’U)ATS’U)A

Proof. Notice that the above program has the form

min [ Aza" 0

rp €ETp
S.t. C.TA/ =d
where A = AféQ, b= AféQmA, C = wAT, and d = 7w|MTx|M. Note the following useful

equalities:
ATA=(A3QMA 7@ =5""
(ATA) =5
ATb=(A"2Q) A" 2Qup = S 'ap
The above is a norm minimization problem with equality constraints, whose optimum z, " has the
following closed form [34]:

eaT = (ATA)! (ATb (AT oATA) T ATy — d))
=5 (S_le — wa(wa' Swa) " (wa S(S™ a) — (—wlmenvl)))

T 1, T T
=xp— S (wA(wA Swa)” (wa A + Wiy IlM))
wa
= Tpa — TiSU]A
wa S'UJA

O

*A similar argument was made by [2] but here we provide a proof for a more general case, where the objective
function is to minimize a weighted norm instead of simply ||za — za’||2.
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We can now compute the cost incurred by an individual with features  who plays their best response

LL':FZ

o(2,3F) = \/ (va — 27) TS (wa — 7T)

BUACI Rpy
U)ATSU)A A UJATS’UJA A
w'z|
\/’UJATS’UJA

Hence an decision subject who was classified as —1 with feature vector x has the unconstrained best
response

:
o Ju'al
x if 22 > 2
A= . Vi Sun =
[;vA — % Sw, | m,M} , otherwise
wp Swp

which completes the proof of Theorem 1.

C Proofs of Propositions in Section 3.3

Notation. We make use of the following additional notation:

D v(i) denotes the i-th element of a vector v

o Forany F € {A, |, M}, AF € R denotes the vector containing only features of type F within the
best response A(x).

0 denotes the vector whose elements are all 0

e A > B indicates that matrix A — B is positive definite

* ¢; denotes the vector containing 1 in its ¢-th component and 0 elsewhere

C.1 Proof of Proposition 1
Proof. Let w,s,lm) # 0, and consider an decision subject with original features « who was classified as
—1. By Theorem 1, the actionable sub-vector of z’s unconstrained best response is

AA(x)_inx S-w —4wa {SI 0} {wl] _ w'a [SVUH ]
wa Swa A wa' Swp L0 Su] [wm wp' Swp Su - wu

And in particular,

T
w T

AM(.I') = TiSM * WM
wa S’LUA

. . . T . L .
Since z was initially classified as —1, we have w' x < 0, which means % = 0. For convenience,

T

letc = w;”SfUA. We have

AM(@) — 2y = cSywm — 2 = Su(cwn — Su~ ' zy)
Now examine the following:
(cup — S~ o)™ = cwly™ — (S o)™
dy

_ Cw'i/:n) B Z(SMI)(im)xM(m)

=1
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Recall that cw(™ # 0. Hence if "% (S") ™ = 0, or if

(m)
m cw,
CU,(\A ) 75 ™ M

S Syt

then (cwy — SM_lxM)(m) # 0, and therefore cwy — S,\]lxM # 0. Since Sy is positive definite, it
has full rank, which implies

AM(@) — 2y = Sw(cwy — Sy'am) # 0

as required. With this, we have shown that when there exists a manipulated feature 2™ whose

corresponding coefficient wA(m) # 0, the classifier is vulnerable to changes in the manipulated
features by the vast majority of decision subjects. O

C.2 Proof of Proposition 2

Proof. Consider a decision subject with features x such that h(z) = —1. Suppose z can flip this
classification result by performing the improving best response A(z), which implies that the cost of
that action is no greater than 2 for this decision subject. We therefore have:

T T T
2> ol A(x) = —2 v 2] _ e a)

= > =
\/U)|TS|’LU| \/U)|TS|’LU| + U)MTSM’LUM \/’LUATSU)A

where the strict inequality is due to the fact that Sy > 0 and wy # 0. As we have shown that
c(xz, A(z)) < 2, we conclude whenever an decision subject can successfully flip her decision by the
improving best response, she can also achieve it by performing the unconstrained best response.

On the other hand, consider the case when the unconstrained best response of a decision subject with
features =" has cost exactly 2:

. . |wa* |me* |’LUT(E*
2=c(z",Az")) = =

= = < = c(z", A(z7))
\/U)ATS’LUA \/’LU|TS|U)| + ’LUMTSM’LUM \/U)|TS|’LU|

where the strict inequality is due to the fact that Sy > 0 and wy # 0. As we have shown that
c(z*, Aj(x™)) > 2, we conclude that while the unconstrained best response is viable for this decision
subject, the improving best response is not. O

C.3 Proof of Proposition 3

Proof. Consider any cost matrix .S e RWXA gnd any nontrivial classifier i (i.e. h does not assign

every x the same prediction). Since S s positive definite, so is its inverse S, and all of their
diagonal entries are positive. And since A is nontrivial, it must contain a nonzero coefficient w; # 0.
Additionally, let w; be any other coefficient.

Let S ' =5""+ T(eie]T +e; e;-r) for some constant 7 € R to be set later. We claim that there exists
7 such that the best-response adaptation always costs less under S~! than S™*. To do so, we compute
the inverse of S~ and invoke the closed-form cost expression given by Theorem 1.
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To begin computing the inverse, note that by the Sherman-Morrison-Woodbury formula [35],

-l T T
S = (S—1> =S5—1S5[e; ¢ (I+T [ Jr] S le; ej}) [ ]r} S (13)
S S I\ et
=5—-715e; ¢ <I—|—T [SZ SZ;}) Eﬂ S (14)
=578 L[5S 4] s 1
=S—rSe; ¢l |T( -1+ g’ e ef (15)
Mlas. S 17T
=S -75[e; ]! [r Jg, i iﬁ%] [3} S (16)
Lyg. S 1 ' [el
=S—Se; e [T 5" iﬁ%] [Z]r} S 17)
T

Clearly, we can ensure that 7' is invertible by setting 7 so that det(7") # 0. But as the following
lemmas show, we can actually say much more: det(T") can be made either positive or negative, and
moreover, both can be accomplished with a choice of 7 > 0 or 7 < 0. This flexibility in choosing 7
will become crucial later.

First, we need the following useful fact about positive definite matrices:

Lemma 5 (Off-diagonal entries of a positive definite matrix). If A € R"*" is symmetric positive

definite, then for all i,j € [n], \/A;;A;; > | Al
Proof. By positive definiteness, we have, for any nonzero «, 8 € R,

(ae; + Bej)TA(aei + Be;) = onAii + BQAjj +2aB4;; >0

For a choice of & = —A;; and 8 = A;;, we have
2 2 2 2
Ajj A + Aj Ay — 2455 A5 = Ayi(Ay Ay — A) >0
Since A;; > 0, we must have A;;A;; — Afj > 0, from which the claim follows. O

Now we can characterize the possible settings of 7 and det(7T'):

Lemma 6 (Possible settings of 7). There exist Ty, Tmin > 0 such that the following hold:
1. det(T) > 0 for any T € R such that Ty, > |7| > 0.

2. det(T') < 0 for any T € R such that T,;,, < |7].
Proof. To prove the first claim, note that having
1 2
T
is equivalent to

1
249
’T + l]

> /S5,

= [855] > /S8y
1 —

18
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.




So any 7 such that 0 < |7| < (1/5;S;; + |Sij|)71 results in det(7") > 0. Analogously, for the
second claim, a sufficient condition for det(7") < 0 is that

1
— < S“ P S’L
ER A
By Lemma 5, the right-hand side is positive. Hence it suffices to pick any 7 such that

7| > ( Siidjj — |Sij|)_1 .

J

O

With this lemma in place, we can describe the difference between the inverses of S~tand S

Denote this matrix by £ = S — S. We show the following:

Lemma 7 (Difference between inverse cost matrices). The k, £-th entry of E has the following form:

1 / 1 1/
E,——(E,+-E
ke det(T)< ket ’“)

where E}, and Ej., do not depend on .

Proof. Assume that 7 has been chosen so that det(T") # 0, as Lemma 6 showed to be possible. We
then have

o L (2485 =Sy

Thus continuing from equation 17, we have

& _ 1 1Sy =S, e
5=5- Gam e el [ —S. 148, 4]0

\%4

It can be verified that V' is a dy X dp matrix whose only nonzero entries are

1
Vii = =555, Vi = =S, Vij =V = p + 55

Next we evaluate the dp x da matrix SV'S. For any k, ¢ € [dp], we have

dy  da
(SVS)]CK - Z Z Ski/‘/;/jlsj/e
i'=15'=1
= Sk ViiSie + SkiVijSie + Sk;iViiSie + SkViiSje (V has four nonzero entries)
= ViiSkiSie + VjjSkjSje + Vij(SkiSje + Sk;jSie) Vi = Vji)

1
= —5;;SkiSiu — SiiSkj S0 + (T + Sij) (SkiSje + SkjSie)

1
= —5;;SkiSie — SiiSk;Sje + Sij (SkiSje + SijSie) +; (SkiSje + SkjSie)

’ 17
Ee Eie

which proves the claim. O
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We now compute the marginal best-response cost incurred due to the difference between the inverse

cost matrices, £ = S — S. We have

dp  da
U)ATEU)A = Z Z wkwEEM
k=1 /¢=1
1 & 1
/ /!
= wiwy | By + Ek4> (by Lemma 7)
sy 2 2 e (Bt
1 dp dp 1 da  da
= Epp+— E}
dot(T) kZ:l ;::lwsz ke +7_ kZ:l ;::lwsz ke
E,/ E//

By Lemma 6, there exists 7 # 0 such that
sign(det(T)) = —sign(E’) and sign(7) = —sign(det(T)) - sign(E")

Such a choice of 7 results in wATEwA < 0. Finally by Theorem 1, we have for all « that

|wT:17| |sz| |wT:v|
cg-1(r, Ag1()) = — = =cg-1(z,Ag-1(2))
\/’LUATS’LUA \/’LUATS’UJA — ’U}ATE’U}A \/’U}ATS’LUA
which completes the proof. O
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C.4 Proof of Proposition 4

Proof. Let the cost covariance matrices for groups ® and ¥ be
870 S [st oo
gl — |7 - Syl =|"" e
v [ 0 Sy 1<1>] ’ ° [ 0 Suw
Here, we see that both groups have the same cost of changing improvable features, as represented in

the cost submatrix S|_1. However, the cost of manipulation for group @ is higher than that of group
¥, namely S’,\]_’l(I> - S,\]}\I,.

We are now equipped to compare the costs for the two decision subjects:

\wa¢\ |wa\
c(ry, Azy)) = =
\/wA Spwa \/wl Sy + 1wy - S - Wy
|w Ty _ |w x|

(g, Alzy)) =

\/U)ATS\I,U)A \/’U)|TS|’LU| + ’LUMT . SM"IJ - WM

Since S,\]}@ - S,\]yl‘l,, we have Sy ¢ < Sy w. And since wy # 0, this implies 0 < wMTSM@wM <
wy" - Sm,w - wy. As aresult, c(zy, A(zy)) > c(zy, A(zy,)) as required. O

D Proofs and Derivations in Section 4

D.1 Proof of Proposition 5

Proof. We want to show that the standard strategic risk conditioned on an unchanged true label is
upper-bounded by the first term in our model designer’s objective, Ry (h):

E,vp [Lh(z.) # 9] | Aly) = y] < Epup [L(A(a2) # y)]

We assume that the manipulating best response is more likely to result in a positive prediction than
the unconstrained best response, given that the true labels do not change:

E,op [L[A(z.) # y] | A(y) = y] <Ep [1[h(2Y) # 4] | Au(y) = ] (18)
We therefore have:
E,wp [ (h (93!) #Y ]
=E,op [1(A(z) # y) | Am(y) # y] - Pr[Au(y) # y]
+E,op [L(h(2Y) # ) [ Am(y) = y] - Pr[Au(y) = 9]

=E,p [1(h(z}) # y) | Au(y) = y] (Pr[An(y) =y] =1)
>E,op [L(h(z,) # y) | Aly) = y] (by equation 18)

D.2 Proof of Proposition 6

Proof. Let D" be the distribution induced by deploying classifier h. By the covariate shift assumption,
Prp« (Y = y|X = z) = Prp(Y = y|X = x). Therefore

P [yle) = +1] =Epe [1]y(e) = +1]
. / Lly(a) = +11Pr(X = o)do
= [ 1) =+ FE = Br(x = a)aa
= [ tiy(e) = +1n (@) BCX =)o
~Ep [ () 1[y(a) = +1]
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This implies

Prly(@) = +1] > Prfy(e) = +1] = Ep[(i(x) - Dilya) =+ 20 (19)

By similar reasoning, we have
Pr [h(x) = +1] = Ep- [1[a(x) = +1]] = Ep [, (@) L[h(x) = +1]

which implies

Pr [h(@) =+1] = Pr[h(x) = +1] <= Ep [(wp(x) — DL[h(z) = +1]] 20 (20)

It is easy to verify that E, p[wy, (2)] = 1, and this gives us
Ep [(wi(z) = Dy(z) = +1]] = Covp(w,(2), Ly(x)
Ep [(wn(z) = D1[A(z) = +1]] = Covp(ws (), L[A(x)
By (19), (20), and (21), the condition

Pr [h(z) = +1] > Pr [h(z) = +1] <= Pr _[y(z) = +1] > Pr [y(z) = +1]
z~D" z~D z~D" x~D

+1]) 21
+1]) (22)

is equivalent to the condition
Covp (wi (@), L[y(z) = +1]) > 0 <= Covp (wh(x), L[a(z) = +1]) > 0

D.3 Derivations for the model designer’s objective function

Now that we have obtained a closed-form expression for both the unconstrained and improving best
response from the decision subjects, we can analyze the objective function for the model designer,
and the model that would be deployed at equilibrium. Recall that the objective function for the model
designer is

min - E,op [1(h(An(2)) # y)] + ABpop [L(A(A(2)) # +1)]

wERd+l

By Theorem 1, h(Ay(z)) has the closed form

. T
h(An(z)) = {+1 if w-x>-=2\/wy Suwm

—1 otherwise

=2.1 [wx > —2\/wMTSMwM] -1
h(A(z)) =21 {w x> —2\/w|TS|w|} -1

The model designer’s objective can then be re-written as follows:

E, b (1WA (x)) # ] + ALA(A(x)) # +1]
o [ 1= (14 Bu) - 5) + AL 5L+ A ) D)

and similarly,

2 (
Removing the constants, the objective function becomes:
minE,p A — h(Ay(2)) -y — (A ()]

- <2 1 [w KAV wMTSMwM] - 1) y(r) =221 {w T > =2y wITSIwI] ]
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D.4 Directionally Actionable Features

In practice, individuals can often only change some features in either a positive or negative direction,
but not both. However, modeling this restriction on the decision subject’s side precludes a closed-
form solution. Instead, we strongly disincentivize such moves in the model designer’s objective
function. The idea is that if the model designer is punished for encouraging an illegal action, the
announced classifier will not incentivize such moves from decision subjects. The result is that
decision subjects encounter an implicit directional constraint on the relevant variables. To that end,

we construct a vector dir € {—1,0, —|—1}d where dir; represents the prohibited direction of change
for the corresponding feature x;; that is, dir, = +1 if z; should not be allowed to increase, —1 if
it should not decrease, and 0 if there are no directional constraints. We then append the following
penalty term to the model designer’s objective in Eq. (6):

d
- - Z max(dir; - (A(z) — z);,0) (23)

where 1 > 0 is a hyperparameter representing the weight given to this penalty term. Eq. (23) penalizes
the weights of partially actionable features so that decision subjects would prefer to move towards a
certain direction. We provide more evaluation details in Table 6.

E Additional Related Work

Strategic Classification. There has been extensive research on strategic behavior in classification
[1, 4, 6-9]. [1] was the first to formalize strategic behavior in classification based on a sequential
two-player game (i.e. a Stackelberg game) between decision subjects and classifiers. Since then,
other similar Stackelberg formulations have been studied [12]. [7] considers the setting in which
decision subjects arrive in an online fashion and the learner lacks full knowledge of decision subjects’
utility functions. More recently, [9] proposes a learning algorithm with non-smooth utility and loss
functions that adaptively partitions the learner’s action space according to the decision subject’s best
responses.

Recourse. The concept of recourse in machine learning was first introduced in [16]. There, an
integer programming solution was developed to offer actionable recourse from a linear classifier.
Our work builds on theirs by considering strategic actions from decision subjects, as well as by
aiming to incentivize honest improvement. [17] discusses a more adequate conceptualization and
operationalization of recourse. [18] provides a thorough survey of algorithmic recourse in terms
of its definitions, formulations, solutions, and prospects. Inspired by the concept of recourse, [36]
develops a reachability problem to capture the ability of models to accommodate arbitrary changes
in the interests of individuals in recommender systems. [37] builds toolkits for actionable recourse
analysis. Furthermore, [19] studies how to mitigate disparities in recourse across populations.

Causal Modeling of Features. A flurry of recent papers have demonstrated the importance of
understanding causal factors for achieving fairness in machine learning [38—40, 15, 3]. [15] studies
distinctions between gaming and improvement from a causal perspective. [3] provides efficient
algorithms for simultaneously minimizing predictive risk and incentivizing decision subjects to
improve their outcomes in a linear setting. In addition, [20] develops methods for discovering
recourse-achieving actions with high probability given limited causal knowledge. In contrast to
these works, we explicitly separate improvable features from manipulated features when maximizing
decision subjects’ payoffs.

Incentive Design. Like our work, [13] discusses how to incentivize decision subjects to improve
a certain subset of features. Next, [2] shows that an appropriate projection is an optimal linear
mechanism for strategic classification, as well as an approximate linear threshold mechanism. Our
work complements theirs by providing appropriate linear classifiers that balance accuracy and
improvement. [24] considers the equilibria of a dynamic decision-making process in which individuals
from different demographic groups invest rationally, and compares the impact of two interventions:
decoupling the decision rule by group and subsidizing the cost of investment.
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Algorithmic Fairness in Machine Learning. Our work contributes to the broad study of algo-
rithmic fairness in machine learning. Most common notions of group fairness include disparate
impact [41], demographic parity [42], disparate mistreatment [43], equality of opportunity [44] and
calibration [45]. Among them, disparities in the recourse fraction can be viewed as equality of false
positive rate (FPR) in the strategic classification setting. Disparities in costs and flipsets are also
relevant to counterfactual fairness [46] and individual fairness [47]. Similar to our work, [21] also
consider the intervention cost of recourse in flipping the prediction across subgroups, investigating
the fairness of recourse from a causal perspective.

F Additional Experimental Results
In this section, we provide additional experimental results.

F.1 Basic information of each dataset

Table 3: Basic information of each dataset.

Dataset Size Dimension  Prediction Task

credit 20,000 16 To predict if a person can repay their credit card
loan.

adult 48,842 14 To predict whether income exceeds 50K /yr based
on census data.

german 1,000 26 To predict whether a person is good or bad credit
risk.

spam 4601 o7 To predict if an email is a spam or not.

F.2 Computing Infrastructure

We conducted all experiments on a 3 GHz 6-Core Intel Core i5 CPU. All our methods have relatively
modest computational cost and can be trained within a few minutes.

F.3 Flipsets

We also construct flipsets for individuals in the german dataset using the closed-form solution Eq. (3)
under our trained classifier. The individual characterized as a “bad consumer” (—1) is supposed
to decrease their missed payments in order to flip their outcome of the classifier with respect to
a non-diagonal cost matrix. In contrast, even though the individual improves their loan rate or
liable individuals, the baseline classifier will still reject them. We also provide flipsets for partially
actionable features on the credit dataset in Table 6. The individual will undesirably reduce their
education level when the classifier is unaware of the partially actionable features. In contrast, the
individual decreases their total overdue months instead when the direction penalty is imposed during
training.
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Table 4: Flipset for a person denied credit by ManipulatedProof on the german dataset. The red up
arrows T represent increasing the values of features, while the red down arrows | represent decreasing.

Feature Type Original LightTouch ManipulatedProof
3 2

LoanRateAsPercentOfIncome
NumberOfOtherLoansAtBank
NumberOfLiablelndividuals
CheckingAccountBalance > 0
CheckingAccountBalance > 200
SavingsAccountBalance > 100
SavingsAccountBalance > 500
MissedPayments
NoCurrentLoan
CriticalAccountOrLoansElsewhere
OtherLoansAtBank
OtherLoansAtStore
HasCoapplicant

HasGuarantor

Unemployed
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LoanDuration
PurposeOfLoan
LoanAmount
HasTelephone

Gender
ForeignWorker

Single

Age
YearsAtCurrentHome
OwnsHouse
RentsHouse
YearsAtCurrentJob < 1
YearsAtCurrentJob > 4
JobClassIsSkilled

GoodConsumer - -1 +171
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Table 6: Flipset for an individual on Credit dataset with partially actionable features. The red up
arrows T represent any increasing values, while the red down arrows | represent any decreasing
values.

Feature Type dir Original n=0 7 =100
2] 3

EducationLevel
TotalOverdueCounts
TotalMonthsOverdue

MaxBillAmountOverLastoMonths
MaxPaymentAmountOverLastoMonths
MonthsWithZeroBalanceOverLastoMonths
MonthsWithLowSpending OverLast6Months
MonthsWithHighSpending OverLast6Months
MostRecentBillAmount
MostRecentPaymentAmount

Married

Single

Age < 25

25 <Age <40

40 < Age < 60

Age > 60
HistoryOfOverduePayments

NoDefaultNextMonth
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