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Abstract

We introduce two challenging datasets that reliably
cause machine learning model performance to substantially
degrade. The datasets are collected with a simple adver-
sarial filtration technique to create datasets with limited
spurious cues. Our datasets’ real-world, unmodified ex-
amples transfer to various unseen models reliably, demon-
strating that computer vision models have shared weak-
nesses. The first dataset is called IMAGENET-A and is
like the ImageNet test set, but it is far more challenging
for existing models. We also curate an adversarial out-of-
distribution detection dataset called IMAGENET-O, which
is the first out-of-distribution detection dataset created for
ImageNet models. On IMAGENET-A a DenseNet-121 ob-
tains around 2% accuracy, an accuracy drop of approx-
imately 90%, and its out-of-distribution detection perfor-
mance on IMAGENET-O is near random chance levels.
We find that existing data augmentation techniques hardly
boost performance, and using other public training datasets
provides improvements that are limited. However, we find
that improvements to computer vision architectures provide
a promising path towards robust models.

1. Introduction

Research on the ImageNet [10] benchmark has led to
numerous advances in classification [36], object detection
[34], and segmentation [21]. ImageNet classification
improvements are broadly applicable and highly predictive
of improvements on many tasks [35]. Improvements on
ImageNet classification have been so great that some
call ImageNet classifiers “superhuman” [23]. However,
performance is decidedly subhuman when the test distri-
bution does not match the training distribution [26]. The
distribution seen at test-time can include inclement weather
conditions and obscured objects, and it can also include
objects that are anomalous.

Recht et al., 2019 [42] remind us that ImageNet test
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Figure 1: Natural adversarial examples from IMAGENET-A
and IMAGENET-O. The black text is the actual class, and
the red text is a ResNet-50 prediction and its confidence.
IMAGENET-A contains images that classifiers should be
able to classify, while IMAGENET-O contains anomalies of
unforeseen classes which should result in low-confidence
predictions. ImageNet-1K models do not train on exam-
ples from “Photosphere” nor “Verdigris” classes, so these
images are anomalous. Most natural adversarial examples
lead to wrong predictions despite occurring naturally.

examples tend to be simple, clear, close-up images, so that
the current test set may be too easy and may not represent
harder images encountered in the real world. Geirhos et
al., 2020 argue that image classification datasets contain
“spurious cues” or “shortcuts” [16, 2]. For instance, models
may use an image’s background to predict the foreground
object’s class; a cow tends to co-occur with a green pasture,
and even though the background is inessential to the
object’s identity, models may predict “cow” primarily using
the green pasture background cue. When datasets contain
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Figure 2: Various ImageNet classifiers of different architectures fail to generalize well to IMAGENET-A and IMAGENET-O.
Higher Accuracy and higher AUPR is better. See Section 4 for a description of the AUPR out-of-distribution detection
measure. These specific models were not used in the creation of IMAGENET-A and IMAGENET-O, so our adversarially

filtered image transfer across models.

spurious cues, they can lead to performance estimates that
are optimistic and inaccurate.

To counteract this, we curate two hard ImageNet test
sets of natural adversarial examples with adversarial
filtration. By using adversarial filtration, we can test how
well models perform when simple-to-classify examples
are removed, which includes examples that are solved
with simple spurious cues. Some examples are depicted
in Figure 1, which are simple for humans but hard for
models. Our examples demonstrate that it is possible
to reliably fool many models with clean natural images,
while previous attempts at exposing and measuring model
fragility rely on synthetic distribution corruptions [18, 26],
artistic renditions [24], and adversarial distortions.

We demonstrate that clean examples can reliably de-
grade and transfer to other unseen classifiers using our first
dataset. We call this dataset IMAGENET-A, which contains
images from a distribution unlike the ImageNet training
distribution. IMAGENET-A examples belong to ImageNet
classes, but the examples are harder and can cause mistakes
across various models. They cause consistent classifica-
tion mistakes due to scene complications encountered in the
long tail of scene configurations and by exploiting classifier
blind spots (see Section 3.2). Since examples transfer reli-
ably, this dataset shows models have unappreciated shared
weaknesses.

The second dataset allows us to test model uncertainty
estimates when semantic factors of the data distribution
shift. Our second dataset is IMAGENET-O, which contains

image concepts from outside ImageNet-1K. These out-of-
distribution images reliably cause models to mistake the ex-
amples as high-confidence in-distribution examples. To our
knowledge this is the first dataset of anomalies or out-of-
distribution examples developed to test ImageNet models.
While IMAGENET-A enables us to test image classifica-
tion performance when the input data distribution shifts,
IMAGENET-O enables us to test out-of-distribution detec-
tion performance when the label distribution shifts.

We examine methods to improve performance on
adversarially filtered examples. However, this is diffi-
cult because Figure 2 shows that examples successfully
transfer to unseen or black-box models. To improve
robustness, numerous techniques have been proposed.
We find data augmentation techniques such as adversarial
training decrease performance, while others can help
by a few percent. We also find that a 10X increase in
training data corresponds to a less than a 10% increase
in accuracy. Finally, we show that improving model
architectures is a promising avenue toward increasing
robustness. Even so, current models have substantial room
for improvement. Code and our two datasets are available at

github.com/hendrycks/natural-adv—-examples.

2. Related Work

Adversarial Examples. Real-world images may be cho-
sen adversarially to cause performance decline. Goodfellow
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Figure 3: IMAGENET-O examples are closer to ImageNet
examples than previous out-of-distribution (OOD) detec-
tion datasets. For example, ImageNet has triceratops ex-
amples and IMAGENET-O has visually similar T-Rex ex-
amples, but they are still OOD. Previous OOD detection
datasets use OOD examples from wholly different data gen-
erating processes. For instance, previous work uses the De-
scribable Textures Dataset [9], Places365 scenes [58], and
synthetic blobs to test ImageNet OOD detectors. To our
knowledge we propose the first dataset of OOD examples
collected for ImageNet models.

et al. [19] define adversarial examples [49] as “inputs to
machine learning models that an attacker has intentionally
designed to cause the model to make a mistake.” Most ad-
versarial examples research centers around artificial /£, ad-
versarial examples, which are examples perturbed by nearly
worst-case distortions that are small in an £, sense. Su et
al., 2018 [47] remind us that most /,, adversarial examples
crafted from one model can only be transferred within the
same family of models. However, our adversarially filtered
images transfer to all tested model families and move be-
yond the restrictive £, threat model.

Out-of-Distribution Detection. For out-of-distribution
(OOD) detection [27, 39, 28, 29] models learn a distribu-
tion, such as the ImageNet-1K distribution, and are tasked
with producing quality anomaly scores that distinguish be-
tween usual test set examples and examples from held-out
anomalous distributions. For instance, Hendrycks et al.,
2017 [27] treat CIFAR-10 as the in-distribution and treat
Gaussian noise and the SUN scene dataset [52] as out-of-
distribution data. They show that the negative of the max-
imum softmax probability, or the the negative of the clas-
sifier prediction probability, is a high-performing anomaly

score that can separate in- and out-of-distribution examples,
so much so that it remains competitive to this day. Since that
time, other work on out-of-distribution detection has con-
tinued to use datasets from other research benchmarks as
anomaly stand-ins, producing far-from-distribution anoma-
lies. Using visually dissimilar research datasets as anomaly
stand-ins is critiqued in Ahmed et al., 2019 [1]. Some pre-
vious OOD detection datasets are depicted in the bottom
row of Figure 3 [28]. Many of these anomaly sources are
unnatural and deviate in numerous ways from the distribu-
tion of usual examples. In fact, some of the distributions
can be deemed anomalous from local image statistics alone.
Next, Meinke et al., 2019 [41] propose studying adversar-
ial out-of-distribution detection by detecting adversarially
optimized uniform noise. In contrast, we propose a dataset
for more realistic adversarial anomaly detection; our dataset
contains hard anomalies generated by shifting the distribu-
tion’s labels and keeping non-semantic factors similar to the
original training distribution.

Spurious Cues and Unintended Shortcuts. Models
may learn spurious cues and obtain high accuracy, but for
the wrong reasons [38, 16]. Spurious cues are a studied
problem in natural language processing [8, 20]. Many
recently introduced NLP datasets use adversarial filtration
to create “adversarial datasets” by sieving examples solved
with simple spurious cues [44, 4, 56, 13, 6, 25]. Like this
recent concurrent research, we also use adversarial filtra-
tion [48], but the technique of adversarial filtration has not
been applied to collecting image datasets until this paper.
Additionally, adversarial filtration in NLP removes only
the easiest examples, while we use filtration to select only
the hardest examples and ignore examples of intermediate
difficulty. Adversarially filtered examples for NLP also do
not reliably transfer even to weaker models. In Bisk et al.,
2019 [5] BERT errors do not reliably transfer to weaker
GPT-1 models. This is one reason why it is not obvious a
priori whether adversarially filtered images should transfer.
In this work, we show that adversarial filtration algorithms
can find examples that reliably transfer to both weaker and
stronger models. Since adversarial filtration can remove
examples that are solved by simple spurious cues, models
must learn more robust features for our datasets.

Robustness to Shifted Input Distributions. Recht et al.,
2019 [42] create a new ImageNet test set resembling the
original test set as closely as possible. They found evi-
dence that matching the difficulty of the original test set
required selecting images deemed the easiest and most ob-
vious by Mechanical Turkers. However, Engstrom et al.,
2020 [14] estimate that the accuracy drop from ImageNet
to ImageNetV2 is less than 3.6%. In contrast, model accu-
racy can decrease by over 50% with IMAGENET-A. Bren-
del et al., 2018 [7] show that classifiers that do not know the
spatial ordering of image regions can be competitive on the
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ImageNet test set, possibly due to the dataset’s lack of diffi-
culty. Judging classifiers by their performance on easier ex-
amples has potentially masked many of their shortcomings.
For example, Geirhos et al., 2019 [17] artificially overwrite
each ImageNet image’s textures and conclude that classi-
fiers learn to rely on textural cues and under-utilize infor-
mation about object shape. Recent work shows that clas-
sifiers are highly susceptible to non-adversarial stochastic
corruptions [26]. While they distort images with 75 dif-
ferent algorithmically generated corruptions, our sources of
distribution shift tend to be more heterogeneous and varied,
and our examples are naturally occurring.

3. IMAGENET-A and IMAGENET-O
3.1. Design

IMAGENET-A is a dataset of real-world adversarially fil-
tered images that fool current ImageNet classifiers. To find
adversarially filtered examples, we first download numer-
ous images related to an ImageNet class. Thereafter we
delete the images that fixed ResNet-50 [22] classifiers cor-
rectly predict. We chose ResNet-50 due to its widespread
use. Later we show that examples which fool ResNet-50 re-
liably transfer to other unseen models. With the remaining
incorrectly classified images, we manually select visually
clear images.

Next, IMAGENET-O is a dataset of adversarially fil-
tered examples for ImageNet out-of-distribution detectors.
To create this dataset, we download ImageNet-22K and
delete examples from ImageNet-1K. With the remaining
ImageNet-22K examples that do not belong to ImageNet-
1K classes, we keep examples that are classified by a
ResNet-50 as an ImageNet-1K class with high confidence.
Then we manually select visually clear images.

Both datasets were manually constructed by graduate
students over several months. This is because a large share
of images contain multiple classes per image [46]. There-
fore, producing a dataset without multilabel images can be
challenging with usual annotation techniques. To ensure
images do not fall into more than one of the several hundred
classes, we had graduate students memorize the classes in
order to build a high-quality test set.

IMAGENET-A Class Restrictions. We select a 200-class
subset of ImageNet-1K’s 1, 000 classes so that errors among
these 200 classes would be considered egregious [10]. For
instance, wrongly classifying Norwich terriers as Norfolk
terriers does less to demonstrate faults in current classifiers
than mistaking a Persian cat for a candle. We additionally
avoid rare classes such as “snow leopard,” classes that have
changed much since 2012 such as “iPod,” coarse classes
such as “spiral,” classes that are often image backdrops such
as “valley,” and finally classes that tend to overlap such as

99, ¢

“honeycomb,” “bee,” “bee house,” and “bee eater”; “‘eraser,”

“pencil sharpener” and “pencil case”; “sink,” “medicine
cabinet,” “pill bottle” and “band-aid”; and so on. The 200
IMAGENET-A classes cover most broad categories spanned
by ImageNet-1K; see the Supplementary Materials for the
full class list.

IMAGENET-A Data Aggregation. The first step is to
download many weakly labeled images. Fortunately, the
website iNaturalist has millions of user-labeled images of
animals, and Flickr has even more user-tagged images of
objects. We download images related to each of the 200 Im-
ageNet classes by leveraging user-provided labels and tags.
After exporting or scraping data from sites including iNatu-
ralist, Flickr, and DuckDuckGo, we adversarially select im-
ages by removing examples that fail to fool our ResNet-50
models. Of the remaining images, we select low-confidence
images and then ensure each image is valid through human
review. If we only used the original ImageNet test set as
a source rather than iNaturalist, Flickr, and DuckDuckGo,
some classes would have zero images after the first round
of filtration, as the original ImageNet test set is too small to
contain hard adversarially filtered images.

We now describe this process in more detail. We use a
small ensemble of ResNet-50s for filtering, one pre-trained
on ImageNet-1K then fine-tuned on the 200 class subset,
and one pre-trained on ImageNet-1K where 200 of its 1, 000
logits are used in classification. Both classifiers have similar
accuracy on the 200 clean test set classes from ImageNet-
1K. The ResNet-50s perform 10-crop classification for each
image, and should any crop be classified correctly by the
ResNet-50s, the image is removed. If either ResNet-50 as-
signs greater than 15% confidence to the correct class, the
image is also removed; this is done so that adversarially
filtered examples yield misclassifications with low confi-
dence in the correct class, like in untargeted adversarial at-
tacks. Now, some classification confusions are greatly over-
represented, such as Persian cat and lynx. We would like
IMAGENET-A to have great variability in its types of errors
and cause classifiers to have a dense confusion matrix. Con-
sequently, we perform a second round of filtering to create
a shortlist where each confusion only appears at most 15
times. Finally, we manually select images from this shortlist
in order to ensure IMAGENET-A images are simultaneously
valid, single-class, and high-quality. In all, the IMAGENET-
A dataset has 7, 500 adversarially filtered images.

As a specific example, we download 81,413 dragonfly
images from iNaturalist, and after running the ResNet-50
filter we have 8,925 dragonfly images. In the algorithmi-
cally diversified shortlist, 1,452 images remain. From this
shortlist, 80 dragonfly images are manually selected, but
hundreds more could be selected if time allows.

The resulting images represent a substantial distribution
shift, but images are still possible for humans to classify.
The Fréchet Inception Distance (FID) [31] enables us to de-
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Figure 4: Additional adversarially filtered examples from the IMAGENET-A dataset. Examples are adversarially selected to
cause classifier accuracy to degrade. The black text is the actual class, and the red text is a ResNet-50 prediction.
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Figure 5: Additional adversarially filtered examples from the IMAGENET-O dataset. Examples are adversarially selected
to cause out-of-distribution detection performance to degrade. Examples do not belong to ImageNet classes, and they are
wrongly assigned highly confident predictions. The black text is the actual class, and the red text is a ResNet-50 prediction

and the prediction confidence.

termine whether IMAGENET-A and ImageNet are not iden-
tically distributed. The FID between ImageNet’s validation
and test set is approximately 0.99, indicating that the distri-
butions are highly similar. The FID between IMAGENET-
A and ImageNet’s validation set is 50.40, and the FID be-
tween IMAGENET-A and ImageNet’s test set is approxi-
mately 50.25, indicating that the distribution shift is large.
Despite the shift, we estimate that our graduate students’
IMAGENET-A human accuracy rate is approximately 90%.

IMAGENET-O Class Restrictions. We again select a
200-class subset of ImageNet-1K’s 1,000 classes. These
200 classes determine the in-distribution or the distribution
that is considered usual. As before, the 200 classes cover
most broad categories spanned by ImageNet-1K; see the
Supplementary Materials for the full class list.

IMAGENET-O Data Aggregation. Our dataset for ad-
versarial out-of-distribution detection is created by fooling
ResNet-50 out-of-distribution detectors. The negative of the
prediction confidence of a ResNet-50 ImageNet classifier
serves as our anomaly score [27]. Usually in-distribution
examples produce higher confidence predictions than OOD
examples, but we curate OOD examples that have high

confidence predictions. To gather candidate adversarially
filtered examples, we use the ImageNet-22K dataset with
ImageNet-1K classes deleted. We choose the ImageNet-
22K dataset since it was collected in the same way as
ImageNet-1K. ImageNet-22K allows us to have coverage
of numerous visual concepts and vary the distribution’s se-
mantics without unnatural or unwanted non-semantic data
shift. After excluding ImageNet-1K images, we process
the remaining ImageNet-22K images and keep the images
which cause the ResNet-50 to have high confidence, or a
low anomaly score. We then manually select a high-quality
subset of the remaining images to create IMAGENET-O.
We suggest only training models with data from the 1,000
ImageNet-1K classes, since the dataset becomes trivial if
models train on ImageNet-22K. To our knowledge, this
dataset is the first anomalous dataset curated for ImageNet
models and enables researchers to study adversarial out-of-
distribution detection. The IMAGENET-O dataset has 2, 000
adversarially filtered examples since anomalies are rarer;
this has the same number of examples per class as Ima-
geNetV2 [42]. While we use adversarial filtration to select
images that are difficult for a fixed ResNet-50, we will show
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Figure 6: Examples from IMAGENET-A demonstrating classifier failure modes. Adjacent to each natural image is its heatmap
[45]. Classifiers may use erroneous background cues for prediction. These failure modes are described in Section 3.2.

these examples straightforwardly transfer to unseen models.

3.2. Ilustrative Failure Modes

Examples in IMAGENET-A uncover numerous failure
modes of modern convolutional neural networks. We de-
scribe our findings after having viewed tens of thousands
of candidate adversarially filtered examples. Some of these
failure modes may also explain poor IMAGENET-O perfor-
mance, but for simplicity we describe our observations with
IMAGENET-A examples.

Consider Figure 6. The first two images suggest models
may overgeneralize visual concepts. It may confuse metal
with sundials, or thin radiating lines with harvestman bugs.
We also observed that networks overgeneralize tricycles to
bicycles and circles, digital clocks to keyboards and calcu-
lators, and more. We also observe that models may rely
too heavily on color and texture, as shown with the drag-
onfly images. Since classifiers are taught to associate en-
tire images with an object class, frequently appearing back-
ground elements may also become associated with a class,
such as wood being associated with nails. Other examples
include classifiers heavily associating hummingbird feeders
with hummingbirds, leaf-covered tree branches being asso-
ciated with the white-headed capuchin monkey class, snow
being associated with shovels, and dumpsters with garbage
trucks. Additionally Figure 6 shows an American alliga-
tor swimming. With different frames, the classifier pre-
diction varies erratically between classes that are seman-
tically loose and separate. For other images of the swim-
ming alligator, classifiers predict that the alligator is a cliff,
lynx, and a fox squirrel. Assessing convolutional networks
on IMAGENET-A reveals that even state-of-the-art models
have diverse and systematic failure modes.

4. Experiments

We show that adversarially filtered examples collected to
fool fixed ResNet-50 models reliably transfer to other mod-
els, indicating that current convolutional neural networks
have shared weaknesses and failure modes. In the following
sections, we analyze whether robustness can be improved
by using data augmentation, using more real labeled data,
and using different architectures. For the first two sections,
we analyze performance with a fixed architecture for com-
parability, and in the final section we observe performance
with different architectures. First we define our metrics.

Metrics. Our metric for assessing robustness to adversar-
ially filtered examples for classifiers is the top-1 accuracy
on IMAGENET-A. For reference, the top-1 accuracy on the
200 IMAGENET-A classes using usual ImageNet images is
usually greater than or equal to 90% for ordinary classifiers.

Our metric for assessing out-of-distribution detection
performance of IMAGENET-O examples is the area un-
der the precision-recall curve (AUPR). This metric requires
anomaly scores. Our anomaly score is the negative of the
maximum softmax probabilities [27] from a model that
can classify the 200 IMAGENET-O classes. The maxi-
mum softmax probability detector is a long-standing base-
line in OOD detection. We collect anomaly scores with
the ImageNet validation examples for the said 200 classes.
Then, we collect anomaly scores for the IMAGENET-O
examples. Higher performing OOD detectors would as-
sign IMAGENET-O examples lower confidences, or higher
anomaly scores. With these anomaly scores, we can com-
pute the area under the precision-recall curve [43]. Random
chance levels for the AUPR is approximately 16.67% with
IMAGENET-0, and the maximum AUPR is 100%.
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The Effect of Data Augmentation on ImageNet-A Accuracy
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Figure 7: Some data augmentation techniques hardly improve IMAGENET-A accuracy. This demonstrates that IMAGENET-A
can expose previously unnoticed faults in proposed robustness methods which do well on synthetic distribution shifts [30].

Data Augmentation. We examine popular data augmen-
tation techniques and note their effect on robustness. In this
section we exclude IMAGENET-O results, as the data aug-
mentation techniques hardly help with out-of-distribution
detection as well. As a baseline, we train a new ResNet-50
from scratch and obtain 2.17% accuracy on IMAGENET-A.
Now, one purported way to increase robustness is through
adversarial training, which makes models less sensitive to
£, perturbations. We use the adversarially trained model
from Wong et al., 2020 [51], but accuracy decreases to
1.68%. Next, Geirhos et al., 2019 [17] propose making net-
works rely less on texture by training classifiers on images
where textures are transferred from art pieces. They ac-
complish this by applying style transfer to ImageNet train-
ing images to create a stylized dataset, and models train
on these images. While this technique is able to greatly
increase robustness on synthetic corruptions [26], Style
Transfer increases IMAGENET-A accuracy only 0.13% over
the ResNet-50 baseline. A recent data augmentation tech-
nique is AugMix [30], which takes linear combinations of
different data augmentations. This technique increases ac-
curacy to 3.8%. Cutout augmentation [11] randomly oc-
cludes image regions and corresponds to 4.4% accuracy.
Moment Exchange (MoEx) [40] exchanges feature map
moments between images, and this increases accuracy to
5.5%. Mixup [57] trains networks on elementwise con-
vex combinations of images and their interpolated labels;
this technique increases accuracy to 6.6%. CutMix [55] su-
perimposes images regions within other images and yields
7.3% accuracy. At best these data augmentations techniques
improve accuracy by approximately 5% over the baseline.
Results are summarized in Figure 7. Although some data
augmentation techniques are purported to greatly improve
robustness to distribution shifts [30, 54], their lackluster re-
sults on IMAGENET-A show they do not improve robust-
ness on some distribution shifts. Hence IMAGENET-A can
be used to verify whether techniques actually improve real-
world robustness to distribution shift.

More Labeled Data. One possible explanation for con-
sistently low IMAGENET-A accuracy is that all models
are trained only with ImageNet-1K, and using additional
data may resolve the problem. Bau et al., 2017 [3] ar-
gue that Places365 classifiers learn qualitatively distinct fil-
ters (e.g., they have more object detectors, fewer texture
detectors in conv3) compared to ImageNet classifiers, so
one may expect an error distribution less correlated with
errors on ImageNet-A. To test this hypothesis we pre-train
a ResNet-50 on Places365 [58], a large-scale scene recog-
nition dataset. After fine-tuning the Places365 model on
ImageNet-1K, we find that accuracy is 1.56%. Conse-
quently, even though scene recognition models are pur-
ported to have qualitatively distinct features, this is not
enough to improve IMAGENET-A performance. Likewise,
Places365 pre-training does not improve IMAGENET-O de-
tection, as its AUPR is 14.88%. Next, we see whether la-
beled data from IMAGENET-A itself can help. We take
baseline ResNet-50 with 2.17% IMAGENET-A accuracy
and fine-tune it on 80% of IMAGENET-A. This leads to no
clear improvement on the remaining 20% of IMAGENET-A
since the top-1 and top-5 accuracies are below 2% and 5%,
respectively.

Last, we pre-train using an order of magnitude more
training data with ImageNet-21K. This dataset contains ap-
proximately 21,000 classes and approximately 14 million
images. To our knowledge this is the largest publicly avail-
able database of labeled natural images. Using a ResNet-
50 pretrained on ImageNet-21K, we fine-tune the model on
ImageNet-1K and attain 11.41% accuracy on IMAGENET-
A, 2 9.24% increase. Likewise, the AUPR for IMAGENET-
O improves from 16.20% to 21.86%, although this im-
provement is less significant since IMAGENET-O images
overlap with ImageNet-21K images. Academic researchers
rarely use datasets larger than ImageNet due to computa-
tional costs, using more data has limitations. An order
of magnitude increase in labeled training data can provide
some improvements in accuracy, though we now show that
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Figure 8: Increasing model size and other architecture changes can greatly improve performance. Note Res2Net and
ResNet+SE have a ResNet backbone. Normal model sizes are ResNet-50 and ResNeXt-50 (32 x 4d), Large model sizes
are ResNet-101 and ResNeXt-101 (32 x 4d), and XLarge Model sizes are ResNet-152 and (32 x 8d).

architecture changes provide greater improvements.

Architectural Changes. We find that model architec-
ture can play a large role in IMAGENET-A accuracy and
IMAGENET-O detection performance. Simply increasing
the width and number of layers of a network is sufficient
to automatically impart more IMAGENET-A accuracy and
IMAGENET-O OOD detection performance. Increasing
network capacity has been shown to improve performance
on /,, adversarial examples [37], common corruptions [26],
and now also improves performance for adversarially fil-
tered images. For example, a ResNet-50’s top-1 accu-
racy and AUPR is 2.17% and 16.2%, respectively, while a
ResNet-152 obtains 6.1% top-1 accuracy and 18.0% AUPR.
Another architecture change that reliably helps is using the
grouped convolutions found in ResNeXts [53]. A ResNeXt-
50 (32 x 4d) obtains a 4.81% topl IMAGENET-A accuracy
and a 17.60% IMAGENET-O AUPR.

Another useful architecture change is self-attention.
Convolutional neural networks with self-attention [32] are
designed to better capture long-range dependencies and in-
teractions across an image. We consider the self-attention
technique called Squeeze-and-Excitation (SE) [33], which
won the final ImageNet competition in 2017. A ResNet-50
with Squeeze-and-Excitation attains 6.17% accuracy. How-
ever, for larger ResNets, self-attention does little to improve
IMAGENET-O detection.

We consider the ResNet-50 architecture with its resid-
ual blocks exchanged with recently introduced Res2Net v1b
blocks [15]. This change increases accuracy to 14.59%
and the AUPR to 19.5%. A ResNet-152 with Res2Net
v1b blocks attains 22.4% accuracy and 23.9% AUPR. Com-
pared to data augmentation or an order of magnitude more

labeled training data, some architectural changes can pro-
vide far more robustness gains. Consequently future im-
provements to model architectures is a promising path to-
wards greater robustness.

We now assess performance on a completely different
architecture which does not use convolutions, vision Trans-
formers [12]. We evaluate with DeiT [50], a vision Trans-
former trained on ImageNet-1K with aggressive data aug-
mentation such as Mixup. Even for vision Transformers,
we find that ImageNet-A and ImageNet-O examples suc-
cessfully transfer. In particular, a DeiT-small vision Trans-
former gets 19.0% on IMAGENET-A and has a similar num-
ber of parameters to a Res2Net-50, which has 14.6% ac-
curacy. This might be explained by DeiT’s use of Mixup,
however, which provided a 4% ImageNet-A accuracy boost
for ResNets. The IMAGENET-O AUPR for the Transformer
is 20.9%, while the Res2Net gets 19.5%. Larger DeiT
models do better, as a DeiT-base gets 28.2% accuracy on
IMAGENET-A and 24.8% AUPR on IMAGENET. Conse-
quently, our datasets transfer to vision Transformers and
performance for both tasks remains far from the ceiling.

5. Conclusion

We found it is possible to improve performance on our
datasets with data augmentation, pretraining data, and ar-
chitectural changes. We found that our examples transferred
to all tested models, including vision Transformers which
do not use convolution operations. Results indicate that im-
proving performance on IMAGENET-A and IMAGENET-O
is possible but difficult. Our challenging ImageNet test sets
serve as measures of performance under distribution shift—
an important research aim as models are deployed in in-
creasingly precarious real-world environments.
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