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Abstract

We introduce four new real-world distribution shift
datasets consisting of changes in image style, image blur-
riness, geographic location, camera operation, and more.
With our new datasets, we take stock of previously proposed
methods for improving out-of-distribution robustness and
put them to the test. We find that using larger models and
artificial data augmentations can improve robustness on real-
world distribution shifts, contrary to claims in prior work.
We find improvements in artificial robustness benchmarks
can transfer to real-world distribution shifts, contrary to
claims in prior work. Motivated by our observation that data
augmentations can help with real-world distribution shifts,
we also introduce a new data augmentation method which
advances the state-of-the-art and outperforms models pre-
trained with 1000 x more labeled data. Overall we find that
some methods consistently help with distribution shifts in tex-
ture and local image statistics, but these methods do not help
with some other distribution shifts like geographic changes.
Our results show that future research must study multiple
distribution shifts simultaneously, as we demonstrate that
no evaluated method consistently improves robustness.

1. Introduction

While the research community must create robust models
that generalize to new scenarios, the robustness literature
[7, 12] lacks consensus on evaluation benchmarks and con-
tains many dissonant hypotheses. Hendrycks et al., 2020 [17]
find that many recent language models are already robust to
many forms of distribution shift, while others [42, 13] find
that vision models are largely fragile and argue that data aug-
mentation offers one solution. In contrast, other researchers
[34] provide results suggesting that using pretraining and
improving in-distribution test set accuracy improves natural
robustness, whereas other methods do not.
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Prior works have also offered various interpretations of
empirical results, such as the Texture Bias hypothesis that
convolutional networks are biased towards texture, harming
robustness [13]. Additionally, some authors posit a funda-
mental distinction between robustness on synthetic bench-
marks vs. real-world distribution shifts, casting doubt on the
generality of conclusions drawn from experiments conducted
on synthetic benchmarks [34].

It has been difficult to arbitrate these hypotheses because
existing robustness datasets vary multiple factors (e.g., time,
camera, location, etc.) simultaneously in unspecified ways
[30, 19]. Existing datasets also lack diversity such that it is
hard to extrapolate which methods will improve robustness
more broadly. To address these issues and test the methods
outlined above, we introduce four new robustness datasets
and a new data augmentation method.

First we introduce ImageNet-Renditions (ImageNet-R),
a 30,000 image test set containing various renditions (e.g.,
paintings, embroidery, etc.) of ImageNet object classes.
These renditions are naturally occurring, with textures and
local image statistics unlike those of ImageNet images, al-
lowing us to compare against gains on synthetic robustness
benchmarks.

Next, we investigate the effect of changes in the image
capture process with StreetView StoreFronts (SVSF) and
DeepFashion Remixed (DFR). SVSF contains business store-
front images collected from Google StreetView, along with
metadata allowing us to vary location, year, and even the
camera type. DFR leverages the metadata from DeepFash-
ion2 [11] to systematically shift object occlusion, orienta-
tion, zoom, and scale at test time. Both SVSF and DFR
provide distribution shift controls and do not alter texture,
which remove possible confounding variables affecting prior
benchmarks.

Additionally, we collect Real Blurry Images, which con-
sists of 1,000 blurry natural images from a 100-class sub-
set of the ImageNet classes. This benchmark serves as a
real-world analog for the synthetic blur corruptions of the
ImageNet-C benchmark [15]. With it we find that synthetic
corruptions correlate with corruptions that appear in the wild,
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Figure 1: Images from three of our four new datasets ImageNet-Renditions (ImageNet-R), DeepFashion Remixed (DFR),
and StreetView StoreFronts (SVSF). The SVSF images are recreated from the public Google StreetView. Our datasets test
robustness to various naturally occurring distribution shifts including rendition style, camera viewpoint, and geography.

contradicting speculations from previous work [34].

Finally, we contribute DeepAugment to increase robust-
ness to some new types of distribution shift. This augmenta-
tion technique uses image-to-image neural networks for data
augmentation. DeepAugment improves robustness on our
newly introduced ImageNet-R benchmark and can also be
combined with other augmentation methods to outperform a
model pretrained on 1000x more labeled data.

We use these new datasets to test four overarching classes
of methods for improving robustness:

* Larger Models: increasing model size improves robust-
ness to distribution shift [15, 40].

» Self-Attention: adding self-attention layers to models
improves robustness [19].

e Diverse Data Augmentation: robustness can increase
through data augmentation [42].

* Pretraining: pretraining on larger and more diverse
datasets improves robustness [29, 16].

After examining our results on these four new datasets as
well as prior benchmarks, we can rule out several previous
hypotheses while strengthening support for others. As one
example, we find that synthetic data augmentation robust-
ness interventions improve accuracy on ImageNet-R and
real-world image blur distribution shifts, which lends cre-
dence to the use of synthetic robustness benchmarks and also
reinforces the Texture Bias hypothesis. In the conclusion, we
summarize the various strands of evidence for and against
each hypothesis. Across our many experiments, we do not
find a general method that consistently improves robust-
ness, and some hypotheses require additional qualifications.
While robustness is often spoken of and measured as a single
scalar property like accuracy, our investigations show that
robustness is not so simple. Our results show that future
robustness research requires more thorough evaluation using

more robustness datasets.

2. Related Work

Robustness Benchmarks. Recent works [15, 30, 17]
have begun to characterize model performance on out-of-
distribution (OOD) data with various new test sets, with dis-
sonant findings. For instance, prior work [17] demonstrates
that modern language processing models are moderately ro-
bust to numerous naturally occurring distribution shifts, and
that IID accuracy is not straightforwardly predictive of OOD
accuracy for natural language tasks. For image recognition,
other work [15] analyzes image models and shows that they
are sensitive to various simulated image corruptions (e.g.,
noise, blur, weather, JPEG compression, etc.) from their
ImageNet-C benchmark.

Recht et al., 2019 [30] reproduce the ImageNet [32] val-
idation set for use as a benchmark of naturally occurring
distribution shift in computer vision. Their evaluations show
a 11-14% drop in accuracy from ImageNet to the new valida-
tion set, named ImageNetV2, across a wide range of architec-
tures. [34] use ImageNetV2 to measure natural robustness
and conclude that methods such as data augmentation do
not significantly improve robustness. Recently, [8] identify
statistical biases in ImageNetV2’s construction, and they
estimate that re-weighting ImageNetV?2 to correct for these
biases results in a less substantial 3.6% drop.

Data Augmentation. Recent works [13, 42, 18] demon-
strate that data augmentation can improve robustness on
ImageNet-C. The space of augmentations that help robust-
ness includes various types of noise [26, 31, 25], highly un-
natural image transformations [ 13, 43, 44], or compositions
of simple image transformations such as Python Imaging
Library operations [4, |8]. Some of these augmentations can
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Figure 2: ImageNet-Renditions (ImageNet-R) contains 30,000 images of ImageNet objects with different textures and styles.
This figure shows only a portion of ImageNet-R’s numerous rendition styles. The rendition styles (e.g., “Toy”) are for clarity
and are not ImageNet-R’s classes; ImageNet-R’s classes are a subset of 200 ImageNet classes.

improve accuracy on in-distribution examples as well as on
out-of-distribution (OOD) examples.

3. New Datasets

In order to evaluate the four robustness methods, we in-
troduce four new benchmarks that capture new types of
naturally occurring distribution shifts. ImageNet-Renditions
(ImageNet-R) and Real Blurry Images are both newly col-
lected test sets intended for ImageNet classifiers, whereas
StreetView StoreFronts (SVSF) and DeepFashion Remixed
(DFR) each contain their own training sets and multiple test
sets. SVSF and DFR split data into a training and test sets
based on various image attributes stored in the metadata. For
example, we can select a test set with images produced by
a camera different from the training set camera. We now
describe the structure and collection of each dataset.

3.1. ImageNet-Renditions (ImageNet-R)

While current classifiers can learn some aspects of an
object’s shape [28], they nonetheless rely heavily on natural
textural cues [13]. In contrast, human vision can process ab-
stract visual renditions. For example, humans can recognize
visual scenes from line drawings as quickly and accurately as
they can from photographs [3]. Even some primates species
have demonstrated the ability to recognize shape through
line drawings [21, 33].

To measure generalization to various abstract visual ren-
ditions, we create the ImageNet-Rendition (ImageNet-R)
dataset. ImageNet-R contains various artistic renditions of
object classes from the original ImageNet dataset. Note the
original ImageNet dataset discouraged such images since an-
notators were instructed to collect “photos only, no painting,

no drawings, etc.” [5]. We do the opposite.

Data Collection. ImageNet-R contains 30,000 image ren-
ditions for 200 ImageNet classes. We choose a subset of the
ImageNet-1K classes, following [19], for several reasons.
A handful ImageNet classes already have many renditions,
such as “triceratops.” We also choose a subset so that model
misclassifications are egregious and to reduce label noise.
The 200 class subset was also chosen based on rendition
prevalence, as “strawberry” renditions were easier to obtain
than “radiator” renditions. Were we to use all 1,000 Ima-
geNet classes, annotators would be pressed to distinguish
between Norwich terrier renditions as Norfolk terrier rendi-
tions, which is difficult. We collect images primarily from
Flickr and use queries such as “art,” “cartoon,” “graffiti,”
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“embroidery,” “graphics,” “origami,” “painting,” “pattern,”
“plastic object,” “plush object,” “sculpture,” “line drawing,”
“tattoo,” “toy,” “video game,” and so on. Images are filtered

by Amazon MTurk annotators using a modified collection
interface from ImageNetV2 [30]. For instance, after scrap-
ing Flickr images with the query “lighthouse cartoon,” we
have MTurk annotators select true positive lighthouse rendi-
tions. Finally, as a second round of quality control, graduate
students manually filter the resulting images and ensure that
individual images have correct labels and do not contain mul-
tiple labels. Examples are depicted in Figure 2. ImageNet-R
also includes the line drawings from [37], excluding hori-
zontally mirrored duplicate images, pitch black images, and
images from the incorrectly collected “pirate ship” class.

3.2. StreetView StoreFronts (SVSF)

Computer vision applications often rely on data from
complex pipelines that span different hardware, times, and
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Figure 3: Examples of images from Real Blurry Images. This dataset allows us to test whether model performance on
ImageNet-C’s synthetic blur corruptions track performance on real-world blur corruptions.

geographies. Ambient variations in this pipeline may re-
sult in unexpected performance degradation, such as degra-
dations experienced by health care providers in Thailand
deploying laboratory-tuned diabetic retinopathy classifiers
in the field [2]. In order to study the effects of shifts in
the image capture process we collect the StreetView Store-
Fronts (SVSF) dataset, a new image classification dataset
sampled from Google StreetView imagery [ 1] focusing on
three distribution shift sources: country, year, and camera.

Data Collection. SVSF consists of cropped images of
business store fronts extracted from StreetView images by an
object detection model. Each store front image is assigned
the class label of the associated Google Maps business list-
ing through a combination of machine learning models and
human annotators. We combine several visually similar busi-
ness types (e.g. drugstores and pharmacies) for a total of 20
classes, listed in the Supplementary Materials.

Splitting the data along the three metadata attributes of
country, year, and camera, we create one training set and five
test sets. We sample a training set and an in-distribution test
set (200K and 10K images, respectively) from images taken
in US/Mexico/Canada during 2019 using a “new” camera
system. We then sample four OOD test sets (10K images
each) which alter one attribute at a time while keeping the
other two attributes consistent with the training distribution.
Our test sets are year: 2017, 2018; country: France; and
camera: “old.”

3.3. DeepFashion Remixed

Changes in day-to-day camera operation can cause shifts
in attributes such as object size, object occlusion, camera
viewpoint, and camera zoom. To measure this, we repur-
pose DeepFashion2 [ ! 1] to create the DeepFashion Remixed
(DFR) dataset. We designate a training set with 48K images
and create eight out-of-distribution test sets to measure per-
formance under shifts in object size, object occlusion, cam-
era viewpoint, and camera zoom-in. DeepFashion Remixed

is a multi-label classification task since images may contain
more than one clothing item per image.

Data Collection. Similar to SVSF, we fix one value for
each of the four metadata attributes in the training distribu-
tion. Specifically, the DFR training set contains images with
medium scale, medium occlusion, side/back viewpoint, and
no zoom-in. After sampling an IID test set, we construct
eight OOD test distributions by altering one attribute at a
time, obtaining test sets with minimal and heavy occlusion;
small and large scale; frontal and not-worn viewpoints; and
medium and large zoom-in. See the Supplementary Materi-
als for details on test set sizes.

3.4. Real Blurry Images

We collect a small dataset of 1,000 real-world blurry im-
ages to capture real-world corruptions and validate synthetic
image corruption benchmarks such as ImageNet-C. We col-
lect the “Real Blurry Images” dataset from Flickr and query
ImageNet object class names concatenated with the word
“blurry.” Examples are in Figure 3. Each image belongs to
one of 100 ImageNet classes.

4. DeepAugment

In order to further explore effects of data augmentation,
we introduce a new data augmentation technique. Whereas
most previous data augmentations techniques use simple
augmentation primitives applied to the raw image itself, we
introduce DeepAugment, which distorts images by perturb-
ing internal representations of deep networks.

DeepAugment works by passing a clean image through
an image-to-image network and introducing several pertur-
bations during the forward pass. These perturbations are
randomly sampled from a set of manually designed func-
tions and applied to the network weights and to the feed-
forward signal at random layers. For example, our set of
perturbations includes zeroing, negating, convolving, trans-
posing, applying activation functions, and more. This setup
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Figure 4: DeepAugment examples preserve semantics, are data-dependent, and are far more visually diverse than, say, rotations.

generates semantically consistent images with unique and
diverse distortions as shown in Figure 4. Although our set
of perturbations is designed with random operations, we
show that DeepAugment still outperforms other methods
on benchmarks such as ImageNet-C and ImageNet-R. We
provide the pseudocode in the Supplementary Materials.

For our experiments, we specifically use the CAE [35]
and EDSR [24] architectures as the basis for DeepAugment.
CAE is an autoencoder architecture, and EDSR is a super-
resolution architecture. These two architectures show the
DeepAugment approach works with different architectures.
Each clean image in the original dataset and passed through
the network and is thereby stochastically distored, result-
ing in two distorted versions of the clean dataset (one for
CAE and one for EDSR). We then train on the augmented
and clean data simultaneously and call this approach Deep-
Augment. The EDSR and CAE architectures are arbitrary.
We show that the DeepAugment approach also works for
untrained, randomly sampled architectures in the Supple-
mentary Materials.

5. Experiments
5.1. Setup

In this section we briefly describe the evaluated models,
pretraining techniques, self-attention mechanisms, data aug-

mentation methods, and note various implementation details.
Model Architectures and Sizes. Most experiments are
evaluated on a standard ResNet-50 model [14]. Model size
evaluations use ResNets or ResNeXts [4 1] of varying sizes.
Pretraining. For pretraining we use ImageNet-21K which
contains approximately 21,000 classes and approximately 14
million labeled training images, or around 10x more labeled
training data than ImageNet-1K. We also tune an ImageNet-
21K model [22]. We also use a large pre-trained ResNeXt-
101 model [27]. This was pre-trained on on approximately 1
billion Instagram images with hashtag labels and fine-tuned
on ImageNet-1K. This Weakly Supervised Learning (WSL)
pretraining strategy uses approximately 1000 x more labeled
data.

Self-Attention. When studying self-attention, we employ
CBAM [39] and SE [20] modules, two forms of self-
attention that help models learn spatially distant dependen-
cies.

Data Augmentation. We use Style Transfer, AugMix, and
DeepAugment to evaluate the benefits of data augmentation,
and we contrast their performance with simpler noise aug-
mentations such as Speckle Noise and adversarial noise.
Style transfer [13] uses a style transfer network to apply art-
work styles to training images. We use AugMix [ 18] which
randomly composes simple augmentation operations (e.g.,
translate, posterize, solarize). DeepAugment, introduced



ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10 x labeled data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ {~ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer Augmentation 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2
ResNet-152 (Larger Models) 6.8 58.7 51.9

Table 1: ImageNet-200 and ImageNet-R top-1 error rates. ImageNet-200 uses the same 200 classes as ImageNet-R. DeepAug-
ment+AugMix improves over the baseline by over 10 percentage points. We take ImageNet-21K Pretraining and CBAM as
representatives of pretraining and self-attention, respectively. Style Transfer, AugMix, and DeepAugment are all instances of
more complex data augmentation, in contrast to simpler noise-based augmentations such as /., Adversarial Noise and Speckle
Noise. While there remains much room for improvement, results indicate that progress on ImageNet-R is tractable.

above, distorts the weights and feedforward passes of image-
to-image models to generate image augmentations. Speckle
Noise data augmentation muliplies each pixel by (1 + x)
with z sampled from a normal distribution [31, 15]. We
also consider adversarial training as a form of adaptive data
augmentation and use the model from [38] trained against
{ perturbations of size ¢ = 4/255.

5.2. Results

We now perform experiments on ImageNet-R, StreetView
StoreFronts, DeepFashion Remixed, and Real Blurry Images.
We also evaluate on ImageNet-C and compare and contrast
it with real distribution shifts.

ImageNet-R. Table | shows performance on ImageNet-R
as well as on ImageNet-200 (the original ImageNet data
restricted to ImageNet-R’s 200 classes). This has several
implications regarding the four method-specific hypothe-
ses. Pretraining with ImageNet-21K (approximately 10x
labeled data) hardly helps. The Supplementary Materials
shows WSL pretraining can help, but Instagram has rendi-
tions, while ImageNet excludes them; hence we conclude
comparable pretraining was ineffective. Notice self-attention
increases the IID/OOD gap. Compared to simpler data aug-
mentation techniques such as Speckle Noise, the data aug-
mentation techniques of Style Transfer, AugMix, and Deep-
Augment improve generalization. Note AugMix and Deep-
Augment improve in-distribution performance whereas Style
transfer hurts it. Also, our new DeepAugment technique is
the best standalone method with an error rate of 57.8%. Last,
larger models reduce the [ID/OOD gap.

As for prior hypothesis in the literature regarding model
robustness, we find that biasing networks away from natural
textures through diverse data augmentation improved per-

formance. The IID/OOD generalization gap varies greatly
by method, demonstrating that it is possible to significantly
outperform the trendline of models optimized solely for the
IID setting. Finally, as ImageNet-R contains real-world ex-
amples, and since data augmentation helps on ImageNet-R,
we now have clear evidence against the hypothesis that ro-
bustness interventions cannot help with natural distribution
shifts [34].

StreetView StoreFronts. In Table 2, we evaluate data
augmentation methods on SVSF and find that all of the
tested methods have mostly similar performance and that
no method helps much on country shift, where error rates
roughly double across the board. Here evaluation is lim-
ited to augmentations due to a 30 day retention window for
each instantiation of the dataset. Images captured in France
contain noticeably different architectural styles and store-
front designs than those captured in US/Mexico/Canada;
meanwhile, we are unable to find conspicuous and consis-
tent indicators of the camera and year. This may explain
the relative insensitivity of evaluated methods to the cam-
era and year shifts. Overall data augmentation here shows
limited benefit, suggesting either that data augmentation pri-
marily helps combat texture bias as with ImageNet-R, or that
existing augmentations are not diverse enough to capture
high-level semantic shifts such as building architecture.

DeepFashion Remixed. Table 3 shows our experimental
findings on DFR, in which all evaluated methods have an
average OOD mAP that is close to the baseline. In fact, most
OOD mAP increases track IID mAP increases. In general,
DFR’s size and occlusion shifts hurt performance the most.
We also evaluate with Random Erasure augmentation, which
deletes rectangles within the image, to simulate occlusion
[46]. Random Erasure improved occlusion performance,
but Style Transfer helped even more. Nothing substantially



Hardware Year Location
Network 1ID Old 2017 2018 France
ResNet-50 27.2 28.6 27.7 28.3 56.7
+ Speckle Noise | 28.5 29.5 29.2 295 57.4

+ Style Transfer | 29.9 313 302 312 59.3
+ DeepAugment | 30.5 31.2 302 313 59.1
+ AugMix 26.6 28.0 26.5 277 554

Table 2: SVSF classification error rates. Networks are robust to some natural distribution shifts but are substantially more

sensitive than the geographic shift. Here data augmentation hardly helps.

Size Occlusion Viewpoint Zoom
Network IID , OOD ,Small Large, Slight/None Heavy No Wear Side/Back Medium Large
ResNet-50 77.6| 55.1 | 394 73.0 515 41.2 50.5 63.2 487 733
+ ImageNet-21K Pretraining | 80.8| 58.3 | 40.0 73.6 552 43.0 63.0 67.3 505 739
+ SE (Self-Attention) 77.4| 553 | 389 727 52.1 40.9 529 64.2 478 728
+ Random Erasure 78.9| 564 | 399 75.0 525 42.6 534 66.0 488 734
+ Speckle Noise 78.9| 55.8 | 384 74.0 52.6 40.8 55.7 63.8 478 73.6
+ Style Transfer 80.2| 57.1 | 37.6 76.5 54.6 432 58.4 65.1 492 725
+ DeepAugment 79.7| 56.3 | 38.3 745 52.6 42.8 54.6 65.5 495 727
+ AugMix 80.4| 57.3 | 39.4 748 55.3 42.8 57.3 66.6 49.0 73.1
ResNet-152 (Larger Models) | 80.0| 57.1 | 40.0 75.6 52.3 42.0 57.7 65.6 489 744

Table 3: DeepFashion Remixed results. Unlike the previous tables, higher is better since all values are mAP scores for
this multi-label classification benchmark. The “OOD” column is the average of the row’s rightmost eight OOD values. All

techniques do little to close the IID/OOD generalization gap.

improved OOD performance beyond what is explained by
IID performance, so here it would appear that in this setting,
only IID performance matters. Our results suggest that while
some methods may improve robustness to certain forms of
distribution shift, no method substantially raises performance
across all shifts.

Real Blurry Images and ImageNet-C. We now consider
a previous robustness benchmark to evaluate the four major
methods. We use the ImageNet-C dataset [ 1 5] which applies
15 common image corruptions (e.g., Gaussian noise, defo-
cus blur, simulated fog, JPEG compression, etc.) across 5
severities to ImageNet-1K validation images. We find that
DeepAugment improves robustness on ImageNet-C. Fig-
ure 5 shows that when models are trained with both AugMix
and DeepAugment they set a new state-of-the-art, break-
ing the trendline and exceeding the corruption robustness
provided by training on 1000 x more labeled training data.
Note the augmentations from AugMix and DeepAugment
are disjoint from ImageNet-C’s corruptions. Full results are
shown in the Supplementary Materials. IID accuracy alone is
clearly unable to capture the full story of model robustness.
Instead, larger models, self-attention, data augmentation,
and pretraining all improve robustness far beyond the degree
predicted by their influence on IID accuracy.

A recent work [34] reminds us that ImageNet-C uses
various synthetic corruptions and suggest that they are de-
coupled from real-world robustness. Real-world robustness
requires generalizing to naturally occurring corruptions such

as snow, fog, blur, low-lighting noise, and so on, but it is an
open question whether ImageNet-C’s simulated corruptions
meaningfully approximate real-world corruptions.

We evaluate various models on Real Blurry Images and
find that all the robustness interventions that help with
ImageNet-C also help with real-world blurry images. Hence
ImageNet-C can track performance on real-world corrup-
tions. Moreover, DeepAugment+AugMix has the lowest er-
ror rate on Real Blurry Images, which again contradicts the
synthetic vs natural dichotomy. The upshot is that ImageNet-
C is a controlled and systematic proxy for real-world robust-
ness.

Our results, which are expanded on in the Supplementary
Materials, show that larger models, self-attention, data aug-
mentation, and pretraining all help, just like on ImageNet-C.
Here DeepAugment+AugMix attains state-of-the-art. These
results suggest ImageNet-C’s simulated corruptions track
real-world corruptions. In hindsight, this is expected since
various computer vision problems have used synthetic cor-
ruptions as proxies for real-world corruptions, for decades.
In short, ImageNet-C is a diverse and systematic benchmark
that is correlated with improvements on real-world corrup-
tions.

6. Conclusion

In this paper we introduced four real-world datasets
for evaluating the robustness of computer vision models:
ImageNet-Renditions, DeepFashion Remixed, StreetView



Method ImageNet-C Real Blurry Images ImageNet-R DFR
Larger Models + + + -
Self-Attention + + - -
Diverse Data Augmentation + + + -
Pretraining + + — -

Table 4: A highly simplified account of each method when tested against different datasets. Evidence for is denoted “+”, and
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—” denotes an absence of evidence or evidence against.
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Figure 5: ImageNet accuracy and ImageNet-C accuracy. Pre-
vious architectural advances slowly translate to ImageNet-C
performance improvements, but DeepAugment+AugMix on
a ResNet-50 yields approximately a 19% accuracy increase.
This shows IID accuracy and OOD accuracy are not coupled,
contra [34].

StoreFronts, and Real Blurry Images. With our new datasets,
we re-evaluate previous robustness interventions and deter-
mine whether various robustness hypotheses are correct or
incorrect in view of our new findings.

Our main results for different robustness interventions
are as follows. Larger models improved robustness on Real
Blurry Images, ImageNet-C, and ImageNet-R, but not with
DFR. While self-attention noticeably helped Real Blurry
Images and ImageNet-C, it did not help with ImageNet-R
and DFR. Diverse data augmentation was ineffective for
SVSF and DFR, but it greatly improved accuracy on Real
Blurry Images, ImageNet-C, and ImageNet-R. Pretraining
greatly helped with Real Blurry Images and ImageNet-C but
hardly helped with DFR and ImageNet-R. It was not obvious
a priori that synthetic data augmentation could improve
accuracy on a real-world distribution shift such as ImageNet-
R, nor had pretraining ever failed to improve performance
in earlier research [34]. Table 4 shows that many methods

improve robustness across multiple distribution shifts. While
no single method consistently helped across all distribution
shifts, some helped more than others.

Our analysis also has implications for the three robust-
ness hypotheses. In support of the Texture Bias hypothesis,
ImageNet-R shows that standard networks do not generalize
well to renditions (which have different textures), but that
diverse data augmentation (which often distorts textures)
can recover accuracy. More generally, larger models and di-
verse data augmentation consistently helped on ImageNet-R,
ImageNet-C, and Real Blurry Images, suggesting that these
two interventions reduce texture bias. However, these meth-
ods helped little for geographic shifts, showing that there
is more to robustness than texture bias alone. Regarding
more general trends across the last several years of progress
in deep learning, while IID accuracy is a strong predictor
of OOD accuracy, it is not decisive, contrary to some prior
works [34]. Again contrary to a hypothesis from prior work
[34], our findings show that the gains from data augmen-
tation on ImageNet-C generalize to both ImageNet-R and
Real Blurry Images serve as a resounding validation of using
synthetic benchmarks to measure model robustness.

The existing literature presents several conflicting ac-
counts of robustness. What led to this conflict? We suspect
that this is due in large part to inconsistent notions of how
to best evaluate robustness, and in particular a desire to sim-
plify the problem by establishing the primacy of a single
benchmark over others. In response, we collected several
additional datasets which each capture new dimensions of
distribution shift and degradations in model performance
not well studied before. These new datasets demonstrate
the importance of conducting multi-faceted evaluations of
robustness as well as the general complexity of the landscape
of robustness research, where it seems that so far nothing
consistently helps in all settings. Hence the research com-
munity may consider prioritizing the study of new robust-
ness methods, and we encourage the research community to
evaluate future methods on multiple distribution shifts. For
example, ImageNet models should at least be tested against
ImageNet-C and ImageNet-R. By heightening experimental
standards for robustness research, we facilitate future work
towards developing systems that can robustly generalize in
safety-critical settings.
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The Effect of Model Size on
ImageNet-R Error Rates

B Baseline
B Larger Model

ImageNet-R Error (%)

ResNet DPN ResNeXt

Figure 6: Larger models improve robustness on ImageNet-R.
The baseline models are ResNet-50, DPN-68, and ResNeXt-
50 (32 x 4d). The larger models are ResNet-152, DPN-98,
and ResNeXt-101 (32 x 8d). The baseline ResNeXt has a
7.1% ImageNet error rate, while the large has a 6.2% error
rate.

A. Additional Results

ImageNet-R. Expanded ImageNet-R results are in Table 8.
WSL pretraining on Instagram images appears to yield dra-
matic improvements on ImageNet-R, but the authors note the
prevalence of artistic renditions of object classes on the Insta-
gram platform. While ImageNet’s data collection process ac-
tively excluded renditions, we do not have reason to believe
the Instagram dataset excluded renditions. On a ResNeXt-
101 32x8d model, WSL pretraining improves ImageNet-R
performance by a massive 37.5% from 57.5% top-1 error to
24.2%. Ultimately, without examining the training images
we are unable to determine whether ImageNet-R represents
an actual distribution shift to the Instagram WSL models.
However, we also observe that with greater controls, that is
with ImageNet-21K pre-training, pretraining hardly helped
ImageNet-R performance, so it is not clear that more pre-
training data improves ImageNet-R performance.
Increasing model size appears to automatically improve
ImageNet-R performance, as shown in Figure 6. A ResNet-
50 (25.5M parameters) has 63.9% error, while a ResNet-152
(60M) has 58.7% error. ResNeXt-50 32 x4d (25.0M) attains
62.3% error and ResNeXt-101 32x8d (88M) attains 57.5%
eITor.
ImageNet-C. Expanded ImageNet-C results are Table 7.
We also tested whether model size improves performance on
ImageNet-C for even larger models. With a different code-
base, we trained ResNet-50, ResNet-152, and ResNet-500
models which achieved 80.6, 74.0, and 68.5 mCE respec-
tively. Expanded comparisons between ImageNet-C and



Real Blurry Images is in Table 5.

ImageNet-A. ImageNet-A [19] is an adversarially filtered
test set and is constructed based on existing model weak-
nesses (see [36] for another robustness dataset algorithmi-
cally determined by model weaknesses). This dataset con-
tains examples that are difficult for a ResNet-50 to classify,
so examples solvable by simple spurious cues are are es-
pecially infrequent in this dataset. Results are in Table 9.
Notice Res2Net architectures [9] can greatly improve accu-
racy. Results also show that Larger Models, Self-Attention,
and Pretraining help, while Diverse Data Augmentation
usually does not help substantially.

Implications for the Four Methods.

Larger Models help with ImageNet-C (+), ImageNet-A (+),
ImageNet-R (+), yet does not markedly improve DFR (—)
performance.

Self-Attention helps with ImageNet-C (+), ImageNet-A (+),
yet does not help ImageNet-R (—) and DFR (—) perfor-
mance.

Diverse Data Augmentation helps ImageNet-C (4),
ImageNet-R (4), yet does not markedly improve ImageNet-
A (—), DFR(—), nor SVSF (—) performance.

Pretraining helps with ImageNet-C (+), ImageNet-A (+),
yet does not markedly improve DFR (—) nor ImageNet-R
(—) performance.

B. DeepAugment Details

Pseudocode. Below is Pythonic pseudocode for DeepAug-
ment. The basic structure of DeepAugment is agnostic to the
backbone network used, but specifics such as which layers
are chosen for various transforms may vary as the backbone
architecture varies. We do not need to train many different
image-to-image models to get diverse distortions [45, 23].
We only use two existing models, the EDSR super-resolution
model [24] and the CAE image compression model [35]. See
full code for such details.

At a high level, DeepAugment processes each image with
an image-to-image network. The image-to-image network’s
weights and feedforward activations are distorted with each
pass. The distortion is made possible by, for example, negat-
ing the network’s weights and applying dropout to the feed-
forward activations. These modifications were not carefully
chosen and demonstrate the utility of mixing together diverse
operations without tuning. The resulting image is distorted
and saved. This process generates an augmented dataset.

Ablations. We run ablations on DeepAugment to under-
stand the contributions from the EDSR and CAE models
independently. Table 11 contains results of these experi-
ments on ImageNet-R and Table 10 contains results of these
experiments on ImageNet-C. In both tables, “DeepAugment
(EDSR)” and “DeepAugment (CAE)” refer to experiments

where we only use a single extra augmented training set (+
the standard training set), and train on those images.

Noise2Net. We show that untrained, randomly sampled
neural networks can provide useful deep augmentations,
highlighting the efficacy of the DeepAugment approach.
While in the main paper we use EDSR and CAE to cre-
ate DeepAugment augmentations, in this section we explore
the use of randomly initialized image-to-image networks
to generate diverse image augmentations. We propose a
DeepAugment method, Noise2Net.

In Noise2Net, the architecture and weights are randomly
sampled. Noise2Net is the composition of several resid-
ual blocks: Block(z) = x + ¢ - fo(x), where O is ran-
domly initialized and € is a parameter that controls the
strength of the augmentation. For all our experiments, we
use 4 Res2Net blocks [10] and e ~ U(0.375,0.75). The
weights of Noise2Net are resampled at every minibatch, and
the dilation and kernel sizes of all the convolutions used
in Noise2Net are randomly sampled every epoch. Hence
Noise2Net augments an image to an augmented image by
processing the image through a randomly sampled network
with random weights.

Recall that in the case of EDSR and CAE, we used net-
works to generate a static dataset, and then we trained nor-
mally on that static dataset. This setup could not be done
on-the-fly. That is because we fed in one example at a time
with EDSR and CAE. If we pass the entire minibatch through
EDSR or CAE, we will end up applying the same augmen-
tation to all images in the minibatch, reducing stochasticity
and augmentation diversity. In contrast, Noise2Net enables
us to process batches of images on-the-fly and obviates the
need for creating a static augmented dataset.

In Noise2Net, each example is processed differently in
parallel, so we generate more diverse augmentations in real-
time. To make this possible, we use grouped convolutions. A
grouped convolution with number of groups = NV will take a
set of kN channels as input, and apply NV independent convo-
lutions on channels {1, ..., k}, {k+1,...,2k},...., {(N—
Dk +1,..., Nk}. Given a minibatch of size B, we can ap-
ply a randomly initialized grouped convolution with N = B
groups in order to apply a different random convolutional fil-
ter to each element in the batch in a single forward pass. By
replacing all the convolutions in each Res2Net block with
a grouped convolution and randomly initializing network
weights, we arrive at Noise2Net, a variant of DeepAugment.
See Figure 7 for a high-level overview of Noise2Net and
Figure 8 for sample outputs.

We evaluate the Noise2Net variant of DeepAugment on
ImageNet-R. Table 11 shows that it outperforms the EDSR
and CAE variants of DeepAugment, even though the network
architecture is randomly sampled, its weights are random,
and the network is not trained. This demonstrates the flex-



Network Defocus Glass Motion Zoom ImageNet-C Real Blurry
Blur Blur Blur Blur Blur Mean Images
ResNet-50 61 73 61 64 65 58.7
+ ImageNet-21K Pretraining 56 69 53 59 59 54.8
+ CBAM (Self-Attention) 60 69 56 61 62 56.5
+ ('~ Adversarial Training 80 71 72 71 74 71.6
+ Speckle Noise 57 68 60 64 62 56.9
+ Style Transfer 57 68 55 64 61 56.7
+ AugMix 52 65 46 51 54 54.4
+ DeepAugment 48 60 51 61 55 54.2
+ DeepAugment+AugMix 41 53 39 48 45 51.7
ResNet-152 (Larger Models) 67 81 66 74 58 54.3

Table 5: ImageNet-C Blurs (Defocus, Glass, Motion, Zoom) vs Real Blurry Images. All values are error rates and percentages.
The rank orderings of the models on Real Blurry Images are similar to the rank orderings for “ImageNet-C Blur Mean,” so

ImageNet-C’s simulated blurs track real-world blur performance.

Hypothesis ImageNet-C  Real Blurry Images ImageNet-A ImageNet-R DFR SVSF
Larger Models + + + 1 _
Self-Attention + + + _ _

Diverse Data Augmentation + + — + - —
Pretraining + + + — _

Table 6: A highly simplified account of each method when tested against different datasets. This table includes ImageNet-A

results.

ibility of the DeepAugment approach. Below is Pythonic
pseudocode for training a classifier using the Noise2Net
variant of DeepAugment.

def

return random_subset (distortions)

sample_signal_distortions ():

distortions = [
def main(): gelu,
net.apply_weights ( 28 negate_signal_random_mask,
deepAugment _getNetwork()) # EDSR, CAE ¥ flip_signal,
30 “ ..
for image in dataset: # May be the i 1
ImageNet training set 2
if np.random.uniform() < 0.05: # * return random_subset (distortions)
Arbitrary refresh prob 4
net.apply_weights ( o
deepAugment_getNetwork ()) « class Network(): )
new_image = net. 3 def apply_weights(weights):
deepAugment_forwardPass (image) 38 # Apply given weight tensors
to network
def deepAugment_getNetwork (): 9
weights = load_clean_weights () 40 # Clean forward pass. Compare to
weight_distortions = deepAugment_forwardPass ()
sample_weight_distortions () 41 def clean_forwardPass(X):
for d in weight_distortions: 2 X = network.blockl(X)
weights = apply_distortion(d, 4 X = network.block2(X)
weights) “ —
return weights 45 X = network.blockN(X)
46 return X
def sample_weight_distortions(): 7

distortions = [
negate_weights,
zero_weights,,

flip_transpose_weights,

# Our forward pass.
clean_forwardPass ()
def deepAugment_forwardPass (X):

# Returns a list of distortionmns,
each of which

# will be applied at a different
layer.

Compare to



Noise Blur Weather Digital

Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
ResNet-50 239 1767 80 82 83 75 89 78 80 | 78 75 66 57 71 8 71 T
+ ImageNet-21K Pretraining 224 1658 | 61 64 63 69 84 68 74 | 69 71 61 53 53 81 54 63
+ SE (Self-Attention) 224 1682| 63 66 66 71 82 67 74 | 74 72 64 55 71 73 60 67
+ CBAM (Self-Attention) 224 1700 67 68 68 74 83 71 76 | 73 72 65 54 70 79 62 67
+ ¢~ Adversarial Training 462 {940 91 92 95 97 86 92 88 | 93 99 118 104 111 90 72 81
+ Speckle Noise 242 | 683 | 51 47 55 70 83 77 80 | 76 71 66 57 70 82 72 69
+ Style Transfer 254 1693 | 66 67 68 70 82 69 80 | 68 71 65 58 66 78 62 70
+ AugMix 225 [ 653 | 67 66 68 64 79 59 64 | 69 68 65 54 57 74 60 66
+ DeepAugment 233 | 604 | 49 50 47 59 73 65 76 | 64 60 58 51 61 76 48 67
+ DeepAugment + AugMix 242 |53.6| 46 45 44 50 64 50 61 58 57 54 52 48 71 43 6l
ResNet-152 (Larger Models) 217 1693 | 73 73 76 67 81 66 74 | 71 68 62 51 67 76 69 65
ResNeXt-101 32 x8d (Larger Models)| 20.7 | 66.7 | 68 69 71 65 79 66 71 | 69 66 60 50 66 74 61 64
+ WSL Pretraining (1000 x data) 17.8 | 51.7 49 50 51 53 72 55 63 | 53 51 42 37 41 67 40 51
+ DeepAugment + AugMix 20.1 |445| 36 35 34 43 55 42 55 | 48 48 47 43 39 59 34 50

Table 7: Clean Error, Corruption Error (CE), and mean CE (mCE) values for various models, and training methods on
ImageNet-C. The mCE value is computed by averaging across all 15 CE values. A CE value greater than 100 (e.g. adversarial
training on contrast) denotes worse performance than AlexNet. DeepAugment+AugMix improves robustness by over 23 mCE.

ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 [14] 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10x data) 7.0 62.8 55.8
+ CBAM (Self-Attention) 7.0 63.2 56.2
+ {~ Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2
ResNet-101 (Larger Models) 7.1 60.7 53.6
+ SE (Self-Attention) 6.7 61.0 54.3
ResNet-152 (Larger Models) 6.8 58.7 51.9
+ SE (Self-Attention) 6.6 60.0 534
ResNeXt-101 32x4d (Larger Models) 6.8 58.0 51.2
+ SE (Self-Attention) 5.9 59.6 53.7
ResNeXt-101 32x8d (Larger Models) 6.2 57.5 51.3
+ WSL Pretraining (1000 x data) 4.1 24.2 20.1
+ DeepAugment + AugMix 6.1 479 41.8

Table 8: ImageNet-200 and ImageNet-Renditions error rates. ImageNet-21K and WSL Pretraining are Pretraining methods,
and pretraining gives mixed benefits. CBAM and SE are forms of Self-Attention, and these hurt robustness. ResNet-152 and
ResNeXt-101 32x 8d test the impact of using Larger Models, and these help. Other methods augment data, and Style Transfer,
AugMix, and DeepAugment provide support for the Diverse Data Augmentation.

signal_distortions = 58 c.
sample_signal_distortions () 59 apply_layer_N-1_distortions (X,
signal_distortions)
X = network.blockl(X) 60 X = network.blockN(X)
apply_layer_1_distortions (X, 61 apply_layer_N_distortions (X,
signal_distortions) signal_distortions)
X = network.block2(X) I3
apply_layer_2_distortions (X, 63 return X

signal_distortions)



ImageNet-A (%)

ResNet-50 2.2
+ ImageNet-21K Pretraining (10x data) 114
+ Squeeze-and-Excitation (Self-Attention) 6.2
+ CBAM (Self-Attention) 6.9
+ ¢~ Adversarial Training 1.7
+ Style Transfer 2.0
+ AugMix 3.8
+ DeepAugment 35
+ DeepAugment + AugMix 39
ResNet-152 (Larger Models) 6.1
ResNet-152+Squeeze-and-Excitation (Self-Attention) 94
Res2Net-50 v1b 14.6
Res2Net-152 v1b (Larger Models) 22.4
ResNeXt-101 (32 x 8d) (Larger Models) 10.2
+ WSL Pretraining (1000 x data) 454
+ DeepAugment + AugMix 11.5

Table 9: ImageNet-A top-1 accuracy.

def train_one_epoch(classifier,

batch_size, dataloader):

noise2net = Noise2Net (batch_size=

batch_size)

for batch, target in dataloader:
noise2net.reload_weights ()
noise2net.set_epsilon(random.

uniform (0.375, 0.75))

logits = model(noise2net.forward(

batch))
# Calculate loss and backrop

def train():

for epoch in range (epochs):
train_one_epoch(classifier,
batch_size, dataloader)

class DeepAugment_Noise2Net:

def __init__(self, batch_size=5):

self .blockl = Res2NetBlock(
batch_size=batch_size)

self .block2 = Res2NetBlock(
batch_size=batch_size)

self .block3 = Res2NetBlock(
batch_size=batch_size)

self .block4 = Res2NetBlock(
batch_size=batch_size)

def reload_weights(self):
# Reload Network parameters

def set_epsilon(self, new_eps):
self .epsilon = new_eps

def forward(self, x):

x = x + self.blockl(x) * self.
epsilon

x = x + self.block2(x) * self.
epsilon

x = x + self.block3(x) * self.
epsilon

x = x + self.block4(x) * self.
epsilon

return x



Noise

Blur Weather Digital

Clean | mCE |Gauss. Shot Impulse|Defocus Glass Motion Zoom|Snow Frost Fog Bright|Contrast Elastic Pixel JPEG

ResNet-50 239|767 80 82 83 75
+ DeepAugment (EDSR) 23.5 [64.0| 56 57 54 64
+ DeepAugment (CAE) 232 [67.0| 58 60 62 62
+ DeepAugment (Both) 233 | 604 | 49 50 47 59

78 80 [ 78 75 66 57 71 8 77 71
71 78 | 68 64 64 55 64 78 46 67
73 77 | 68 66 60 52 66 80 63 78
65 76 | 64 60 58 51 61 76 48 67

Table 10: Clean Error, Corruption Error (CE), and mean CE (mCE) values for DeepAugment ablations on ImageNet-C. The

mCE value is computed by averaging across all 15 CE values.

C. Further Dataset Descriptions

ImageNet-R Classes. The 200 ImageNet classes and their
WordNet IDs in ImageNet-R are as follows.

Goldfish, great white shark, hammerhead,
stingray, hen, ostrich, goldfinch, junco, bald
eagle, vulture, newt, axolotl, treefrog, iguana,
African chameleon, cobra, scorpion, tarantula,
centipede, peacock, lorikeet, hummingbird, tou-
can, duck, goose, black swan, koala, jellyfish,
snail, lobster, hermit crab, flamingo, american
egret, pelican, king penguin, grey whale, Kkiller
whale, sea lion, chihuahua, shih tzu, afghan
hound, basset hound, beagle, bloodhound, italian
greyhound, whippet, weimaraner, yorkshire terrier,
boston terrier, scottish terrier,  west highland white
terrier,  golden retriever, labrador retriever, cocker
spaniels, collie, border collie, rottweiler, german
shepherd dog, boxer, french bulldog, saint bernard,
husky, dalmatian, pug, pomeranian, chow chow,
pembroke welsh corgi, toy poodle, standard poodle,
timber wolf, hyena, red fox, tabby cat, leopard,
snow leopard, lion, tiger, cheetah, polar bear,
meerkat, ladybug, fly, bee, ant, grasshopper,
cockroach,  mantis, dragonfly, monarch butterfly,
starfish, wood rabbit, porcupine, fox squirrel,
beaver, guinea pig, zebra, pig, hippopotamus,
bison, gazelle, llama, skunk, badger, orangutan,
gorilla, chimpanzee, gibbon, baboon, panda,
eel, clown fish, puffer fish, accordion, ambulance,
assaultrifle, backpack, barn, wheelbarrow, basket-
ball, bathtub, lighthouse, beer glass, binoculars,
birdhouse, bow tie, broom, bucket, cauldron,
candle, cannon, canoe, carousel, castle, mobile
phone, cowboy hat, electric guitar, fire engine,
flute, gasmask, grand piano, guillotine, hammer,
harmonica, harp, hatchet, jeep, joystick, lab
coat, lawn mower, lipstick, mailbox, missile,
mitten,  parachute, pickup truck, pirate ship, re-
volver, rugby ball, sandal, saxophone, school
bus, schooner, shield, soccer ball, space shuttle,
spider web, steam locomotive, scarf, submarine,
tank, tennis ball, tractor, trombone, vase, violin,
military aircraft, wine bottle, ice cream, bagel,

pretzel,  cheeseburger, hotdog, cabbage, broc-
coli, cucumber, bell pepper, mushroom, Granny
Smith, strawberry, lemon, pineapple, banana,
pomegranate, pizza, burrito, espresso, volcano,
baseball player, scuba diver, acorn.

n01443537, n01484850, n01494475, n01498041,
n01514859, n01518878, n01531178, n01534433,
n01614925, n01616318, n01630670, n01632777,
n01644373, n01677366, n01694178, n01748264,
n01770393, n01774750, n01784675, n01806143,
n01820546, n01833805, n01843383, n01847000,
n01855672, n01860187, n01882714, n01910747,
n01944390, n01983481, n01986214, 102007558,
n02009912, n02051845, n02056570, 102066245,
n02071294, n02077923, n02085620, 102086240,
n02088094, n02088238, n02088364, 102088466,
n02091032, n02091134, n02092339, 102094433,
n02096585, n02097298, n02098286, 102099601,
n02099712, 002102318, n02106030, 102106166,
n02106550, n02106662, n02108089, n02108915,
n02109525, n02110185, n02110341, n02110958,
n02112018, n02112137, 002113023, n02113624,
n02113799, n02114367, n02117135, 102119022,
n02123045, n02128385, n02128757, 102129165,
n02129604, n02130308, n02134084, n02138441,
n02165456, n02190166, n02206856, 102219486,
n02226429, n02233338, n02236044, 102268443,
n02279972, n02317335, n02325366, 102346627,
n02356798, n02363005, n02364673, 102391049,
n02395406, n02398521, n02410509, 102423022,
n02437616, n02445715, n02447366, 102480495,
n02480855, n02481823, n02483362, 102486410,
n02510455, 002526121, n02607072, 102655020,
n02672831, n02701002, n02749479, 102769748,
n02793495, n02797295, n02802426, 102808440,
n02814860, n02823750, n02841315, n02843684,
n02883205, n02906734, n02909870, 102939185,
n02948072, n02950826, n02951358, 102966193,
n02980441, n02992529, n03124170, 103272010,
n03345487, 003372029, n03424325, 103452741,
n03467068, n03481172, n03494278, 103495258,
n03498962, n03594945, n03602883, 103630383,
n03649909, n03676483, n03710193, n03773504,
n03775071, n03888257, n03930630, n03947888,



ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0
+ DeepAugment (EDSR) 7.9 60.3 55.1
+ DeepAugment (CAE) 7.6 58.5 50.9
+ DeepAugment (EDSR + CAE) 7.5 57.8 50.3
+ DeepAugment (Noise2Net) 7.2 57.6 50.4
+ DeepAugment (All 3) 7.4 56.0 48.6

Table 11: DeepAugment ablations on ImageNet-200 and ImageNet-Renditions.

n04086273, n04118538, n04133789, n04141076, Size (small, moderate, or large) defines how much of the
n04146614, n04147183, n04192698, n04254680, image the article of clothing takes up. Occlusion (slight,
n04266014, n04275548, n04310018, n04325704, medium, or heavy) defines the degree to which the object is
n04347754, n04389033, n04409515, n04465501, occluded from the camera. Viewpoint (front, side/back, or
n04487394, n04522168, n04536866, n04552348, not worn) defines the camera position relative to the article
n04591713, n07614500, n07693725, n07695742, of clothing. Zoom (no zoom, medium, or large) defines how
n07697313, n07697537, n07714571, n07714990, much camera zoom was used to take the picture.
n07718472, n07720875, n07734744, n07742313,

n07745940, n07749582, n07753275, n07753592,

n07768694, n07873807, n07880968, n07920052,

n09472597, n09835506, nl0565667, nl2267677.

Street View StoreFronts. The classes are

* auto shop  dentist * hotel
« bakery e discount * liquor
store store
* bank
* dry cleaner * pharmacy
* beauty sa- e furni
o tlrmture * religious
store institution

e car dealer « gas station
* storage fa-

e car wash « gym cility
e cell phone * hardware * veterinary
store store care.

DeepFashion Remixed. The classes are

e short outerwear e short
sleeve top sleeve
* vest dress
* long sleeve
op " sling * long sleep
* short e shorts dress
sleeve out-
erwear e trousers e vest dress

* long sleeve o skirt * sling dress.



Represented Distribution Shifts

ImageNet-Renditions artistic renditions (cartoons, graffiti, embroidery, graphics, origami,
paintings, sculptures, sketches, tattoos, toys, ...)

DeepFashion Remixed occlusion, size, viewpoint, zoom

StreetView StoreFronts camera, capture year, country

Table 12: Various distribution shifts represented in our three new benchmarks. ImageNet-Renditions is a new test set for
ImageNet trained models measuring robustness to various object renditions. DeepFashion Remixed and StreetView StoreFronts
each contain a training set and multiple test sets capturing a variety of distribution shifts.

Training set Testing images
ImageNet-R 1281167 30000
DFR 48000 42640, 7440, 28160, 10360, 480, 11040, 10520, 10640
SVSF 200000 10000, 10000, 10000, 8195, 9788

Table 13: Number of images in each training and test set. ImageNet-R training set refers to the ILSVRC 2012 training
set [0]. DeepFashion Remixed test sets are: in-distribution, occlusion - none/slight, occlusion - heavy, size - small, size -
large, viewpoint - frontal, viewpoint - not-worn, zoom-in - medium, zoom-in - large. StreetView StoreFronts test sets are:
in-distribution, capture year - 2018, capture year - 2017, camera system - new, country - France.

&€
r\** \1

(1,3xB,H,W)

(1,3xB,H,W)

Repeated N=4 Times
(BI3’H’W) (B,3,H,W)

Figure 7: Parallel augmentation with Noise2Net. We collapse batches to the channel dimension to ensure that different
transformations are applied to each image in the batch. Feeding images into the network in the standard way would result in
the same augmentation being applied to each image, which is undesirable. The function fo(z) is a Res2Net block with all
convolutions replaced with grouped convolutions.



€=0.00 e=025 e=0.75

Figure 8: Example outputs of Noise2Net for different values of €. Note € = 0 is the original image.
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