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Abstract

We study the problem of learning neural text
classifiers without using any labeled data,
but only easy-to-provide rules as multiple
weak supervision sources. This problem is
challenging because rule-induced weak labels
are often noisy and incomplete. To address
these two challenges, we design a label de-
noiser, which estimates the source reliability
using a conditional soft attention mechanism
and then reduces label noise by aggregating
rule-annotated weak labels. The denoised
pseudo labels then supervise a neural classifier
to predicts soft labels for unmatched samples,
which address the rule coverage issue. We
evaluate our model on five benchmarks for
sentiment, topic, and relation classifications.
The results show that our model outper-
forms state-of-the-art  weakly-supervised
and semi-supervised methods consistently,
and achieves comparable performance with
fully-supervised methods even without
any labeled data. Our code can be found
at https://github.com/weakrules/
Denoise-multi-weak—-sources.

1 Introduction

Many NLP tasks can be formulated as text classifi-
cation problems, such as sentiment analysis (Bad-
jatiya et al., 2017), topic classification (Zhang et al.,
2015), relation extraction (Krebs et al., 2018) and
question answering like slot filling (Pilehvar and
Camacho-Collados, 2018). Recent years have wit-
nessed the rapid development of deep neural net-
works (DNNGs) for this problem, from convolutional
neural network (CNN, Kim, 2014; Kalchbrenner
et al., 2014), recurrent neural network (RNN, Lai
et al., 2015) to extra-large pre-trained language
models (Devlin et al., 2019; Dai et al., 2019; Liu
et al., 2019). DNNs’ power comes from their capa-
bilities of fitting complex functions based on large-
scale training data. However, in many scenarios,

labeled data are limited, and manually annotating
them at a large scale is prohibitively expensive.

Weakly-supervised learning is an attractive ap-
proach to address the data sparsity problem. It la-
bels massive data with cheap labeling sources such
as heuristic rules or knowledge bases. However, the
major challenges of using weak supervision for text
classification are two-fold: 1) the created labels are
highly noisy and imprecise. The label noise issue
arises because heuristic rules are often too simple
to capture rich contexts and complex semantics for
texts; 2) each source only covers a small portion
of the data, leaving the labels incomplete. Seed
rules have limited coverage because they are de-
fined over the most frequent keywords but real-life
text corpora often have long-tail distributions, so
the instances containing only long-tail keywords
cannot be annotated.

Existing works (Ratner et al., 2017; Meng et al.,
2018; Zamani et al., 2018; Awasthi et al., 2020)
attempt to use weak supervision for deep text clas-
sification. Ratner et al. (2017) proposes a data
programming method that uses labeling functions
to automatically label data and then trains dis-
criminative models with these labels. However,
data annotated in this way only cover instances
directly matched by the rules, leading to limited
model performance on unmatched data. Meng et al.
(2018) proposes a deep self-training method that
uses weak supervision to learn an initial model and
updates the model by its own confident predictions.
However, the self-training procedure can overfit
the label noise and is prone to error propagation.
Zamani et al. (2018) solves query performance pre-
diction (QPP) by boosting multiple weak supervi-
sion signals in an unsupervised way. However, they
choose the most informative labelers by an ad-hoc
user-defined criterion, which may not generalize to
all the domains. Awasthi et al. (2020) assumes that
human labelers are over-generalized to increase the
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coverage, and they learn restrictions on the rules to
address learning wrongly generalized labels. How-
ever, their method requires the specific formula-
tion process of rules to indicate which rules are
generated by which samples, so that it cannot deal
with other kinds of labeling sources like knowledge
bases or third-party tools.

We study the problem of using multiple weak
supervision sources (e.g., domain experts, pattern
matching) to address the challenges in weakly-
supervised text classification. While each source is
weak, multiple sources can provide complementary
information for each other. There is thus poten-
tial to leverage these multiple sources to infer the
correct labels by estimating source reliability in dif-
ferent feature regimes and then aggregating weak
labels. Moreover, since each source covers dif-
ferent instances, it is more promising to leverage
multiple sources to bootstrap on unlabeled data and
address the label coverage issue.

Motivated by the above, we propose a model
with two reciprocal components. The first is a
label denoiser with the conditional soft attention
mechanism (Bahdanau et al., 2014) (§ 3.2). Con-
ditioned on input text features and weak labels, it
first learns reliability scores for labeling sources,
emphasizing the annotators whose opinions are in-
formative for the particular corpus. It then denoises
rule-based labels with these scores. The other is a
neural classifier that learns the distributed feature
representations for all samples (§ 3.3). To lever-
age unmatched samples, it is supervised by both
the denoised labels and its confident predictions on
unmatched data. These two components are inte-
grated into an end-to-end co-training framework,
benefiting each other through cross-supervision
losses, including the rule denoiser loss, the neu-
ral classifier loss, and the self-training loss(§ 3.4).

We evaluate our model on four classification
tasks, including sentiment analysis, topic classifi-
cation, spam classification, and information extrac-
tion. The results on five benchmarks show that: 1)
the soft-attention module effectively denoises the
noisy training data induced from weak supervision
sources, achieving 84% accuracy for denoising;
and 2) the co-training design improves prediction
accuracy for unmatched samples, achieving at least
9% accuracy increase on them. In terms of the
overall performance, our model consistently outper-
forms SOTA weakly supervised methods (Ratner
etal., 2017; Meng et al., 2018; Zamani et al., 2018),
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Figure 1: The annotation process for three weak super-
vision sources. “POS” and “NEG” are the labels for the
sentiment analysis task.

semi-supervised method (Tarvainen and Valpola,
2017), and fine-tuning method (Howard and Ruder,
2018) by 5.46% on average.

2 Preliminaries

2.1 Problem Definition

In weakly supervised text classification, we do not
have access to clean labeled data. Instead, we as-
sume external knowledge sources providing label-
ing rules as weak supervision signals.

Definition 1 (Weak Supervision). A weak super-
vision source specifies a set of labeling rules R =
{r1,79,...,ri}. Each rule r; declares a mapping
f — C, meaning any documents that satisfy the
feature f are labeled as C.

We assume there are multiple weak supervision
sources providing complementary information for
each other. A concrete example is provided below.

Example 1 (Multi-Source Weak Supervision). Fig-
ure 1 shows three weak sources for the sentiment
analysis of Yelp reviews. The sources use ‘if-else’
labeling functions to encode domain knowledge
from different aspects. The samples that cannot be
matched by any rules remain unlabeled.

Problem Formulation Formally, we have: 1) a
corpus D = {d;,...,d,} of text documents; 2)
asetC = {C1,...,C,,} of target classes; and 3)
asetS = {R1,Ra,..., Ry} of weak annotators.
Our goal is to learn a classifier from D with only
multiple weak supervision sources to accurately
classify any newly arriving documents.

2.2 Challenges

Although the use of automatic weak annotators
largely reduces human labeling efforts, using rule-
induced labeled data has two drawbacks: label
noise and label incompleteness.
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Figure 2: Overview of cross-training between the rule-
based classifier and the neural classifier.

Weak labels are noisy since user-provided rules
are often simple and do not fully capture complex
semantics of the human language. In the Yelp ex-
ample with eight weak supervision sources, the
annotation accuracy is 68.3% on average. Label
noise hurts the performance of text classifiers—
especially deep classifiers—because such complex
models easily overfit the noise. Moreover, the
source coverage ranges from 6.8% to 22.2%. Such
limited coverage is because user-provided rules
are specified over common lexical features, but
real-life data are long-tailed, leaving many samples
unmatched by any labeling rules.

3 Our Method

We begin with an overview of our method and then
introduce its two key components as well as the
model learning procedure.

3.1 The Overall Framework

Our method addresses the above challenges by
integrating weak annotated labels from multiple
sources and text data to an end-to-end framework
with a label denoiser and a deep neural classifier,
illustrated in Figure 2.

Label denoiser & self-denoising We handle the
label noise issue by building a label denoiser that
iteratively denoises itself to improve the quality
of weak labels. This label denoiser estimates
the source reliability using a conditional soft at-
tention mechanism, and then aggregates weak la-
bels via weighted voting of the labeling sources
to achieve “pseudo-clean” labels. The reliability
scores are conditioned on both rules and docu-
ment feature representations. They effectively em-
phasize the opinions of informative sources while
down-weighting those of unreliable sources, thus
making rule-induced predictions more accurate.

Neural classifier & self-training To address the
low coverage issue, we build a neural classifier

which learns distributed representations for text
documents and classifies each of them, whether
rule-matched or not. It is supervised by both the
denoised weakly labeled data as well as its own
high-confident predictions of unmatched data.

3.2 The Label Denoiser

When aggregating multiple weak supervision
sources, it is key for the model to attend to more
reliable sources, where source reliability should
be conditioned on input features. This will enable
the model to aggregate multi-source weak labels
more effectively. Given k labeling resources, we
obtain the weak label matrix Y € R"** through
rule matching. Specifically, as shown in the Rule
Matching step of 3, by Definition 1, given one rule,
if a document is matchable by that rule, it will be
assigned with a rule-induced label C; otherwise,
the document remains unlabeled, represented as
-1. N rules thus generate N weak labels for each
document. We then estimate the source reliabil-
ity and aggregate complementary weak labels to
obtain “pseudo-clean” labels.

Parameterization of source reliability We in-
troduce a soft attention mechanism conditioned
on both weak labels and feature representation,
denoted as B, to estimate the source reliability.
Formally, we denote the denoised “pseudo-clean”
labels by Y = [4ji,...,%»]7 . and the initial ones
Yp are obtained by simple majority voting from Y.
The core of the label denoiser is an attention net,
a two-layer feed-forward neural network which
predicts the attention score for matched samples.
Formally, we specify a reliability score a; for each
labeling source to represent its annotation quality,
and the score is normalized to satisfy Zle a; = 1.
For one document d;, its attention score g; ; of one

labeling source R ; is:

Gij =W tanh(W1(3ij + By)),
~_exp(diy) (1
B > exp(dij)

where W7, W5 denote the neural network weights
and tanh is the activation function. Thus, for each
document, its conditional labeling source score vec-
tor A; = [ai1,a0,...,a;)" is calculated over
matched annotators as a;; = ¢ijxc(¥i; >= 0),
where x ¢ is the indicator function. Then, we aver-
age the conditional source score A; over all the n
matched samples to get the source reliability vector
A. The weight of j;, (j = 1,2, ..., k) annotator is

3741



Label Denoiser

Source

Rule Matching

2 f1(X) %

source 1 ;

& rx) B —BBEBEB— "

source 2 1

El Matched Samples

/Q\ e (X } Annotated Weak
@ @ @ source k fk( ) :: Labels
ENERE -
BEB
All Samples Pre-trained @ @ @

Transformer L
ERENE

Unmatched Samples

17
£ - . O, n
3 518 £l Reliability
= = 8 Score
Conditional Soft

Attention Net Denoised Labels

| weighted \
'l majority voting

»
SR 5L g —— 1,(U)
B8 3 ! '
:self €3®
1

\

Yy

Figure 3: The detailed model architecture. Our model mainly consists of two parts: (1) the label denoiser, including

the conditional soft attention reliability estimator and the

instance-wise multiplication; (2) the neural classifier,

which calculates sentence embedding using the pre-trained Transformer and makes classification.

calculated as a; = 1 "% | a;;. Finally, We aggre-
gate k reliability scores to get the reliability vector

A= [al, ag, ... ,ak]T.

Denoising pseudo labels With the learned relia-
bility vector A, we reweight the sources to get the
weighted majority voted labels Y by Y; ® A. The
denoised “pseudo-clean” label y; is:

k
U; = arg maxZanC(gij == C,),
S (2)
J_
where r =1,2,...,m.

The updated higher-quality labels Y then supervise
the rule-covered samples in D, to generate better
soft predictions and guide the neural classifier later.

Rule-based classifier prediction At the epoch ¢
of our co-training framework, we learn the reliabil-
ity score A(t) and soft predictions Z (t) supervised
by “pseudo-clean” labels from the previous epoch

Y (t — 1). Then we renew “clean-pseudo” labels as
Y (t) using the score A(t) by (2).

Specifically, given m target classes and k£ weak
annotators, the prediction probability Z; for d; is
obtained by weighting the noisy labels Y; accord-
ing to their corresponding conditional reliability
scores A;: 2; = softmax(f’i ® A;), where the
masked matrix multiplication ® (defined in (3)) is
used to mask labeling sources that do not annotate
document ¢, and we normalize the resultant masked

scores via softmax:

k
vir = > aijxe (g == Cr)
j=1
exp(yir)
ZT:l exp(Yir)
We finally aggregate m soft adjusted scores to get
the soft prediction vector £; = [zi1, .. . , Zim] T

3)

A~

T

3.3 The Neural Classifier

The neural classifier is designed to handle all the
samples, including matched ones and unmatched
ones. The unmatched corpus where the docu-
ments cannot be annotated by any source is de-
noted as Dy. In our model, we use the pre-trained
BERT (Devlin et al., 2019) as our feature extrac-
tor, and then feed the text embeddings B into a
feed-forward neural network to obtain the final pre-
dictions. For d; € D, U Dy, the prediction z; is:

Zi = fo(Bi; 0w), “4)

where fy denotes the two-layer feed-forward neural
network, and 6,, denotes its parameters.

3.4 The Training Objective

The rule denoiser loss ¢; is the loss of the rule-
based classifier over Dy. We use the “pseudo-
clean” labels Y to self-train the label denoiser and
define the loss ¢; as the negative log likelihood of

(==Y filogz;. 5)

€Dy,
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Algorithm 1 Training process of our model Dataset| Task |C|#Train|#Dev|#Test| Cover|Acc.
. ~ youtube| Spam |2| 1k |O.1k| 0.1k | 74.4 [85.3
Require: Dy, Dy, C, B, Y, gy(z) and fy(z): imdb |Sentiment| 2| 20k | 2.5k | 2.5k | 87.5 | 745
feed-forward rule-based and nerual classifier yelp |Sentiment| 2| 30.4k | 3.8k | 3.8k | 82.8 |71.5

. . . agnews | Topic [4| 96k | 12k | 12k | 56.4 |81.4

with trainable parameters W and 60; s: number spouse | Relation | 2| 1k | 0.1k | 0.1k | 859 |46.5

of training iteraions;
1: Y « Y, initialize by simple majority voting
2: fort < 1tosdo
A, Ziep, < 9w (Yi, Bi, 9i) >
learn reliability score and evaluate attention
network output supervised by “pseudo-clean”
labels from (1) and (3)
Ui <—(2) > renewed pseudo labels
5: Ziep,uDy — fo(Bi,Ui) > evaluate
neural classifier output
update 6, W using ADAM by (8)
7: end for
8: return W, 0

The neural classifier loss /5 is the loss of the neu-
ral classifier over Dy. Similarly, we regard the
negative log-likelihood from the neural network
outputs Z to the pseudo-clean labels Y as training
loss, formally

ly=— iilogZ;. 6)

€Dy,

The unsupervised self-training loss /5 is the loss
of the neural classifier over Dy. To further en-
hance the label quality of Dy we apply the tem-
poral ensembling strategy (Laine and Aila, 2016),
which aggregates the predictions of multiple previ-
ous network evaluations into an ensemble predic-
tion to alleviate noise propagation. For a document
d; € Dy, the neural classifier outputs Z; are ac-
cumulated into ensemble outputs Z; by updating
Z; + aZ;+(1—«)Z;, where a is a term that con-
trols how far the ensemble looks back into training
history. We also need to construct target vectors
by bias correction, namely p; < Z;/(1 — at),
where ¢ is the current epoch. Then, we minimize
the Euclidean distance between p; and Z;, where
t=> "z -pl? (7)

1€Dy

Overall Objective The final training objective is
to minimize the overall loss ¢:

£ = c1l1 + caly + c3ls, (8)
where 0 < ¢; <1,0< ¢ <1l,and0 < c¢c3 <1
are hyper-parameters for balancing the three losses
and satisfy ¢; + c2 + c3 = 1.

Table 1: Data Statistics. C'is the number of classes.
Cover is fraction of rule-induced samples. Acc. refers
to precision of labeling sources (number of correct sam-
ples / matched samples). Cover and Acc. are in %.

3.5 Model Learning and Inference

Algorithm 1 sketches the training procedure. Two
classifiers provide supervision signals for both
themselves and their peers, iteratively improving
their classification abilities. In the test phase, the
corpus is sent into our model with the correspond-
ing annotated noisy labels. The final target C; for
a document ¢ is predicted by ensembling the soft
predictions. If two predictions from the label de-
noiser and the neural classifier conflict with each
other, we choose the one with higher confidence,
where the confidence scores are softmax outputs.

4 Experiments

4.1 Experimental Setup

Datasets and tasks We evaluate our model
on five widely-used text classification datasets,
covering four different text classification tasks:
youtube (Alberto et al., 2015) (Spam Detection),
imdb (Maas et al., 2011), yelp (Zhang et al., 2015)
(Sentiment Analysis), agnews (Zhang et al., 2015)
(Topic Classification), and spouse (Ratner et al.,
2017) (Relation Classification). Table 1 shows the
statistics of these datasets and the quality of weak
labels (the details of each annotation rule are given
in the appendix A.4). Creating such rules required
very light efforts, but is able to cover a considerable
amount of data samples (e.g., 54k in agnews).

Baselines We compare our model with the fol-
lowing advanced methods: 1) Snorkel (Ratner
etal., 2017) is a general weakly-supervised learn-
ing method that learns from multiple sources
and denoise weak labels by a generative model;
2) WeSTClass (Meng et al., 2018) is a weakly-
supervised text classification model based on self-
training; 3) ImplyLoss (Awasthi et al., 2020) pro-
pose the rule-exemplar supervision and implica-
tion loss to denoise rules and rule-induced labels
jointly; 4) NeuralQPP (Zamani et al., 2018) is a
boosting prediction framework which selects useful
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Method |youtube|imdb| yelp | agnews|spouse

Snorkel 78.6 | 732|69.1| 629 | 569
WeSTClass | 65.1 |74.7|769| 82.8 | 56.6
Implyloss | 93.6 |51.1|763| 685 | 68.3
NeuralQPP | 852 |53.6|573| 69.5 | 74.0
MT 86.7 | 729|712 | 70.6 | 70.7
ULMFT 56.1 | 705|673 | 668 | 72.4
BERT-MLP| 77.0 |725|815| 75.8 | 70.7
Ours 949 |829|875| 857 | 813

Table 2: Classification accuracy in the test set for all
methods on five datasets.

labelers from multiple weak supervision signals;
5) MT (Tarvainen and Valpola, 2017) is a semi-
supervised model that uses Mean-Teacher method
to average model weights and add a consistency
regularization on the student and teacher model;
and 6) ULMFiT (Howard and Ruder, 2018) is a
strong deep text classifier based on pre-training and
fine-tuning. 7) BERT-MLP takes the pre-trained
Transformer as the feature extractor and stacks a
multi-layer perceptron on its feature encoder.

4.2 Experimental Results
4.2.1 Comparison with Baselines

We first compare our method with the baselines on
five datasets. For fair comparison, all the methods
use a pre-trained BERT-based model for feature
extraction, and use the same neural architecture as
the text classification model. All the baselines use
the same set of weak labels Y for model training,
except for WeSTClass which only requires seed
keywords as weak supervision (we extract these
keywords from the predicates of our rules).

Table 2 shows the performance of all the meth-
ods on five datasets. As shown, our model con-
sistently outperforms all the baselines across all
the datasets. Such results show the strength and
robustness of our model. Our model is also very
time-efficient (4.5 minutes on average) with train-
able parameters only from two simple MLP neural
networks (0.199M trainable parameters).

Similar to our methods, Snorkel, NeuralQPP,
and Implyloss also denoise the weak labels from
multiple sources by the following ideas: 1) Snorkel
uses a generative modeling approach; 2) Imply-
loss adds one regularization to estimate the rule
over-generalizing issue, but it requires the clean
data to indicate which document corresponds to
which rule. Without such information in our set-
ting, this advanced baseline cannot perform well;
3) Neural QPP selects the most informative weak la-
belers by boosting method. The performance gaps

T T T T
[ incorrect majority voted labels / all training samples

[| I Incorrect majority voted labels / matched training samples

0.6 - [E D Incorrect denosied labels by our model / all training samples

Jlﬂ IIH IIH IIH

youtube imdb yelp agnews

spouse

Figure 4: The label noise ratio of the initial majority
voted labels and our denoised labels in the training set.

verify the effectiveness of the our conditional soft
attention design and co-training framework.

WeSTClass is similar to our method in that it
also uses self-training to bootstrap on unlabeled
samples to improve its performance. The major
advantage of our model over WeSTClass is that it
uses two different predictors (rule-based and neural
classifier) to regularize each other. Such a design
not only better reduces label noise but also makes
the learned text classifier more robust.

Finally, ULMFiT and BERT-MLP are strong
baselines based on language model fine-tuning.
MT is a well-known semi-supervised model which
achieved inspiring results for image classification.
However, in the weakly supervised setting, they do
not perform well due to label noise. The results
show that ULMFiT and MT suffer from such la-
bel noise, whereas our model is noise-tolerant and
more suitable in weakly supervised settings. Over-
all BERT-MLP performs the best and we further
compare it with ours in more perspectives.

4.2.2 Effectiveness of label denoising

To study the effectiveness of label denoising, we
first compare the label noise ratio in training set
given by the majority-voted pseudo labels (Y de-
fined in § 3.2) and our denoised pseudo labels.
Figure 4 shows that after applying our denois-
ing model, the label noise is reduced by 4.49%
(youtube), 4.74% (imdb), 12.6% (yelp), 3.87% (ag-
news) and 8.06% (spouse) within the matched sam-
ples. If we count all the samples, the noise reduc-
tion is much more significant with 23.92% on aver-
age. Such inspiring results show the effectiveness
of our model in denoising weak labels.

Train a classifier with denoised labels We fur-
ther study how the denoised labels benefit the train-
ing of supervised models. To this end, we feed the
labels generated by majority voting and denoised
ones generated by our model into two state-of-the-
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Method | Labels | youtube |imdb | yelp | agnews|spouse

Labeled| Method |youtube|imdb| yelp |agnews|spouse

BERT+ | major | 77.0 |725|81.5| 758 | 70.7
MLP | ours | 89.8 |80.2|858| 843 | 78.0

0.5% |Bert-MLP| 80.6 | 769 |86.2| 82.6 | 682
Ours 924 | 819 |875| 864 | 81.3

UlmFit | major

ours

56.1 | 705|673 | 668 | 72.4
90.8 |81.6 859 | 84.7 | 813

Table 3: Classification accuracy of two supervised
methods with labels generated by majority voting and
denoised ones generated by our model.

[BERT-MLP
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Figure 5: Accuracy on low-resource samples (matched
by a small number of rules) in Youtube dataset.

art supervised models: ULMFiT and BERT-MLP
(described in § 4.1). Table 3 shows that denoised
labels significantly improve the performance of su-
pervised models on all the datasets.

4.2.3 Effectiveness of handling rule coverage

We proceed to study how effective our model is
when dealing with the low-coverage issue of weak
supervision. To this end, we evaluate the perfor-
mance of our model for the samples covered by
different numbers of rules. As shown in Figure 5,
the strongest baseline (BERT-MLP) trained with
majority-voted labels performs poorly on samples
that are matched by few rules or even no rules.
In contrast, after applying our model, the perfor-
mance on those less matched samples improves
significantly. This is due to the neural classifier
in our model, which predicts soft labels for un-
matched samples and utilizes the information from
the multiple sources through co-training.

4.2.4 Incorporating Clean Labels

We also study how our model can further bene-
fit from a small amount of labeled data. While
our model uses weak labels by default, it can eas-
ily incorporate clean labeled data by changing the
weak labels to clean ones and fix them during train-
ing. We study the performance of our model in
this setting, and compare with the fully-supervised
BERT-MLP model trained with the same amount
of clean labeled data.

2% |Bert-MLP| 832 |78.8|874 | 847 | 723
Ours 929 |83.1|87.6| 857 | 81.3
5% |Bert-MLP| 87.7 |83.6|89.0| 864 | 74.8
Ours 93.8 |86.1|904 | 88.2 | 82.1

20% |Bert-MLP| 90.8 |86.0 | 903 | 89.2 | 75.6
Ours 94.0 | 86.1|90.5| 89.2 | 84.5
50% |Bert-MLP| 91.8 |86.2|90.5| 89.2 | 78.0
Ours 954 |86.2|90.5| 89.3 | 85.9
100% |Bert-MLP| 944 |87.2|91.1| 90.7 | 79.6

Table 4: The classification accuracy of BERT-MLP and
our model with ground truth labeled data

As shown in Table 4, the results of combining
our denoised labels with a small amount of clean
labels are inspiring: it further improves the perfor-
mance of our model and consistently outperforms
the fully supervised BERT-MLP model. When the
labeled ratio is small, the performance improve-
ment over the fully-supervised model is particu-
larly large: improving the accuracy by 6.28% with
0.5% clean labels and 3.84% with 5% clean labels
on average. When the ratio of clean labels is large,
the performance improvements becomes marginal.

The performance improvement over the fully-
supervised model is relatively smaller on yelp and
agnews datasets. The reason is likely that the text
genres of yelp and agnews are similar to the text
corpora used in BERT pre-training, making the
supervised model fast achieve its peak performance
with a small amount of labeled data.

4.2.5 Ablation Study

We perform ablation studies to evaluate the effec-
tiveness of the three components in our model: the
label denoiser, the neural classifier, and the self-
training over unmatched samples. By removing
one of them, we obtain four settings: 1) Rule-only,
represents w/o neural classifier and self-training;
2) Neural-only, represents w/o label denoiser and
self-training; 3) Neural-self: represents w/o label
denoiser; 4) Rule-Neural: represents w/o self train-
ing. 3) and 4) are supervised by the initial simple
majority voted labels. Table 5 shows the results.
We find that all the three components are key to our
model, because: 1) the rule-based label denoiser it-
eratively obtains higher-quality pseduo labels from
the weak supervision sources; 2) the neural clas-
sifier extracts extra supervision signals from unla-
beled data through self-training.
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Method  |youtube|imdb| yelp |agnews|spouse

Ours 949 |829]|875| 857 | 81.3
Rule-only 90.3 [73.1|702| 636 | 77.2
Neural-only | 77.0 |72.5|81.5| 758 | 70.7
Neural-self | 89.3 | 814|829 | 81.3 | 79.7
Rule-Neural| 87.2 | 80.1 | 80.8 | 84.8 | 69.9

Table 5: Ablation Study Results.

4.2.6 Case Study

We provide a example of Yelp dataset to show the
denoising process of our model.

A reviewer of says “My husband tried this place.
He was pleased with his experience and he wanted
to take me there for dinner. We started with cala-
mari which was so greasy we could hardly eat
it...The bright light is the service. Friendly and at-
tentive! The staff made an awful dining experience
somewhat tolerable.” The ground-truth sentiment
should be NEGATIVE.

This review is labeled by three rules as fol-
lows: 1) keyword-mood, pleased — POSITIVE;
2) keyword-service, friendly — POSITIVE;
3) keyword-general, awful — NEGATIVE. The
majority-voted label is thus POSITIVE, but it is
wrong. After applying our method, the learned
conditional reliability scores for the three rules are
0.1074, 0.1074, 0.2482, which emphasizes rule 3)
so the denoised weighted majority voted is thus
NEGATIVE, and it becomes correct.

4.2.7 Parameter Study

The primary parameters of our model include: 1)
the dimension of hidden layers dj, in the label de-
noiser and the feature-based classifier; 2) learning
rate [r; 3) the weight ¢y, co, and c3 of regularization
term for /1, ¢5, and /3 in (8); 4) We fix momen-
tum term a = 0.6 followed the implementation
of Laine and Aila (2016). By default, we set d;, =
128, lr = 0.02,and ¢; = 0.2,¢c2 = 0.7,¢c3 = 0.1
as our model achieves overall good performance
with these parameters. The search space of dj, is
2679 1ris 0.01 — 0.1, ¢; and ¢ are 0.1 — 0.9 (note
that co = 1 — ¢; — ¢3). The hyperparameter config-
uration for the best performance reported in Table
2 is shown in the appendix A.3.

We test the effect of one hyperparameter by fix-
ing others to their default values. In Figure 6 (a)
and (b), we find the performance is stable except
that the loss weight is too large. For (c¢) and (d),
except for the spouse dataset when [ is too small
and dy, is too large (instability due to the dataset
size is small), our model is robust to the hyperpa-
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Figure 6: The prediction accuracy over different param-
eter settings.

rameters when they are in a reasonable range. We
also report overall performance for all the search
trails in Table 10 of appendix A.3.

5 Related Work

Learning from Noisy Supervision. Our work is
closely related to existing work on learning from
noisy supervision. To deal with label noise, sev-
eral studies (Brodley and Friedl, 1999; Smith and
Martinez, 2011; Yang et al., 2018) adopt a data
cleaning approach that detects and removes misla-
beled instances. This is achieved by outlier detec-
tion (Brodley and Friedl, 1999), a-priori heuristics
(Smith and Martinez, 2011), self-training (Liang
et al., 2020), or reinforcement learning (Yang et al.,
2018; Zhang et al., 2020). One drawback of this
data cleaning approach is that it can discard many
samples and incur information loss.

Different from data cleaning, some works adopt
a data correction approach. The most prominent
idea in this line is to estimate the noise transi-
tion matrix among labels (Sukhbaatar and Fer-
gus, 2014; Sukhbaatar et al., 2014; Goldberger and
Ben-Reuven, 2016; Wang et al., 2019; Northcutt
et al., 2019) and then use the transition matrices to
re-label the instances or adapt the loss functions.
Specifically, Wang et al. (2019) and Northcutt et al.
(2019) generate label noise by flipping clean labels
based on such noise transition matrices. They are
thus not applicable to our weak supervision setting
where no clean labels are given. Meanwhile, re-
weighting strategies have been explored to adjust
the input training data. These techniques weigh
training samples according to the predictions con-
fidence (Dehghani et al., 2017), one-sided noise
assumption (Zhang et al., 2019), a clean set (Ren
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et al., 2018) or the similarity of their descent direc-
tions (Yang et al., 2018). Recently, a few studies
(Veit et al., 2017; Hu et al., 2019) have also ex-
plored designing denoising modules for neural net-
works. However, our method differs from them in
that: (1) our method learns conditional reliability
scores for multiple sources; and (2) these methods
still require clean data for denoising, while ours
does not.

Learning from Multi-Source Supervision The
crowdsourcing area also faces the problem of learn-
ing from multiple sources (i.e., crowd workers).
Different strategies have been proposed to inte-
grate the annotations for the same instance, such
as estimating the confidence intervals for workers
(Joglekar et al., 2015) or leveraging approval voting
(Shah et al., 2015). Compared with crowdsourc-
ing, our problem is different in that the multiple
sources provide only feature-level noisy supervi-
sion instead of instance-level supervision.

More related to our work are data programming
methods (Ratner et al., 2016, 2017, 2019) that learn
from multiple weak supervision sources. One semi-
nal work in this line is Snorkel (Ratner et al., 2017),
which treats true labels as latent variables in a gen-
erative model and weak labels as noisy observa-
tions. The generative model is learned to estimate
the latent variables, and the denoised training data
are used to learn classifiers. Our approach differs
from data programming methods where we use a
soft attention mechanism to estimate source relia-
bility, which is integrated into neural text classifiers
to improve the performance on unmatched samples.

Self-training Self-training is a classic technique
for learning from limited supervision (Yarowsky,
1995). The key idea is to use a model’s confident
predictions to update the model itself iteratively.
However, one major drawback of self-training is
that it is sensitive to noise, i.e., the model can be
mis-guided by its own wrong predictions and suffer
from error propagation (Guo et al., 2017).

Although self-training is a common technique
in semi-supervised learning, only a few works like
WeSTClass (Meng et al., 2018) have applied it
to weakly-supervised learning. Our self-training
differs from WeSTClass in two aspects: 1) it per-
forms weighted aggregation of the predictions from
multiple sources, which generates higher-quality
pseudo labels and makes the model less sensitive
to the error in one single source; 2) it uses tempo-
ral ensembling, which aggregates historical pseudo

labels and alleviates noise propagation.

6 Conclusion

We have proposed a deep neural text classifier
learned not from excessive labeled data, but only
unlabeled data plus weak supervisions. Our model
learns from multiple weak supervision sources us-
ing two components that co-train each other: (1)
a label denoiser that estimates source reliability to
reduce label noise on the matched samples, (2) a
neural classifier that learns distributed representa-
tions and predicts over all the samples. The two
components are integrated into a co-training frame-
work to benefit from each other. In our experiments,
we find our model not only outperforms state-of-
the-art weakly supervised models, but also benefits
supervised models with its denoised labeled data.
Our model makes it possible to train accurate deep
text classifiers using easy-to-provide rules, thus
appealing in low-resource text classification scenar-
i0s. As future work, we are interested in denois-
ing the weak supervision further with automatic
rule discovery, as well as extending the co-training
framework to other tasks beyond text classification.
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A Supplemental Material

A.1 Dataset Preparation

We randomly split the full datasets into three parts
— a training set, a validation set and a test set, with
ratios of 80%, 10% and 10%, respectively. The
splitting is fixed for all the methods for fair com-
parisons. We use the training set to train the model,
the validation set to for optimal early stopping and
hyperparameters fine-tuning, and finally evaluate
different methods on the test set.

Recall our definition of the matched corpus Dy..
In practice, we only regard instances covered by
more than p sources as “matched” instances, where
p € [0,1,2,...k — 1]. Specifically, p is set to
2,1,1,0,0 for YouTube, Yelp, IMDB, AGNews,
and Spouse datasets.

We obtain the pre-trained BERT embeddings
from the ‘bert-base-uncased’” model. Our pre-
processed data with the BERT embeddings and
weak labels are available to download at nttps:
//drive.google.com/drive/u/1l/folders/
1MJel1BJYNPudfmpFxCeHwYqXMx53Kv4h_.

The dataset description can be found in our
Github repo https://github.com/weakrules/
Denoise-multi-weak-sources/blob/master/

README . md.

A.2 Model Training

Computing infrastructure Our code can be run
on either CPU or GPU environment with Python
3.6 and Pytorch.

Running time Our model consists of two sim-
ple MLP networks with 0.199M trainable parame-
ters, thus the model is very time efficient with the
avearge running time 4.5 minutes. The running
time differ based on the dataset size. We test our
code on the System Ubuntu 18.04.4 LTS with CPU:
Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and
GPU: NVIDIA GeForce RTX 2080. All the models
are trained for a maximum of 500 epochs.

Dataset | youtube|imdb | yelp |agnews|spouse

Running time (min)| 1.9 | 3.65]392] 1192 | 15

Table 6: Running time for one experiment on CPU for
five datasets in minutes

Validation performance For the main results in
Table 2, the corresponding validation accuracy for
our model is shown in Table 7.

Dataset |youtube|imdb| yelp |agnews|spouse

Validation accuracy| 87.8 |81.8]882| 856 | 79.7
Testaccuracy | 94.9 [82.9875] 857 | 813

Table 7: validation accuracy on for five datasets of the
main results in Table 2.

A.3 Hyperparameter Search

Since our datasets are well balanced, we use accu-
racy as the criterion for optimal early stopping and
hyperparameters fine-tuning. Our hyperparameter
values are uniform sampled within a reasonable
range with particular numbers in Table 8.

Parameters\ Search Range
dn 32, 64, 128, 256, 512
Ir 0.001, 0.002, 0.005, 0.01, 0.02, 0.05

c1 0.1,0.2,0.3,0.4, 0.5, 0.6,0.7,0.8,0.9
c3 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

Table 8: The hyper parameters search bounds.

Table 9 shows the hyper parameters used to get
the best results for Table 2.

Parameters | youtube |imdb| yelp | agnews|spouse

dn 128 64 | 128 | 256 256
Ir 0.02 [0.02|0.02| 0.05 | 0.02
c1 0.2 02 | 02 0.1 0.2
c3 0.1 02 | 0.2 0.1 0.1

Table 9: The hyper parameters setting for the best accu-
racy results of Table 2.

For the above four parameters with their range,
we perform 1350 search trails. The test and val-
idation results accuracy with mean and standard
deviation for hyperparameters search experiments
are in Table 10.

A.4 Labeling Sources

We have four types of annotation rules which are
Keyword Labeling Sources, Pattern-matching (Reg-
ular Expressions) Labeling Sources, Heuristic La-
beling Sources, and Third-party Tools. For the first
and second one, we give the uniform definitions for
all the datasets.

e Keyword Labeling Sources

Given x as a document d; in a corpus of text
documents D, a keywords list L, and a class
label C' in the set of target classes C, we define
keywords matching annotation process HAS
as
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| youtube|imdb | yelp |agnews|spouse

Val Mean| 815 |77.1|79.1| 80.0 83.5
Val Stdev | 0.019 0.036‘0.034 0.073 ‘ 0.093
Test Mean| 87.1 78.0 | 81.2 | 79.8 79.5
Test Stdev| 0.021 ‘0.031‘0.042‘ 0.070 ‘ 0.118

Table 10: The validation and test results for the hyper-
parameters search trails with the mean and standard de-
viation.

Definition 2 (Keywords rules). HAS (x, L)
= C if x matches one of the words in the list
L.

o Pattern-matching Labeling Sources

Given z, a regular expression R, and a class
label C', we define the pattern-matching anno-
tation process MATCH as

Definition 3 (Pattern-matching rules).
MATCH (x, R) = C if z matches the
regular expression R.

For the remaining third and fourth types, each
dataset has specific definitions. We then state all
the labeling rules for each dataset from Table 12 to
Table 16.

A.4.1 Statistics of Labeling Sources

We show the accuracy and coverage of each rule in
the Fig 7, where the shape represents the coverage
and the color depth represents the accuracy of the
rule-induced labeled data. The average accuracy of
these rules is 67.5%, and the average coverage is
23.3%.
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Figure 7: The coverage and accuracy of our used la-
beling functions on five datasets. Larger circle denotes
higher coverage and lighter color denotes higher accu-
racy.

We also show one example of Yelp dataset with
the detail statistics for each labeling source, and
the rule descriptions are in Table 14.

Labeling source | Coverage | Emp. Accu

textblob 6.80 97.06
keyword_recommand 8.40 59.52
keyword_general 75.20 74.20
keyword_mood 12.80 78.12
keyword_service 33.30 75.68
keyword_price 23.30 63.93
keyword_environment 8.80 63.64
keyword_food 11.40 78.95

Table 11: The labeling rules statictics for Yelp dataset.
Both Coverage and Emp. Accu (number of corrected
samples / rule-matched samples) are in %.

A.4.2 Rules Description

We show some examples of labeling rules
here, and the full description of rules and
their corresponding weak labels are in our
Github repo https://github.com/weakrules/
Denoise-multi-weak-sources/tree/master/

rules—-noisy-labels.

Youtube We use the same labeling functions as
(Ratner et al., 2017), and we show the rules with
an example in Table 12.

IMDB The rules are straightforward so we show
the rules without the sentence examples in Table
13.

Yelp The rules are straightforward so we show
the rules without the sentence examples in Table
14. We provide labeling rules in eight views.

AGnews The rules are straightforward so we
show the rules without the sentence examples in
Table 15.

Spouse We use the same rule as (Ratner et al.,
2017) and we show the definition as well as exam-
ples in Table 16.
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Rule Example

HAS (x, [my]) = SPAM Plizz withing my channel

HAS (X, [subscribe]) = SPAM Subscribe to me and I'll subscribe back!!

HAS (x, [http]) = SPAM please like : http://www.bubblews.com/news/9277547-
peace-and-brotherhood

HAS (x, [please, plz]) = SPAM | Please help me go here
http://www.gofundme.com/littlebrother

HAS (x, [song]) = HAM This song is great there are 2,127,315,950 views wow

MATCH (x, check.*out ) = SPAM | Please check out my vidios

We define LENGTH (x) as the number of
words in z.
LENGTH (x) < 5 = HAM

2 BILLION!!

We define x.ents as the tokens of x, and
x.ent.label as its label.

LENGTH (x) <
20 AND any([ent.label
PERSON for ent in x.ents| = HAM

Katy Perry is garbage. Rihanna is the best singer in
the world.

We define POLARITY (x) as the senti-
ment subjectivity score obtained from the
TextBlob tool, a pretrained sentiment ana-
lyzer.

POLARITY (z) > 0.9 = HAM

Discover a beautiful song of A young Moroccan
http://www.linkbucks.com/AcN2g

Table 12: Youtube labeling sources examples

Rule

[masterpiece, outstanding, perfect, great, good, nice, best,
excellent, worthy, awesome, enjoy, positive, pleasant, wonderful,
amazing, superb, fantastic, marvellous, fabulous] = POS

[bad, worst, horrible, awful, terrible, crap, shit, garbage,
rubbish, waste] = NEG

[beautiful, handsome, talented]= POS

[fast forward, n t finish] = NEG

[well written, absorbing, attractive, innovative, instructive,
interesting, touching, moving]=- POS

[to sleep, fell asleep,

boring,

dull, plain]= NEG

[ than this, than the film, than the movie]l= NEG

MATCH (x, *PRExEXPx ) = POS

PRE = [will, 11 , would , d , can t wait to ]

EXP = [next time, again, rewatch, anymore, rewind]

MATCH (x, *PRExEXPx ) = POS

PRE = [highly, do, would, definitely, certainly, strongly, i, we]
EXP = [recommend, nominate]

MATCH (x, *PRExEXPx ) = POS

PRE = [high, timeless, priceless, has, great, real, instructive]
EXP = [value, quality, meaning, significance]

Table 13: IMDB labeling sources examples
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View Rule

General [outstanding, perfect, great, good, nice, best,
excellent, worthy, awesome, enjoy, positive,
pleasant,wonderful, amazing] = POS

General [bad, worst, horrible, awful, terrible, nasty, shit,
distasteful,dreadful, negative]= NEG

Mood [happy, pleased, delighted,contented, glad, thankful,
satisfied] = POS

Mood [sad, annoy, disappointed, frustrated, upset,

irritated, harassed, angry, pissed]= NEG

Service [friendly, patient, considerate, enthusiastic,
attentive, thoughtful, kind, caring, helpful, polite,
efficient, prompt] = POS

Service [slow, offended, rude, indifferent, arrogant]= NEG
Price [cheap, reasonable, inexpensive, economical] = POS
Price [overpriced, expensive, costly, high-priced]= NEG

Environment| [clean, neat, quiet, comfortable, convenien, tidy,
orderly, cosy, homely] = POS

Environment| [noisy, mess, chaos, dirty, foull= NEG

Food [tasty, yummy, delicious,appetizing, good-tasting,
delectable, savoury, luscious, palatable] = POS
Food [disgusting, gross, insipid]= NEG
[recommend] = POS
Third- POLARITY (x) > 0.5 = POS
party
Tools POLARITY (z) > 0.5 = NEG

Table 14: Yelp labeling sources examples

Rule

[ war , prime minister, president, commander, minister, annan,
military, militant, kill, operator] = POLITICS

[baseball, basketball, soccer, football, boxing, swimming,
world cup, nba,olympics,final, fifa] = SPORTS

[delta, cola, toyota, costco, gucci, citibank, airlines] =
BUSINESS

[technology, engineering, science, research, cpu, windows, unix,
system, computing, compute] = TECHNOLOGY

Table 15: AGnews labeling sources examples
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Rule

Example

[father, mother, sister, brother, son,
daughter, grandfather, grandmother,
uncle, aunt, cousin] = NEG

His ’exaggerated’ sob stories al-
legedly include claiming he had can-
cer, and that his son had made a sui-
cide attempt.

[boyfriend, girlfriend, boss, employee,
secretary, co-worker] = NEG

Dawn Airey’s departure as European
boss of Yahoo after just two years
will bring a smile to the face of Ar-
mando lannucci.

MATCH (x, *PERSON1+LIST+*PERSON2+ = POS
LIST = [spouse, wife, husband, ex-wife,
ex—husband]

On their wedding day, last week sun-
dayGhanaian actress Rose Mensah,
popularly known as Kyeiwaa, has di-
vorced her husband Daniel Osei, less
than four days after the glamorous
event.

We define LASTNAME (x) as the last name of x.
LASTNAME (personl) == LASTNAME (person2)
= POS

Karen Bruk and Steven Bruk, Mrs.
Bruk’s spouse, exercise shared invest-
ment power over the Shares of the
Company held by Karen Bruk and
KMB.

Table 16: Spouse labeling sources examples
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