Tar AR: Bringing The Past To Life In Place-based Augmented Reality Science Learning

Gale M. Sinatra

Imogen Herrick, Alana Kennedy, Benjamin Nye, William Swartout, & Emily Lindsey

University of Southern California

Society for Text & Discourse 2020

Augmented Reality (AR) in Education

AR: Immersive technology that overlays virtual objects onto the real world

- Can make hidden worlds visible
- Novel and personalized interactions with science can resolve scientific misconceptions (Dole & Sinatra, 1998; Yoon, Elinich, Wang, Steinmeier, & Tucker, 2012)
- Associated with learning gains in the classroom. (Chang, Hou, Pan, Sung, & Chang, 2015; Ferrer-Torregrosa, Torralba, Jimenez, García, & Barcia, 2015).

Augmented Reality (AR) in Education

- Informal learning institutions (e.g., museums) AR exhibits focus on the enhancement of visitor interest and engagement (e.g., Waite et al., 2005)
- AR in museum settings has been studies with students (e.g., Yoon, Anderson, Lin, & Elinich, 2017; Yoon et al., 2012)
- Less clear how adult learners experience shifts in learning and engagement within informal learning environments through AR.

Science Museum Oklahoma (SMO)

Research Questions

- Does AR technology facilitate learning of science content?
- 2. Does AR technology facilitate interest/emotions in science distinguishable from interest/emotions in AR?
- 3. What surprised participants?
- 4. Did knowledge shift?

Gale testing out AR at La Brea During Data Collection

Methods

- Design Based Research
 - Design #1 pilot test
 - Design #2 usability test
- Pilot Participants:
 - Visitors to the La Brea Tar Pits and Museum
 - N = 62 adult visitors
 - 53% of participants were between the ages of 23 and 40 years
 - 77% had no prior experience with AR
 - 77% were first-time visitors to the La Brea Tar Pits
- Usability participants
 - Convenience sample of 40 Natural History museum employees

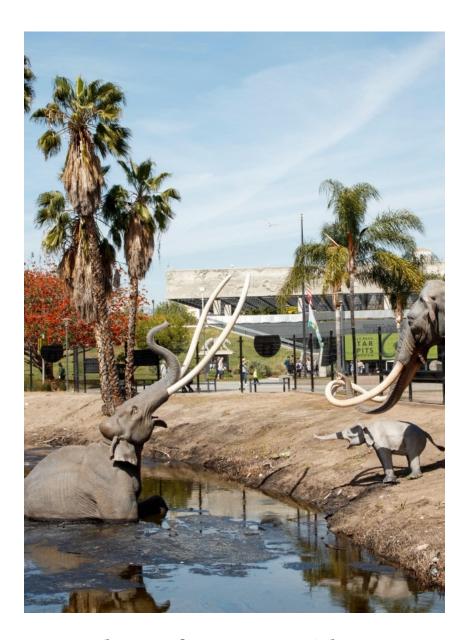
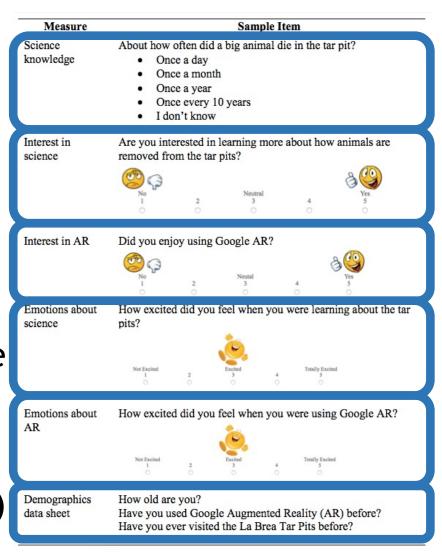


Photo of La Brea with Mammoth Models

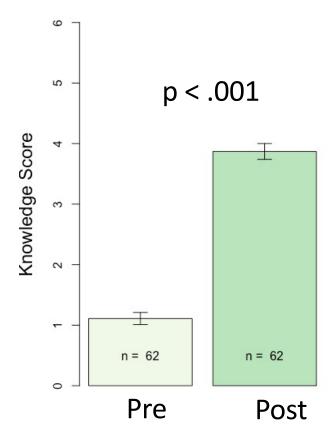
Design #1 Pilot Methods

- Intervention:
 - 6-minute AR experience
 - Narrative about the entrapment process
 - 2 misconceptions addressed:
 - Only big animals entrapped in the tar pits
 - Large animals entrapped on a regular basis

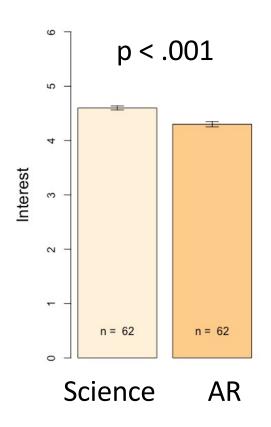


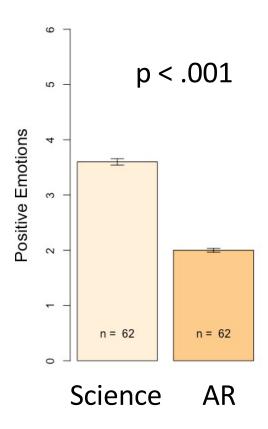
AR of Mammoth Getting Stuck in Tar Pit

Methods


Measures

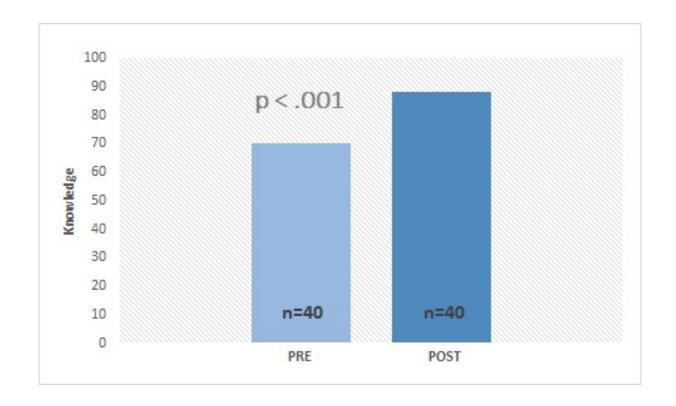
- Pre/post knowledge measure (6 items)
- Interest in science measure (6 items)
- Interest in AR measure (6 items)
- Emotions about science measure (7 items)
- Emotions about AR measure (7 items)
- Demographics (3 items)




Sample Interest, Emotion, and Demographic Items

RQ1: Does AR technology facilitate learning of science content?

RQ2: Does AR technology facilitate interest/emotions in science distinguishable from that in AR?



RQ3: What is the role of emotion and interest in shifting scientific misconceptions specific to the experience of AR at the La Brea Tar Pit and Museum?

	Knowledge Post-Intervention		
Positive emotions toward science	.22	.11	.11
Positive emotions toward AR	18	27	29
Knowledge pre- intervention	.11	.10	.10
Interest in science		.31*	.28
Interest in AR			.07
R-Squared	.041	.104	.106

Positive emotions toward AR and science were not predictive of knowledge. Interest in science was a positive predictor of knowledge, but not after adjusting for interest in AR.

RQ1: Does AR technology facilitate learning of science content?

Qualitative N=35

First round of *in vivo* and open coding resulted in five initial codes.

Second round of pattern coding resulted in two broader themes:

(a) surprise facilitated hypothesis revision

I guess I expected it to have a look and feel more like a stereotypical ice age, but the fact that it was a lot wetter and had trees and fish was kind of a little surprising for me. I'm not a history buff. I should have known that going in.

(b) Experience enriched understanding of fossil evidence

I think the idea that I started to learn more about how a fossil, discovering a fossil can influence my understanding of the environment. So I found out that, Oh, there's a fish, okay. So in the environment may not be so icy as I thought it was. There might've been some flowing water present. So I was able to reevaluate my hypothesis and choose something else that was more maybe more accurate to that time.

DISCUSSION/IMPLICATIONS

- AR that increased scientific knowledge
- Promoted interest and positive emotions for science content compared to AR technology
- Interest in science positively associated with final knowledge scores

Students use the Perceptoscope AR viewfinder to watch Ice Age animals walk around La Brea Tar Pits. Photo credit: © La Brea Tar Pits

Next Steps: Full Scale Randomized Control Trial (RCT)

	Low interactivity	High interactivity
Handheld		
Headset		

Control/Baseline:
Standard non
digital display

Pit 91 Experience

Participants see a (virtual) bubbling pit of asphalt underneath the plywood platform.

Participants "discover" fossils in the tar and send them to a lab to be identified.

Fossils help them to understand the ice environment of LA.

Questions? Contact me at gsinatra@usc.edu