






ImageNet test set, possibly due to the dataset’s lack of diffi-

culty. Judging classifiers by their performance on easier ex-

amples has potentially masked many of their shortcomings.

For example, Geirhos et al., 2019 [17] artificially overwrite

each ImageNet image’s textures and conclude that classi-

fiers learn to rely on textural cues and under-utilize infor-

mation about object shape. Recent work shows that clas-

sifiers are highly susceptible to non-adversarial stochastic

corruptions [26]. While they distort images with 75 dif-

ferent algorithmically generated corruptions, our sources of

distribution shift tend to be more heterogeneous and varied,

and our examples are naturally occurring.

3. IMAGENET-A and IMAGENET-O

3.1. Design

IMAGENET-A is a dataset of real-world adversarially fil-

tered images that fool current ImageNet classifiers. To find

adversarially filtered examples, we first download numer-

ous images related to an ImageNet class. Thereafter we

delete the images that fixed ResNet-50 [22] classifiers cor-

rectly predict. We chose ResNet-50 due to its widespread

use. Later we show that examples which fool ResNet-50 re-

liably transfer to other unseen models. With the remaining

incorrectly classified images, we manually select visually

clear images.

Next, IMAGENET-O is a dataset of adversarially fil-

tered examples for ImageNet out-of-distribution detectors.

To create this dataset, we download ImageNet-22K and

delete examples from ImageNet-1K. With the remaining

ImageNet-22K examples that do not belong to ImageNet-

1K classes, we keep examples that are classified by a

ResNet-50 as an ImageNet-1K class with high confidence.

Then we manually select visually clear images.

Both datasets were manually constructed by graduate

students over several months. This is because a large share

of images contain multiple classes per image [46]. There-

fore, producing a dataset without multilabel images can be

challenging with usual annotation techniques. To ensure

images do not fall into more than one of the several hundred

classes, we had graduate students memorize the classes in

order to build a high-quality test set.

IMAGENET-A Class Restrictions. We select a 200-class

subset of ImageNet-1K’s 1, 000 classes so that errors among

these 200 classes would be considered egregious [10]. For

instance, wrongly classifying Norwich terriers as Norfolk

terriers does less to demonstrate faults in current classifiers

than mistaking a Persian cat for a candle. We additionally

avoid rare classes such as “snow leopard,” classes that have

changed much since 2012 such as “iPod,” coarse classes

such as “spiral,” classes that are often image backdrops such

as “valley,” and finally classes that tend to overlap such as

“honeycomb,” “bee,” “bee house,” and “bee eater”; “eraser,”

“pencil sharpener” and “pencil case”; “sink,” “medicine

cabinet,” “pill bottle” and “band-aid”; and so on. The 200

IMAGENET-A classes cover most broad categories spanned

by ImageNet-1K; see the Supplementary Materials for the

full class list.

IMAGENET-A Data Aggregation. The first step is to

download many weakly labeled images. Fortunately, the

website iNaturalist has millions of user-labeled images of

animals, and Flickr has even more user-tagged images of

objects. We download images related to each of the 200 Im-

ageNet classes by leveraging user-provided labels and tags.

After exporting or scraping data from sites including iNatu-

ralist, Flickr, and DuckDuckGo, we adversarially select im-

ages by removing examples that fail to fool our ResNet-50

models. Of the remaining images, we select low-confidence

images and then ensure each image is valid through human

review. If we only used the original ImageNet test set as

a source rather than iNaturalist, Flickr, and DuckDuckGo,

some classes would have zero images after the first round

of filtration, as the original ImageNet test set is too small to

contain hard adversarially filtered images.

We now describe this process in more detail. We use a

small ensemble of ResNet-50s for filtering, one pre-trained

on ImageNet-1K then fine-tuned on the 200 class subset,

and one pre-trained on ImageNet-1K where 200 of its 1, 000

logits are used in classification. Both classifiers have similar

accuracy on the 200 clean test set classes from ImageNet-

1K. The ResNet-50s perform 10-crop classification for each

image, and should any crop be classified correctly by the

ResNet-50s, the image is removed. If either ResNet-50 as-

signs greater than 15% confidence to the correct class, the

image is also removed; this is done so that adversarially

filtered examples yield misclassifications with low confi-

dence in the correct class, like in untargeted adversarial at-

tacks. Now, some classification confusions are greatly over-

represented, such as Persian cat and lynx. We would like

IMAGENET-A to have great variability in its types of errors

and cause classifiers to have a dense confusion matrix. Con-

sequently, we perform a second round of filtering to create

a shortlist where each confusion only appears at most 15

times. Finally, we manually select images from this shortlist

in order to ensure IMAGENET-A images are simultaneously

valid, single-class, and high-quality. In all, the IMAGENET-

A dataset has 7, 500 adversarially filtered images.

As a specific example, we download 81, 413 dragonfly

images from iNaturalist, and after running the ResNet-50

filter we have 8, 925 dragonfly images. In the algorithmi-

cally diversified shortlist, 1, 452 images remain. From this

shortlist, 80 dragonfly images are manually selected, but

hundreds more could be selected if time allows.

The resulting images represent a substantial distribution

shift, but images are still possible for humans to classify.

The Fréchet Inception Distance (FID) [31] enables us to de-

15265











References

[1] Faruk Ahmed and Aaron C. Courville. Detecting semantic

anomalies. ArXiv, abs/1908.04388, 2019.

[2] Martı́n Arjovsky, Léon Bottou, Ishaan Gulrajani, and

David Lopez-Paz. Invariant risk minimization. ArXiv,

abs/1907.02893, 2019.

[3] David Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba.

Network dissection: Quantifying interpretability of deep vi-

sual representations. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3319–3327,

2017.

[4] Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya,

Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug

Downey, Scott Yih, and Yejin Choi. Abductive common-

sense reasoning. ArXiv, abs/1908.05739, 2019.

[5] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao,

and Yejin Choi. Piqa: Reasoning about physical common-

sense in natural language. ArXiv, abs/1911.11641, 2019.

[6] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao,

and Yejin Choi. Piqa: Reasoning about physical common-

sense in natural language. ArXiv, abs/1911.11641, 2020.

[7] Wieland Brendel and Matthias Bethge. Approximating cnns

with bag-of-local-features models works surprisingly well on

imagenet. CoRR, abs/1904.00760, 2018.

[8] Zheng Cai, Lifu Tu, and Kevin Gimpel. Pay attention to the

ending: Strong neural baselines for the roc story cloze task.

In ACL, 2017.

[9] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy

Mohamed, and Andrea Vedaldi. Describing textures in the

wild. Computer Vision and Pattern Recognition, 2014.

[10] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. CVPR, 2009.

[11] Terrance Devries and Graham W. Taylor. Improved regular-

ization of convolutional neural networks with Cutout. arXiv

preprint arXiv:1708.04552, 2017.

[12] A. Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk

Weissenborn, Xiaohua Zhai, Thomas Unterthiner, M. De-

hghani, Matthias Minderer, Georg Heigold, S. Gelly, Jakob

Uszkoreit, and N. Houlsby. An image is worth 16x16 words:

Transformers for image recognition at scale. ICLR, 2021.

[13] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel

Stanovsky, Sameer Singh, and Matt Gardner. Drop: A read-

ing comprehension benchmark requiring discrete reasoning

over paragraphs. In NAACL-HLT, 2019.

[14] L. Engstrom, Andrew Ilyas, Shibani Santurkar, D. Tsipras,

J. Steinhardt, and A. Madry. Identifying statistical bias in

dataset replication. ArXiv, abs/2005.09619, 2020.

[15] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xinyu Zhang,

Ming-Hsuan Yang, and Philip H. S. Torr. Res2net: A new

multi-scale backbone architecture. IEEE transactions on

pattern analysis and machine intelligence, 2019.

[16] Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis,

Richard S. Zemel, Wieland Brendel, Matthias Bethge, and

Felix A. Wichmann. Shortcut learning in deep neural net-

works. ArXiv, abs/2004.07780, 2020.

[17] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,

Matthias Bethge, Felix A Wichmann, and Wieland Brendel.

Imagenet-trained cnns are biased towards texture; increasing

shape bias improves accuracy and robustness. ICLR, 2019.

[18] Robert Geirhos, Carlos R. M. Temme, Jonas Rauber,
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