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Abstract

We study the problem of learning neural text

classifiers without using any labeled data,

but only easy-to-provide rules as multiple

weak supervision sources. This problem is

challenging because rule-induced weak labels

are often noisy and incomplete. To address

these two challenges, we design a label de-

noiser, which estimates the source reliability

using a conditional soft attention mechanism

and then reduces label noise by aggregating

rule-annotated weak labels. The denoised

pseudo labels then supervise a neural classifier

to predicts soft labels for unmatched samples,

which address the rule coverage issue. We

evaluate our model on five benchmarks for

sentiment, topic, and relation classifications.

The results show that our model outper-

forms state-of-the-art weakly-supervised

and semi-supervised methods consistently,

and achieves comparable performance with

fully-supervised methods even without

any labeled data. Our code can be found

at https://github.com/weakrules/

Denoise-multi-weak-sources.

1 Introduction

Many NLP tasks can be formulated as text classifi-

cation problems, such as sentiment analysis (Bad-

jatiya et al., 2017), topic classification (Zhang et al.,

2015), relation extraction (Krebs et al., 2018) and

question answering like slot filling (Pilehvar and

Camacho-Collados, 2018). Recent years have wit-

nessed the rapid development of deep neural net-

works (DNNs) for this problem, from convolutional

neural network (CNN, Kim, 2014; Kalchbrenner

et al., 2014), recurrent neural network (RNN, Lai

et al., 2015) to extra-large pre-trained language

models (Devlin et al., 2019; Dai et al., 2019; Liu

et al., 2019). DNNs’ power comes from their capa-

bilities of fitting complex functions based on large-

scale training data. However, in many scenarios,

labeled data are limited, and manually annotating

them at a large scale is prohibitively expensive.

Weakly-supervised learning is an attractive ap-

proach to address the data sparsity problem. It la-

bels massive data with cheap labeling sources such

as heuristic rules or knowledge bases. However, the

major challenges of using weak supervision for text

classification are two-fold: 1) the created labels are

highly noisy and imprecise. The label noise issue

arises because heuristic rules are often too simple

to capture rich contexts and complex semantics for

texts; 2) each source only covers a small portion

of the data, leaving the labels incomplete. Seed

rules have limited coverage because they are de-

fined over the most frequent keywords but real-life

text corpora often have long-tail distributions, so

the instances containing only long-tail keywords

cannot be annotated.

Existing works (Ratner et al., 2017; Meng et al.,

2018; Zamani et al., 2018; Awasthi et al., 2020)

attempt to use weak supervision for deep text clas-

sification. Ratner et al. (2017) proposes a data

programming method that uses labeling functions

to automatically label data and then trains dis-

criminative models with these labels. However,

data annotated in this way only cover instances

directly matched by the rules, leading to limited

model performance on unmatched data. Meng et al.

(2018) proposes a deep self-training method that

uses weak supervision to learn an initial model and

updates the model by its own confident predictions.

However, the self-training procedure can overfit

the label noise and is prone to error propagation.

Zamani et al. (2018) solves query performance pre-

diction (QPP) by boosting multiple weak supervi-

sion signals in an unsupervised way. However, they

choose the most informative labelers by an ad-hoc

user-defined criterion, which may not generalize to

all the domains. Awasthi et al. (2020) assumes that

human labelers are over-generalized to increase the
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coverage, and they learn restrictions on the rules to

address learning wrongly generalized labels. How-

ever, their method requires the specific formula-

tion process of rules to indicate which rules are

generated by which samples, so that it cannot deal

with other kinds of labeling sources like knowledge

bases or third-party tools.

We study the problem of using multiple weak

supervision sources (e.g., domain experts, pattern

matching) to address the challenges in weakly-

supervised text classification. While each source is

weak, multiple sources can provide complementary

information for each other. There is thus poten-

tial to leverage these multiple sources to infer the

correct labels by estimating source reliability in dif-

ferent feature regimes and then aggregating weak

labels. Moreover, since each source covers dif-

ferent instances, it is more promising to leverage

multiple sources to bootstrap on unlabeled data and

address the label coverage issue.

Motivated by the above, we propose a model

with two reciprocal components. The first is a

label denoiser with the conditional soft attention

mechanism (Bahdanau et al., 2014) (§ 3.2). Con-

ditioned on input text features and weak labels, it

first learns reliability scores for labeling sources,

emphasizing the annotators whose opinions are in-

formative for the particular corpus. It then denoises

rule-based labels with these scores. The other is a

neural classifier that learns the distributed feature

representations for all samples (§ 3.3). To lever-

age unmatched samples, it is supervised by both

the denoised labels and its confident predictions on

unmatched data. These two components are inte-

grated into an end-to-end co-training framework,

benefiting each other through cross-supervision

losses, including the rule denoiser loss, the neu-

ral classifier loss, and the self-training loss(§ 3.4).

We evaluate our model on four classification

tasks, including sentiment analysis, topic classifi-

cation, spam classification, and information extrac-

tion. The results on five benchmarks show that: 1)

the soft-attention module effectively denoises the

noisy training data induced from weak supervision

sources, achieving 84% accuracy for denoising;

and 2) the co-training design improves prediction

accuracy for unmatched samples, achieving at least

9% accuracy increase on them. In terms of the

overall performance, our model consistently outper-

forms SOTA weakly supervised methods (Ratner

et al., 2017; Meng et al., 2018; Zamani et al., 2018),
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Figure 1: The annotation process for three weak super-

vision sources. “POS” and “NEG” are the labels for the

sentiment analysis task.

semi-supervised method (Tarvainen and Valpola,

2017), and fine-tuning method (Howard and Ruder,

2018) by 5.46% on average.

2 Preliminaries

2.1 Problem Definition

In weakly supervised text classification, we do not

have access to clean labeled data. Instead, we as-

sume external knowledge sources providing label-

ing rules as weak supervision signals.

Definition 1 (Weak Supervision). A weak super-

vision source specifies a set of labeling rules R =
{r1, r2, . . . , rk}. Each rule ri declares a mapping

f → C, meaning any documents that satisfy the

feature f are labeled as C.

We assume there are multiple weak supervision

sources providing complementary information for

each other. A concrete example is provided below.

Example 1 (Multi-Source Weak Supervision). Fig-

ure 1 shows three weak sources for the sentiment

analysis of Yelp reviews. The sources use ‘if-else’

labeling functions to encode domain knowledge

from different aspects. The samples that cannot be

matched by any rules remain unlabeled.

Problem Formulation Formally, we have: 1) a

corpus D = {d1, . . . ,dn} of text documents; 2)

a set C = {C1, . . . , Cm} of target classes; and 3)

a set S = {R1,R2, . . . ,Rk} of weak annotators.

Our goal is to learn a classifier from D with only

multiple weak supervision sources to accurately

classify any newly arriving documents.

2.2 Challenges

Although the use of automatic weak annotators

largely reduces human labeling efforts, using rule-

induced labeled data has two drawbacks: label

noise and label incompleteness.
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Figure 2: Overview of cross-training between the rule-

based classifier and the neural classifier.

Weak labels are noisy since user-provided rules

are often simple and do not fully capture complex

semantics of the human language. In the Yelp ex-

ample with eight weak supervision sources, the

annotation accuracy is 68.3% on average. Label

noise hurts the performance of text classifiers—

especially deep classifiers—because such complex

models easily overfit the noise. Moreover, the

source coverage ranges from 6.8% to 22.2%. Such

limited coverage is because user-provided rules

are specified over common lexical features, but

real-life data are long-tailed, leaving many samples

unmatched by any labeling rules.

3 Our Method

We begin with an overview of our method and then

introduce its two key components as well as the

model learning procedure.

3.1 The Overall Framework

Our method addresses the above challenges by

integrating weak annotated labels from multiple

sources and text data to an end-to-end framework

with a label denoiser and a deep neural classifier,

illustrated in Figure 2.

Label denoiser & self-denoising We handle the

label noise issue by building a label denoiser that

iteratively denoises itself to improve the quality

of weak labels. This label denoiser estimates

the source reliability using a conditional soft at-

tention mechanism, and then aggregates weak la-

bels via weighted voting of the labeling sources

to achieve “pseudo-clean” labels. The reliability

scores are conditioned on both rules and docu-

ment feature representations. They effectively em-

phasize the opinions of informative sources while

down-weighting those of unreliable sources, thus

making rule-induced predictions more accurate.

Neural classifier & self-training To address the

low coverage issue, we build a neural classifier

which learns distributed representations for text

documents and classifies each of them, whether

rule-matched or not. It is supervised by both the

denoised weakly labeled data as well as its own

high-confident predictions of unmatched data.

3.2 The Label Denoiser

When aggregating multiple weak supervision

sources, it is key for the model to attend to more

reliable sources, where source reliability should

be conditioned on input features. This will enable

the model to aggregate multi-source weak labels

more effectively. Given k labeling resources, we

obtain the weak label matrix Ỹ ∈ R
n×k through

rule matching. Specifically, as shown in the Rule

Matching step of 3, by Definition 1, given one rule,

if a document is matchable by that rule, it will be

assigned with a rule-induced label C; otherwise,

the document remains unlabeled, represented as

-1. N rules thus generate N weak labels for each

document. We then estimate the source reliabil-

ity and aggregate complementary weak labels to

obtain “pseudo-clean” labels.

Parameterization of source reliability We in-

troduce a soft attention mechanism conditioned

on both weak labels and feature representation,

denoted as B, to estimate the source reliability.

Formally, we denote the denoised “pseudo-clean”

labels by Ŷ = [ŷ1, . . . , ŷn]
T , and the initial ones

Ŷ0 are obtained by simple majority voting from Ỹ .

The core of the label denoiser is an attention net,

a two-layer feed-forward neural network which

predicts the attention score for matched samples.

Formally, we specify a reliability score aj for each

labeling source to represent its annotation quality,

and the score is normalized to satisfy
∑k

j=1
aj = 1.

For one document di, its attention score qi,j of one

labeling source Rj is:

q̂ij =W T
2 tanh(W1(ỹij +Bi)),

qij =
exp(q̂ij)∑
j exp(q̂ij)

,
(1)

where W1,W2 denote the neural network weights

and tanh is the activation function. Thus, for each

document, its conditional labeling source score vec-

tor Ai = [ai1, ai2, . . . , aik]
T is calculated over

matched annotators as aij = qijχC(ỹij >= 0),
where χC is the indicator function. Then, we aver-

age the conditional source score Ai over all the n
matched samples to get the source reliability vector

A. The weight of jth (j = 1, 2, . . . , k) annotator is
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Figure 3: The detailed model architecture. Our model mainly consists of two parts: (1) the label denoiser, including

the conditional soft attention reliability estimator and the instance-wise multiplication; (2) the neural classifier,

which calculates sentence embedding using the pre-trained Transformer and makes classification.

calculated as aj =
1

n

∑n
i=1

aij . Finally, We aggre-

gate k reliability scores to get the reliability vector

A = [a1, a2, . . . , ak]
T .

Denoising pseudo labels With the learned relia-

bility vector A, we reweight the sources to get the

weighted majority voted labels Ŷ by Ỹi ⊗A. The

denoised “pseudo-clean” label ŷi is:

ŷi = argmax
Cr

k∑

j=1

ajχC(ỹij == Cr),

where r = 1, 2, . . . ,m.

(2)

The updated higher-quality labels Ŷ then supervise

the rule-covered samples in DL to generate better

soft predictions and guide the neural classifier later.

Rule-based classifier prediction At the epoch t
of our co-training framework, we learn the reliabil-

ity score A(t) and soft predictions Ẑ(t) supervised

by “pseudo-clean” labels from the previous epoch

Ŷ (t− 1). Then we renew “clean-pseudo” labels as

Ŷ (t) using the score A(t) by (2).

Specifically, given m target classes and k weak

annotators, the prediction probability ẑi for di is

obtained by weighting the noisy labels Ỹi accord-

ing to their corresponding conditional reliability

scores Ai: ẑi = softmax(Ỹi ⊗ Ai), where the

masked matrix multiplication ⊗ (defined in (3)) is

used to mask labeling sources that do not annotate

document i, and we normalize the resultant masked

scores via softmax:

yir =

k∑

j=1

aijχC(ỹij == Cr)

ẑir =
exp(yir)∑m
r=1

exp(yir)
.

(3)

We finally aggregate m soft adjusted scores to get

the soft prediction vector ẑi = [zi1, . . . , zim]T .

3.3 The Neural Classifier

The neural classifier is designed to handle all the

samples, including matched ones and unmatched

ones. The unmatched corpus where the docu-

ments cannot be annotated by any source is de-

noted as DU . In our model, we use the pre-trained

BERT (Devlin et al., 2019) as our feature extrac-

tor, and then feed the text embeddings B into a

feed-forward neural network to obtain the final pre-

dictions. For di ∈ DL ∪DU , the prediction z̃i is:

z̃i = fθ(Bi; θw), (4)

where fθ denotes the two-layer feed-forward neural

network, and θw denotes its parameters.

3.4 The Training Objective

The rule denoiser loss ℓ1 is the loss of the rule-

based classifier over DL. We use the “pseudo-

clean” labels Ŷ to self-train the label denoiser and

define the loss ℓ1 as the negative log likelihood of

ŷi,

ℓ1 = −
∑

i∈DL

ŷi log ẑi. (5)
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Algorithm 1 Training process of our model

Require: DL, DU , C, B, Ỹ , gw(x) and fθ(x):
feed-forward rule-based and nerual classifier

with trainable parameters W and θ; s: number

of training iteraions;

1: Ŷ ← Ŷ0, initialize by simple majority voting

2: for t ← 1 to s do

3: A, ẑi∈DL
← gw(Ỹi,Bi, ŷi) ⊲

learn reliability score and evaluate attention

network output supervised by “pseudo-clean”

labels from (1) and (3)

4: ŷi ←(2) ⊲ renewed pseudo labels

5: z̃i∈DL∪DU
← fθ(Bi, ŷi) ⊲ evaluate

neural classifier output

6: update θ,W using ADAM by (8)

7: end for

8: return W, θ

The neural classifier loss ℓ2 is the loss of the neu-

ral classifier over DL. Similarly, we regard the

negative log-likelihood from the neural network

outputs Z̃ to the pseudo-clean labels Ŷ as training

loss, formally

ℓ2 = −
∑

i∈DL

ŷi log z̃i. (6)

The unsupervised self-training loss ℓ3 is the loss

of the neural classifier over DU . To further en-

hance the label quality of DU we apply the tem-

poral ensembling strategy (Laine and Aila, 2016),

which aggregates the predictions of multiple previ-

ous network evaluations into an ensemble predic-

tion to alleviate noise propagation. For a document

di ∈ DU , the neural classifier outputs z̃i are ac-

cumulated into ensemble outputs Zi by updating

Zi ← αZi+(1−α)z̃i, where α is a term that con-

trols how far the ensemble looks back into training

history. We also need to construct target vectors

by bias correction, namely pi ← Zi/(1 − αt),
where t is the current epoch. Then, we minimize

the Euclidean distance between pi and z̃i, where

ℓ3 =
∑

i∈DU

‖z̃i − pi‖
2 (7)

Overall Objective The final training objective is

to minimize the overall loss ℓ:

ℓ = c1ℓ1 + c2ℓ2 + c3ℓ3, (8)

where 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1, and 0 ≤ c3 ≤ 1
are hyper-parameters for balancing the three losses

and satisfy c1 + c2 + c3 = 1.

Dataset Task C #Train #Dev #Test Cover Acc.

youtube Spam 2 1k 0.1k 0.1k 74.4 85.3
imdb Sentiment 2 20k 2.5k 2.5k 87.5 74.5
yelp Sentiment 2 30.4k 3.8k 3.8k 82.8 71.5

agnews Topic 4 96k 12k 12k 56.4 81.4
spouse Relation 2 1k 0.1k 0.1k 85.9 46.5

Table 1: Data Statistics. C is the number of classes.

Cover is fraction of rule-induced samples. Acc. refers

to precision of labeling sources (number of correct sam-

ples / matched samples). Cover and Acc. are in %.

3.5 Model Learning and Inference

Algorithm 1 sketches the training procedure. Two

classifiers provide supervision signals for both

themselves and their peers, iteratively improving

their classification abilities. In the test phase, the

corpus is sent into our model with the correspond-

ing annotated noisy labels. The final target Ci for

a document i is predicted by ensembling the soft

predictions. If two predictions from the label de-

noiser and the neural classifier conflict with each

other, we choose the one with higher confidence,

where the confidence scores are softmax outputs.

4 Experiments

4.1 Experimental Setup

Datasets and tasks We evaluate our model

on five widely-used text classification datasets,

covering four different text classification tasks:

youtube (Alberto et al., 2015) (Spam Detection),

imdb (Maas et al., 2011), yelp (Zhang et al., 2015)

(Sentiment Analysis), agnews (Zhang et al., 2015)

(Topic Classification), and spouse (Ratner et al.,

2017) (Relation Classification). Table 1 shows the

statistics of these datasets and the quality of weak

labels (the details of each annotation rule are given

in the appendix A.4). Creating such rules required

very light efforts, but is able to cover a considerable

amount of data samples (e.g., 54k in agnews).

Baselines We compare our model with the fol-

lowing advanced methods: 1) Snorkel (Ratner

et al., 2017) is a general weakly-supervised learn-

ing method that learns from multiple sources

and denoise weak labels by a generative model;

2) WeSTClass (Meng et al., 2018) is a weakly-

supervised text classification model based on self-

training; 3) ImplyLoss (Awasthi et al., 2020) pro-

pose the rule-exemplar supervision and implica-

tion loss to denoise rules and rule-induced labels

jointly; 4) NeuralQPP (Zamani et al., 2018) is a

boosting prediction framework which selects useful
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Method youtube imdb yelp agnews spouse

Snorkel 78.6 73.2 69.1 62.9 56.9
WeSTClass 65.1 74.7 76.9 82.8 56.6
Implyloss 93.6 51.1 76.3 68.5 68.3

NeuralQPP 85.2 53.6 57.3 69.5 74.0
MT 86.7 72.9 71.2 70.6 70.7

ULMFiT 56.1 70.5 67.3 66.8 72.4
BERT-MLP 77.0 72.5 81.5 75.8 70.7

Ours 94.9 82.9 87.5 85.7 81.3

Table 2: Classification accuracy in the test set for all

methods on five datasets.

labelers from multiple weak supervision signals;

5) MT (Tarvainen and Valpola, 2017) is a semi-

supervised model that uses Mean-Teacher method

to average model weights and add a consistency

regularization on the student and teacher model;

and 6) ULMFiT (Howard and Ruder, 2018) is a

strong deep text classifier based on pre-training and

fine-tuning. 7) BERT-MLP takes the pre-trained

Transformer as the feature extractor and stacks a

multi-layer perceptron on its feature encoder.

4.2 Experimental Results

4.2.1 Comparison with Baselines

We first compare our method with the baselines on

five datasets. For fair comparison, all the methods

use a pre-trained BERT-based model for feature

extraction, and use the same neural architecture as

the text classification model. All the baselines use

the same set of weak labels Ỹ for model training,

except for WeSTClass which only requires seed

keywords as weak supervision (we extract these

keywords from the predicates of our rules).

Table 2 shows the performance of all the meth-

ods on five datasets. As shown, our model con-

sistently outperforms all the baselines across all

the datasets. Such results show the strength and

robustness of our model. Our model is also very

time-efficient (4.5 minutes on average) with train-

able parameters only from two simple MLP neural

networks (0.199M trainable parameters).

Similar to our methods, Snorkel, NeuralQPP,

and Implyloss also denoise the weak labels from

multiple sources by the following ideas: 1) Snorkel

uses a generative modeling approach; 2) Imply-

loss adds one regularization to estimate the rule

over-generalizing issue, but it requires the clean

data to indicate which document corresponds to

which rule. Without such information in our set-

ting, this advanced baseline cannot perform well;

3) NeuralQPP selects the most informative weak la-

belers by boosting method. The performance gaps

youtube imdb yelp agnews spouse
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Figure 4: The label noise ratio of the initial majority

voted labels and our denoised labels in the training set.

verify the effectiveness of the our conditional soft

attention design and co-training framework.

WeSTClass is similar to our method in that it

also uses self-training to bootstrap on unlabeled

samples to improve its performance. The major

advantage of our model over WeSTClass is that it

uses two different predictors (rule-based and neural

classifier) to regularize each other. Such a design

not only better reduces label noise but also makes

the learned text classifier more robust.

Finally, ULMFiT and BERT-MLP are strong

baselines based on language model fine-tuning.

MT is a well-known semi-supervised model which

achieved inspiring results for image classification.

However, in the weakly supervised setting, they do

not perform well due to label noise. The results

show that ULMFiT and MT suffer from such la-

bel noise, whereas our model is noise-tolerant and

more suitable in weakly supervised settings. Over-

all BERT-MLP performs the best and we further

compare it with ours in more perspectives.

4.2.2 Effectiveness of label denoising

To study the effectiveness of label denoising, we

first compare the label noise ratio in training set

given by the majority-voted pseudo labels (Ỹ de-

fined in § 3.2) and our denoised pseudo labels.

Figure 4 shows that after applying our denois-

ing model, the label noise is reduced by 4.49%

(youtube), 4.74% (imdb), 12.6% (yelp), 3.87% (ag-

news) and 8.06% (spouse) within the matched sam-

ples. If we count all the samples, the noise reduc-

tion is much more significant with 23.92% on aver-

age. Such inspiring results show the effectiveness

of our model in denoising weak labels.

Train a classifier with denoised labels We fur-

ther study how the denoised labels benefit the train-

ing of supervised models. To this end, we feed the

labels generated by majority voting and denoised

ones generated by our model into two state-of-the-



3745

Method Labels youtube imdb yelp agnews spouse

BERT+ major 77.0 72.5 81.5 75.8 70.7
MLP ours 89.8 80.2 85.8 84.3 78.0

UlmFit major 56.1 70.5 67.3 66.8 72.4
ours 90.8 81.6 85.9 84.7 81.3

Table 3: Classification accuracy of two supervised

methods with labels generated by majority voting and

denoised ones generated by our model.
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Figure 5: Accuracy on low-resource samples (matched

by a small number of rules) in Youtube dataset.

art supervised models: ULMFiT and BERT-MLP

(described in § 4.1). Table 3 shows that denoised

labels significantly improve the performance of su-

pervised models on all the datasets.

4.2.3 Effectiveness of handling rule coverage

We proceed to study how effective our model is

when dealing with the low-coverage issue of weak

supervision. To this end, we evaluate the perfor-

mance of our model for the samples covered by

different numbers of rules. As shown in Figure 5,

the strongest baseline (BERT-MLP) trained with

majority-voted labels performs poorly on samples

that are matched by few rules or even no rules.

In contrast, after applying our model, the perfor-

mance on those less matched samples improves

significantly. This is due to the neural classifier

in our model, which predicts soft labels for un-

matched samples and utilizes the information from

the multiple sources through co-training.

4.2.4 Incorporating Clean Labels

We also study how our model can further bene-

fit from a small amount of labeled data. While

our model uses weak labels by default, it can eas-

ily incorporate clean labeled data by changing the

weak labels to clean ones and fix them during train-

ing. We study the performance of our model in

this setting, and compare with the fully-supervised

BERT-MLP model trained with the same amount

of clean labeled data.

Labeled Method youtube imdb yelp agnews spouse

0.5% Bert-MLP 80.6 76.9 86.2 82.6 68.2
Ours 92.4 81.9 87.5 86.4 81.3

2% Bert-MLP 83.2 78.8 87.4 84.7 72.3
Ours 92.9 83.1 87.6 85.7 81.3

5% Bert-MLP 87.7 83.6 89.0 86.4 74.8
Ours 93.8 86.1 90.4 88.2 82.1

20% Bert-MLP 90.8 86.0 90.3 89.2 75.6
Ours 94.0 86.1 90.5 89.2 84.5

50% Bert-MLP 91.8 86.2 90.5 89.2 78.0
Ours 95.4 86.2 90.5 89.3 85.9

100% Bert-MLP 94.4 87.2 91.1 90.7 79.6

Table 4: The classification accuracy of BERT-MLP and

our model with ground truth labeled data

As shown in Table 4, the results of combining

our denoised labels with a small amount of clean

labels are inspiring: it further improves the perfor-

mance of our model and consistently outperforms

the fully supervised BERT-MLP model. When the

labeled ratio is small, the performance improve-

ment over the fully-supervised model is particu-

larly large: improving the accuracy by 6.28% with

0.5% clean labels and 3.84% with 5% clean labels

on average. When the ratio of clean labels is large,

the performance improvements becomes marginal.

The performance improvement over the fully-

supervised model is relatively smaller on yelp and

agnews datasets. The reason is likely that the text

genres of yelp and agnews are similar to the text

corpora used in BERT pre-training, making the

supervised model fast achieve its peak performance

with a small amount of labeled data.

4.2.5 Ablation Study

We perform ablation studies to evaluate the effec-

tiveness of the three components in our model: the

label denoiser, the neural classifier, and the self-

training over unmatched samples. By removing

one of them, we obtain four settings: 1) Rule-only,

represents w/o neural classifier and self-training;

2) Neural-only, represents w/o label denoiser and

self-training; 3) Neural-self: represents w/o label

denoiser; 4) Rule-Neural: represents w/o self train-

ing. 3) and 4) are supervised by the initial simple

majority voted labels. Table 5 shows the results.

We find that all the three components are key to our

model, because: 1) the rule-based label denoiser it-

eratively obtains higher-quality pseduo labels from

the weak supervision sources; 2) the neural clas-

sifier extracts extra supervision signals from unla-

beled data through self-training.
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Method youtube imdb yelp agnews spouse

Ours 94.9 82.9 87.5 85.7 81.3
Rule-only 90.3 73.1 70.2 63.6 77.2
Neural-only 77.0 72.5 81.5 75.8 70.7
Neural-self 89.3 81.4 82.9 81.3 79.7
Rule-Neural 87.2 80.1 80.8 84.8 69.9

Table 5: Ablation Study Results.

4.2.6 Case Study

We provide a example of Yelp dataset to show the

denoising process of our model.

A reviewer of says “My husband tried this place.

He was pleased with his experience and he wanted

to take me there for dinner. We started with cala-

mari which was so greasy we could hardly eat

it...The bright light is the service. Friendly and at-

tentive! The staff made an awful dining experience

somewhat tolerable.” The ground-truth sentiment

should be NEGATIVE.

This review is labeled by three rules as fol-

lows: 1) keyword-mood, pleased→ POSITIVE;

2) keyword-service, friendly → POSITIVE;

3) keyword-general, awful→ NEGATIVE. The

majority-voted label is thus POSITIVE, but it is

wrong. After applying our method, the learned

conditional reliability scores for the three rules are

0.1074, 0.1074, 0.2482, which emphasizes rule 3)

so the denoised weighted majority voted is thus

NEGATIVE, and it becomes correct.

4.2.7 Parameter Study

The primary parameters of our model include: 1)

the dimension of hidden layers dh in the label de-

noiser and the feature-based classifier; 2) learning

rate lr; 3) the weight c1, c2, and c3 of regularization

term for ℓ1, ℓ2, and ℓ3 in (8); 4) We fix momen-

tum term α = 0.6 followed the implementation

of Laine and Aila (2016). By default, we set dh =
128, lr = 0.02, and c1 = 0.2, c2 = 0.7, c3 = 0.1
as our model achieves overall good performance

with these parameters. The search space of dh is

26−9, lr is 0.01−0.1, c1 and c3 are 0.1−0.9 (note

that c2 = 1− c1 − c3). The hyperparameter config-

uration for the best performance reported in Table

2 is shown in the appendix A.3.

We test the effect of one hyperparameter by fix-

ing others to their default values. In Figure 6 (a)

and (b), we find the performance is stable except

that the loss weight is too large. For (c) and (d),

except for the spouse dataset when lr is too small

and dh is too large (instability due to the dataset

size is small), our model is robust to the hyperpa-
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Figure 6: The prediction accuracy over different param-

eter settings.

rameters when they are in a reasonable range. We

also report overall performance for all the search

trails in Table 10 of appendix A.3.

5 Related Work

Learning from Noisy Supervision. Our work is

closely related to existing work on learning from

noisy supervision. To deal with label noise, sev-

eral studies (Brodley and Friedl, 1999; Smith and

Martinez, 2011; Yang et al., 2018) adopt a data

cleaning approach that detects and removes misla-

beled instances. This is achieved by outlier detec-

tion (Brodley and Friedl, 1999), a-priori heuristics

(Smith and Martinez, 2011), self-training (Liang

et al., 2020), or reinforcement learning (Yang et al.,

2018; Zhang et al., 2020). One drawback of this

data cleaning approach is that it can discard many

samples and incur information loss.

Different from data cleaning, some works adopt

a data correction approach. The most prominent

idea in this line is to estimate the noise transi-

tion matrix among labels (Sukhbaatar and Fer-

gus, 2014; Sukhbaatar et al., 2014; Goldberger and

Ben-Reuven, 2016; Wang et al., 2019; Northcutt

et al., 2019) and then use the transition matrices to

re-label the instances or adapt the loss functions.

Specifically, Wang et al. (2019) and Northcutt et al.

(2019) generate label noise by flipping clean labels

based on such noise transition matrices. They are

thus not applicable to our weak supervision setting

where no clean labels are given. Meanwhile, re-

weighting strategies have been explored to adjust

the input training data. These techniques weigh

training samples according to the predictions con-

fidence (Dehghani et al., 2017), one-sided noise

assumption (Zhang et al., 2019), a clean set (Ren
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et al., 2018) or the similarity of their descent direc-

tions (Yang et al., 2018). Recently, a few studies

(Veit et al., 2017; Hu et al., 2019) have also ex-

plored designing denoising modules for neural net-

works. However, our method differs from them in

that: (1) our method learns conditional reliability

scores for multiple sources; and (2) these methods

still require clean data for denoising, while ours

does not.

Learning from Multi-Source Supervision The

crowdsourcing area also faces the problem of learn-

ing from multiple sources (i.e., crowd workers).

Different strategies have been proposed to inte-

grate the annotations for the same instance, such

as estimating the confidence intervals for workers

(Joglekar et al., 2015) or leveraging approval voting

(Shah et al., 2015). Compared with crowdsourc-

ing, our problem is different in that the multiple

sources provide only feature-level noisy supervi-

sion instead of instance-level supervision.

More related to our work are data programming

methods (Ratner et al., 2016, 2017, 2019) that learn

from multiple weak supervision sources. One semi-

nal work in this line is Snorkel (Ratner et al., 2017),

which treats true labels as latent variables in a gen-

erative model and weak labels as noisy observa-

tions. The generative model is learned to estimate

the latent variables, and the denoised training data

are used to learn classifiers. Our approach differs

from data programming methods where we use a

soft attention mechanism to estimate source relia-

bility, which is integrated into neural text classifiers

to improve the performance on unmatched samples.

Self-training Self-training is a classic technique

for learning from limited supervision (Yarowsky,

1995). The key idea is to use a model’s confident

predictions to update the model itself iteratively.

However, one major drawback of self-training is

that it is sensitive to noise, i.e., the model can be

mis-guided by its own wrong predictions and suffer

from error propagation (Guo et al., 2017).

Although self-training is a common technique

in semi-supervised learning, only a few works like

WeSTClass (Meng et al., 2018) have applied it

to weakly-supervised learning. Our self-training

differs from WeSTClass in two aspects: 1) it per-

forms weighted aggregation of the predictions from

multiple sources, which generates higher-quality

pseudo labels and makes the model less sensitive

to the error in one single source; 2) it uses tempo-

ral ensembling, which aggregates historical pseudo

labels and alleviates noise propagation.

6 Conclusion

We have proposed a deep neural text classifier

learned not from excessive labeled data, but only

unlabeled data plus weak supervisions. Our model

learns from multiple weak supervision sources us-

ing two components that co-train each other: (1)

a label denoiser that estimates source reliability to

reduce label noise on the matched samples, (2) a

neural classifier that learns distributed representa-

tions and predicts over all the samples. The two

components are integrated into a co-training frame-

work to benefit from each other. In our experiments,

we find our model not only outperforms state-of-

the-art weakly supervised models, but also benefits

supervised models with its denoised labeled data.

Our model makes it possible to train accurate deep

text classifiers using easy-to-provide rules, thus

appealing in low-resource text classification scenar-

ios. As future work, we are interested in denois-

ing the weak supervision further with automatic

rule discovery, as well as extending the co-training

framework to other tasks beyond text classification.
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A Supplemental Material

A.1 Dataset Preparation

We randomly split the full datasets into three parts

– a training set, a validation set and a test set, with

ratios of 80%, 10% and 10%, respectively. The

splitting is fixed for all the methods for fair com-

parisons. We use the training set to train the model,

the validation set to for optimal early stopping and

hyperparameters fine-tuning, and finally evaluate

different methods on the test set.

Recall our definition of the matched corpus DL.

In practice, we only regard instances covered by

more than p sources as “matched” instances, where

p ∈ [0, 1, 2, . . . k − 1]. Specifically, p is set to

2, 1, 1, 0, 0 for YouTube, Yelp, IMDB, AGNews,

and Spouse datasets.

We obtain the pre-trained BERT embeddings

from the ‘bert-base-uncased’ model. Our pre-

processed data with the BERT embeddings and

weak labels are available to download at https:

//drive.google.com/drive/u/1/folders/

1MJe1BJYNPudfmpFxCeHwYqXMx53Kv4h_.

The dataset description can be found in our

Github repo https://github.com/weakrules/

Denoise-multi-weak-sources/blob/master/

README.md.

A.2 Model Training

Computing infrastructure Our code can be run

on either CPU or GPU environment with Python

3.6 and Pytorch.

Running time Our model consists of two sim-

ple MLP networks with 0.199M trainable parame-

ters, thus the model is very time efficient with the

avearge running time 4.5 minutes. The running

time differ based on the dataset size. We test our

code on the System Ubuntu 18.04.4 LTS with CPU:

Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and

GPU: NVIDIA GeForce RTX 2080. All the models

are trained for a maximum of 500 epochs.

Dataset youtube imdb yelp agnews spouse

Running time (min) 1.9 3.65 3.92 11.92 1.5

Table 6: Running time for one experiment on CPU for

five datasets in minutes

Validation performance For the main results in

Table 2, the corresponding validation accuracy for

our model is shown in Table 7.

Dataset youtube imdb yelp agnews spouse

Validation accuracy 87.8 81.8 88.2 85.6 79.7

Test accuracy 94.9 82.9 87.5 85.7 81.3

Table 7: validation accuracy on for five datasets of the

main results in Table 2.

A.3 Hyperparameter Search

Since our datasets are well balanced, we use accu-

racy as the criterion for optimal early stopping and

hyperparameters fine-tuning. Our hyperparameter

values are uniform sampled within a reasonable

range with particular numbers in Table 8.

Parameters Search Range

dh 32, 64, 128, 256, 512
lr 0.001, 0.002, 0.005, 0.01, 0.02, 0.05
c1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
c3 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 8: The hyper parameters search bounds.

Table 9 shows the hyper parameters used to get

the best results for Table 2.

Parameters youtube imdb yelp agnews spouse

dh 128 64 128 256 256
lr 0.02 0.02 0.02 0.05 0.02
c1 0.2 0.2 0.2 0.1 0.2
c3 0.1 0.2 0.2 0.1 0.1

Table 9: The hyper parameters setting for the best accu-

racy results of Table 2.

For the above four parameters with their range,

we perform 1350 search trails. The test and val-

idation results accuracy with mean and standard

deviation for hyperparameters search experiments

are in Table 10.

A.4 Labeling Sources

We have four types of annotation rules which are

Keyword Labeling Sources, Pattern-matching (Reg-

ular Expressions) Labeling Sources, Heuristic La-

beling Sources, and Third-party Tools. For the first

and second one, we give the uniform definitions for

all the datasets.

• Keyword Labeling Sources

Given x as a document di in a corpus of text

documents D, a keywords list L, and a class

label C in the set of target classes C, we define

keywords matching annotation process HAS

as

https://drive.google.com/drive/u/1/folders/1MJe1BJYNPudfmpFxCeHwYqXMx53Kv4h_
https://drive.google.com/drive/u/1/folders/1MJe1BJYNPudfmpFxCeHwYqXMx53Kv4h_
https://drive.google.com/drive/u/1/folders/1MJe1BJYNPudfmpFxCeHwYqXMx53Kv4h_
https://github.com/weakrules/Denoise-multi-weak-sources/blob/master/README.md
https://github.com/weakrules/Denoise-multi-weak-sources/blob/master/README.md
https://github.com/weakrules/Denoise-multi-weak-sources/blob/master/README.md
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youtube imdb yelp agnews spouse

Val Mean 81.5 77.1 79.1 80.0 83.5
Val Stdev 0.019 0.036 0.034 0.073 0.093

Test Mean 87.1 78.0 81.2 79.8 79.5
Test Stdev 0.021 0.031 0.042 0.070 0.118

Table 10: The validation and test results for the hyper-

parameters search trails with the mean and standard de-

viation.

Definition 2 (Keywords rules). HAS(x, L)

⇒ C if x matches one of the words in the list

L.

• Pattern-matching Labeling Sources

Given x, a regular expression R, and a class

label C, we define the pattern-matching anno-

tation process MATCH as

Definition 3 (Pattern-matching rules).

MATCH(x, R) ⇒ C if x matches the

regular expression R.

For the remaining third and fourth types, each

dataset has specific definitions. We then state all

the labeling rules for each dataset from Table 12 to

Table 16.

A.4.1 Statistics of Labeling Sources

We show the accuracy and coverage of each rule in

the Fig 7, where the shape represents the coverage

and the color depth represents the accuracy of the

rule-induced labeled data. The average accuracy of

these rules is 67.5%, and the average coverage is

23.3%.

agnews

imdb

spouse

yelp

youtube

LF1 LF2 LF3 LF4 LF5 LF6 LF7 LF8

0

25

50

75

100

accuracy

Figure 7: The coverage and accuracy of our used la-

beling functions on five datasets. Larger circle denotes

higher coverage and lighter color denotes higher accu-

racy.

We also show one example of Yelp dataset with

the detail statistics for each labeling source, and

the rule descriptions are in Table 14.

Labeling source Coverage Emp. Accu

textblob 6.80 97.06
keyword_recommand 8.40 59.52

keyword_general 75.20 74.20
keyword_mood 12.80 78.12

keyword_service 33.30 75.68
keyword_price 23.30 63.93

keyword_environment 8.80 63.64
keyword_food 11.40 78.95

Table 11: The labeling rules statictics for Yelp dataset.

Both Coverage and Emp. Accu (number of corrected

samples / rule-matched samples) are in %.

A.4.2 Rules Description

We show some examples of labeling rules

here, and the full description of rules and

their corresponding weak labels are in our

Github repo https://github.com/weakrules/

Denoise-multi-weak-sources/tree/master/

rules-noisy-labels.

Youtube We use the same labeling functions as

(Ratner et al., 2017), and we show the rules with

an example in Table 12.

IMDB The rules are straightforward so we show

the rules without the sentence examples in Table

13.

Yelp The rules are straightforward so we show

the rules without the sentence examples in Table

14. We provide labeling rules in eight views.

AGnews The rules are straightforward so we

show the rules without the sentence examples in

Table 15.

Spouse We use the same rule as (Ratner et al.,

2017) and we show the definition as well as exam-

ples in Table 16.

https://github.com/weakrules/Denoise-multi-weak-sources/tree/master/rules-noisy-labels
https://github.com/weakrules/Denoise-multi-weak-sources/tree/master/rules-noisy-labels
https://github.com/weakrules/Denoise-multi-weak-sources/tree/master/rules-noisy-labels
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Rule Example

HAS(x,[my]) ⇒ SPAM Plizz withing my channel

HAS(x, [subscribe]) ⇒ SPAM Subscribe to me and I’ll subscribe back!!

HAS(x, [http]) ⇒ SPAM please like : http://www.bubblews.com/news/9277547-

peace-and-brotherhood

HAS(x, [please, plz]) ⇒ SPAM Please help me go here

http://www.gofundme.com/littlebrother

HAS(x, [song]) ⇒ HAM This song is great there are 2,127,315,950 views wow

MATCH(x, check.*out ) ⇒ SPAM Please check out my vidios

We define LENGTH(x) as the number of

words in x.

LENGTH(x) < 5 ⇒ HAM 2 BILLION!!

We define x.ents as the tokens of x, and

x.ent.label as its label.

LENGTH(x) <
20 AND any([ent.label ==
PERSON for ent in x.ents] ⇒ HAM

Katy Perry is garbage. Rihanna is the best singer in

the world.

We define POLARITY(x) as the senti-

ment subjectivity score obtained from the

TextBlob tool, a pretrained sentiment ana-

lyzer.

POLARITY (x) > 0.9 ⇒ HAM Discover a beautiful song of A young Moroccan

http://www.linkbucks.com/AcN2g

Table 12: Youtube labeling sources examples

Rule

[masterpiece, outstanding, perfect, great, good, nice, best,

excellent, worthy, awesome, enjoy, positive, pleasant, wonderful,

amazing, superb, fantastic, marvellous, fabulous] ⇒ POS

[bad, worst, horrible, awful, terrible, crap, shit, garbage,

rubbish, waste] ⇒ NEG

[beautiful, handsome, talented]⇒ POS

[fast forward, n t finish] ⇒ NEG

[well written, absorbing, attractive, innovative, instructive,

interesting, touching, moving]⇒ POS

[to sleep, fell asleep, boring, dull, plain]⇒ NEG

[ than this, than the film, than the movie]⇒ NEG

MATCH(x, *PRE*EXP* ) ⇒ POS

PRE = [will, ll , would , d , can t wait to ]

EXP = [next time, again, rewatch, anymore, rewind]

MATCH(x, *PRE*EXP* ) ⇒ POS

PRE = [highly, do, would, definitely, certainly, strongly, i, we]

EXP = [recommend, nominate]

MATCH(x, *PRE*EXP* ) ⇒ POS

PRE = [high, timeless, priceless, has, great, real, instructive]

EXP = [value, quality, meaning, significance]

Table 13: IMDB labeling sources examples
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View Rule

General [outstanding, perfect, great, good, nice, best,

excellent, worthy, awesome, enjoy, positive,

pleasant,wonderful, amazing] ⇒ POS

General [bad, worst, horrible, awful, terrible, nasty, shit,

distasteful,dreadful, negative]⇒ NEG

Mood [happy, pleased, delighted,contented, glad, thankful,

satisfied] ⇒ POS

Mood [sad, annoy, disappointed,frustrated, upset,

irritated, harassed, angry, pissed]⇒ NEG

Service [friendly, patient, considerate, enthusiastic,

attentive, thoughtful, kind, caring, helpful, polite,

efficient, prompt] ⇒ POS

Service [slow, offended, rude, indifferent, arrogant]⇒ NEG

Price [cheap, reasonable, inexpensive, economical] ⇒ POS

Price [overpriced, expensive, costly, high-priced]⇒ NEG

Environment [clean, neat, quiet, comfortable, convenien, tidy,

orderly, cosy, homely] ⇒ POS

Environment [noisy, mess, chaos, dirty, foul]⇒ NEG

Food [tasty, yummy, delicious,appetizing, good-tasting,

delectable, savoury, luscious, palatable] ⇒ POS

Food [disgusting, gross, insipid]⇒ NEG

[recommend] ⇒ POS

Third-

party

POLARITY (x) > 0.5 ⇒ POS

Tools POLARITY (x) > 0.5 ⇒ NEG

Table 14: Yelp labeling sources examples

Rule

[ war , prime minister, president, commander, minister, annan,

military, militant, kill, operator] ⇒ POLITICS

[baseball, basketball, soccer, football, boxing, swimming,

world cup, nba,olympics,final, fifa] ⇒ SPORTS

[delta, cola, toyota, costco, gucci, citibank, airlines] ⇒
BUSINESS

[technology, engineering, science, research, cpu, windows, unix,

system, computing, compute] ⇒ TECHNOLOGY

Table 15: AGnews labeling sources examples
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Rule Example

[father, mother, sister, brother, son,

daughter, grandfather, grandmother,

uncle, aunt, cousin] ⇒ NEG

His ’exaggerated’ sob stories al-

legedly include claiming he had can-

cer, and that his son had made a sui-

cide attempt.

[boyfriend, girlfriend, boss, employee,

secretary, co-worker] ⇒ NEG

Dawn Airey’s departure as European

boss of Yahoo after just two years

will bring a smile to the face of Ar-

mando Iannucci.

MATCH(x, *PERSON1*LIST*PERSON2* ⇒ POS

LIST = [spouse, wife, husband, ex-wife,

ex-husband]

On their wedding day, last week sun-

dayGhanaian actress Rose Mensah,

popularly known as Kyeiwaa, has di-

vorced her husband Daniel Osei, less

than four days after the glamorous

event.

We define LASTNAME(x) as the last name of x.

LASTNAME(person1) == LASTNAME(person2)

⇒ POS

Karen Bruk and Steven Bruk, Mrs.

Bruk’s spouse, exercise shared invest-

ment power over the Shares of the

Company held by Karen Bruk and

KMB.

Table 16: Spouse labeling sources examples


