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Abstract

We introduce four new real-world distribution shift

datasets consisting of changes in image style, image blur-

riness, geographic location, camera operation, and more.

With our new datasets, we take stock of previously proposed

methods for improving out-of-distribution robustness and

put them to the test. We find that using larger models and

artificial data augmentations can improve robustness on real-

world distribution shifts, contrary to claims in prior work.

We find improvements in artificial robustness benchmarks

can transfer to real-world distribution shifts, contrary to

claims in prior work. Motivated by our observation that data

augmentations can help with real-world distribution shifts,

we also introduce a new data augmentation method which

advances the state-of-the-art and outperforms models pre-

trained with 1000× more labeled data. Overall we find that

some methods consistently help with distribution shifts in tex-

ture and local image statistics, but these methods do not help

with some other distribution shifts like geographic changes.

Our results show that future research must study multiple

distribution shifts simultaneously, as we demonstrate that

no evaluated method consistently improves robustness.

1. Introduction

While the research community must create robust models

that generalize to new scenarios, the robustness literature

[7, 12] lacks consensus on evaluation benchmarks and con-

tains many dissonant hypotheses. Hendrycks et al., 2020 [17]

find that many recent language models are already robust to

many forms of distribution shift, while others [42, 13] find

that vision models are largely fragile and argue that data aug-

mentation offers one solution. In contrast, other researchers

[34] provide results suggesting that using pretraining and

improving in-distribution test set accuracy improves natural

robustness, whereas other methods do not.

*Equal contribution. 1UC Berkeley, 2UChicago, 3Google. Code is

available at https://github.com/hendrycks/imagenet-r.

Prior works have also offered various interpretations of

empirical results, such as the Texture Bias hypothesis that

convolutional networks are biased towards texture, harming

robustness [13]. Additionally, some authors posit a funda-

mental distinction between robustness on synthetic bench-

marks vs. real-world distribution shifts, casting doubt on the

generality of conclusions drawn from experiments conducted

on synthetic benchmarks [34].

It has been difficult to arbitrate these hypotheses because

existing robustness datasets vary multiple factors (e.g., time,

camera, location, etc.) simultaneously in unspecified ways

[30, 19]. Existing datasets also lack diversity such that it is

hard to extrapolate which methods will improve robustness

more broadly. To address these issues and test the methods

outlined above, we introduce four new robustness datasets

and a new data augmentation method.

First we introduce ImageNet-Renditions (ImageNet-R),

a 30,000 image test set containing various renditions (e.g.,

paintings, embroidery, etc.) of ImageNet object classes.

These renditions are naturally occurring, with textures and

local image statistics unlike those of ImageNet images, al-

lowing us to compare against gains on synthetic robustness

benchmarks.

Next, we investigate the effect of changes in the image

capture process with StreetView StoreFronts (SVSF) and

DeepFashion Remixed (DFR). SVSF contains business store-

front images collected from Google StreetView, along with

metadata allowing us to vary location, year, and even the

camera type. DFR leverages the metadata from DeepFash-

ion2 [11] to systematically shift object occlusion, orienta-

tion, zoom, and scale at test time. Both SVSF and DFR

provide distribution shift controls and do not alter texture,

which remove possible confounding variables affecting prior

benchmarks.

Additionally, we collect Real Blurry Images, which con-

sists of 1,000 blurry natural images from a 100-class sub-

set of the ImageNet classes. This benchmark serves as a

real-world analog for the synthetic blur corruptions of the

ImageNet-C benchmark [15]. With it we find that synthetic

corruptions correlate with corruptions that appear in the wild,
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Figure 1: Images from three of our four new datasets ImageNet-Renditions (ImageNet-R), DeepFashion Remixed (DFR),

and StreetView StoreFronts (SVSF). The SVSF images are recreated from the public Google StreetView. Our datasets test

robustness to various naturally occurring distribution shifts including rendition style, camera viewpoint, and geography.

contradicting speculations from previous work [34].

Finally, we contribute DeepAugment to increase robust-

ness to some new types of distribution shift. This augmenta-

tion technique uses image-to-image neural networks for data

augmentation. DeepAugment improves robustness on our

newly introduced ImageNet-R benchmark and can also be

combined with other augmentation methods to outperform a

model pretrained on 1000× more labeled data.

We use these new datasets to test four overarching classes

of methods for improving robustness:

• Larger Models: increasing model size improves robust-

ness to distribution shift [15, 40].

• Self-Attention: adding self-attention layers to models

improves robustness [19].

• Diverse Data Augmentation: robustness can increase

through data augmentation [42].

• Pretraining: pretraining on larger and more diverse

datasets improves robustness [29, 16].

After examining our results on these four new datasets as

well as prior benchmarks, we can rule out several previous

hypotheses while strengthening support for others. As one

example, we find that synthetic data augmentation robust-

ness interventions improve accuracy on ImageNet-R and

real-world image blur distribution shifts, which lends cre-

dence to the use of synthetic robustness benchmarks and also

reinforces the Texture Bias hypothesis. In the conclusion, we

summarize the various strands of evidence for and against

each hypothesis. Across our many experiments, we do not

find a general method that consistently improves robust-

ness, and some hypotheses require additional qualifications.

While robustness is often spoken of and measured as a single

scalar property like accuracy, our investigations show that

robustness is not so simple. Our results show that future

robustness research requires more thorough evaluation using

more robustness datasets.

2. Related Work

Robustness Benchmarks. Recent works [15, 30, 17]

have begun to characterize model performance on out-of-

distribution (OOD) data with various new test sets, with dis-

sonant findings. For instance, prior work [17] demonstrates

that modern language processing models are moderately ro-

bust to numerous naturally occurring distribution shifts, and

that IID accuracy is not straightforwardly predictive of OOD

accuracy for natural language tasks. For image recognition,

other work [15] analyzes image models and shows that they

are sensitive to various simulated image corruptions (e.g.,

noise, blur, weather, JPEG compression, etc.) from their

ImageNet-C benchmark.

Recht et al., 2019 [30] reproduce the ImageNet [32] val-

idation set for use as a benchmark of naturally occurring

distribution shift in computer vision. Their evaluations show

a 11-14% drop in accuracy from ImageNet to the new valida-

tion set, named ImageNetV2, across a wide range of architec-

tures. [34] use ImageNetV2 to measure natural robustness

and conclude that methods such as data augmentation do

not significantly improve robustness. Recently, [8] identify

statistical biases in ImageNetV2’s construction, and they

estimate that re-weighting ImageNetV2 to correct for these

biases results in a less substantial 3.6% drop.

Data Augmentation. Recent works [13, 42, 18] demon-

strate that data augmentation can improve robustness on

ImageNet-C. The space of augmentations that help robust-

ness includes various types of noise [26, 31, 25], highly un-

natural image transformations [13, 43, 44], or compositions

of simple image transformations such as Python Imaging

Library operations [4, 18]. Some of these augmentations can







Figure 4: DeepAugment examples preserve semantics, are data-dependent, and are far more visually diverse than, say, rotations.

generates semantically consistent images with unique and

diverse distortions as shown in Figure 4. Although our set

of perturbations is designed with random operations, we

show that DeepAugment still outperforms other methods

on benchmarks such as ImageNet-C and ImageNet-R. We

provide the pseudocode in the Supplementary Materials.

For our experiments, we specifically use the CAE [35]

and EDSR [24] architectures as the basis for DeepAugment.

CAE is an autoencoder architecture, and EDSR is a super-

resolution architecture. These two architectures show the

DeepAugment approach works with different architectures.

Each clean image in the original dataset and passed through

the network and is thereby stochastically distored, result-

ing in two distorted versions of the clean dataset (one for

CAE and one for EDSR). We then train on the augmented

and clean data simultaneously and call this approach Deep-

Augment. The EDSR and CAE architectures are arbitrary.

We show that the DeepAugment approach also works for

untrained, randomly sampled architectures in the Supple-

mentary Materials.

5. Experiments

5.1. Setup

In this section we briefly describe the evaluated models,

pretraining techniques, self-attention mechanisms, data aug-

mentation methods, and note various implementation details.

Model Architectures and Sizes. Most experiments are

evaluated on a standard ResNet-50 model [14]. Model size

evaluations use ResNets or ResNeXts [41] of varying sizes.

Pretraining. For pretraining we use ImageNet-21K which

contains approximately 21,000 classes and approximately 14

million labeled training images, or around 10× more labeled

training data than ImageNet-1K. We also tune an ImageNet-

21K model [22]. We also use a large pre-trained ResNeXt-

101 model [27]. This was pre-trained on on approximately 1

billion Instagram images with hashtag labels and fine-tuned

on ImageNet-1K. This Weakly Supervised Learning (WSL)

pretraining strategy uses approximately 1000× more labeled

data.

Self-Attention. When studying self-attention, we employ

CBAM [39] and SE [20] modules, two forms of self-

attention that help models learn spatially distant dependen-

cies.

Data Augmentation. We use Style Transfer, AugMix, and

DeepAugment to evaluate the benefits of data augmentation,

and we contrast their performance with simpler noise aug-

mentations such as Speckle Noise and adversarial noise.

Style transfer [13] uses a style transfer network to apply art-

work styles to training images. We use AugMix [18] which

randomly composes simple augmentation operations (e.g.,

translate, posterize, solarize). DeepAugment, introduced



ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0

+ ImageNet-21K Pretraining (10× labeled data) 7.0 62.8 55.8

+ CBAM (Self-Attention) 7.0 63.2 56.2

+ ℓ∞ Adversarial Training 25.1 68.6 43.5

+ Speckle Noise 8.1 62.1 54.0

+ Style Transfer Augmentation 8.9 58.5 49.6

+ AugMix 7.1 58.9 51.8

+ DeepAugment 7.5 57.8 50.3

+ DeepAugment + AugMix 8.0 53.2 45.2

ResNet-152 (Larger Models) 6.8 58.7 51.9

Table 1: ImageNet-200 and ImageNet-R top-1 error rates. ImageNet-200 uses the same 200 classes as ImageNet-R. DeepAug-

ment+AugMix improves over the baseline by over 10 percentage points. We take ImageNet-21K Pretraining and CBAM as

representatives of pretraining and self-attention, respectively. Style Transfer, AugMix, and DeepAugment are all instances of

more complex data augmentation, in contrast to simpler noise-based augmentations such as ℓ∞ Adversarial Noise and Speckle

Noise. While there remains much room for improvement, results indicate that progress on ImageNet-R is tractable.

above, distorts the weights and feedforward passes of image-

to-image models to generate image augmentations. Speckle

Noise data augmentation muliplies each pixel by (1 + x)
with x sampled from a normal distribution [31, 15]. We

also consider adversarial training as a form of adaptive data

augmentation and use the model from [38] trained against

ℓ∞ perturbations of size ε = 4/255.

5.2. Results

We now perform experiments on ImageNet-R, StreetView

StoreFronts, DeepFashion Remixed, and Real Blurry Images.

We also evaluate on ImageNet-C and compare and contrast

it with real distribution shifts.

ImageNet-R. Table 1 shows performance on ImageNet-R

as well as on ImageNet-200 (the original ImageNet data

restricted to ImageNet-R’s 200 classes). This has several

implications regarding the four method-specific hypothe-

ses. Pretraining with ImageNet-21K (approximately 10×
labeled data) hardly helps. The Supplementary Materials

shows WSL pretraining can help, but Instagram has rendi-

tions, while ImageNet excludes them; hence we conclude

comparable pretraining was ineffective. Notice self-attention

increases the IID/OOD gap. Compared to simpler data aug-

mentation techniques such as Speckle Noise, the data aug-

mentation techniques of Style Transfer, AugMix, and Deep-

Augment improve generalization. Note AugMix and Deep-

Augment improve in-distribution performance whereas Style

transfer hurts it. Also, our new DeepAugment technique is

the best standalone method with an error rate of 57.8%. Last,

larger models reduce the IID/OOD gap.

As for prior hypothesis in the literature regarding model

robustness, we find that biasing networks away from natural

textures through diverse data augmentation improved per-

formance. The IID/OOD generalization gap varies greatly

by method, demonstrating that it is possible to significantly

outperform the trendline of models optimized solely for the

IID setting. Finally, as ImageNet-R contains real-world ex-

amples, and since data augmentation helps on ImageNet-R,

we now have clear evidence against the hypothesis that ro-

bustness interventions cannot help with natural distribution

shifts [34].

StreetView StoreFronts. In Table 2, we evaluate data

augmentation methods on SVSF and find that all of the

tested methods have mostly similar performance and that

no method helps much on country shift, where error rates

roughly double across the board. Here evaluation is lim-

ited to augmentations due to a 30 day retention window for

each instantiation of the dataset. Images captured in France

contain noticeably different architectural styles and store-

front designs than those captured in US/Mexico/Canada;

meanwhile, we are unable to find conspicuous and consis-

tent indicators of the camera and year. This may explain

the relative insensitivity of evaluated methods to the cam-

era and year shifts. Overall data augmentation here shows

limited benefit, suggesting either that data augmentation pri-

marily helps combat texture bias as with ImageNet-R, or that

existing augmentations are not diverse enough to capture

high-level semantic shifts such as building architecture.

DeepFashion Remixed. Table 3 shows our experimental

findings on DFR, in which all evaluated methods have an

average OOD mAP that is close to the baseline. In fact, most

OOD mAP increases track IID mAP increases. In general,

DFR’s size and occlusion shifts hurt performance the most.

We also evaluate with Random Erasure augmentation, which

deletes rectangles within the image, to simulate occlusion

[46]. Random Erasure improved occlusion performance,

but Style Transfer helped even more. Nothing substantially



Hardware Year Location

Network IID Old 2017 2018 France

ResNet-50 27.2 28.6 27.7 28.3 56.7

+ Speckle Noise 28.5 29.5 29.2 29.5 57.4

+ Style Transfer 29.9 31.3 30.2 31.2 59.3

+ DeepAugment 30.5 31.2 30.2 31.3 59.1

+ AugMix 26.6 28.0 26.5 27.7 55.4

Table 2: SVSF classification error rates. Networks are robust to some natural distribution shifts but are substantially more

sensitive than the geographic shift. Here data augmentation hardly helps.

Size Occlusion Viewpoint Zoom

Network IID OOD Small Large Slight/None Heavy No Wear Side/Back Medium Large

ResNet-50 77.6 55.1 39.4 73.0 51.5 41.2 50.5 63.2 48.7 73.3

+ ImageNet-21K Pretraining 80.8 58.3 40.0 73.6 55.2 43.0 63.0 67.3 50.5 73.9

+ SE (Self-Attention) 77.4 55.3 38.9 72.7 52.1 40.9 52.9 64.2 47.8 72.8

+ Random Erasure 78.9 56.4 39.9 75.0 52.5 42.6 53.4 66.0 48.8 73.4

+ Speckle Noise 78.9 55.8 38.4 74.0 52.6 40.8 55.7 63.8 47.8 73.6

+ Style Transfer 80.2 57.1 37.6 76.5 54.6 43.2 58.4 65.1 49.2 72.5

+ DeepAugment 79.7 56.3 38.3 74.5 52.6 42.8 54.6 65.5 49.5 72.7

+ AugMix 80.4 57.3 39.4 74.8 55.3 42.8 57.3 66.6 49.0 73.1

ResNet-152 (Larger Models) 80.0 57.1 40.0 75.6 52.3 42.0 57.7 65.6 48.9 74.4

Table 3: DeepFashion Remixed results. Unlike the previous tables, higher is better since all values are mAP scores for

this multi-label classification benchmark. The “OOD” column is the average of the row’s rightmost eight OOD values. All

techniques do little to close the IID/OOD generalization gap.

improved OOD performance beyond what is explained by

IID performance, so here it would appear that in this setting,

only IID performance matters. Our results suggest that while

some methods may improve robustness to certain forms of

distribution shift, no method substantially raises performance

across all shifts.

Real Blurry Images and ImageNet-C. We now consider

a previous robustness benchmark to evaluate the four major

methods. We use the ImageNet-C dataset [15] which applies

15 common image corruptions (e.g., Gaussian noise, defo-

cus blur, simulated fog, JPEG compression, etc.) across 5

severities to ImageNet-1K validation images. We find that

DeepAugment improves robustness on ImageNet-C. Fig-

ure 5 shows that when models are trained with both AugMix

and DeepAugment they set a new state-of-the-art, break-

ing the trendline and exceeding the corruption robustness

provided by training on 1000× more labeled training data.

Note the augmentations from AugMix and DeepAugment

are disjoint from ImageNet-C’s corruptions. Full results are

shown in the Supplementary Materials. IID accuracy alone is

clearly unable to capture the full story of model robustness.

Instead, larger models, self-attention, data augmentation,

and pretraining all improve robustness far beyond the degree

predicted by their influence on IID accuracy.

A recent work [34] reminds us that ImageNet-C uses

various synthetic corruptions and suggest that they are de-

coupled from real-world robustness. Real-world robustness

requires generalizing to naturally occurring corruptions such

as snow, fog, blur, low-lighting noise, and so on, but it is an

open question whether ImageNet-C’s simulated corruptions

meaningfully approximate real-world corruptions.

We evaluate various models on Real Blurry Images and

find that all the robustness interventions that help with

ImageNet-C also help with real-world blurry images. Hence

ImageNet-C can track performance on real-world corrup-

tions. Moreover, DeepAugment+AugMix has the lowest er-

ror rate on Real Blurry Images, which again contradicts the

synthetic vs natural dichotomy. The upshot is that ImageNet-

C is a controlled and systematic proxy for real-world robust-

ness.

Our results, which are expanded on in the Supplementary

Materials, show that larger models, self-attention, data aug-

mentation, and pretraining all help, just like on ImageNet-C.

Here DeepAugment+AugMix attains state-of-the-art. These

results suggest ImageNet-C’s simulated corruptions track

real-world corruptions. In hindsight, this is expected since

various computer vision problems have used synthetic cor-

ruptions as proxies for real-world corruptions, for decades.

In short, ImageNet-C is a diverse and systematic benchmark

that is correlated with improvements on real-world corrup-

tions.

6. Conclusion

In this paper we introduced four real-world datasets

for evaluating the robustness of computer vision models:

ImageNet-Renditions, DeepFashion Remixed, StreetView
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Real Blurry Images is in Table 5.

ImageNet-A. ImageNet-A [19] is an adversarially filtered

test set and is constructed based on existing model weak-

nesses (see [36] for another robustness dataset algorithmi-

cally determined by model weaknesses). This dataset con-

tains examples that are difficult for a ResNet-50 to classify,

so examples solvable by simple spurious cues are are es-

pecially infrequent in this dataset. Results are in Table 9.

Notice Res2Net architectures [9] can greatly improve accu-

racy. Results also show that Larger Models, Self-Attention,

and Pretraining help, while Diverse Data Augmentation

usually does not help substantially.

Implications for the Four Methods.

Larger Models help with ImageNet-C (+), ImageNet-A (+),

ImageNet-R (+), yet does not markedly improve DFR (−)

performance.

Self-Attention helps with ImageNet-C (+), ImageNet-A (+),

yet does not help ImageNet-R (−) and DFR (−) perfor-

mance.

Diverse Data Augmentation helps ImageNet-C (+),

ImageNet-R (+), yet does not markedly improve ImageNet-

A (−), DFR(−), nor SVSF (−) performance.

Pretraining helps with ImageNet-C (+), ImageNet-A (+),

yet does not markedly improve DFR (−) nor ImageNet-R

(−) performance.

B. DeepAugment Details

Pseudocode. Below is Pythonic pseudocode for DeepAug-

ment. The basic structure of DeepAugment is agnostic to the

backbone network used, but specifics such as which layers

are chosen for various transforms may vary as the backbone

architecture varies. We do not need to train many different

image-to-image models to get diverse distortions [45, 23].

We only use two existing models, the EDSR super-resolution

model [24] and the CAE image compression model [35]. See

full code for such details.

At a high level, DeepAugment processes each image with

an image-to-image network. The image-to-image network’s

weights and feedforward activations are distorted with each

pass. The distortion is made possible by, for example, negat-

ing the network’s weights and applying dropout to the feed-

forward activations. These modifications were not carefully

chosen and demonstrate the utility of mixing together diverse

operations without tuning. The resulting image is distorted

and saved. This process generates an augmented dataset.

Ablations. We run ablations on DeepAugment to under-

stand the contributions from the EDSR and CAE models

independently. Table 11 contains results of these experi-

ments on ImageNet-R and Table 10 contains results of these

experiments on ImageNet-C. In both tables, “DeepAugment

(EDSR)” and “DeepAugment (CAE)” refer to experiments

where we only use a single extra augmented training set (+

the standard training set), and train on those images.

Noise2Net. We show that untrained, randomly sampled

neural networks can provide useful deep augmentations,

highlighting the efficacy of the DeepAugment approach.

While in the main paper we use EDSR and CAE to cre-

ate DeepAugment augmentations, in this section we explore

the use of randomly initialized image-to-image networks

to generate diverse image augmentations. We propose a

DeepAugment method, Noise2Net.

In Noise2Net, the architecture and weights are randomly

sampled. Noise2Net is the composition of several resid-

ual blocks: Block(x) = x + ε · fΘ(x), where Θ is ran-

domly initialized and ε is a parameter that controls the

strength of the augmentation. For all our experiments, we

use 4 Res2Net blocks [10] and ε ∼ U(0.375, 0.75). The

weights of Noise2Net are resampled at every minibatch, and

the dilation and kernel sizes of all the convolutions used

in Noise2Net are randomly sampled every epoch. Hence

Noise2Net augments an image to an augmented image by

processing the image through a randomly sampled network

with random weights.

Recall that in the case of EDSR and CAE, we used net-

works to generate a static dataset, and then we trained nor-

mally on that static dataset. This setup could not be done

on-the-fly. That is because we fed in one example at a time

with EDSR and CAE. If we pass the entire minibatch through

EDSR or CAE, we will end up applying the same augmen-

tation to all images in the minibatch, reducing stochasticity

and augmentation diversity. In contrast, Noise2Net enables

us to process batches of images on-the-fly and obviates the

need for creating a static augmented dataset.

In Noise2Net, each example is processed differently in

parallel, so we generate more diverse augmentations in real-

time. To make this possible, we use grouped convolutions. A

grouped convolution with number of groups = N will take a

set of kN channels as input, and apply N independent convo-

lutions on channels {1, . . . , k}, {k+1, . . . , 2k}, . . . , {(N−
1)k + 1, . . . , Nk}. Given a minibatch of size B, we can ap-

ply a randomly initialized grouped convolution with N = B
groups in order to apply a different random convolutional fil-

ter to each element in the batch in a single forward pass. By

replacing all the convolutions in each Res2Net block with

a grouped convolution and randomly initializing network

weights, we arrive at Noise2Net, a variant of DeepAugment.

See Figure 7 for a high-level overview of Noise2Net and

Figure 8 for sample outputs.

We evaluate the Noise2Net variant of DeepAugment on

ImageNet-R. Table 11 shows that it outperforms the EDSR

and CAE variants of DeepAugment, even though the network

architecture is randomly sampled, its weights are random,

and the network is not trained. This demonstrates the flex-



Network Defocus

Blur

Glass

Blur

Motion

Blur

Zoom

Blur

ImageNet-C

Blur Mean

Real Blurry

Images

ResNet-50 61 73 61 64 65 58.7

+ ImageNet-21K Pretraining 56 69 53 59 59 54.8

+ CBAM (Self-Attention) 60 69 56 61 62 56.5

+ ℓ∞ Adversarial Training 80 71 72 71 74 71.6

+ Speckle Noise 57 68 60 64 62 56.9

+ Style Transfer 57 68 55 64 61 56.7

+ AugMix 52 65 46 51 54 54.4

+ DeepAugment 48 60 51 61 55 54.2

+ DeepAugment+AugMix 41 53 39 48 45 51.7

ResNet-152 (Larger Models) 67 81 66 74 58 54.3

Table 5: ImageNet-C Blurs (Defocus, Glass, Motion, Zoom) vs Real Blurry Images. All values are error rates and percentages.

The rank orderings of the models on Real Blurry Images are similar to the rank orderings for “ImageNet-C Blur Mean,” so

ImageNet-C’s simulated blurs track real-world blur performance.

Hypothesis ImageNet-C Real Blurry Images ImageNet-A ImageNet-R DFR SVSF

Larger Models + + + + −
Self-Attention + + + − −
Diverse Data Augmentation + + − + − −
Pretraining + + + − −

Table 6: A highly simplified account of each method when tested against different datasets. This table includes ImageNet-A

results.

ibility of the DeepAugment approach. Below is Pythonic

pseudocode for training a classifier using the Noise2Net

variant of DeepAugment.

1 def main ():
2 net. apply_weights (

deepAugment_getNetwork ()) # EDSR , CAE
, ...

3 for image in dataset : # May be the
ImageNet training set

4 if np. random . uniform () < 0.05: #
Arbitrary refresh prob

5 net. apply_weights (
deepAugment_getNetwork ())

6 new_image = net.
deepAugment_forwardPass (image)

7

8 def deepAugment_getNetwork ():
9 weights = load_clean_weights ()

10 weight_distortions =
sample_weight_distortions ()

11 for d in weight_distortions :
12 weights = apply_distortion (d,

weights )
13 return weights
14

15 def sample_weight_distortions ():
16 distortions = [
17 negate_weights ,
18 zero_weights ,
19 flip_transpose_weights ,
20 ...
21 ]
22

23 return random_subset ( distortions )
24

25 def sample_signal_distortions ():
26 distortions = [
27 gelu ,
28 negate_signal_random_mask ,
29 flip_signal ,
30 ...
31 ]
32

33 return random_subset ( distortions )
34

35

36 class Network ():
37 def apply_weights ( weights ):
38 ... # Apply given weight tensors

to network
39

40 # Clean forward pass. Compare to
deepAugment_forwardPass ()

41 def clean_forwardPass (X):
42 X = network . block1 (X)
43 X = network . block2 (X)
44 ...
45 X = network . blockN (X)
46 return X
47

48 # Our forward pass. Compare to
clean_forwardPass ()

49 def deepAugment_forwardPass (X):
50 # Returns a list of distortions ,

each of which
51 # will be applied at a different

layer.



Noise Blur Weather Digital

Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77

+ ImageNet-21K Pretraining 22.4 65.8 61 64 63 69 84 68 74 69 71 61 53 53 81 54 63

+ SE (Self-Attention) 22.4 68.2 63 66 66 71 82 67 74 74 72 64 55 71 73 60 67

+ CBAM (Self-Attention) 22.4 70.0 67 68 68 74 83 71 76 73 72 65 54 70 79 62 67

+ ℓ∞ Adversarial Training 46.2 94.0 91 92 95 97 86 92 88 93 99 118 104 111 90 72 81

+ Speckle Noise 24.2 68.3 51 47 55 70 83 77 80 76 71 66 57 70 82 72 69

+ Style Transfer 25.4 69.3 66 67 68 70 82 69 80 68 71 65 58 66 78 62 70

+ AugMix 22.5 65.3 67 66 68 64 79 59 64 69 68 65 54 57 74 60 66

+ DeepAugment 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67

+ DeepAugment + AugMix 24.2 53.6 46 45 44 50 64 50 61 58 57 54 52 48 71 43 61

ResNet-152 (Larger Models) 21.7 69.3 73 73 76 67 81 66 74 71 68 62 51 67 76 69 65

ResNeXt-101 32×8d (Larger Models) 20.7 66.7 68 69 71 65 79 66 71 69 66 60 50 66 74 61 64

+ WSL Pretraining (1000× data) 17.8 51.7 49 50 51 53 72 55 63 53 51 42 37 41 67 40 51

+ DeepAugment + AugMix 20.1 44.5 36 35 34 43 55 42 55 48 48 47 43 39 59 34 50

Table 7: Clean Error, Corruption Error (CE), and mean CE (mCE) values for various models, and training methods on

ImageNet-C. The mCE value is computed by averaging across all 15 CE values. A CE value greater than 100 (e.g. adversarial

training on contrast) denotes worse performance than AlexNet. DeepAugment+AugMix improves robustness by over 23 mCE.

ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 [14] 7.9 63.9 56.0

+ ImageNet-21K Pretraining (10× data) 7.0 62.8 55.8

+ CBAM (Self-Attention) 7.0 63.2 56.2

+ ℓ∞ Adversarial Training 25.1 68.6 43.5

+ Speckle Noise 8.1 62.1 54.0

+ Style Transfer 8.9 58.5 49.6

+ AugMix 7.1 58.9 51.8

+ DeepAugment 7.5 57.8 50.3

+ DeepAugment + AugMix 8.0 53.2 45.2

ResNet-101 (Larger Models) 7.1 60.7 53.6

+ SE (Self-Attention) 6.7 61.0 54.3

ResNet-152 (Larger Models) 6.8 58.7 51.9

+ SE (Self-Attention) 6.6 60.0 53.4

ResNeXt-101 32×4d (Larger Models) 6.8 58.0 51.2

+ SE (Self-Attention) 5.9 59.6 53.7

ResNeXt-101 32×8d (Larger Models) 6.2 57.5 51.3

+ WSL Pretraining (1000× data) 4.1 24.2 20.1

+ DeepAugment + AugMix 6.1 47.9 41.8

Table 8: ImageNet-200 and ImageNet-Renditions error rates. ImageNet-21K and WSL Pretraining are Pretraining methods,

and pretraining gives mixed benefits. CBAM and SE are forms of Self-Attention, and these hurt robustness. ResNet-152 and

ResNeXt-101 32×8d test the impact of using Larger Models, and these help. Other methods augment data, and Style Transfer,

AugMix, and DeepAugment provide support for the Diverse Data Augmentation.

52 signal_distortions =
sample_signal_distortions ()

53

54 X = network . block1 (X)
55 apply_layer_1_distortions (X,

signal_distortions )
56 X = network . block2 (X)
57 apply_layer_2_distortions (X,

signal_distortions )

58 ...
59 apply_layer_N −1 _distortions (X,

signal_distortions )
60 X = network . blockN (X)
61 apply_layer_N_distortions (X,

signal_distortions )
62

63 return X



ImageNet-A (%)

ResNet-50 2.2

+ ImageNet-21K Pretraining (10× data) 11.4

+ Squeeze-and-Excitation (Self-Attention) 6.2

+ CBAM (Self-Attention) 6.9

+ ℓ∞ Adversarial Training 1.7

+ Style Transfer 2.0

+ AugMix 3.8

+ DeepAugment 3.5

+ DeepAugment + AugMix 3.9

ResNet-152 (Larger Models) 6.1

ResNet-152+Squeeze-and-Excitation (Self-Attention) 9.4

Res2Net-50 v1b 14.6

Res2Net-152 v1b (Larger Models) 22.4

ResNeXt-101 (32× 8d) (Larger Models) 10.2

+ WSL Pretraining (1000× data) 45.4

+ DeepAugment + AugMix 11.5

Table 9: ImageNet-A top-1 accuracy.

1 def train_one_epoch (classifier ,
batch_size , dataloader ):

2 noise2net = Noise2Net ( batch_size =
batch_size )

3 for batch , target in dataloader :
4 noise2net . reload_weights ()
5 noise2net . set_epsilon ( random .

uniform (0.375 , 0.75))
6 logits = model( noise2net . forward (

batch))
7 ... # Calculate loss and backrop
8

9 def train ():
10 for epoch in range ( epochs ):
11 train_one_epoch (classifier ,

batch_size , dataloader )
12

13 class DeepAugment_Noise2Net :
14 def __init__ (self , batch_size =5):
15 self. block1 = Res2NetBlock (

batch_size = batch_size )
16 self. block2 = Res2NetBlock (

batch_size = batch_size )
17 self. block3 = Res2NetBlock (

batch_size = batch_size )
18 self. block4 = Res2NetBlock (

batch_size = batch_size )
19

20 def reload_weights (self):
21 ... # Reload Network parameters
22

23 def set_epsilon (self , new_eps ):
24 self. epsilon = new_eps
25

26 def forward (self , x):
27 x = x + self. block1 (x) ∗ self.

epsilon
28 x = x + self. block2 (x) ∗ self.

epsilon

29 x = x + self. block3 (x) ∗ self.
epsilon

30 x = x + self. block4 (x) ∗ self.
epsilon

31 return x



Noise Blur Weather Digital

Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77

+ DeepAugment (EDSR) 23.5 64.0 56 57 54 64 77 71 78 68 64 64 55 64 78 46 67

+ DeepAugment (CAE) 23.2 67.0 58 60 62 62 75 73 77 68 66 60 52 66 80 63 78

+ DeepAugment (Both) 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67

Table 10: Clean Error, Corruption Error (CE), and mean CE (mCE) values for DeepAugment ablations on ImageNet-C. The

mCE value is computed by averaging across all 15 CE values.

C. Further Dataset Descriptions

ImageNet-R Classes. The 200 ImageNet classes and their

WordNet IDs in ImageNet-R are as follows.

Goldfish, great white shark, hammerhead,

stingray, hen, ostrich, goldfinch, junco, bald

eagle, vulture, newt, axolotl, tree frog, iguana,

African chameleon, cobra, scorpion, tarantula,

centipede, peacock, lorikeet, hummingbird, tou-

can, duck, goose, black swan, koala, jellyfish,

snail, lobster, hermit crab, flamingo, american

egret, pelican, king penguin, grey whale, killer

whale, sea lion, chihuahua, shih tzu, afghan

hound, basset hound, beagle, bloodhound, italian

greyhound, whippet, weimaraner, yorkshire terrier,

boston terrier, scottish terrier, west highland white

terrier, golden retriever, labrador retriever, cocker

spaniels, collie, border collie, rottweiler, german

shepherd dog, boxer, french bulldog, saint bernard,

husky, dalmatian, pug, pomeranian, chow chow,

pembroke welsh corgi, toy poodle, standard poodle,

timber wolf, hyena, red fox, tabby cat, leopard,

snow leopard, lion, tiger, cheetah, polar bear,

meerkat, ladybug, fly, bee, ant, grasshopper,

cockroach, mantis, dragonfly, monarch butterfly,

starfish, wood rabbit, porcupine, fox squirrel,

beaver, guinea pig, zebra, pig, hippopotamus,

bison, gazelle, llama, skunk, badger, orangutan,

gorilla, chimpanzee, gibbon, baboon, panda,

eel, clown fish, puffer fish, accordion, ambulance,

assault rifle, backpack, barn, wheelbarrow, basket-

ball, bathtub, lighthouse, beer glass, binoculars,

birdhouse, bow tie, broom, bucket, cauldron,

candle, cannon, canoe, carousel, castle, mobile

phone, cowboy hat, electric guitar, fire engine,

flute, gasmask, grand piano, guillotine, hammer,

harmonica, harp, hatchet, jeep, joystick, lab

coat, lawn mower, lipstick, mailbox, missile,

mitten, parachute, pickup truck, pirate ship, re-

volver, rugby ball, sandal, saxophone, school

bus, schooner, shield, soccer ball, space shuttle,

spider web, steam locomotive, scarf, submarine,

tank, tennis ball, tractor, trombone, vase, violin,

military aircraft, wine bottle, ice cream, bagel,

pretzel, cheeseburger, hotdog, cabbage, broc-

coli, cucumber, bell pepper, mushroom, Granny

Smith, strawberry, lemon, pineapple, banana,

pomegranate, pizza, burrito, espresso, volcano,

baseball player, scuba diver, acorn.

n01443537, n01484850, n01494475, n01498041,

n01514859, n01518878, n01531178, n01534433,

n01614925, n01616318, n01630670, n01632777,

n01644373, n01677366, n01694178, n01748264,

n01770393, n01774750, n01784675, n01806143,

n01820546, n01833805, n01843383, n01847000,

n01855672, n01860187, n01882714, n01910747,

n01944390, n01983481, n01986214, n02007558,

n02009912, n02051845, n02056570, n02066245,

n02071294, n02077923, n02085620, n02086240,

n02088094, n02088238, n02088364, n02088466,

n02091032, n02091134, n02092339, n02094433,

n02096585, n02097298, n02098286, n02099601,

n02099712, n02102318, n02106030, n02106166,

n02106550, n02106662, n02108089, n02108915,

n02109525, n02110185, n02110341, n02110958,

n02112018, n02112137, n02113023, n02113624,

n02113799, n02114367, n02117135, n02119022,

n02123045, n02128385, n02128757, n02129165,

n02129604, n02130308, n02134084, n02138441,

n02165456, n02190166, n02206856, n02219486,

n02226429, n02233338, n02236044, n02268443,

n02279972, n02317335, n02325366, n02346627,

n02356798, n02363005, n02364673, n02391049,

n02395406, n02398521, n02410509, n02423022,

n02437616, n02445715, n02447366, n02480495,

n02480855, n02481823, n02483362, n02486410,

n02510455, n02526121, n02607072, n02655020,

n02672831, n02701002, n02749479, n02769748,

n02793495, n02797295, n02802426, n02808440,

n02814860, n02823750, n02841315, n02843684,

n02883205, n02906734, n02909870, n02939185,

n02948072, n02950826, n02951358, n02966193,

n02980441, n02992529, n03124170, n03272010,

n03345487, n03372029, n03424325, n03452741,

n03467068, n03481172, n03494278, n03495258,

n03498962, n03594945, n03602883, n03630383,

n03649909, n03676483, n03710193, n03773504,

n03775071, n03888257, n03930630, n03947888,



ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0

+ DeepAugment (EDSR) 7.9 60.3 55.1

+ DeepAugment (CAE) 7.6 58.5 50.9

+ DeepAugment (EDSR + CAE) 7.5 57.8 50.3

+ DeepAugment (Noise2Net) 7.2 57.6 50.4

+ DeepAugment (All 3) 7.4 56.0 48.6

Table 11: DeepAugment ablations on ImageNet-200 and ImageNet-Renditions.

n04086273, n04118538, n04133789, n04141076,

n04146614, n04147183, n04192698, n04254680,

n04266014, n04275548, n04310018, n04325704,

n04347754, n04389033, n04409515, n04465501,

n04487394, n04522168, n04536866, n04552348,

n04591713, n07614500, n07693725, n07695742,

n07697313, n07697537, n07714571, n07714990,

n07718472, n07720875, n07734744, n07742313,

n07745940, n07749582, n07753275, n07753592,

n07768694, n07873807, n07880968, n07920052,

n09472597, n09835506, n10565667, n12267677.

Street View StoreFronts. The classes are

• auto shop

• bakery

• bank

• beauty sa-

lon

• car dealer

• car wash

• cell phone

store

• dentist

• discount

store

• dry cleaner

• furniture

store

• gas station

• gym

• hardware

store

• hotel

• liquor

store

• pharmacy

• religious

institution

• storage fa-

cility

• veterinary

care.

DeepFashion Remixed. The classes are

• short

sleeve top

• long sleeve

top

• short

sleeve out-

erwear

• long sleeve

outerwear

• vest

• sling

• shorts

• trousers

• skirt

• short

sleeve

dress

• long sleep

dress

• vest dress

• sling dress.

Size (small, moderate, or large) defines how much of the

image the article of clothing takes up. Occlusion (slight,

medium, or heavy) defines the degree to which the object is

occluded from the camera. Viewpoint (front, side/back, or

not worn) defines the camera position relative to the article

of clothing. Zoom (no zoom, medium, or large) defines how

much camera zoom was used to take the picture.






	1 . Introduction
	2 . Related Work
	3 . New Datasets
	3.1 . ImageNet-Renditions (ImageNet-R)
	3.2 . StreetView StoreFronts (SVSF)
	3.3 . DeepFashion Remixed
	3.4 . Real Blurry Images

	4 . DeepAugment
	5 . Experiments
	5.1 . Setup
	5.2 . Results

	6 . Conclusion
	A . Additional Results
	B . DeepAugment Details
	C . Further Dataset Descriptions

