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Abstract

In this work, we examine online collective infer-
ence, the problem of maintaining and performing
inference over a sequence of evolving graphical
models. We utilize templated graphical models
(TGM), a general class of graphical models ex-
pressed via templates and instantiated with data.
A key challenge is minimizing the cost of instan-
tiating the updated model. To address this, we
define a class of exact and approximate context-
aware methods for updating an existing TGM.
These methods avoid a full re-instantiation by us-
ing the context of the updates to only add relevant
components to the graphical model. Further, we
provide stability bounds for the general online
inference problem and regret bounds for a pro-
posed approximation. Finally, we implement our
approach in probabilistic soft logic, and test it on
several online collective inference tasks. Through
these experiments we verify the bounds on regret
and stability, and show that our approximate on-
line approach consistently runs two to five times
faster than the offline alternative while, surpris-
ingly, maintaining the quality of the predictions.

1. Introduction
In many practical machine learning settings it is common
for both the data and structure of the model to change incre-
mentally over time. Incoming data may provide additional
evidence or add to a set of predictive targets a system has to
infer, and new information or a shifting context may alter
a model’s defining parameters or underlying structure. For
instance, a new product review may change recommenda-
tions made for the reviewer and users who bought related
products, or a recent event could impose constraints on a
product’s availability which were previously not considered
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by a predictor. These are two of many examples of problems
that are both online and require joint predictions.

Online inference is especially challenging for structured
prediction settings (Baki et al., 2007). Structured prediction
algorithms utilize the underlying relational properties of the
data and problem domain to improve predictive performance
and typically require collective (i.e., joint) inference over a
probabilistic model. However, updates to the evidence and
dependency structure of these methods can have cascading
effects on the predictions that are expensive to perform. Up-
dating inference is a long-standing problem in the machine
learning community, and there is a vast body of literature on
the topic for graphical models subject to structural updates
(Buntine, 1991; Friedman & Goldszmidt, 1997; Li et al.,
2006; Acar et al., 2009; Sümer et al., 2011) and for dynamic
models (Murphy, 2002; Nodelman et al., 2002).

In this work we develop theory and methodologies for up-
dating maximum a posteriori (MAP) estimates in undirected
graphical models with density functions belonging to log-
concave exponential families. We address the scalability of
online inference by proposing exact and approximate model
instantiation methods which leverage the context of an exist-
ing model and structured updates. Then, we develop a novel
framework for analyzing the stability of MAP states subject
to changes in the model evidence and structure. The stabil-
ity results are applied to derive bounds on the distance to
optimality of warm start MAP states and a measure of regret
that is incurred by performing inference on an approximated
model.

Our work is most closely related to Pujara et al. (2015),
however, here the definition of online collective inference
is much more general, supporting the introduction of new
random variables and changes to the structure of the graph-
ical model. Further, we develop a theory and method for
performing exact inference on evolving models, as opposed
to approximate budgeted inference. We define the prob-
lem of online collective inference using the framework of
templated graphical models (TGMs). In this framework,
graphical models are specified by functions of relations
and attributes of entities in a dataset, typically expressed as
weighted logical rules. Then, online collective inference is
the task of performing inference on a series of TGMs re-
lated by sequences of updates to the dataset and dependency
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structure.

Our key contributions are as follows: 1) we define the prob-
lem of online collective inference using the framework of
templated graphical models, 2) we propose principled ap-
proximations to updating an existing model, 3) we analyze
the stability of MAP states of models subject to sequences of
model updates, 4) we bound the loss incurred by performing
approximate model updates, 5) we implement an online col-
lective inference system using probabilistic soft logic (Bach
et al., 2017), and 6) through experiments over three tasks,
online recommendation, online demand forecasting, and on-
line model selection, we show that our approximate online
approach consistently provides a up to a 5 times speedup
over an offline variant while, surprisingly, maintaining the
quality of the predictions.

2. Online Collective Inference
A key challenge of online collective inference is expressing
how two models are related and modified. To address this
we leverage a general framework for defining probability
distributions, referred to as templated graphical models
(TGM) (Koller & Friedman, 2009). With this framework,
we formally define online collective inference.

2.1. Templated Graphical Models

A TGM encodes dependencies between relations and at-
tributes of entities in a domain using functions called
template factors with arguments referred to as template
variables. Template factors are commonly expressed as
weighted logical rules, for example:

w : LIKES(P1, P2)→ KNOWS(P1, P2) (1)

This template factor represents the idea that entities who
like each other will often know each other.

Every template variable is associated with a range. For
instance, the range of LIKES is {LIKES(Alice, Bob),
LIKES(Bob, Charlie)} and the range of KNOWS is
{KNOWS(Alice, Bob), KNOWS(Bob, Charlie)}. These
ranges are subsets of a provided dataset and define the
random variables in our domain. Template factors are in-
stantiated by realizing combinations of template variable
instantiations. With the above templates and data, the result-
ing set of instantiated template factors is:

w :LIKES(Alice,Bob)→ KNOWS(Alice,Bob)

w :LIKES(Bob,Charlie)→ KNOWS(Bob,Charlie)

Given the instantiated set of template factors, a TGM defines
a joint probability distribution over the instantiated template
variables. More formally,

Definition 1 (Template Variables). A template variable V

is a function of entity variables V (e1, · · · , ek), with a range
denoted by V al(V ).

Template variables are related by template factors, which,
when instantiated, are referred to as potentials.
Definition 2 (Template Factors, Potentials). A template fac-
tor τ defines a mapping from a subset of a cartesian product
of template variable ranges, Γ ⊆ V al(V1)×· · ·×V al(Vn),
to R. Given a tuple of random variables R ∈ Γ, we use
φ(R) to denote an instantiated template factor, referred to
as a potential.

For the template factor defined earlier, the potential for
the weighted rule can be logical (mapping to 0 or 1) or
represent the distance to satisfaction (used later in Section
5). Generating a set of potentials by realizing every tuple of
random variables in the union of the domains of the template
factors is referred to as grounding (Section 3). A TGM is
defined as a collection of one or more template factors, a set
of potentials, and the set of random variables present in the
dataset.
Definition 3 (Templated Graphical Model). Given a set
of template factors T with a corresponding set of random
variables Z and potentials Φ = {φ1, · · · , φm} a templated
graphical model (TGM) defines the joint probability distri-
bution 1

P (Z) =
1

Z

m∏
i=1

φi(Z) (2)

where Z =
∫
z

∏m
i=1 φi(Z = z) normalizes P (Z). A TGM

is denoted by the tuple T = (T,Φ, P (Z), Z). 2

Any distribution can be expressed in the form of Equation
2 for some set of potentials Φ. Throughout this paper we
assume the random variables of a TGM, Z, are partitioned
into observed random variables X and unobserved random
variables Y . This partition defines a conditional distribution:

P (Y |X) =
1

Z(X)

m∏
i=1

φi(Y,X) (3)

where Z(X) =
∫
y

∏m
i=1 φi(Y = y,X). An equivalent

way to express a TGM with a random variable partition and
conditional distribution is T = (T,Φ, P (Y |X), Y,X).

2.2. Online Collective Inference

TGMs provide a convenient means for systematically defin-
ing modifications to a graphical model, which are broken
into fundamental steps called model updates.

1Abuse of notation: φi(·) is written as a function of Z when
it actually is defined as a function of a tuple of random variables
from Z.

2This definition assumes continuous valued potential functions.
Mass functions are defined by replacing the integral in the defini-
tion by summation.
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Definition 4 (Model Update). Given the TGM T =
(T,Φ, P (Y |X), Y,X). We define a model update as one
of the following:

1. Update the value of an observed variable xi ∈ X
2. Add or delete a random variable xi ∈ X or yi ∈ Y
3. Add or delete a template factor τi ∈ T

With TGMs and model updates we define the task of online
collective inference.

Definition 5 (Online Collective Inference). Let T1 =
(T1,Φ1, P1(Y1|X1), Y1, X1) be a TGM. Then apply a se-
ries of updates that converts T1, X1, and Y1, to T2, X2,
and Y2. Online collective inference is the task of instanti-
ating the potentials Φ2 using every τi ∈ T2 to get T2 =
(T2,Φ2, P (Y2|X2), Y2, X2) and performing inference over
the newly defined probability distribution P2(Y2|X2).

A common inference task is obtaining a maximum-a-
posteriori (MAP) estimator of the random variables. For a
distribution P (Y |X = x), a MAP estimator, y∗, achieves
the mode, i.e., y∗ = arg maxy P (Y = y|X = x).

3. Model Instantiation
As mentioned in Section 2.1, a vital subproblem of online
collective inference is generating potentials, i.e., grounding.

Definition 6 (Grounding). Let T = {τ1, · · · , τs} and
Γ1, · · · ,Γs be a set of template factors and corresponding
domains. Grounding is the process of, for every τi ∈ T , re-
alizing all tuples of random variables (Z1, · · · , Zni) ∈ Γi,
and instantiating every potential φî(Z1, · · · , Zni).

Realizing every tuple of random variables in a domain, Γ,
of a template factor, τ , is difficult as Γ can be large and a
non-trivial subset of the full n-ary Cartesian product of the
range of template variables associated with τ . Reductions
to this set, such as removing potentials that will not mod-
ify the optimal setting of the random variables, i.e., trivial
potentials, are typically performed. There has been a consid-
erable amount of research on identifying trivial potentials
and designing scalable algorithms for grounding (Richard-
son & Domingos, 2006; Bach et al., 2017). We expand upon
these efforts to scale the grounding process in an orthogonal
direction through online-specific improvements.

3.1. Context-Aware Grounding

Rather than re-perform the entire grounding process to in-
stantiate an updated model, we introduce context-aware
grounding. This class of methods leverage the practical ob-
servation that model updates will typically preserve much of
the initial TGM’s existing structure. Context-aware ground-
ing makes a minimal edit, adding and deleting potentials
from the initial potential set.

Definition 7 (Context-Aware Grounding). Let T1 =
(T1,Φ1, P (Z1), Z1) and T2 = (T2,Φ2, P (Z2), Z2), be
two TGMs. A context-aware grounding instantiates Φ2

by grounding the set Φ+ = Φ2 \ Φ1 and removing Φ− =
Φ1 \ Φ2, i.e., Φ2 = Φ+ ∪ (Φ1 \ Φ−).

We derive a tight upper bound on the number of new poten-
tials generated by a context-aware grounding.

Theorem 1. Let T = (T,Φ, P (Z), Z) be a TGM, and T+,
Z+ be the sets of template factors and random variables
added after a series of model updates, respectively. Define
a set of context template factors Tc ⊆ T+ ∪ T such that
each τi ∈ Tc is a function of at least one tuple of random
variables containing some Zj ∈ Z+. Build the set of context
variables for each τi, denoted as Zτi , to be the complete set
of variables Z ∪ Z+ if τi ∈ T+, or Z+, otherwise. Then

|Φ+| ≤
∑
τi∈Tc

|τi|∑
j=1

(
|τi|
j

)
(|Zτi |j · |Z||τi|−j) (4)

where |τi| is the number of template variables defining τi.

3.2. Approximate Context-Aware Groundings

Theorem 1 shows that the number of potentials instanti-
ated by a context-aware grounding will grow exponentially
with respect to the number of context variables and context
template factors. Thus, generating all of the new poten-
tials can be a costly operation that may not be viable in all
settings. We therefore propose approximate context-aware
grounding:

Definition 8 (Approximate Context-Aware Grounding). Let
Φ+ be a set of potentials generated from a context-aware
grounding. An approximate context-aware grounding is any
process which generates a set of potentials Φ̃+ that is a
proper subset of Φ+, i.e., Φ̃+ ⊂ Φ+.

An example of an approximate context-aware grounding is
one that generates potentials which contain less than some
threshold number of context variables, say κ. This is moti-
vated by observing that this restricts the upper limit of the
inner summation in the bound of Theorem 1. This results
in a degree κ polynomial growth rate with respect to the
number of context variables, context template factors, and
random variables.

4. Stability and Regret of Online Inference
In this section we analyze twp aspects, stability and regret,
of the MAP states of TGMs belonging to a log-concave
and continuous exponential family (Wainwright & Jordan,
2008). This implies potentials in Equation 3 are constrained
to the form: φ(y,x) = exp(−θψ(y,x)) for some contin-
uous convex function ψ(·) and a non-negative real valued
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parameter vector θ. The MAP inference problem of a TGM
in such a class of distributions with m potential functions
is:

max
y

P (Y = y|X = x) ≡ min
y

m∑
i=1

θiψi(y,x) (5)

Further, we let H(y,x) =
∑m
i=1 θiψi(y,x) denote the

MAP objective. Formally, for all TGMs in this section, we
make the following assumption.
Assumption 1. P (Y |X) is a member of a log-concave
exponential family.

4.1. Stability

Broadly speaking, stability ensures that small changes to the
input result in bounded variations in the output. A result of
Assumption 1 is that the MAP objectives are convex, which
follows from the definition of log-concavity. Specifically for
stability analysis, an additional useful assumption is strong
convexity. Strong convexity of a function ensures a unique
minimizer and thus stability of MAP states simplifies to
analyzing the distance between points rather than sets.
Definition 9 (Strong Convexity). f : Rn → R is α-strong
convex iff for all x1,x2 ∈ Rn and g ∈ ∂f(x1) 3

f(x2)− f(x1) ≥ gT (x2 − x1) +
α

2
‖x2 − x1‖22 (6)

Strong convexity of the MAP objective can be ensured by
squared L2 regularization. This is a consequence of the
fact that an α > 0 parameterized squared L2 regularizer is
α-strong convex, and strong convexity is preserved when
summed with convex functions.
Lemma 1. Let l = f + h where f is convex and h is α-
strong convex. Then l is α-strong convex. †

The strong convexity condition yields an upper bound on
the distance a point is from a minimizer.
Lemma 2. Let f : Rn → R be α-strong convex. Suppose
x∗ is a minimizer of f , for all x ∈ Rn and g ∈ ∂f(x) †

‖x∗ − x‖2 ≤
2

α
‖g‖2

This lemma yields a bound on the distance of any setting
of the unobserved random variables to the unique mini-
mizer of an L2 regularized MAP objective. We thus have
a direction for analyzing the stability of MAP states by
bounding the magnitude of gradients of MAP states after
a sequence of model updates. Our approach leverages an
additional assumption bounding the rate of change of gra-
dients in the MAP objective of the updated TGM, H2, i.e.,
β-smoothness.

3∂f(x) here denotes the set of subgradients of f at x.
†Proof available in (Shalev-Shwartz, 2012).

Definition 10 (β-Smoothness). f : Rn → R is β-smooth
over Ω ⊆ Rn iff for all x1,x2 ∈ Ω

‖∇f(x1)−∇f(x2)‖2 ≤ β‖x1 − x1‖2 (7)

Assumption 2. The MAP objective H(y,x) of the distribu-
tion P (Y |X), is β-smooth as a function of both arguments
y and x.

To account for the complexity of a sequence of updates
relating the models T1 and T2, we define the delta model
as the set of potentials which are added and removed by a
sequence of model updates.

Definition 11 (Delta Model). Given the TGMs T1 =
(T1,Φ1, P (Z1), Z1) and T2 = (T2,Φ2, P (Z1), Z2). De-
fine Φ− = {exp(θψi)|φi = exp(−θψi) ∈ Φ1 \ Φ2}
and Φ+ = Φ2 \ Φ1. The potential set Φ∆ = Φ− ∪ Φ+

is a delta model with a corresponding MAP objective
H∆ =

∑
φ∈Φ∆

− log(φi(y,x)).

Applying the lemmas and assumptions introduced in this
section, we derive the following bound on the distance be-
tween MAP states for two TGMs.

Theorem 2. Let T1 = (T1,Φ1, P1(Y1|X1), Y1, X1) and
T2 = (T2,Φ2, P (Y2|X2), Y2, X2) be two TGMs defining
the MAP objectives H1 and H2. Suppose P1(Y1|X1) and
P2(Y2|X2) satisfy Assumption 1 and P2(Y |X) satisfies As-
sumption 2. Let Φ∆ be the delta model relating T1 to T2

with MAP objective H∆. Denote the vectors of observed
random variable values of T1 and T2 as x1 ∈ R|X1| and
x2 ∈ R|X2|, and MAP states y∗1 = arg minyH1(y,x1)
and y∗2 = arg minyH2(y,x2). Let ỹ∗1 and x̃1 be the vec-
tors y∗1 and x1, such that values corresponding to deleted
variables are removed, and values corresponding to new
variables and changing partitions are added. Note, values
for variables moving from the unobserved to the observed
partition are the values from y∗1 . Let δ to be the change in
the observed variable values, i.e., δ = ‖x̃1 − x2‖2. Then

‖ỹ∗1 − y∗2‖2 ≤ 2
β

α
δ +

2

α
‖∇yH∆(ỹ∗1, x̃1)‖2 (8)

Proof. First note that

δ = ‖x̃1 − x2‖2 =

∥∥∥∥[ỹ∗1x̃1

]
−
[
ỹ∗1
x2

]∥∥∥∥
2

Thus β-Smoothness of H2 implies

β2δ2 ≥ ‖∇H2(ỹ∗1, x̃1)−∇H2(ỹ∗1,x2)‖22
= ‖∇yH∆(ỹ∗1, x̃1)−∇yH2(ỹ∗1,x2)‖22

+ ‖∇xH2(ỹ∗1, x̃1)−∇xH2(ỹ∗1,x2)‖22
≥ (‖∇yH2(ỹ∗1,x2)‖2 − ‖∇yH∆(ỹ∗1, x̃1)‖2)

2

=⇒ βδ ≥ ‖∇yH2(ỹ∗1,x2)‖2 − ‖∇yH∆(ỹ∗1, x̃1)‖2
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Rearranging terms we have

βδ + ‖∇yH∆(ỹ∗1, x̃1)‖2 ≥ ‖∇yH2(ỹ∗1,x2)‖2

Lastly, applying the α-strong convexity bound, Lemma 2,
on ‖ỹ∗1 − y∗2‖2 we have

‖ỹ∗1 − y∗2‖2 ≤ 2
β

α
δ +

2

α
‖∇yH∆(ỹ∗1, x̃1)‖2

4.1.1. WARM-STARTS

A direct application of the above theorem motivates the
notion that a related TGM’s MAP estimator can be used
to seed inference in a state closer than random initializa-
tion. We define a warm-start, ỹ∗1 , for a TGM T2 as the
augmented MAP state of a related TGM T1. A cold-start,
ycold, is drawn uniformly at random over the domain of
the random variable values. If the MAP objectives of the
distributions defined by T1 and T2 satisfy the necessary
assumptions for Theorem 2, then the bound in the theorem
can be applied to prove that a warm-start is closer to T2’s
MAP state than a cold-start in expectation. More formally,
if it can be shown that a sequence of model updates results
in a change in observed variable values δ = ‖x̃1 − x2‖2
and a delta model gradient ‖∇yH∆(ỹ∗1, x̃1)‖2 such that
2βαδ + 2

α‖∇yH∆(ỹ∗1, x̃1)‖2 ≤ E [‖ycold − y∗‖2] , then
Theorem 2 yields E [‖ỹ∗1 − y∗2‖2] ≤ E [‖ycold − y∗‖2].

4.2. Regret Bounds

Regret in online optimization is typically defined as the
difference between the total loss incurred by two competing
settings of the random variable values, called hypotheses
(Shalev-Shwartz, 2012). Typically in collective inference,
the total loss of a hypothesis is defined as a function of the
set of potentials. However, in our setting, it is possible for
the set of potentials to be modified. For this reason it is
important to explicitly specify the set of potentials functions
over which the regret is being computed.

Definition 12 (Regret). Let Φ be a set of potential functions,
L(x; Φ) : Rn → R be a loss function parameterized by
Φ, and x1,x2 ∈ Rn. The regret with respect to the two
competing hypothesis, x1, and x2, and Φ is defined as

Regret(x1,x2; Φ) = L(x1; Φ)− L(x2; Φ) (9)

For MAP inference, the loss function is the MAP objective,
i.e., RegretH(y1,y2) = H(y1,x)−H(y2,x).

We are specifically interested in bounding the MAP regret
relative to MAP estimators for two distinct TGMs defined
over the same set of random variables. To do this we re-
formulate the problem into that of analyzing the stability

of MAP states of TGMs subject to model updates. We
then apply Theorem 2 together with an added assumption
bounding the rate of change of the MAP objective, namely
L-Lipschitz continuity.

Definition 13 (L-Lipschitz Continuity). f : Rn → R is
L-Lipschitz continuous over Ω ⊆ Rn iff for all x1,x1 ∈ Ω

|f(x1)− f(x2)| ≤ L‖x1 − x2‖2 (10)

Assumption 3. The MAP objective H(y,x), of the distri-
bution P (Y |X), is L-Lipschitz as a function of y for any x.

Theorem 3. Let T1 and T2 be two TGMs defined over
the same random variables. Further, suppose the distribu-
tions defined by T1 and T2, P1(Y |X) and P2(Y |X), satisfy
Assumption 1, and P2(Y |X) satisfies Assumption 2 and As-
sumption 3. Let Φ∆ be the delta model relating T1 to T2

with MAP objective H∆. Then, let y∗1 and y∗2 be the MAP
states of T1 and T2, respectively.

RegretH2
(y∗1,y

∗
2) ≤ 2

L

α
‖∇yH∆(y∗1,x)‖2 (11)

Proof. As H2(y,x) is L-Lipschitz continuous,

‖H2(y∗1,x)−H2(y∗2,x)‖ ≤ L‖y∗1 − y∗1‖2 (12)

Then, since y∗2 = arg minyH2(y,x)

H2(y∗1,x)−H2(y∗2,x) ≤ L‖y∗1 − y∗1‖2 (13)

Next, noting that δ = 0 and applying Theorem 2 yields

H2(y∗1,x)−H2(y∗2,x) ≤ 2
L

α
‖∇yH∆(y∗1,x)‖2 (14)

5. Probabilistic Soft Logic
Probabilistic soft logic (PSL) (Bach et al., 2017) is a lan-
guage for defining a specific type of TGM. A PSL program
is a collection of weighted logical statements and linear
arithmetic inequalities which operate as the template factors.
Logical potentials use a continuous relaxation known as
Łukasiewicz logic to define a hinge loss. Arithmetic poten-
tials are defined to be the distance to satisfaction of a linear
inequality constraint.

PSL defines a distribution that is a member of an exponential
family with potentials constrained to the form:

φ(y,x) = exp(−wmax{`(y,x), 0}p) (15)

where w > 0 is inherited from the instantiating template
factor, ` is a linear function, and p ∈ {1, 2}. Furthermore,
all random variables are constrained to [0, 1]. This class
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of graphical model is referred to as a hinge-loss Markov
random field (HL-MRF). The resulting HL-MRF MAP in-
ference problem is: miny∈[0,1]

∑m
i=1− log(φi(y,x)).

A useful property of HL-MRFs is that they are log-concave
distributions and hence have a convex MAP inference ob-
jective function. Moreover, the regularized HL-MRF MAP
inference objective is L-Lipschitz continuous and α-strongly
convex.

Lemma 3. Suppose P (Y |X) is an HL-MRF distribution.
Let α > 0, then the L2 regularized MAP inference objective,
H(y,x) + α

2 ‖y‖2, is α strongly convex and L-Lipschitz
continuous for some L > 0.

The proof follows from direct application of Lemma 1 and
the fact that each potential φi is individually Li-Lipschitz
continuous, and hence the MAP inference objective, which
is a positive sum of the potentials, is L-Lipschitz.

With an added assumption, the HL-MRF MAP inference
objective is β-smooth.

Assumption 4. P (Y |X) is an HL-MRF distribution with
strictly squared potentials, i.e., every potential has the form
φ(y,x) = exp(−wmax{`(y,x), 0}2).

Lemma 4. Suppose P (Y |X) is an HL-MRF distribution
satisfying Assumption 4. Then the MAP inference objective
H(y,x) is β-smooth for some β > 0.

The proof follows by observing that the magnitude of any
second sub-gradient is bounded over the domain of the
random variables.

Therefore, L2 regularized HL-MRFs satisfying Assumption
4 and instantiated with PSL fulfill all requirements necessary
to utilize the results from Section 4.

5.1. Projected Stochastic Subgradient Descent in PSL

The general MAP inference problem of HL-MRFs can be
classified as linearly constrained, non-smooth convex finite-
sum optimization. Projected stochastic subgradient descent
was introduced as a method for performing HL-MRF MAP
inference in Srinivasan et al. (2020). At every step, j, a
random potential, φi, is sampled and a projected stochastic
subgradient descent step is taken

yj+1 = Π[0,1]n (yj + ηgy log(φi(yi,xi))) (16)

where gy ∈ ∂y(log(φi)) and η is a step size hyperparameter.

Since the potentials of the HL-MRF take the specific form
of a hinge-loss, a subgradient is easily computable. For all
potentials φi, let ai be an n = |Y | dimensional vector such
that ai[j] is the corresponding coefficient of the variable
y[j] in the linear function `i defining φi. The potential

subgradient used in the update is then:

gy =


0 log(φi) ≥ 0

−wiai pi = 1 ∧ log(φi) < 0

−2ai log(φi) pi = 2 ∧ log(φi) < 0

(17)

The projected subgradient update is run until the change
in the MAP objective between epochs falls below a thresh-
old tolerance, ε. In an online problem, setting ε to a fixed
value introduces a subtle challenge. Observe that the objec-
tive function scales with the number of potentials, which
changes after performing a model update. For this reason
we scale ε by the number of potentials involved in inference,
i.e., we set ε = ε′ ·m where ε′ is a fixed scalar hyperparam-
eter and m is the number of potentials.

6. Empirical Evaluation
In this section, we evaluate the performance of an online col-
lective inference system implemented in PSL (Online PSL),
and empirically validate the theory introduced in this work.
We answer the following questions: Q1) Are model updates
performed via context-aware groundings faster than ground-
ing a new model? Q2) How does approximate context-aware
grounding affect the runtime and performance of online col-
lective inference? Q3) How well do the theoretical bounds
introduced in Section 4 predict the movement of the MAP
states ? Q4) In practice, are warm-starts typically closer to
the updated model’s MAP state than cold-starts?

6.1. Datasets and Models

We explore these questions on three online collective infer-
ence tasks: online recommendation, online demand fore-
casting, and online model selection 4. These tasks showcase
how online collective inference can be applied in practi-
cal settings, while demonstrating common model update
patterns. The datasets for the tasks are as follows:

MovieLens – MovieLens is a movie recommendation
dataset containing approximately 1M timestamped ratings
made by 6K users on 4K movies (Harper & Konstan, 2015).
Although often used as an offline recommendation dataset,
timestamps in the data allow us to turn this dataset into an
online recommendation problem using the following pro-
cedure. 10 splits are uniformly sampled, each using 70%
of the original data. Each split is then partitioned into 20
time steps, where the first time step contains one third of
the split’s data and the rest are evenly partitioned. Two
variants of the dataset are created for the online recommen-
dation task: MovieLens-Fixed and MovieLens-TimeSeries.
In MovieLens-Fixed, all ratings are always present as either
observations or unknowns. At each time step, previously

4Data and code: https://github.com/linqs/dickens-icml21



Context-Aware Online Collective Inference for Templated Graphical Models

unknown ratings are observed. In MovieLens-TimeSeries,
ratings are added incrementally. At each time step, 20% of
the unknowns from the previous time step are observed and
all ratings in the new time step are unknown.

BikeShare – BikeShare is a dataset that contains informa-
tion for 650k trips between 70 stations by customers of the
bicycle sharing service, Bay Area Bike Share (Bay Area
Bike Share, 2016). The task for this dataset is to predict the
demand for bikes at each station. The data is divided into
10 overlapping splits, where each split contains one third of
the original data. Splits are partitioned into 20 time steps,
where the first time step contains one third of the split’s data
and the rest are evenly partitioned. At each time step, the
demand for the previous time step becomes fully observed
and the demand for the next time is added as unknown.

Epinions – Epinions is a trust prediction dataset with 2k
users with 8.5k directed links representing whether one
user trusts the other. The data is divided into 8 splits with
the trust links partitioned into observed and unknown sets
following the same procedure as Bach et al. (2017). Each
split is then partitioned into 10 time steps, where the first
time step contains the full model and each subsequent time
step adds and removes templates from the model.

6.2. Methods

Across all tasks and data variants, we evaluate the perfor-
mance of three methods for executing model updates and
performing MAP inference. First, Offline is a standard PSL
implementation that executes model updates by ground-
ing the full model at each time step. Then, Regret-Free
and Regretful are Online PSL implementations executing
model updates via context-aware grounding and approxi-
mate context-aware grounding, respectively. The regretful
models are grounded using the example described in Section
3.2 with κ = 1.

6.3. Performance and Regret Analysis

To address questions Q1 and Q2, we compare the perfor-
mance of our online and offline methods across each dataset.
Figure 1 shows the normalized MAP inference objective
(top), a problem-specific evaluation metric (middle), and
the cumulative time in seconds to obtain a MAP prediction
at each time step (bottom). Because the MAP inference
problem is strongly convex, the Online PSL implementation
employing exact context-aware grounding yields the same
predictions as the offline method.

First, we will discuss the results of the MovieLens-Fixed
and Epinions experiments. In these experiments, both online
methods perform significantly faster than the offline method,
with more than a 4 times speedup on the MovieLens-Fixed
dataset and over a 20 times speedup on the Epinions dataset.

In these setting no variables are added or deleted, thus there
is no significant difference between the exact and approxi-
mate online methods in terms of time, evaluation, and MAP
objective performance (regret).

Next we examine the results of the MovieLens-TimeSeries
and BikeShare datasets in Figure 1. Both of these datasets
operate similarly, where unknowns in the previous time step
become observed as well as unknowns being introduced in
the new time step. In both problems, the regretful online
method performs 2 − 5 times faster than the regret-free
online method, but this comes at the cost of an inferior
MAP inference objective and evaluation score.

6.4. Stability Analysis

To address question Q3 and Q4, we estimate model com-
plexity parameters of the TGMs instantiated by PSL and
measure the movement of variables with warm-start and
cold-start initializations. Figure 2 shows the measured vari-
able movement on all problems. Also shown in the figure
are two empirical estimates of the warm-start bound de-
rived in Section 4, one pessimistic and one optimistic. As
optimization is performed, β and α estimates are created
by sampling the rate of change in the gradients. Both the
optimistic and pessimistic warm-start bounds take β to be
the maximum observed rate of change of gradient. Then,
the α estimate is the average of the rates in the optimistic
bound and the average between the regularization parame-
ter of the model, 0.1, and the minimum observed rate for
the pessimistic bound. We also plot the expectation of the
cold-start variable movements which we assume to be the
expected distance between two randomly sampled points in
a hypercube (Anderssen et al., 1976). Moreover, a trivial
upper bound on the possible movement considering only the
[0, 1] variable box constraints enforced by PSL is plotted.

The expected and actual cold-start movements are aligned
in all experiments except BikeShare. This behavior suggests
that the assumption that the distance between a random ini-
tialization and the MAP state of a TGM instantiated by PSL
is reasonable. The BikeShare exception can be explained by
the fact that truth values in this setting are mostly near zero.

Next, we see in the MovieLens-Fixed, MovieLens-
TimeSeries, and Epinions experiments, the cold-start move-
ment of the variables is significantly larger than that of the
warm-start. This matches the intuition of the settings, as
there are many unobserved variables shared between time
steps that are already optimized for a subset of the potentials
in the updated model. Then, as expected, the exception of
this behavior is in the BikeShare experiments. Cold-start
and warm-start initializations are in fact equivalent in Bike-
Share because all unobserved variables for a time step are
introduced by the model update.
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Figure 1. Comparison of normalized MAP inference objective (top), domain-specific evaluation metrics (middle), and runtime (bottom)
of the three systems.

Figure 2. Comparison of warm-start and cold-start variable movements plotted with various theoretical and empirically estimated bounds.

In all experiments, the optimistic warm-start bound closely
follows the actual warm-start movement, verifying theoret-
ical predictions of Theorem 2 and hence Theorem 3. Fur-
thermore, the optimistic warm-start bound consistently falls
below the expected cold-start movement. The pessimistic
bound on the other hand typically overestimates the warm-
start variable movement by a large-margin, even predicting
more movement than the trivial bound in some cases. The
optimistic and pessimistic warm-start bounds do drop be-
low the actual warm-start movement in both the BikeShare
and Epinions experiments. This can be explained by the
empirical nature of this experiment, the true α and β and
parameters of this model are only estimated via a sampling.

7. Related Work
Online learning describes a class of machine learning meth-
ods where data arrives sequentially and the goal is to ob-
tain the best predictor for future data using the most up-to-
date information (Shalev-Shwartz, 2012). Online machine
learning in the independent and identically distributed (IID)
setting has been studied extensively (Mairal et al., 2010;
Kushner & Yin, 2003; Williams & Zipser, 1989) and major
advances have been made in creating efficient and scalable
algorithms. Many online IID models can make updates to
their predictor using the loss incurred from a single pre-
diction (Bottou, 2010) or by updating a set of summary
statistics (Cesa-Bianchi & Lugosi, 2006).

Updating graphical models is a long-standing problem in the
machine learning community. There is substantial research

in the area of updating Bayesian networks (Buntine, 1991;
Friedman & Goldszmidt, 1997; Li et al., 2006), both with
evolving structure and updating parameters. Likewise, there
has been much work in the area of dynamic and sequential
modeling, such as dynamic and continuous time Bayesian
Networks (Murphy, 2002; Nodelman et al., 2002) and hier-
archical hidden Markov models (Fine et al., 1998). Adaptive
inference is another related area that aims to make efficient
updates to the inference result of a general graphical model
defined over discrete valued variables (Sümer et al., 2011).

The task of updating the MAP state of a TGM condi-
tioned on evolving evidence was first considered in Pujara
et al. (2015). In this setting the graphical model has a fixed
dependency structure, i.e., no variables or potentials are
added or deleted, and the MAP state is found using a tech-
nique which constrains the number of variables that may be
updated to a predefined budget. The authors bound the infer-
ence regret induced by performing this type of approximate
inference on an updated model. The definition of inference
regret is defined as the normalized L1 distance between a
setting of the unobserved variables and the MAP state of
a fixed model. Our work differs significantly in that the
templated graphical model is not fixed and inference is not
constrained by a budget.

The notion of collective stability, introduced by (London
et al., 2013; 2014), measures the change in the output of a
structured predictor subject to updates to a set of evidence.
However, it does not consider updates which add or delete
variables or potentials defining the graphical model. For
this reason we introduced the notion of the delta model,
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an analytical tool for representing the differences in the
structure and evidence of two TGMs.

8. Conclusions and Future Work
In this work, we develop a general methodology for defin-
ing and analyzing the problem of online collective inference
using the framework of TGMs. To address the difficulty
of model instantiation in online collective inference, we
introduce a class of exact and approximate approaches for
utilizing the context of an existing graphical model to in-
stantiate an updated model without the need to fully rebuild
it, referred to as context-aware grounding. We then use
the complexity of a sequence of model updates to bound
the possible change in the inferred variables values. These
results are applied to upper bound the regret incurred by
employing a proposed approximate context-aware ground-
ing scheme. Our theoretical analysis is general enough
to be used in any modeling framework which ultimately
performs MAP inference over a distribution that is a mem-
ber of a log-concave exponential family. Further, we show
that assumptions made in our analysis are adhered to by
models instantiated using the PSL framework. This makes
our methods directly applicable to models over many do-
mains ranging from bioinformatics (Kouki et al., 2019) to
recommendation systems (Kouki et al., 2015). Finally, we
implement an online collective inference system in PSL and
verify our theoretical results. Moreover, the approximate
method for executing model updates consistently yields a
2-5 times speedup over offline models in online tasks while
still achieving nearly the same level of prediction perfor-
mance.

A potential direction for future work is to introduce methods
for reducing the size of the instantiated graphical model by
summarizing or forgetting some of the model. This could
further improve the speed ups over offline methods and
reduce the memory requirements of the system. An orthog-
onal approach to forgetting that could also result in runtime
improvements is implementing approximate inference tech-
niques.
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Sümer, Ö., Acar, U., Ihler, A., and Mettu, R. Adaptive
exact inference in graphical models. Journal of Machine
Learning Research (JMLR), 12:3147–3186, 2011.

Wainwright, M. and Jordan, M. Graphical models, expo-
nential families, and variational inference. Foundations
and Trends in Machine Learning (FTML), 1(1 - 2):1–305,
2008.

Williams, R. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
Computation, 1(2):270–280, 1989.


