
How Important is the Train-Validation Split in Meta-Learning?

Yu Bai 1 Minshuo Chen 2 Pan Zhou 1 Tuo Zhao 2 Jason D. Lee 3 Sham Kakade 4

Huan Wang 1 Caiming Xiong 1

Abstract

Meta-learning aims to perform fast adaptation
on a new task through learning a “prior” from
multiple existing tasks. A common practice in
meta-learning is to perform a train-validation split
(train-val method) where the prior adapts to the
task on one split of the data, and the resulting
predictor is evaluated on another split. Despite its
prevalence, the importance of the train-validation
split is not well understood either in theory or in
practice, particularly in comparison to the more
direct train-train method, which uses all the per-
task data for both training and evaluation.

We provide a detailed theoretical study on whether
and when the train-validation split is helpful in
the linear centroid meta-learning problem. In the
agnostic case, we show that the expected loss of
the train-val method is minimized at the optimal
prior for meta testing, and this is not the case for
the train-train method in general without struc-
tural assumptions on the data. In contrast, in the
realizable case where the data are generated from
linear models, we show that both the train-val
and train-train losses are minimized at the opti-
mal prior in expectation. Further, perhaps surpris-
ingly, our main result shows that the train-train
method achieves a strictly better excess loss in
this realizable case, even when the regularization
parameter and split ratio are optimally tuned for
both methods. Our results highlight that sample
splitting may not always be preferable, especially
when the data is realizable by the model. We
validate our theories by experimentally showing
that the train-train method can indeed outperform
the train-val method, on both simulations and real
meta-learning tasks.

1Salesforce Research 2Georgia Tech 3Princeton Univer-
sity 4University of Washington. Correspondence to: Yu Bai
<yu.bai@salesforce.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
Meta-learning, also known as “learning to learn”, has re-
cently emerged as a powerful paradigm for learning to
adapt to unseen tasks (Schmidhuber, 1987). The high-level
methodology in meta-learning is akin to how human beings
learn new skills, which is typically done by relating to cer-
tain prior experience that makes the learning process easier.
More concretely, meta-learning does not train one model
for each individual task, but rather learns a “prior” model
from multiple existing tasks so that it is able to quickly
adapt to unseen new tasks. Meta-learning has been suc-
cessfully applied to many real problems, including few-shot
image classification (Finn et al., 2017; Snell et al., 2017),
hyper-parameter optimization (Franceschi et al., 2018), low-
resource machine translation (Gu et al., 2018) and short
event sequence modeling (Xie et al., 2019).

A common practice in meta-learning algorithms is to per-
form a sample splitting, where the data within each task is
divided into a training split which the prior uses to adapt
to a task-specific predictor, and a validation split on which
we evaluate the performance of the task-specific predic-
tor (Vinyals et al., 2016; Nichol et al., 2018; Rajeswaran
et al., 2019; Fallah et al., 2020; Wang et al., 2020a). For
example, in a 5-way k-shot image classification task, stan-
dard meta-learning algorithms such as MAML (Finn et al.,
2017) use 5k examples within each task as training data,
and use additional examples (e.g. k images, one for each
class) as validation data. This sample splitting is believed to
be crucial as it matches the evaluation criterion at meta-test
time, where we perform adaptation on training data from a
new task but evaluate its performance on unseen data from
the same task.

Despite the aforementioned importance, performing the
train-validation split has a potential drawback from the data
efficiency perspective — Because of the split, neither the
training nor the evaluation stage is able to use all the avail-
able per-task data. In the few-shot image classification ex-
ample, each task has a total of 6k examples available, but the
train-validation split forces us to use these data separately in
the two stages. Meanwhile, performing the train-validation
split is also not the only option in practice: there exist al-
gorithms such as Reptile (Nichol & Schulman, 2018) and

How Important is the Train-Validation Split in Meta-Learning?

Meta-MinibatchProx (Zhou et al., 2019) that can instead
use all the per-task data for training the task-specific predic-
tor and also perform well empirically on benchmark tasks.
These algorithms modify the loss function in the outer loop
so that the training loss no longer matches the meta-test loss,
but may have the advantage in terms of data efficiency for
the overall problem of learning the best prior. So far it is the-
oretically unclear how these two approaches (with/without
train-validation split) compare with each other, which moti-
vates us to ask the following

Question: Is the train-validation split necessary
and optimal in meta-learning?

In this paper, we perform a detailed theoretical study on
the importance of the train-validation split. We consider
the linear centroid meta-learning problem (Denevi et al.,
2018b), where for each task we learn a linear predictor that
is close to a common centroid in the inner loop, and find the
best centroid in the outer loop (see Section 2 for the detailed
problem setup). We compare two meta-learning algorithms:
the train-val method which performs the standard train-
validation split, and the train-train method which uses all
the per-task data for both training and evaluation.

We summarize our contributions as follows:

• We show that the train-validation split is necessary in
the general agnostic setting (Section 3): The expected loss
of the train-val method equals the meta test-time loss. In
contrast, the train-train method has a different expected loss
and is not minimized at the best test-time centroid in general,
for which we construct a concrete counter-example.

• In the perhaps more interesting realizable setting, we
show the train-validation split is not necessary: When the
tasks are generated from noiseless linear models, the ex-
pected loss of both the train-val and train-train methods are
minimized at the best test-time centroid (Section 4.1).

• Our main theoretical contribution shows that the train-
validation split is non-optimal in the realizable setting:
The MSE (and test loss) of the two methods concen-
trates sharply around C{tr-val,tr-tr}/T when T (the num-
ber of tasks) is large, where the constants depend on the
{dimension, per-task sample size, regularization parame-
ter}. A precise comparison of constants further shows that
Ctr-tr < Ctr-val when we optimally tune the regularization
parameter in both methods (Section 4.2). Thus, in the real-
izable setting, the train-train method performs strictly better
than the train-val method, which is in stark contrast with the
agnostic case. This result provides a novel insight into the
effect of the train-validation split on the sample complexity
of meta-learning.

• We perform meta-learning experiments on simulations
and benchmark few-shot image classification tasks, show-
ing that the train-train method consistently outperforms the
train-val method (Section 5 & Appendix F). This validates
our theories and presents empirical evidence that sample-
splitting may not be crucial; methods that utilize the per-task
data more efficiently may be preferred.

• On the technical end, our main results in Section 4 build
on concentration analyses on a group of ridge-covariance
matrices, as well as tools from random matrix theory in the
proportional regime, which may be of broader interest. (See
Section 4.3 for an overview of techniques.)

1.1. Related work

Meta-learning and representation learning theory
Baxter (2000) provided the first theoretical analysis of meta-
learning via covering numbers, and Maurer et al. (2016)
improved the analysis via Gaussian complexity techniques.
Another recent line of theoretical work analyzed gradient-
based meta-learning methods (Denevi et al., 2018a; Finn
et al., 2019; Khodak et al., 2019; Ji et al., 2020) and showed
guarantees for convex losses by using tools from online con-
vex optimization. Saunshi et al. (2020) proved the success
of Reptile in a one-dimensional subspace setting. Wang
et al. (2020c) compared the performance of train-train and
train-val methods for learning the learning rate. Denevi
et al. (2018b) proposed the linear centroid model studied
in this paper, and provided generalization error bounds for
train-val method; the bounds proved also hold for train-
train method, so are not sharp enough to compare the two
algorithms. Wang et al. (2020b;a) studied the convergence
of gradient-based meta-learning by relating to the kernelized
approximation. Arnold et al. (2019) observe that MAML
adapts better with a deep model architecture both empiri-
cally and theoretically.

On the representation learning end, Du et al. (2020); Tripura-
neni et al. (2020a;b) showed that ERM can successfully pool
data across tasks to learn the representation. Yet the focus
is on the accurate estimation of the common representation,
not on the fast adaptation of the learned prior. Several recent
work compares MAML versus ERM style approches (Gao
& Sener, 2020; Collins et al., 2020); these comparisons cou-
ple the effect of sample splitting with other factors such as
whether the algorithm uses per-task adaptation. Lastly, we
remark that there are analyses for other representation learn-
ing schemes (McNamara & Balcan, 2017; Galanti et al.,
2016; Alquier et al., 2016).

Empirical understandings of meta-learning Raghu
et al. (2020) showed that MAML with a full finetuning
inner loop mostly learns the top-layer linear classifier and
does not change the representation layers much. This re-

How Important is the Train-Validation Split in Meta-Learning?

sult partly justifies the validity of our linear centroid meta-
learning problem in which the features (representations) are
fixed and only a linear classifier is learned. Goldblum et al.
(2020) investigated the difference of the neural representa-
tions learned by classical training (supervised learning) and
meta-learning, and showed that the meta-learned representa-
tion is better for downstream adaptation and makes classes
more separated. Additionally, Setlur et al. (2020); Yao et al.
(2020) investigated alternative ways of choosing the support
set (training split) in meta-learning.

Multi-task learning Multi-task learning also exploits
structures and similarities across multiple tasks. The earliest
idea dates back to Caruana (1997); Thrun & Pratt (1998);
Baxter (2000), initially in connections to neural network
models. They further motivated other approaches using ker-
nel methods (Evgeniou et al., 2005; Argyriou et al., 2007)
and multivariate linear regression models with structured
sparsity (Liu et al., 2009; 2015). More recent advances
on deep multi-task learning focus on learning shared inter-
mediate representations across tasks (Ruder, 2017). These
multi-task learning approaches usually minimize the joint
empirical risk over all tasks, and the models for different
tasks are enforced to share a large amount of parameters. In
contrast, meta-learning only requires the models to share the
same “prior”, and is more flexible than multi-task learning.

2. Preliminaries
In this paper, we consider the standard meta-learning setting,
in which we observe data from T ≥ 1 supervised learning
tasks, and the goal is to find a prior (or “initialization”) using
the combined data, such that the (T + 1)-th new task may
be solved sample-efficiently using the prior.

Linear centroid meta-learning We instantiate our study
on the linear centroid meta-learning problem (also known
as learning to learn around a common mean, Denevi et al.
(2018b)), where we wish to learn a task-specific linear pre-
dictor wt ∈ Rd in the inner loop for each task t, and learn a
“centroid” w0 in the outer loop that enables fast adaptation
to wt within each task:

Find the best centroid w0 ∈ Rd for adapting to a
linear predictor wt on each task t.

Formally, we assume that we observe training data from
T ≥ 1 tasks, where for each task index t, we sample a task
pt (a distribution over Rd × R) from some distribution of
tasks Π, and observe n examples (Xt,yt) ∈ Rn×d × Rn
that are drawn i.i.d. from pt:

pt ∼ Π, (Xt,yt) = {(xt,i, yt,i)}ni=1 where (xt,i, yt,i)
iid∼ pt.
(1)

We do not make further assumptions on (n, d); in particular,
we allow the underdetermined setting n ≤ d, in which there
exists (one or many) interpolators w̃t that perfectly fit the
data: Xtw̃t = yt.

Inner loop: Ridge solver with biased regularization to-
wards the centroid Our goal in the inner loop is to find
a linear predictor wt that fits the data in task t while be-
ing close to the given “centroid” w0 ∈ Rd. We instantiate
this through ridge regression (i.e. linear regression with L2

regularization) where the regularization biases wt towards
the centroid. Formally, for any w0 ∈ Rd and any dataset
(X,y), we consider the algorithm

Aλ(w0; X,y)

:= arg min
w

1

n
‖Xw − y‖22 + λ ‖w −w0‖22

= w0 +
(
X>X + nλId

)−1
X>(y −Xw0),

where λ > 0 is the regularization strength (typically a tun-
able hyper-parameter). As we regularize by ‖w −w0‖22,
this inner solver encourages the solution to be close to w0,
as we desire. Such a regularizer is widely used in prac-
tical meta-learning algorithms such as MetaOptNet (Lee
et al., 2019) and Meta-MinibatchProx (Zhou et al., 2019).
In addition, as λ→ 0, this solver recovers gradient descent
fine-tuning: we have

A0(w0; X,y) := lim
λ→0
Aλ(w0; X,y)

= w0 + X†(y −Xw0) = arg minXw=y ‖w −w0‖22 ,

where X† ∈ Rd×n denotes the pseudo-inverse of X. This
is the minimum-distance interpolator of (X,y) and also
the solution found by gradient descent 1 on ‖Xw − y‖22
initialized at w0. Therefore our ridge solver with λ > 0
can be seen as a generalized version of the gradient descent
solver used in MAML (Finn et al., 2017).

Outer loop: Learning the best centroid In the outer
loop, our goal is to find the best centroid w0. The standard
approach in meta-learning is to perform a train-validation
split, that is, (1) execute the inner solver on a first split of
the task-specific data, and (2) evaluate the loss on a second
split, yielding a function of w0 that we can optimize. This
two-stage procedure can be written as

Compute wt(w0) = Aλ(w0; Xtrain
t ,ytrain

t), and

Evaluate
∥∥yval

t −Xval
t wt(w0)

∥∥2

2
.

where (Xtrain
t ,ytrain

t) = {(xt,i, yt,i)}n1

i=1 and (Xval
t ,y

val
t) =

{(xt,i, yt,i)}ni=n1+1 are two disjoint splits of the per-task

1with a small step-size, or gradient flow.

How Important is the Train-Validation Split in Meta-Learning?

data (Xt,yt) of size (n1, n2), with n1 + n2 = n. This
amounts to the

Train-val method: Output ŵtr-val
0,T that minimizes

L̂tr-val
T (w0) =

1

T

T∑

t=1

`tr-valt (w0)

:=
1

T

T∑

t=1

1

2n2

∥∥yval
t −Xval

t Aλ(w0; Xtrain
t ,ytrain

t)
∥∥2

2
.

(2)

We compare the train-val method to an alternative version,
where we do not perform the train-validation split, but in-
stead use all the per-task data for both training and evalua-
tion. Formally, this is to consider the

Train-train method: Output ŵtr-tr
0,T that minimizes

L̂tr-tr
T (w0) =

1

T

T∑

t=1

`tr-trt (w0)

:=
1

T

T∑

t=1

1

2n
‖yt −XtAλ(w0; Xt,yt)‖22 .

(3)

Let L{tr-val,tr-tr}(w0) = E
[
`
{tr-val,tr-tr}
t (w0)

]
denote the

corresponding expected losses. We remark that this ex-
pectation is equivalent to observing an infinite amount of
tasks, but still with a finite (n, d) within each task.

(Meta-)Test time The meta-test time performance of any
meta-learning algorithm is a joint function of the (learned)
centroid w0 and the inner algorithm Alg. Upon receiving
a new task pT+1 ∼ Π and training data (XT+1,yT+1) ∈
Rn×d×Rn, we run the inner loop Alg with prior w0 on the
training data, and evaluate it on an (unseen) test example
(x′, y′) ∼ pT+1:

Ltest(w0;Alg) := E
[

1

2

(
x′>Alg(w0; XT+1,yT+1)− y′

)2]
.

Additionally, for both train-val and train-train methods, we
need to ensure that the inner loop used for meta-test is ex-
actly the same as that used in meta-training. Therefore, the
meta-test performance for the train-val and train-train meth-
ods above should be evaluated as

Ltest
λ,n1

(ŵtr-val
0,T) := Ltest(ŵtr-val

0,T ;Aλ,n1),

Ltest
λ,n(ŵtr-tr

0,T) := Ltest(ŵtr-tr
0,T ;Aλ,n),

where Aλ,m denotes the ridge solver with regularization
strength λ > 0 on m ≤ n data points. Finally, we let

w0,?(λ;n) = arg min
w0

Ltest
λ,n(w0) (4)

denote the best centroid if the inner loop uses Aλ,n. The
performance of the train-val algorithm ŵtr-val

0,T should be
compared against w0,?(λ, n1), whereas the train-train algo-
rithm ŵtr-tr

0,T should be compared against w0,?(λ, n).

3. The importance of sample splitting
We begin by analyzing the train-train and train-val methods
defined in (2) and (3), in the agnostic setting where we do
not make structural assumptions on the data distribution pt.

In this case, we show that the importance of the sample split-
ting is clear even at the population level: the expected loss
of the train-val method matches the test-time loss, whereas
the expected loss of the train-train method does not match
the test-time in general and have a different minimizer.

Theorem 1 (Properties of expected losses in the agnostic
case). Suppose the task distributions satisfy Ex∼pt [xx>] �
0, Ex∼pt [‖x‖42] < ∞ and E(x,y)∼pt [‖xy‖2] < ∞ for al-
most surely all pt ∼ Π, but can be otherwise arbitrary.
Then, we have the following:

(a) (Unbiased loss for train-val method) For any λ > 0 and
any (n1, n2) such that n1 + n2 = n, the expected loss
of the train-val method is equal to the meta test-time
loss, and thus minimized at the best test-time centroid:

Ltr-val
λ,n1,n2

(w0) = Ltest
λ,n1

(w0).

(b) (Biased loss for train-train method) There exists a dis-
tribution of tasks Π on d = 1 satisfying the above
conditions, on which for any n ≥ 1 and λ > 0, the
expected loss of the train-train method is not equal to
the test-time loss, and the minimizers are not equal:

Ltr-tr
λ,n (·) 6= Ltest

λ,n(·), and

wtr-tr
0,? := arg min

w0

Ltr-tr(w0) 6= arg min
w0

Ltest
λ,n(w0).

Further, the excess test loss of wtr-tr
0,? is bounded away

from zero: Ltest
λ,n(wtr-tr

0,?)−minw0
Ltest
λ,n(w0) > 0.

Theorem 1 makes clear the advantage of the train-
val method when there is no structural assumption on the
data distributions: The expected version of the train-val loss
matches the meta test-time, whereas the expected version of
the train-train loss has a bias in general. By standard consis-
tency results (Van der Vaart, 2000), this advantage carries
on to the sampled versions as well for large T . In other
words, the train-val method is a “valid ERM” (empirical
risk minimization) procedure for the test-time loss, whereas
the train-train method is not a valid ERM.

Proof intuitions The proof of part (a) follows from direct
calculations, whereas the proof of part (b) is trickier as we

How Important is the Train-Validation Split in Meta-Learning?

need to construct a counter-example in which the expected
loss of the train-train method is not equal the test-time loss
for any λ, n. We provide such a construction in d = 1,
where the distribution pt has a certain asymmetry that re-
sults in a bias the train-train loss function for any λ and n.
However, we expect such a bias to be present in general for
any dimensions. The proof of Theorem 1 can be found in
Appendix A.

4. Is sample splitting always optimal?
Theorem 1 states a negative result for the train-train method,
showing that its expected loss and the meta test-time loss
does not have the same values and minimizers. However,
such a result does not preclude the possibility that there
exists a data distribution on which the minimizers coincide
(even though the loss values can still be different).

In this section, we construct a simple data distribution on
which train-train method is indeed unbiased in terms of the
minimizer of the expected loss, and compare its performance
against the train-val method more explicitly.

Realizable linear model We consider the following in-
stantiation of the (generic) meta-learning data distribution
assumption in (1): We assume that each task pt is specified
by a wt ∈ Rd sampled from some distribution Π (overload-
ing notation), and the observed data follows the noiseless
linear model with ground truth parameter wt:

yt = Xtwt. (5)

Note that when n ≥ d and inputs are in general position,
we are able to perfectly recover wt (by solving linear equa-
tions), therefore the problem in the inner loop is easy. How-
ever, even in this case the outer loop problem is still non-
trivial as we wish to learn the best centroid w0.

In this section, we make the following assumption on the
distributions of Xt and wt:

Assumption A (Data distributions for realizable linear
model). The inputs are standard Gaussian: xt,i

iid∼ N(0, Id).
The true coefficient wt is independent of Xt and satisfies

Cov(wt) = Ewt

[
(wt −w0,?)(wt −w0,?)

>] =
R2

d
Id,

(6)

for some fixed R2 > 0, and that the individual entries
{wt,i − w0,?,i}i∈[d],t∈[T] are i.i.d. mean-zero and KR2/d-
sub-Gaussian for some absolute constant K = O(1).

The sub-Gaussian assumption on wt allows for a sharp con-
centration of the MSE to its expectation (over wt). The
Gaussian input assumption allows for a precise characteri-
zation of certain ridge covariance type random matrices.

4.1. Population minimizers

We first show that on the realizable linear model (5), the
test-time best centroids w0,?(λ, n) = arg minw0

Ltest
λ,n(w0)

is the same for any (λ, n), and both the train-train and train-
val methods are unbiased: Both expected losses are mini-
mized at w0,?.

Theorem 2 (Population minimizers on the realizable
model). On the realizable linear model (5), suppose As-
sumption A holds. Then the test-time meta loss for all λ > 0
and all n is minimized at the same point, that is, the mean
of the ground truth parameters:

w0,?(λ, n) = arg min
w0

Ltest
λ,n(w0)

= w0,? := Ewt∼Π[wt], for all λ > 0, n.

Furthermore, for both the train-val method and the train-
train method, the expected loss is minimized at w0,? for any
λ > 0, n, and (n1, n2):

arg min
w0

Ltr-val
λ,n1,n2

(w0) = arg min
w0

Ltr-tr
λ,n (w0) = w0,?.

Theorem 2 shows that both the train-val and train-train meth-
ods are in expectation minimized at the same optimal param-
eter w0,? which is the mean of wt. This is a consequence
of the good structure in our realizable linear model (5): at
a high level, w0,? is indeed the best centroid since it has
(on average) the closest distance to a randomly sampled wt.
The proof of Theorem 2 be found in Appendix B.

4.2. Precise comparison of rates

Theorem 2 suggests that we are now able to compare per-
formance of the two methods based on their parameter esti-
mation error (for estimating w0,?).

We are now ready to state our two main theorems, which pro-
vide a precise comparison of the MSEs of the train-train and
train-val methods under the realizable linear model.

Theorem 3 (Concentration of MSEs in the realizable linear
model). In the realizable linear model (5), suppose Assump-
tion A holds, T = Ω̃(d), d/n = Θ(1), n2/n = Θ(1), and
λ = Θ(1) > 0. Then with probability at least 1 − Td−10,
the MSE of the train-train and train-val methods has the
following concentrations, respectively:

∥∥ŵtr-tr
0 −w0,?

∥∥2

2
=
R2

T

(
Ctr-tr
d,n,λ + Õ

(√
d

T
+

1√
d

))
,

∥∥ŵtr-val
0 −w0,?

∥∥2

2
=
R2

T

(
Ctr-val
d,n1,n2,λ + Õ

(√
d

T
+

1√
d

))
,

where Õ(·) hides log(ndT) factor. Further, the constants

How Important is the Train-Validation Split in Meta-Learning?

Ctr-tr, Ctr-val = Θ(1) and have explicit expressions:

Ctr-tr
d,n,λ =

1
dE
[
tr
(

(Σ̂n + λId)
−4Σ̂2

n

)]

(
1
dE
[
tr
(

(Σ̂n + λId)−2Σ̂n

)])2 ,

Ctr-val
d,n1,n2,λ =

1
dn2

E
[
tr
(

(Σ̂n1
+ λId)

−2
)2

+ (n2 + 1)tr
(

(Σ̂n1
+ λId)

−4
)]

(
1
dE
[
tr
(

(Σ̂n1
+ λId)−2

)])2 ,

where Σ̂n := X>t Xt/n denotes the empirical covariance
of a standard Gaussian random matrix Xt ∈ Rn×d.

Theorem 3 asserts that the MSEs of both methods concen-
trate around R2/T times a Θ(1) constant, when both T, d
are large and T = Ω̃(d) (so that the error terms vanish).
This allows us to compare the performances of the train-
train and train-val methods based on the constants. For a fair
comparison, we look at the constants with optimal choices
of λ and the split ratio, which we state in the following

Theorem 4 (Comparison of constants Ctr-tr and Ctr-val). In
the high-dimensional limiting regime d, n → ∞, d/n →
γ ∈ (0,∞), the optimal constant of the train-train method
obtained by tuning the regularization λ ∈ (0,∞) satisfies

inf
λ>0

lim
d,n→∞,d/n→γ

Ctr-tr
d,n,λ = inf

λ>0
ρλ,γ

(?)

≤ max

{
1 +

5

27
γ,

5

27
+ γ

}
,

where ρλ,γ := 4γ2
[
(γ − 1)2 + (γ + 1)λ

]
/(λ + γ + 1 −√

(λ+ γ + 1)2 − 4γ)2/
(
(λ+ γ + 1)2 − 4γ

)3/2
, and the

inequality becomes equality at γ = 1. In contrast, the opti-
mal rate of the train-val method by tuning the regularization
λ ∈ (0,∞) and split ratio s ∈ (0, 1) is

inf
λ>0,s∈(0,1)

lim
d,n→∞,d/n→γ

Ctr-val
d,ns,n(1−s),λ = (1 + γ).

As max {1 + 5γ/27, 5/27 + γ} < 1+γ for any γ > 0, the
train-train method has a strictly better constant than the
train-val method when λ and s are optimally tuned in both
methods.

Implications Theorem 4 shows that, perhaps surprisingly,
the train-train method achieves a strictly better MSE (in
terms of the constant) than the train-val method in the re-
alizable linear model2. (See Figure 1(a) for a visualization
of the exact optimal rates and the upper bound (?).) This
suggests that the train-validation split may not be crucial

2The same conclusion also holds for the excess test loss, as the
Hessian of the test loss is a rescaled identity, see Appendix C.2.

when the data has structural assumptions such as realizabil-
ity by the model. To the best of our knowledge, this is the
first theoretical result that offers a disentangled compari-
son of meta-learning algorithms with and without sample
splitting. Note that our result features an optimal tuning
of hyperparameters: we compare the rates at the (theoreti-
cally) optimal λ for the train-train method and the optimal
λ, n1 for the train-val method. A closely related existing
result is (Denevi et al., 2018b, Proposition 3) which proved
a sample complexity upper bound for the linear centroid
meta-learning problem; however, they only consider the
train-val method, and their upper bounds do not tell the
exact leading constants as in our Theorem 3.

We also remark that, while our theory considers the linear
centroid meta-learning problem, our real data experiments
in Section 5.2 suggests that the superiority of the train-
train method may also hold on real meta-learning tasks with
neural networks.

4.3. Overview of techniques

Here we provide an overview of the techniques in proving
Theorem 3 and Theorem 4. We defer the full proofs to
Appendix C and Appendix D respectively.

Closed-form expressions for ŵtr-tr
0,T and ŵtr-val

0,T Our first
step is to obtain the following closed-form expressions for
the estimation errors of both methods in the realizable linear
model (see Lemma C.1):

ŵtr-tr
0,T −w0,? =

(
T∑

t=1

At

)−1 T∑

t=1

At(wt −w0,?),

ŵtr-val
0,T −w0,? =

(
T∑

t=1

Bt

)−1 T∑

t=1

Bt(wt −w0,?),

where

At := λ2
(
X>t Xt/n+ λId

)−2
(X>t Xt/n),

Bt := λ2
(
Xtrain>
t Xtrain

t /n1 + λId
)−1(

Xval>
t Xval

t /n2

)

·
(
Xtrain>
t Xtrain

t /n1 + λId
)−1

.

These expressions simplify the estimation errors as the
“weighted averages” of the {wt −w0} with weighting ma-
trices At and Bt.

Sharp concentration to exact constants Our next step
is to establish the concentration

∥∥ŵtr-tr
0,T −w0,?

∥∥2

2

(i)≈ R2

d
· tr

(

T∑

t=1

At

)−2(T∑

t=1

A2
t

)

How Important is the Train-Validation Split in Meta-Learning?

Number of tasks d/n ratio with fixed n

tr-tr, ref. curve

tr-val, n1 = 0,
ref. curve 1+d/n

tr-val, n1 = 20,
ref. curve 1+ 5d/4n

tr-tr,
ref. curve 3/T

tr-val, n1 = 0,
ref. curve 4/T

tr-val, n1 = 5,
ref. curve 5/T

d/n ratio

tr-val, n1 = 0,
optimal

tr-tr, optimaltr-tr,
upper bound

tr-val, n1 = 5,
optimal

<latexit sha1_base64="B5xJWv5rG2iOKfBg89fR5bXYJxs=">AAACYHicbVFNTxsxEHW2tKTpB6Hc6MVqVKkHiHYjUDki9dIjlQgg4bCa9c4mFt4P2bPQyN0f2J/Qaw+99kpveJNILaEjWX568+bDz0mllaUw/NEJnmw8fbbZfd578fLV663+9pszW9ZG4liWujQXCVjUqsAxKdJ4URmEPNF4nlx/avPnN2isKotTmlc4yWFaqExJIE/FfSk0ZiS+iRxolmTutolduMeFJTAN3+fiVqU4A3J/BUvFaXPlBOFXMrkTjsw+mT3urxvQomkaYdR05vtejeJR3B+Ew3AR/DGIVmDAVnES93+JtJR1jgVJDdZeRmFFEweGlNTY9ERtsQJ5DVO89LCAHO3ELcxo+HvPpDwrjT8F8QX7b4WD3Np5nnhl+yS7nmvJ/+ZS2zZcm07Z0cSpoqoJC7kcntWaU8lbt3mqDErScw9AGuX353IGBiT5P+l5Y6J1Gx6Ds9EwOhyGXw4Gx0cri7rsLXvHPrCIfWTH7DM7YWMm2Xf2m92xP52fQTfYCraX0qCzqtlhDyLYvQfYeLsg</latexit> � � �w
0
,?
�

b w
{t

r-
tr
,
tr
-v
a
l}

0
,T

� � �2 2

<latexit sha1_base64="ed3GBVz8B2Pkzimr8QWavTD7hbA=">AAACG3icbVDLSgMxFM3UV62vUZeCBIvgQsuMKHZZ6MZlBfuATi2ZNG1Dk5khuVMsw+z8DX/Arf6BO3Hrwh/wO8y0XWj1QMjhnPtIjh8JrsFxPq3c0vLK6lp+vbCxubW9Y+/uNXQYK8rqNBShavlEM8EDVgcOgrUixYj0BWv6o2rmN8dMaR4GtzCJWEeSQcD7nBIwUtc+rN4lHrB7UDLxElBnoE6xucZEeGmadu2iU3KmwH+JOydFNEeta395vZDGkgVABdG67ToRdBKigFPB0oIXaxYROiID1jY0IJLpTjL9R4qPjdLD/VCZEwCeqj87EiK1nkjfVEoCQ73oZeK/Xk9nAxe2Q7/cSXgQxcACOlvejwWGEGdB4R5XjIKYGEKo4ub9mA6JIhRMnAUTjLsYw1/SOC+5lyXn5qJYKc8jyqMDdIROkIuuUAVdoxqqI4oe0BN6Ri/Wo/VqvVnvs9KcNe/ZR79gfXwDo3aiKg==</latexit> C
{t

r-
tr
,
tr
-v
a
l}

<latexit sha1_base64="QIjb9gf+qX5GunIcSHMw7XCOBQo=">AAACYnicbVFNTxsxEHW2tKXpB6Ec6cFqVKkHiHYjUDki9dIjSAkg4bCa9c4mFt4P2bPQyN1f2F/Qe9V7r+WCN4nUEjqS5ac3bz78nFRaWQrDH53gycbTZ883X3Rfvnr9Zqu3/fbMlrWROJalLs1FAha1KnBMijReVAYhTzSeJ9ef2/z5DRqrymJE8wonOUwLlSkJ5Km4hyMuNGYkvokcaJZk7raJXbjHhSUwDd/n4lalOANyfwVLxai5coLwK5ncCUdmn8we99cNaNE0jTBqOvN9r4bxMO71w0G4CP4YRCvQZ6s4iXu/RFrKOseCpAZrL6OwookDQ0pqbLqitliBvIYpXnpYQI524hZ2NPyDZ1KelcafgviC/bfCQW7tPE+8sn2SXc+15H9zqW0brk2n7GjiVFHVhIVcDs9qzankrd88VQYl6bkHII3y+3M5AwOS/K90vTHRug2PwdlwEB0OwtOD/vHRyqJNtsves48sYp/YMfvCTtiYSfad/WZ/2F3nZ9ANtoOdpTTorGp22IMI3t0DCl67qA==</latexit> T
� � �w

0
,?
�

b w
{t

r-
tr
,
tr
-v
a
l}

0
,T

� � �2 2

<latexit sha1_base64="3xdNUDDxQtl87xnt0iyYxxkyZeQ=">AAACfHicfVFdT9swFHWy8bGWj8LG014sWiQQUCWVYHvgAYmXva2TaEEiJbpxnGLhOJF9g1RF1X7nfgD8DDSnDRIraFeydXSOz73WuVEuhUHP++O4Hz4uLa+sfmo019Y3Nltb20OTFZrxActkpq8jMFwKxQcoUPLrXHNII8mvovuLSr964NqITF3iJOejFMZKJIIBWips/d6HA/ozR5GCpCxTBkGhoZ1AqCQsA2k7xTClF7dlYBKK+hj1NCzjI6qO6IvaoaDi/1geQNae0K+u3itr2Gp7XW9W9C3wa9AmdfXD1lMQZ6xIuUImwZgb38txVIJGwSSfNoLC8BzYPYz5jYUKUm5G5SyoKd2zTEyTTNujkM7Y144SUmMmaWRfpoB3ZlGryHe12FQNF6Zj8n1UCpUXyBWbD08KSTGj1SZoLDRnKCcWANPC/p+yO9DA0O6rYYPxF2N4C4a9rn/S9X712udndUSr5CvZJfvEJ9/IOflB+mRAGHl0ms4XZ8d5djvuoXs8f+o6tecz+afc079Hvb+F</latexit>

(a) Optimal constants inf� C
tr�tr
d,n,� and inf� C

tr�val
d,n1,n2,�

<latexit sha1_base64="9ApA/j59dLdUhO2wjx6gc1T6YQQ=">AAACS3icbVBNTxsxEPWGQmkoEODYi9WkEpVgtYtUtQcOSAiJSysQCSCxaeT1ziYW3g/Zs4HI2n/F3+AHwJWqf4Ab4oA35ACBJ1l+em/G43lhLoVGz7txajMfZuc+zn+qL3xeXFpurKwe66xQHDo8k5k6DZkGKVLooEAJp7kCloQSTsLz3co/GYLSIkvbOMqhm7B+KmLBGVqp1/izHn6nv4/2aBbTVnAhIhgwNEHCcBDG5qIse8bboO3yrwkQLlElJjCoNlFtUHsNmQzKsmzRoatd2mq3eo2m53pj0LfEn5AmmeCg1/gfRBkvEkiRS6b1me/l2DVMoeASynpQaMgZP2d9OLM0ZQnorhnvXdJvVolonCl7UqRj9WWHYYnWoyS0ldVCetqrxHe9SFcPTk3H+FfXiDQvEFL+PDwuJMWMVsHSSCjgKEeWMK6E/T/lA6YYRxt/3QbjT8fwlhxvuf4P1zvcau5sTyKaJ1/IV7JOfPKT7JB9ckA6hJMrckvuyD/n2rl3HpzH59KaM+lZI69Qm30C8z6yng==</latexit>

(b) MSE of bw{tr-tr, tr-val}
0,T v.s. T

<latexit sha1_base64="nhHhSb79eNINp328P6am+Y5o1VQ=">AAACU3icbVHPT9swFHYzGF03RoHjLhbtJCaxkCAhduCAhJB2mQSCFiRSKsd5aS0cJ7Jf2lVW/rP9GzvsymGX7T/YBaf0sJU9yfKn73s//D7HhRQGg+BHw3uxsvpyrfmq9frN+tuN9uZW3+Sl5tDjucz1TcwMSKGghwIl3BQaWBZLuI7vT2v9egLaiFxd4ayAQcZGSqSCM3TUsN3f5R/ol8szmqe0G01FAmOGNsoYjuPUTqtqaIM9elXd2QjhK+rMRhb1R9R71F0TJqOqqrp04hufdpN91aW67jxsdwI/mAd9DsIF6JBFnA/bP6Mk52UGCrlkxtyGQYEDyzQKLqFqRaWBgvF7NoJbBxXLwAzsfP+KvndMQtNcu6OQztm/KyzLjJllscusFzPLWk3+V0tM3XBpOqafBlaookRQ/Gl4WkqKOa0NponQwFHOHGBcC/d+ysdMM47uG1rOmHDZhuegf+CHh35wcdA5OV5Y1CTvyA7ZJSE5IifkMzknPcLJN/JAfpHfje+NP57nrTyleo1FzTb5J7z1R2y/s90=</latexit>

(c) MSE of bw{tr-tr, tr-val}
0,T v.s. d/n ratio

Figure 1. Panel (a) plots the exact constants in Theorem 4: The optimal train-train constant infλ Ctr-tr
d,n,λ (blue) and its upper bound (?)

(magenta), as well as the optimal train-val constant infλ Ctr-val
d,n1,n2,λ

with n1 = 0 (orange, optimal choice) and n1 = 5 (green). (Optimal
infλ C

tr-val
d,n1,n2,λ

at each n1 can be found in Lemma D.1.) Curves in panel (a) are used as reference curves in plots (b) and (c). Panel (b)
plots the MSE of ŵ

{tr-tr,tr-val}
0,T as the total number of tasks increases from 20 to 1000 with an increment of 20. We fix data dimension

d = 60 and per-task sample size n = 20. For the train-val method, we experiment on n1 = 0 and n1 = 5. Panel (c) shows the rescaled
MSE of ŵ

{tr-tr,tr-val}
0,T as the ratio d/n varies from 0 to 3 (with n = 100 and T = 300).

(ii)≈ R2

T
(tr(E[At])/d)

−2(
tr
(
E[A2

t]
)
/d
)

=
R2

T
Ctr-tr
d,n,λ.

(and a similar result for ŵtr-val
0,T using Bt.) Above, (i) relies

on the concentration of a certain quadratic form involving
the (wt−w0)’s, following from the Hanson-Wright inequal-
ity (cf. Lemma C.5), and (ii) relies on the concentration
of the matrices

∑T
t=1 At/T and

∑T
t=1 A2

t/T , using stan-
dard sub-Gaussian matrix concentration and a truncation
argument (cf. Lemma C.4). Further calculating the expec-
tations E[At] and E[A2

t] gives the exact formula of Ctr-tr
d,n,λ

(cf. Lemma C.2) and finishes the proof of Theorem 3.

Optimizing and comparing Ctr-tr
d,n,λ and Ctr-val

d,n1,n2,λ
The

constants Ctr-tr
d,n,λ and Ctr-val

d,n1,n2,λ
involve tunable hyper-

parameters λ (for both methods) and n1 (for the train-
val method). We use the following strategies to optimize the
hyperparameters in each method, which combine to yield
Theorem 4.

• For the train-val method, we show that the optimal tunable
parameters for any (n, d) is taken at a special case λ =∞
and (n1, n2) = (0, n), at which the rate only depends on
1
n1

Xtrain>
t Xtrain

t through its rank (and thus has a simple
closed-form). We state this result in Lemma D.1. The
proof builds on algebraic manipulations of the quantity
Ctr-val
d,n,λ1,λ2

, and can be found in Appendix D.1.

• For the train-train method, we apply random matrix the-
ory to simplify the spectrum of 1

nX>t Xt in the propor-
tional limit where d, n→∞ and d/n stays as a constant
(Bai & Silverstein, 2010; Anderson et al., 2010), and ob-
tain a closed-form expression of the asymptotic MSE for

any λ > 0, which we can analytically optimize over λ.
We state this result in Theorem D.1. The proof builds on
the Stieltjes transform and its “derivative trick” (Dobriban
et al., 2018), and is deferred to Appendix D.2.

5. Experiments
5.1. Simulations

We experiment on the realizable linear model studied in
Section 4. Recall that the observed data of the t-th task are
generated as

yt = Xtwt, with xt,i
iid∼ N(0, Id).

We independently generate wt
iid∼ N(w0,?, Id/

√
d), where

w0,? is the linear centroid and the corresponding R2 = 1
here. The goal is to learn the linear centroid w0,? using
the train-train method and train-val method, i.e., minimiz-
ing L̂tr-tr

T and L̂tr-val
T , respectively. Recall that the optimal

closed-form solutions ŵ
{tr-tr,tr-val}
0,T are given in Section 4.3.

We measure the performance of the train-train and train-
val methods using the `2-error ‖w0,? − ŵ

{tr-tr,tr-val}
0,T ‖22.

Result Figure 1 shows the performance of the train-
train and train-val methods on simulated linear centroid
meta-learning problems. Across all simulations, we op-
timally tune the regularization coefficient λ in the train-
train method, and use a sufficiently large λ = 2000 in the
train-val method (according to Lemma D.1). Observe that
the MSEs of the two methods decay at rate O(1/T) (Fig-
ure 1(b)). Further, the performance of the two methods

How Important is the Train-Validation Split in Meta-Learning?

Table 1. Comparison of train-train and train-val on few-shot image classification (accuracy in %).
m

in
iI

m
ag

e method 1-shot 5-way 5-shot 5-way 1-shot 20-way 5-shot 20-way

train-val 48.76 ± 0.87 63.56 ± 0.95 17.52 ± 0.49 21.32 ± 0.54

train-train 50.77 ± 0.90 67.43 ± 0.89 21.17 ± 0.38 34.30 ± 0.41

tie
re

dI
m

ag
e method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

train-val 50.61 ± 1.12 67.30 ± 0.98 29.18 ± 0.57 43.15 ± 0.72

train-train 54.37 ± 0.93 71.45 ± 0.94 35.56 ± 0.60 54.50 ± 0.71

in our simulation closely matches the theoretical result in
Theorem 4, and the train-train method reliably outperforms
the train-val method at all d/n with a moderately large T
(Figure 1(c)). In Appendix G, we additionally investigate
the effect of averaging the loss over multiple splits in the
train-val method (a “cross-validation” type loss).

5.2. Few-shot image classification

We further compare train-train and train-val type methods on
the benchmark few-shot image classification tasks miniIma-
geNet (Ravi & Larochelle, 2017) and tieredImageNet (Ren
et al., 2018).

Methods We instantiate the train-train and train-
val method in the centroid meta-learning setting with a ridge
solver. The methods are almost exactly the same as in our
theoretical setting in (2) and (3), with the only differences
being that the parameters wt (and hence w0) parametrize
a deep neural network instead of a linear classifier, and
the loss function is the cross-entropy instead of squared
loss. Mathematically, we minimize the following two loss
functions:

Ltr-val
λ,n1

(w0) :=
1

T

∑

t=1

`tr-valt (w0)

=
1

T

T∑
t=1

`
(

arg min
wt

`(wt;X
train
t ,y

train
t) + λ ‖wt −w0‖22 ;X

val
t ,y

val
t

)
,

Ltr-tr
λ (w0) :=

1

T

T∑

t=1

`tr-trt (w0)

=
1

T

T∑
t=1

`
(

arg min
wt

`(wt;Xt,yt) + λ ‖wt −w0‖22 ;Xt,yt

)
,

where (Xt,yt) is the data for task t of size n, and
(Xtrain

t ,ytrain
t) and (Xval

t ,y
val
t) is a split of the data of size

(n1, n2). We note that both loss functions above have been
considered in prior work (Ltr-val in iMAML (Rajeswaran
et al., 2019), and Ltr-tr in Meta-MinibatchProx (Zhou et al.,
2019)), though we use slightly different implementation
details from these prior work to make sure that the two
methods here are exactly the same except for whether the
split is used. Additional details about the implementation

can be found in Appendix F.

We experiment on miniImageNet (Ravi & Larochelle, 2017)
and tieredImageNet (Ren et al., 2018) datasets. Mini-
ImageNet consists of 100 classes of images from Ima-
geNet (Krizhevsky et al., 2012) and each class has 600
images of resolution 84 × 84 × 3. We use 64 classes for
training, 16 classes for validation, and the remaining 20
classes for testing (Ravi & Larochelle, 2017). TieredIm-
ageNet consists of 608 classes from the ILSVRC-12 data
set (Russakovsky et al., 2015) and each image is also of
resolution 84× 84× 3.

We adopt the episodic training procedure (Vinyals et al.,
2016; Finn et al., 2017; Zhou et al., 2019; Rajeswaran et al.,
2019) In each “N -way K-shot setting” (in Table 1), in
meta-test, each task provides an N -way K-shot dataset for
the model adaptation. In meta-training, for each task we
sample an N -way (K + 1)-shot dataset (and does not allow
the algorithm to tune the size of this dataset), so that each
task only has n = N(K + 1) examples, and we allow the
algorithm to tune n1 ∈ [0, n]3. Table 1 uses the default
choice of an even split n1 = n2 = n/2 following (Zhou
et al., 2019; Rajeswaran et al., 2019). For example, for
a 5-way 5-shot classification setting, each task contains
5 × (5 + 1) = 30 total images, and we set n1 = n2 = 15.
(We additionally investigate the optimality of this split ratio
in Appendix F.1.) We report the average accuracy over
2, 000 random test episodes with 95% confidence interval.

Results We find that the train-train method consistently
outperforms the train-val method (Table 1). Specifically, on
miniImageNet, train-train method outperforms train-val by
2.01% and 3.87% on the 1-shot 5-way and 5-shot 5-way
tasks respectively; On tieredImageNet, train-train on av-
erage improves by about 6.40% on the four testing cases.
These results show the advantages of train-train method over
train-val and support our theoretical findings in Theorem 4.

3This setting deviates slightly from our setting (in Section 2
& 3) that meta-train and meta-test needs to have exactly the same
(n1, n2), but allows a fair comparison of algorithms under the
realistic scenario of limited per-task data (fixed n) and fixed data
size at meta test time.

How Important is the Train-Validation Split in Meta-Learning?

6. Conclusion
We study the importance of train-validation split on the
linear-centroid meta-learning problem, and show that the
necessity and optimality of train-validation split depends
greatly on whether the tasks are structured: the sample split-
ting is necessary in general situations, and not necessary and
non-optimal when the tasks are nicely structured. It would
be of interest to study whether similar conclusions hold on
other meta-learning problems such as learning representa-
tions, or how our insights can guide the design of meta-
learning algorithms with better empirical performance.

Acknowledgment
We thank Song Mei, Wei Hu, Nikunj Saunshi, Huaxiu Yao,
Weihao Kong for the many insightful discussions. We thank
the anonymous reviewers for the helpful feedback on our
paper.

References
Alquier, P., Mai, T. T., and Pontil, M. Regret bounds for

lifelong learning. arXiv preprint arXiv:1610.08628, 2016.

Anderson, G. W., Guionnet, A., and Zeitouni, O. An in-
troduction to random matrices, volume 118. Cambridge
university press, 2010.

Argyriou, A., Evgeniou, T., and Pontil, M. Multi-task fea-
ture learning. In Advances in neural information process-
ing systems, pp. 41–48, 2007.

Arnold, S. M., Iqbal, S., and Sha, F. When maml can adapt
fast and how to assist when it cannot. arXiv preprint
arXiv:1910.13603, 2019.

Bai, Y. and Lee, J. D. Beyond linearization: On quadratic
and higher-order approximation of wide neural networks.
arXiv preprint arXiv:1910.01619, 2019.

Bai, Z. and Silverstein, J. W. Spectral analysis of large di-
mensional random matrices, volume 20. Springer, 2010.

Baxter, J. A model of inductive bias learning. J. Artif. Int.
Res., 2000.

Caruana, R. Multitask learning. Machine Learning, 28
(1):41–75, Jul 1997. ISSN 1573-0565. doi: 10.1023/
A:1007379606734. URL https://doi.org/10.
1023/A:1007379606734.

Collins, L., Mokhtari, A., and Shakkottai, S. Why does
maml outperform erm? an optimization perspective.
arXiv preprint arXiv:2010.14672, 2020.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. Incre-
mental learning-to-learn with statistical guarantees. arXiv
preprint arXiv:1803.08089, 2018a.

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. Learn-
ing to learn around a common mean. In Advances in Neu-
ral Information Processing Systems, pp. 10169–10179,
2018b.

Dobriban, E., Wager, S., et al. High-dimensional asymp-
totics of prediction: Ridge regression and classification.
The Annals of Statistics, 46(1):247–279, 2018.

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei,
Q. Few-shot learning via learning the representation,
provably. arXiv preprint arXiv:2002.09434, 2020.

Evgeniou, T., Micchelli, C. A., and Pontil, M. Learning
multiple tasks with kernel methods. Journal of machine
learning research, 6(Apr):615–637, 2005.

Fallah, A., Mokhtari, A., and Ozdaglar, A. On the con-
vergence theory of gradient-based model-agnostic meta-
learning algorithms. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 1082–1092, 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126–1135, 2017.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. Online
meta-learning. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimization
and meta-learning. arXiv preprint arXiv:1806.04910,
2018.

Galanti, T., Wolf, L., and Hazan, T. A theoretical framework
for deep transfer learning. Information and Inference: A
Journal of the IMA, 5(2):159–209, 2016.

Gao, K. and Sener, O. Modeling and optimization trade-
off in meta-learning. arXiv preprint arXiv:2010.12916,
2020.

Goldblum, M., Reich, S., Fowl, L., Ni, R., Cherepanova,
V., and Goldstein, T. Unraveling meta-learning: Under-
standing feature representations for few-shot tasks. arXiv
preprint arXiv:2002.06753, 2020.

Gu, J., Wang, Y., Chen, Y., Cho, K., and Li, V. O. Meta-
learning for low-resource neural machine translation.
arXiv preprint arXiv:1808.08437, 2018.

Ji, K., Lee, J. D., Liang, Y., and Poor, H. V. Convergence of
meta-learning with task-specific adaptation over partial
parameters. arXiv preprint arXiv:2006.09486, 2020.

https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734

How Important is the Train-Validation Split in Meta-Learning?

Khodak, M., Balcan, M.-F., and Talwalkar, A. Adaptive
gradient-based meta-learning methods. arXiv preprint
arXiv:1906.02717, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
pp. 1097–1105, 2012.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-
learning with differentiable convex optimization. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 10657–10665, 2019.

Liu, H., Palatucci, M., and Zhang, J. Blockwise coordinate
descent procedures for the multi-task lasso, with applica-
tions to neural semantic basis discovery. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pp. 649–656, 2009.

Liu, H., Wang, L., and Zhao, T. Calibrated multivariate
regression with application to neural semantic basis dis-
covery. Journal of machine learning research: JMLR, 16:
1579, 2015.

Maurer, A., Pontil, M., and Romera-Paredes, B. The ben-
efit of multitask representation learning. The Journal of
Machine Learning Research, 17(1):2853–2884, 2016.

McNamara, D. and Balcan, M.-F. Risk bounds for trans-
ferring representations with and without fine-tuning. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 2373–2381. JMLR. org,
2017.

Nichol, A. and Schulman, J. Reptile: a scalable metalearn-
ing algorithm. arXiv preprint arXiv:1803.02999, 2, 2018.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. Rapid
learning or feature reuse? towards understanding the
effectiveness of maml. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=rkgMkCEtPB.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In Advances in
Neural Information Processing Systems, pp. 113–124,
2019.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. 2017.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swer-
sky, K., Tenenbaum, J., Larochelle, H., and Zemel, R.
Meta-learning for semi-supervised few-shot classifica-
tion. arXiv preprint arXiv:1803.00676, 2018.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., and
Bernstein, M. Imagenet large scale visual recognition
challenge. 115(3):211–252, 2015.

Saunshi, N., Zhang, Y., Khodak, M., and Arora, S. A sample
complexity separation between non-convex and convex
meta-learning. arXiv preprint arXiv:2002.11172, 2020.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Setlur, A., Li, O., and Smith, V. Is support set diversity
necessary for meta-learning?, 2020.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. pp. 4077–4087, 2017.

Thrun, S. and Pratt, L. Learning to Learn: Introduc-
tion and Overview, pp. 3–17. Springer US, Boston,
MA, 1998. ISBN 978-1-4615-5529-2. doi: 10.1007/
978-1-4615-5529-2 1. URL https://doi.org/10.
1007/978-1-4615-5529-2_1.

Tripuraneni, N., Jin, C., and Jordan, M. I. Provable
meta-learning of linear representations. arXiv preprint
arXiv:2002.11684, 2020a.

Tripuraneni, N., Jordan, M. I., and Jin, C. On the theory of
transfer learning: The importance of task diversity. arXiv
preprint arXiv:2006.11650, 2020b.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cam-
bridge university press, 2000.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,
and Wierstra, D. Matching networks for one shot learning.
arXiv preprint arXiv:1606.04080, 2016.

Wang, H., Sun, R., and Li, B. Global convergence and
induced kernels of gradient-based meta-learning with
neural nets. arXiv preprint arXiv:2006.14606, 2020a.

Wang, L., Cai, Q., Yang, Z., and Wang, Z. On the global
optimality of model-agnostic meta-learning. In Interna-
tional Conference on Machine Learning, pp. 9837–9846.
PMLR, 2020b.

Wang, X., Yuan, S., Wu, C., and Ge, R. Guarantees for
tuning the step size using a learning-to-learn approach.
arXiv preprint arXiv:2006.16495, 2020c.

https://openreview.net/forum?id=rkgMkCEtPB
https://openreview.net/forum?id=rkgMkCEtPB
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1

How Important is the Train-Validation Split in Meta-Learning?

Xie, Y., Jiang, H., Liu, F., Zhao, T., and Zha, H. Meta
learning with relational information for short sequences.
In Advances in Neural Information Processing Systems,
pp. 9904–9915, 2019.

Yao, H., Huang, L., Wei, Y., Tian, L., Huang, J., and
Li, Z. Don’t overlook the support set: Towards im-
proving generalization in meta-learning. arXiv preprint
arXiv:2007.13040, 2020.

Zhou, P., Yuan, X., Xu, H., Yan, S., and Feng, J. Effi-
cient meta learning via minibatch proximal update. In
Advances in Neural Information Processing Systems, pp.
1534–1544, 2019.

