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We study the dynamical response of the Dirac vacuum state to a very strong time-dependent electric field
pulse, whose frequency is chirped in time. The resulting field-induced electron-positron pair-creation process
can be used to examine various proposals for time-dependent frequency spectra of the external field. It turns
out that the Dirac vacuum can be used as sensitive probe that can respond to the instantaneous values of the
frequency at each moment of time by producing electrons with a characteristic energy. This almost instantaneous
response feature of the vacuum state permits us to introduce a generalized rate equation. It is based on the
concept of a time-dependent decay rate and can provide semianalytical solutions to predict the number of created
electron-positron pairs during the interaction with arbitrarily chirped electric field pulses.
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I. INTRODUCTION18

To examine the nonlinear response of dynamical systems19

to an external time-dependent field E (t ) from a spectral20

perspective can be very advantageous, especially if the ex-21

citation field is monochromatic and the resulting process22

is stationary [1]. The traditional spectrum associated with23

E (t ) is usually given here by the Fourier transformation24

as ST (ω) ≡ |∫ ∞
−∞dτ exp(−iω τ )E (τ )|2, where the required25

time integration covers the complete historical record of26

the field and therefore contains information about the entire27

pulse. It is obvious that the future behavior of E (t ) can-28

not affect the dynamical response at an earlier time even29

though it enters the calculation in the Fourier transform. This30

paradox becomes especially apparent if the signal field is31

nonmonochromatic and changes its instantaneous frequency32

during the interaction. A system cannot experience a particu-33

lar frequency that is provided by the signal in the future.34

In order to better describe these temporal changes in the35

frequency, various ideas have been proposed in the literature36

to introduce the so-called time-dependent spectra. An earlier37

proposal [2,3] dates back to the 1950s, when Page (and38

later Lampard) introduced the so-called instantaneous power39

spectrum. It captures only those spectral features that are40

associated with the history of the applied signal up to a certain41

time t, described by
∫ t

−∞dτ exp(−iω τ )E (τ ). Here the upper42

integration limit is given by t and not by ∞. In order to em-43

phasize the instantaneous character, Page proposed to define44

an instantaneous power spectrum via the time derivative45

SPL(ω; t ) ≡ d/dt

∣∣∣∣
∫ t

−∞
dτ exp(−iω τ )E (τ )

∣∣∣∣
2

. (1.1)

Due to this derivative, SPL(ω; t ) can take negative values,46

which Page pointed out have to be there in order to partially47

compensate for unavoidable high frequencies associated with48

earlier times. This also guarantees that the total energy pro-49

vided by E (t ) up to any time, i.e.,
∫ t

−∞dτ SPL(ω; τ ), is always 50

positive for all frequencies. 51

An alternative proposal termed “physical spectrum” was 52

introduced in 1977 by Eberly and Wodkiewicz [4]. They 53

considered in particular the measurement of light pulses and 54

defined their spectrum to be directly related to the counting 55

rate of the photoelectric detector after the light has been trans- 56

mitted through a Fabry-Perot filter with a characteristic spec- 57

tral transmission function. This filter introduces in addition 58

to the filter’s resonance frequency ω also a finite bandwidth. 59

In the temporal domain, this filter, given by H (t, ω, �), re- 60

stricts the signal and one obtains 61

SEW(ω; t, �) ≡
∣∣∣∣
∫ ∞

−∞
dτ H (τ − t, ω, �)E (τ )

∣∣∣∣
2

. (1.2)

Using a moving time window is also inherent to the well- 62

known Gabor transformation [5], where the window function 63

is a Gaussian, i.e., 64

SG(ω; t,w) ≡
∣∣∣∣
∫ ∞

−∞
dτ exp(−iω τ )

× exp[−(τ − t )2/(2w2)]E (τ )

∣∣∣∣
2

. (1.3)

It is invertible and can also provide information on how the 65

phase content of E (t ) can change in local sections of the signal 66

as a function of time. 67

The dynamical significance of these four different defini- 68

tions of spectra can be examined by their interaction with 69

materials. In the quantum case, the spectrum can sometimes 70

be mapped to the electron’s kinetic energy distribution after 71

the photoionization of atoms or molecules. Here the initial 72

state is usually a single or a superposition of discrete energy 73

states, which are then coupled to an energy range of the 74

continuum states. 75

In this work, we consider a quantum field theoretical 76

system where the initial state is given by a fully occupied 77
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continuum, which can then be coupled by the applied field to78

a second manifold of continuum states. This situation can be79

realized by the quantum vacuum state, which is represented80

by the initially occupied Dirac sea states. We will examine81

if this vacuum can also act as an agent that can map the82

time-dependent spectral features of the applied pulse to the83

energies of the created electron-positron pairs. While neither84

the Schwinger effect [6] nor the two-photon and multiphoton85

Breit-Wheeler effect [7] have been observed directly in an86

experiment [8] yet (without any prior presence of electrons),87

the possibility to create electron-positron pairs from the88

vacuum is one of the most striking predictions of quantum89

electrodynamics. Due to recent progress in the development90

of high-intensity laser systems, the research area of studying91

appropriate electromagnetic field configurations to break92

down the quantum vacuum has triggered some significant93

interest [9,10].94

The main contribution of this work is threefold. First, we95

will suggest that among the candidates for a time-dependent96

spectrum, the proposal by Page seems to be in the pertur-97

bative regime most relevant to characterize the pair-creation98

process as it provides a direct relationship to the observed99

temporal features of the kinetic energy distribution of the100

created positrons. Second, depending on the external field101

frequency for quasimonochromatic excitations, we examine102

different scaling domains of the final particle yield with the103

field amplitude and construct simple analytical expressions104

for the power law behavior as well as the transition between105

the E0
4 and E0

2 scaling regimes, where E0 is the amplitude106

of the field. Finally, we subject the vacuum to a chirped laser107

pulse [11–15] in both regimes and introduce a fully analytical108

framework based on the concept of a (time-dependent) vac-109

uum decay rate. It is based on a first-order equation in time110

that can predict the temporal growth of the total particle yield111

for chirped force fields.112

This article is structured as follows. In Sec. II we compare113

the various definitions for the time-dependent frequency spec-114

tra for a concrete example of chirped pulse of finite duration.115

We suggest that the Page-Lampard spectrum plays a key role116

for the pair-creation process in the perturbative regime. In117

Sec. III we study the perturbative scaling of the final particle118

yield and nonperturbative deviations for quasimonochromatic119

fields. In Sec. IV we introduce a rate-based theory to analyt-120

ically predict the particle yield for chirped external fields. In121

Sec. V we provide an outlook on open questions and future122

challenges.123

II. TIME-DEPENDENT ENERGY SPECTRA124

A. Spectral features125

For the numerical studies in this work we have used an126

oscillatory electric field pulse of duration T, which is charac-127

terized by the turn-on and turn-off durations Ton and Toff , the128

maximum amplitude E0, an initial frequency ω0 and a linear129

chirp parameter b. It is given by130

E (t ) = E0 f (t ) sin[(ω0 + bt/T )t]. (2.1)

As shown in Fig. 1(a), the temporal envelope f (t ) is131

given by the three sections: the turn-on region f (t ) =132

Sin2[πt/(2Ton)] for 0 � t � Ton, the plateau region f (t ) = 1133

for Ton � t � T − Toff and finally the turn-off f (t ) = 134

Cos2[π (t − T + Toff )/(2Toff )] for T − Toff � t � T . For a 135

better comparison, in all of our calculations we have 136

kept the specific parameters Ton = Toff = 0.01 a.u. and T = 137

0.025 a.u., such that the plateau region of duration 0.005 a.u. 138

extends from 0.01 a.u. � t � 0.015 a.u. In view of the rela- 139

tivistic applications of this work, we have used the atomic unit 140

system, where 1 a.u. of time corresponds to 2.42 × 10−17 sec 141

and the electron’s mass is 1.a.u., such that the frequency and 142

energy have the same unit as c2 (with the speed of light c = 143

137.036 a.u.). The rather extended turn-on and turn-off dura- 144

tions relative to the extension of the plateau were necessary in 145

order to keep the energy spectrum (for b = 0) sharply local- 146

ized around ω = ω0 with an energy width proportional to 1/T. 147

The linear-in-time increase of the frequency is described 148

by the chirp parameter b. The time derivative of the phase 149

(ω0 + bt/T ) t in Eq. (2.1) increases from its initial value ω0 150

(at t = 0) to its final value ω0 + 2b. We will see below that 151

it is physically quite meaningful to associate the quantity 152

ωinst (t ) ≡ ω0 + 2(b/T ) t with an “instantaneous frequency”. 153

The traditional spectrum associated with the chirped E (t ) 154

is given ST (ω) ≡ |∫ ∞
−∞dτ exp(−iω τ )E (τ )|2. It is displayed 155

in the bottom of Fig. 1(b) for ω0 = 2 c2 and b = 1 c2. We 156

find a wide distribution that covers the range from about 157

ω = 2.5 c2 to ω = 3.5 c2. Due to the turn-on and off periods, 158

the amplitudes of the early low-frequencies (ω = c2) and late 159

frequencies (ω = 4 c2) are attenuated. For comparison, we 160

have also included the corresponding narrow single-peaked 161

Lorentzian distribution for b = 0 (with ω0 = 2.5 c2). As we 162

have outlined in the introduction, this kind of spectrum repre- 163

sents the global features of the entire pulse and therefore does 164

not necessarily uncover appropriately any temporal details 165

during the interaction. 166

In order to better account for the time-dependent features 167

associated with chirping, we can examine here in more de- 168

tail two of the three definitions of time-dependent spectra 169

that were mentioned in the introduction. The Gabor and 170

the Eberly-Wodkiewicz time-dependent spectra are similar 171

as they exploit temporal window functions, which introduce 172

a parameter w or �. Due to their similarity we focus here 173

only on the Gabor spectrum, which is based on a Gaussian 174

shaped window function of widthw as introduced in Eq. (1.3). 175

The numerical value of this width w has to be chosen ap- 176

propriately. If w is too large, SG(ω; t ) becomes proportional 177

ST (ω) and the spectrum is very wide. If w is chosen too 178

small, the spectrum becomes also very wide as the effective 179

time signal is too narrow to resolve any frequency. In our 180

calculations (where b = 1 c2), we have chosen an optimal 181

value of w = [T/(2c2)]1/2, which minimizes the spectral 182

width for our particular pulse given by Eq. (2.1) and therefore 183

provides the best possible frequency resolution at any time. 184

This particular estimate for w can be derived, if we assume 185

that the field in Eq. (1.3) is of constant amplitude and simply 186

given by sin[(ω0 + bt/T )t]. Here the Gabor spectrum can be 187

determined analytically as being proportional to a Gaussian in 188

frequency, which is centered around ωinst = ω0 + 2bt/T and 189

has a frequency width proportional to [(a2 + b2/T 2)/a]1/2 190

SG(ω; t,w) ∼ exp[−a 4−1(a2 + b2/T 2)−1

× (ω − ω0 − 2bt/T )2], (2.2)
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FIG. 1. (a) Sketch of the temporal behavior of the chirped electric field pulse E (t ) used in this work (for better visualization of the chirping,
it is graphed for ω0 = 0.1 c2 and b = 0.4 c2). (b) The open circles are the Gabor spectrum SG(ω; t ) taken at times t = 0.005, 0.010 and 0.015
a.u. for E (t ) with ω0 = 2c2 and b = c2. The continuous lines are the analytical approximations of Eq. (2.2). The bottom graph is the traditional
spectrum ST (ω) of E (t ). For comparison, we also show the spectrum ST (ω) for the quasimonochromatic limit b = 0 and ω0 = 2.5 c2. (c) The
Page-Lampard SPL(ω, t ) spectrum taken at the same times t = 0.005, 0.010 and 0.015 a.u. The temporal parameters of E (t ) were given by
Ton = 0.01 a.u., Toff = 0.01 a.u., T = 0.025 a.u., ω0 = 2 c2 and b = c2).

where the inverse width parameter is a ≡ 1/(2w2). One can191

easily see that the particular choice a = b minimizes the192

frequency width, which then leads to w = [T/(2 c2)]1/2, as193

mentioned above.194

In Fig. 1(b) we have displayed the (normalized) Gabor195

spectra for three different moments in time, t = 0.005, 0.01,196

and 0.015 a.u. They nicely reflect the central frequencies197

provided by E (t ) at the three instants of time. Even though198

the analytical estimates of Eq. (2.2) did not include any199

temporal variations of the amplitude, they reflect the true200

Gabor spectrum very well. For comparison, we have in-201

cluded the predictions of Eq. (2.2) by the continuous lines202

in Fig. 1(b). To guide the eye, we have also included the203

location of the instantaneous frequency ωinst by the dashed204

line.205

In contrast to the Gabor and Eberly-Wodkiewicz spectra,206

which remove any temporal information outside the window207

region, the Page-Lampard spectrum considers the entire signal208

up to a time t. As pointed out in the original work by Page209

[2,3], if we perform the time derivative in Eq. (1.1), the210

instantaneous power spectrum SPL(ω; t ) can also be written211

for computational convenience as212

SPL(ω; t ) ≡ 2E (t )
∫ t

−∞
dτcos[ω(τ − t )]E (τ ). (2.3)

In Fig. 1(c), we present the Page-Lampard spectrum for213

the same chirped electric field at the same three moments214

in time. We see that it is qualitatively completely differ-215

ent from the other definitions for time-dependent spectra.216

SPL(ω; t ) is oscillatory and extends over a much larger fre-217

quency range, which is roughly given by ωmin = ω0 to ωmax =218

ωinst (t ).219

A key question is, of course, which of the two time-220

dependent types of spectra is physically more meaningful to221

describe the dynamics of pair-creation triggered by a chirped222

E (t ). In order to address this question, we will discuss first223

in Sec. II B how the pair-creation process is being modeled224

numerically.225

B. Interaction of E(t ) on the quantum vacuum 226

In order to focus on the results of this article, we refer 227

the reader to numerous references [16–19] that detail how 228

computational quantum field theory can be used to solve the 229

time-dependent Dirac equation. These solutions allow us to 230

predict the time-dependent growth of the number density of 231

created electron-positron pairs N (t ) from the vacuum and 232

their momentum distributions N (p, t ). The underlying theory 233

is briefly sketched in Appendix A. Following Dirac’s main 234

idea (which is fully equivalent to a quantum field theoretical 235

description [20]), the vacuum can be represented by a set of 236

initially occupied energy eigenstates of the Dirac Hamiltonian 237

with negative energy [21]. As the applied field is spatially 238

homogeneous, each initial Dirac sea state is coupled to only a 239

unique single state with positive energy of the same canonical 240

momentum. In other words, the vacuum decay process can be 241

mapped onto the dynamics of mutually decoupled two-level 242

systems, each characterized by momentum p. 243

There is, however, a crucially important difference between 244

the usual two-level systems of atomic, molecular physics, and 245

quantum optics [22–25], which—due to parity conservation— 246

does not reveal any resonances if an even-order multiple of the 247

photon frequency ω0 matches the energy difference between 248

upper and lower level. In contrast, the particular two-level 249

system derived from the Dirac equation has time-dependent 250

diagonal couplings, which permit even-order resonances as 251

we will discuss in Sec. III. 252

As derived in Appendix A, the time dependence of the 253

total number per unit length L of created electron-positron 254

pairs is obtained from the sum of all upper-level popula- 255

tions associated with each two-level system, i.e., N (t ) = 256

L−1�p|Cp;u(t )|2. This means that the momentum distribution 257

of the created particles is directly proportional to |Cp;u(t )|2 258

and the energy distribution can be calculated as ρ(ep, t ) ≡ 259

|d p/dep||Cp;u(t )|2, where d p/dep = ep c−1(ep2 − c2)−1/2 is 260

the corresponding Jacobian to transform from momentum p 261

to energy ep = (c4 + c2p2)1/2. 262

In the contour plot of Fig. 2 we analyze the energy-time 263

dependence of the temporal change of this energy density, i.e., 264
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FIG. 2. (a) Contour plot of the temporal derivative of the energy spectrum of the created number of positron |Cp;u(t )|2 as a function of the
positron energy ep. (b) The Page-Lampard spectrum SPL(ω, t ) of the external electric force field E (t ) (All parameters are the same as in Fig. 1,
Ton = 0.01 a.u., Toff = 0.01 a.u., T = 0.025 a.u., ω0 = 2 c2 and b = c2, E0 = 0.005 c3.

dρ(ep, t )/dt . At any time, the temporal growth of the energy265

density of the created particles is largest for those energies266

that match half of the value of the instantaneous frequency of267

the chirped force field. The Gabor spectra for this pulse [see268

Fig. 1(b) would (incorrectly) suggest that only those energies269

should change their density that are close to the instantaneous270

value of the frequency, ωinst (t ) = ω0 + 2bt/T . However, the271

data for dρ(ep, t )/dt at time t suggest that dρ(ep, t )/dt is272

quite oscillatory for all energies less than ωinst (t ). In contrast,273

this feature was predicted by the instantaneous Page-Lampard274

spectra.275

For a direct comparison, we have shown again the spectrum276

SPL(ω; t ) for the pulse as a contour plot in Fig. 2(b). The277

quantitative agreement is quite remarkable and clearly sug-278

gests that among all definitions of time-dependent frequency279

spectra, the proposal by Page seems to be physically most280

meaningful to describe the electron-positron pair-creation281

process under chirped pulses for these parameter ranges.282

The remarkable similarity between the temporal change of283

the energy distribution of the created positrons and the time-284

dependent Page-Lampard spectrum can be confirmed analyt-285

ically. As we pointed out in the appendices, the perturbative286

solution for the amplitude Cp;u(t ) can be constructed. If we287

square its absolute value and take its temporal derivative, we288

obtain the expression289

d/dt |Cp;u(t )|2 = 2c4/e2p A(t )
∫ t

0
dτ A(τ ) cos[2 ep(t − τ )].

(2.4)

This means that up to the prefactor c4/e2p in Eq. (2.4),290

the temporal change of the kinetic energy spectrum of the291

created positrons takes the identical functional form as the292

Page-Lampard spectrum of the vector potential A(t), except293

that we have to replace in the integrand the frequency ω by294

2ep. This replacement is meaningful as for sufficiently large295

ω excites positrons with energy ep = ω/2.296

C. Perturbative scaling and nonperturbative deviations 297

for monochromatic fields 298

Before we examine the more interesting case of the vac- 299

uum’s response to chirped fields, let us develop first an ap- 300

proximate but fully analytical theory to predict the temporal 301

growth for laser pulses that are not chirped, i.e., b = 0. As 302

the underlying physical mechanisms associated with various 303

frequency regions are more different as one might expect, 304

we discuss them separately. To provide a semianalytical sim- 305

plified description for the temporally induced pair-creation 306

process is in general very difficult. However, if we assume 307

that the electric field amplitude E0 is not too large and the total 308

pulse duration of the applied field T is not too long, we would 309

expect that the dependence of the final yield N (T ) (after the 310

pulse is turned off) might follow a simple power law, N (T ) ∼ 311

E0
2α , where the exponent α is a function of the electric field’s 312

frequency ω0. 313

To examine the numerical value of the exponent for the 314

process, we have computed the final yield N (T ) as a function 315

of the applied field’s frequency ω0 for two electric field 316

amplitudes E0 and 2E0. We have repeated the simulation for 317

100 frequency values ranging from ω0 = 0.6 c2 to a maximum 318

of ω0 = 4c2. As these two electric fields differ by a factor of 2, 319

we can then estimate the effective exponent via the logarithm 320

of the ratio 321

α(ω0) = log(4)−1 log[N (T ; 2E0)/N (T ;E0)]. (3.1)

In Fig. 3 we have graphed α(ω0). In the low-frequency 322

region from about 2c2/3 < ω0 < c2 we would expect that the 323

yield is proportional to ∼E6
0 , corresponding to α(ω0) = 3. 324

This integer reflects the minimum number of photons (with 325

energy ω0), which need to be absorbed to excite the lowest 326

energetic state with ep = c2 from the lower continuum states 327

with energy ep � −c2. The next region (= II) ranging from 328

c2 < ω0 < 2c2 requires the absorption of two photons and 329

therefore the yield should scale quadratic with the intensity, 330
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FIG. 3. The effective power law exponent α(ω0) [defined in
Eq. (3.1)] as a function of the electric field’s frequency ω0. It was
obtained numerically from the three ratios of the final particle yields
N (T ) computed for (a) E0 = 0.02 c3 and 0.01 c3, (b) E0 = 0.01 c3

and 0.005 c3 and (c) E0 = 0.005 c3 and 0.0025 c3. [Ton = 0.01 a.u.,
Toff = 0.01 a.u., T = 0.025 a.u.]

i.e., ∼ E4
0 , corresponding to α(ω0) = 2. Finally, region I for331

ω0 > 2 c2 has the largest cross section, here the yield is332

expected to grow linearly with the intensity, α(ω0) = 1. The333

computed staircaselike pattern in Fig. 3 confirms the different334

power law scaling regions.335

The observed shifts with regard to the transitions between336

different scaling regions are an unavoidable consequence of337

the finite temporal width of the pulse and the resulting nonzero338

width of the spectral distribution (around ω0). For example,339

the spectrum for ω0 = 1.8 c2, contains many frequencies ω >340

2 c2, that would lead to the α = 1 process, that (at least in the341

perturbative regime) would dominate any other weaker α = 2342

processes. So even though the center frequency belongs here343

to the α = 2 regime, the final number of particles scale still344

linearly with the intensity E2
0 .345

These threshold shifts illustrate the crucial importance of a346

relatively long turn-on and -off time required for the electric347

field to trigger a response other than α = 1. To have a concrete348

example, for ω0 = c2, Fig. 3 would reveal a basically con-349

stant graph α(ω0) = 1 for the entire range of all frequencies350

down to ω0 = 0, if we had repeated the same simulations351

using the same total pulse duration (T = 0.025 a.u. in this352

case) but had reduced the turn-on and turn-off durations to353

zero Ton = Toff = 0. Even though, the pulse E (t ) contains354

about T/(2π/ω0) ≈ 75 oscillations, it is far from sufficiently355

monochromatic in order to lead to a quartic scaling of N (T )356

with E0, which we would normally associate with ω0 = c2 for357

truly monochromatic fields with infinite duration.358

D. The perturbative region I with α = 1359

The quadratic scaling of the final number density N (T ) as360

a function of the electric field strength E0 in region I suggests361

that the instantaneous change of N (t ) for a field pulse E0 f (t )362

could be modeled by a rate equation363

dN (t )/dt = E2
0 f (t )

2 κI(ω0), (3.2)

0

1 103

2 103

3 103

0 0.005 0.01 0.015 0.02

≤ 0.004
0.01

0.02

E
   

/c3N(t)/E 2 00

b = 0

theory

exact

time (a.u.)

FIG. 4. The temporal growth of the number of created particles
N (t ) for several electric field amplitudes E0 in region I for ω0 =
2.2 c2. The open circles are the semianalytical theory based on the
rate Eq. (3.2). [ω0 = 2.2 c2, Ton = 0.01 a.u., Toff = 0.01 a.u., T =
0.025 a.u.]

where the rate constant κI(ω0) is exclusively a function of the 364

external field’s main frequency ω0. In order to determine nu- 365

merically this “cross-section” κI(ω0), we have computed the 366

time-dependent growth of N (t ). As an example, in Fig. 4 we 367

show N (t ) as a function of time for the frequency ω0 = 2.2 c2. 368

We see that during the plateau region (Ton < t < T − Toff ), 369

when the amplitude E0 f (t ) is constant (= E0), N (t ) grows 370

basically linearly in time in addition to the (nearly invisible) 371

very small oscillations. Using linear regression of N (t ) for 372

this regime (sampled over 20 000 temporal points) we can 373

therefore determine the average slope. When we divide this 374

slope by E2
0 , we obtain the desired κI(ω0). 375

In Fig. 5 we have graphed the numerical value of this 376

slope as a function of 300 values for the frequency ω0. We 377

see that it decreases basically monotonically with increasing 378

ω0. This means that we would obtain the largest number of 379

0

1 x 10-7

2 x 10-7

2 2.2 2.4 2.6 3

κ (ω  )I 0

ω  /c2
0

exact
Eq.  (3.3)

FIG. 5. The scaled cross section κI (ω0) for the high-frequency
region I as a function of the frequency ω0. The open circles are
the perturbative result according to Eq. (3.3). [Ton = 0.01 a.u., Toff =
0.01 a.u., T = 0.025 a.u.]
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electron-positron pairs if the external field is tuned exactly to380

the threshold value ω0 = 2 c2.381

In Appendix B we apply the usual time-dependent pertur-382

bation theory in E0. As this requires only the solution to a383

single ordinary differential equation it is possible to obtain384

a fully analytical estimate for the scaling of κI(ω0) with the385

frequency ω0.386

κI(ω0) = c5[(ω0/2)
2 − c4]−1/2

/(
2ω3

0

)
. (3.3)

This suggests a singularity for the threshold value ω0 = 2 c2.387

As the derivation of Eq. (3.3) required several approximations,388

we have to test its validity by comparing it with the exact nu-389

merical data obtained from the actual numerically determined390

slopes of N (t ). The open circles in Fig. 5 are the analytical391

predictions by Eq. (3.3). We find a very good match.392

Now that we have an analytical expression for κI(ω0),393

we can use the rate Eq. (3.2) as a much more efficient tool394

to predict the time-dependent growth for any electric field395

pulse shape given by f(t). In order to test the accuracy of396

this approach, we added to the data of Fig. 4 the theoretical397

prediction based on the solution to Eq. (3.2). We see that for398

all electric field amplitudes that are less than about E0/c3 =399

4 × 10−3, the agreement is superb. If the electric field is larger,400

we begin to enter the nonperturbative region, where the actual401

(scaled) N (t )/E2
0 is smaller and higher-order perturbative402

corrections such as level shifts or multiphoton absorptions403

lead to a lower cross section κI(ω0).404

E. The perturbative region II where α = 2405

One could expect that a similar procedure as done for406

region I could also be applied for the lower-frequency region407

II, where c2 < ω0 < 2c2. Here we would expect that a similar408

rate equation given by409

dN (t )/dt = E4
0 f (t )

4 κII(ω0) (3.4)

could describe the dynamics. While in region I the yield N (t )410

increases basically monotonically during the field’s plateau411

region after the turn-on, in region II the function N (t ) is412

unfortunately significantly more complicated. We have shown413

a typical example in Fig. 6.414

This function is highly oscillatory with a superimposed415

envelope that is also nonmonotonic. The specific features of416

this graph are so complicated as they reveal the simultaneous417

presence of two different scaling laws. By comparing N (t )418

for a wide variety of electric field amplitudes, we found that419

the magnitude of the oscillations scale quadratically in E0,420

whereas the final value (after the pulse is turned off) scales421

quartically, i.e., N (T ) ∼ E4
0 .422

This complicated behavior is another manifestation of the423

inherent fundamental difficulty [26] to cleanly separate be-424

tween the fully reversible dressing and level shift effects and425

those irreversible mechanisms, which scale ∼E4
0 and actually426

do contribute to the final growth of the created particles.427

In order to illustrate the transition between the different428

scaling behaviors, we have graphed the logarithm of the ratio429

of N (t ) for two electric fields (E0 = 0.05 c3 and 0.025 c3) that430

differ by a factor of 2. The transition from α = 1 for early431

times to α = 2 for the time after the interaction is obvious432

from the graph in the inset of Fig. 6.433

0

300

600

900

0 0.005 0.01 0.015 0.02

N(t)/E 4

time (a.u.)

0

N(T)/E 40

b=0

0 0.01 0.02

α = 1

α = 2

t [a.u.]

α(t)

FIG. 6. The temporal growth N (t ) of the number of created
particles as a function of time in region II for E0 = 0.1 c3 and ω0 =
1.3 c2. In the inset we show the scaling of the intensities exponent
α(t ) ≡ log[N (t ; 2E0)/N (t ;E0)]/log(4) obtained from the ratio for
E0 = 0.05 c3 and E0 = 0.025 c3. To guide the eye, we have added the
dashed lines in the constant amplitude portion Ton < t < T − Toff .
[Ton = 0.01 a.u., Toff = 0.01 a.u., T = 0.025 a.u.]

As the upper and lower envelope of N (t ) during the field’s 434

plateau region increase linearly in time and have the same 435

slope, we have computed this slope. If we divide it by E4
0 we 436

can finally compute κII from the data. The result for κII(ω0) is 437

shown in Fig. 7 for different frequencies ω0. 438

In contrast to the behavior of κI (which was associated with 439

the higher frequency region I), we find that κII does not take 440

its largest coupling at the two-photon threshold value ω0 = c2. 441

The maximum is clearly shifted towards higher frequencies. 442

In order to have also an approximate but analytical estimate 443

of this rate, we have applied in Appendix B the corresponding 444

time-dependent perturbation theory. As we have remarked 445

earlier, the usual two-level system of quantum optics does 446

not reveal any two-photon resonance as observed here. This 447

means that the nature of the perturbation theory applied to the 448

Dirac’s two-level dynamics is entirely different. We refer the 449

0

8 x 10-22

1.6 x 10-21

2.4 x 10-21

1 1.2 1.4 1.8

κ  (ω )II 0
exact
Eq.  (3.5)

ω  /c2
0

FIG. 7. The scaled cross section κII (ω0) for the lower-frequency
region II as a function of the frequency ω0. The open circles are
the perturbative result according to Eq. (3.5). [Ton = 0.01 a.u., Toff =
0.01 a.u., T = 0.025 a.u.]
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FIG. 8. The effective power law exponent α(ω0) [defined in
Eq. (3.1)] as a function of the electric field’s frequency ω0 in the
transition region for 1.3 < ω0/c2 < 2.2. It was obtained numerically
from the three ratios of the final particle yields N (T ) computed
for (a) E0 = 0.005 c3 and 0.0025 c3 (top curve) and (b) 0.0025 c3

and 0.00125 c3 (bottom curve). The open circles are the analytical
prediction based on Eq. (3.6). [Ton = 0.01 a.u., Toff = 0.01 a.u., T =
0.025 a.u.]

reader here to the interesting discussion in Appendix C and450

state here only the main result,451

κII(ω0) = c7(ω2 − c4)1/2/(4ω9). (3.5)

This expression shows that—in contrast to κI(ω0)—this452

cross section does not have any singularity as it decreases453

to zero for exactly ω0 = 1 c2. As we show in Fig. 7 by the454

open circles, the agreement with the exact data for all electric455

fields of amplitude E0 < 0.1 c3 is again superb. In order to456

see any deviations, we have repeated the simulations for large457

fields that clearly lead to a lower (scaled) particle yield than458

predicted by lowest-order perturbation theory.459

F. The transition region between I and II with effective460

noninteger power laws461

While the frequency regions I and II were characterized by462

integer exponents α, the most interesting transition domain463

occurs between these two cases, i.e., for frequencies close464

to ω0 = 1.8 c2. In order to examine this transition, we have465

first computed again the final particle yield for two electric466

field amplitudes E0 = 0.005 c3 and E0 = 0.0025 c3 for a wide467

range of frequencies 1.3 c2 < ω0 < 2.2 c2. Under the (invalid)468

assumption that also in the transition regime the yield has469

a simple power law scaling, i.e., N (T ) ∼ E2α
0 , we can again470

compute an effective exponent α via the logarithm of the ratio471

α(ω0) ≡ log(4)−1 log[N (T ; 2E0)/N (T ;E0)] as introduced in472

Eq. (3.1).473

In Fig. 8 we show this exponent α as a function of the474

frequency ω0. Quite interestingly, as the frequency increases,475

the exponent does not decrease from α = 2 to α = 1 in a476

monotonic manner as one could have expected. In fact, the477

overall decrease is superimposed by interesting structures478

comprised of numerous small local minima and maxima.479

As these data are computationally difficult to obtain, one480

could conjecture that these unexpected structures are merely481

manifestations of numerical inaccuracies. However, we have 482

repeated these simulations for several numerical space-time 483

grids and found the data to be perfectly converged. 484

Motivated by the accuracy of the perturbative analysis 485

discussed in the appendices, we have generalized these cal- 486

culations for the transition regime including first-, as well as, 487

second-order terms in E0. 488

After a lengthy calculation, we find for the momentum 489

amplitude of the created positronsCp;u(t ) the expression given 490

by the two-fold integral 491

Cp;u(t ) = i c2/(ep)exp (−i ep t )
∫ t

dτ A(τ )

× exp (2i ep τ )[1 − 2i c p/ep

∫ τ

A(τ ′)dτ ′]. (3.6)

If at the final time T (after the interaction) we sum the 492

squared absolute values over all final momenta, we obtain 493

again the total number of created positrons, i.e., N (T ) = 494

�p|Cp;u(T )|2. The logarithm of the ratio of N (T ) for two 495

electric field amplitudes would then give us a fully analytical 496

(albeit rather complicated) expression for the effective expo- 497

nents α as a function of ω0. In Fig. 8 above, the solid lines 498

superimposed on the numerical data (open circles) represent 499

the corresponding prediction based on Eq. (3.6). The perfect 500

agreement is quite remarkable and confirms our numerical 501

finding that the transition between the two α = 2 and α = 1 502

perturbative regimes is indeed highly nontrivial. 503

We should remark that our non-integer exponent α was 504

computed from a specific pair of yield associated with 505

two particular electric field amplitudes E0. The expression 506

N (T ) ∼ E2α
0 for a non-integer does not mean necessarily a 507

strictly universal scaling for all E0. In the transition region, 508

N (T ) depends mainly on the sum of terms proportional to 509

E2
0 as well as E4

0 , where the corresponding ω0-dependent 510

prefactors determine the kind of weighted contribution of each 511

power. In fact, we have repeated the data in Fig. 8 from a 512

different pair of amplitudes E0 (= 0.0025 c3 and 0.00125 c3) 513

and observed a very similar transition region. However, the in- 514

teresting substructures (small maxima and minima) occurred 515

at different values of the frequency ω0. 516

The physical causes of these interesting structures are 517

presently unknown but could be examined in a follow up 518

work. As the data were based on the ratios of the final yields, 519

it is possible that they reflect also information about the 520

temporal details of the finite pulses such as the turn-on and 521

off times, about the duration of the plateau region in between, 522

or about the pulse shapes used. 523

III. PAIR CREATION UNDER RAPIDLY CHIRPED 524

ELECTRIC FIELD PULSES 525

We have repeated the same simulations as in the prior 526

sections, but this time we have rather rapidly chirped the 527

electric field, i.e., we used b �= 0. Motivated by the remarkable 528

accuracy of the simple rate equation to predict the tempo- 529

ral yield of the particle number density N (t ) for a pulsed 530

electric field in region I as well as region II, we can now 531

explore if this approach can be even generalized to account 532

for a chirped electric field. The analysis in terms of the 533
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FIG. 9. The temporal growth N (t ) of the number of created
particles as a function of time in region I for chirping strength b = c2

and ω0 = 2 c2. The open circles are the semianalytical predictions
according to the time-dependent rate Eq. (4.1). [Ton = 0.01 a.u.,
Toff = 0.01 a.u., T = 0.025 a.u.]

time-dependent spectra of E (t ) in Sec. II has suggested that534

the time-dependent instantaneous frequency ωinst (t ) ≡ ω0 +535

2bt/T is an important characteristic of E (t ).536

If the vacuum is able to recognize within a very short537

time-scale this time-changing frequency, one could consider538

generalizing the rate equation for both region I (with α = 1)539

and II (with α = 2) to540

dN (t )/dt = E2α
0 f (t )2ακα[ωinst (t )], (4.1)

where we have introduced the concept of a time-dependent541

coupling strength κα (t ).542

In Fig. 9 we compare the predictions of the numerical543

solution N (t ) based on Eq. (4.1) for region I, i.e., ω0 = 2 c2544

and b = c2 with the exact time evolution. For E0 < 0.03 c3545

the agreement is superb during the entire interaction. As546

the frequency (and therefore the coupling strength) changes547

rapidly even during the field’s plateau region, we no longer548

have a constant-slope region for N (t ).549

The temporal growth of N (t ) for b = c2 covers the large550

frequency range from ω = 2c2 to ω = 4c2. We found that for551

all amplitudes below the value of E0 = 0.03 c3, the solution552

to the time-dependent rate Eq. (4.1) describes the true growth553

N (t ) very well. We consider the feasibility of this approach to554

the vacuum decay to be one of the major results of this work.555

Despite the fact that the instantaneous frequency doubles556

during the short interaction and the pulse has a nontrivial turn-557

on and turn-off shape, all details of the entire time evolution558

of N (t ) can be obtained semianalytically with remarkable559

accuracy, based on the simple analytical form of κI given by560

Eq. (3.3) and Eq. (4.1).561

Quite universally, the agreement is even maintained for562

region II, where the final yield increases quartically with the563

amplitude E0. As we have seen in Sec. III B, due to the564

simultaneous presence of several scaling laws in region II it565

is very difficult to provide an unambiguous direct physical566

meaning to the time dependence of N (t ). We therefore have567

compared the final yield after the interaction N (T ) with the568
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FIG. 10. The final number of created particles N (T ) after the
interaction as a function of the chirping parameter b for ω0 = 1.1 c2

for four amplitudes E0. The open circles are the semianalytical
predictions according to the time-dependent rate Eq. (4.1). [Ton =
0.01 a.u., Toff = 0.01 a.u., T = 0.025 a.u.]

solution of the time-dependent rate equation at the final time 569

T in Fig. 10. 570

We have repeated the simulations for 100 pulses with vari- 571

ous degrees of chirping and find for all fields with E0 < 0.1 c3 572

an excellent agreement with the predictions of Eqs. (3.5) 573

and (4.1). Quite interestingly, due to the level shifts in the 574

nonperturbative regime (E0 > 0.1 c3), we find that the final 575

yield depends nonmonotonically on the degree of chirping. 576

IV. SUMMARY AND OPEN QUESTIONS 577

The traditional linear and nonlinear susceptibilities dis- 578

cussed in classical electromagnetism are proportionality 579

constants relating the amplitude of external field to the re- 580

sulting polarization of the (usually dielectric) medium. The 581

introduced frequency-dependent functions κI(ω0) and κII(ω0) 582

serve a similar role as they describe the vacuum’s instability 583

towards an external field. Using perturbation theory, it is 584

possible to construct simple but accurate analytical expres- 585

sions for these nonlinear response functions. It might be very 586

interesting to generalize these expressions for even smaller 587

frequency regimes, with the ultimate goal to find a connection 588

with the zero-frequency limit, where the (intrinsically nonper- 589

turbative) Schwinger mechanism dictates the vacuum’s decay. 590

To establish this connection is in our opinion a fascinating but 591

not fully understood question. A better understanding of this 592

low-frequency limit is also of fundamental interest for future 593

laser configurations, which are more likely to operate in the 594

lower frequency domain. 595

This initial work is meant to provide a first proof of 596

fundamental principles and methods rather than mimicking 597

precise laboratory conditions of possible future experiments. 598

A realistic pulse would likely have a central frequency much 599

less than the electron’s rest mass. Due to the higher required 600

perturbative order, the resulting analytical expressions for the 601

instantaneous pair-creation rates for lower central frequen- 602

cies are naturally more complicated. In addition, numerical 603

convergence of time-dependent solutions to quantum field the- 604

ory is harder to obtain for smaller frequencies of the applied 605
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laser field. For pair-creation processes, an important time scale606

is about 1/(2 mc2), associated with the mass gap. Due to the607

fixed temporal grid spacing, it is numerically challenging to608

resolve this very rapid time scale, while at the same time609

having sufficiently long total interaction times, as required610

by laser fields with small frequencies. Without any further611

approximations, satisfying both of these two requirements si-612

multaneously would require a horrendous number of temporal613

grid points, which naturally lead to much longer CPU times614

and also to numerical convergence that is more difficult to615

maintain.616

By examining the vacuum’s response to chirped external617

fields that scan through a very large frequency range within618

only a small number of cycles, we have shown that an instan-619

taneous frequency based rate equation approach can provide620

reliable estimates of the time-dependent growth of the total621

particle yield. This approach was perturbative and we have622

shown its limitations for extremely strong fields. Its pertur-623

bative validity is likely based on the feature of the quantum624

vacuum to almost instantly respond to any temporal variation625

in the spectrum of the field. This would suggest that these truly626

intrinsic time scales of the vacuum state are extremely short. If627

the chirping parameter is even much larger, we would expect628

that the proposed approach might begin to fail, especially629

when the vacuum’s own intrinsic time scales become relevant.630

To examine these intrinsic time scales, is another worthwhile631

open challenge, especially, as the vacuum is thought of as632

being free of any matter. It’s presence is usually responsible633

for the oocurence of dynamical time scales.634

While the analysis presented here was focused on pos-635

itively chirped fields, one may wonder if the conclusions636

hold also for those fields where the instantaneous frequency637

decreases as a function of time. For a finite pulse, a negative638

chirp can be related to the corresponding temporally reversed639

field with positive chirp. A recent article [27] examined the640

effect of time-reversed external force fields and suggested641

that the final electron-positron yield after the interaction is642

identical for positive and negative chirp if the external field643

is spatially homogeneous. This resembles the situation con-644

sidered in the present work. Quite interestingly, if the external645

force field has also a nontrivial spatial dependence, then the646

final yield for positive and negative chirp can be different.647

Finally, we should mention that we have examined here648

only the electric response properties of the fermionic Dirac649

vacuum, modeled by a fully occupied Dirac sea. The true650

vacuum state of quantum electrodynamics, i.e., the lowest651

energetic eigenstate of the Hamiltonian describing the fully652

coupled interaction of electrons, positrons and photons, might653

possibly reveal additional response features to external ex-654

citations. We are certainly just at the early stages of our655

understanding.656
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APPENDIX A 663

In one spatial dimension and the temporal gauge, the Dirac 664

Hamiltonian is given by 665

H = c σ1[P − qA(t )/c] + c2 σ3, (A1)

where P is the momentum operator and we assume the 666

coupling to a positron with charge q = 1. The two 2 × 2 Pauli 667

matrices are denoted by σ1 and σ3 and A(t ) = −c∫t dτE (τ ) 668

is the vector potential. As the external field E (t ) is 669

assumed to be spatially homogeneous in this work, the 670

total canonical momentum is conserved and each initial 671

Dirac sea state is coupled to only a single state in the 672

upper energy continuum state with the same momentum p. 673

In other words, the vacuum decay can be represented by 674

an infinite set of mutually independent two-level systems 675

with energies −[c4 + c2p2]1/2 and e(p) = [c4 + c2p2]1/2. 676

The lower (labeled d) and upper (labeled u) energy 677

eigenstates |p; d〉 and |p; u〉 of H for A(t ) = 0 take the spatial 678

representation by the two-component spinors, 〈x|p; u〉 = 679

N{[ep + c2]1/2, [ep − c2]1/2p/|p|} exp [i p x] and 〈x|p; d〉 = 680

N{−[ep − c2]1/2p/|p|, [ep + c2]1/2} exp [i p x], where N 681

is the corresponding normalization factor. Using the 682

functional form of the two energy eigenstates, the four 683

coupling matrix elements take the form 〈p; u|σ1|p; u〉 = 684

c p/ep ≡ ap, 〈p; d|σ1|p; d〉 = −ap and 〈p; d|σ1|p; u〉 = 685

〈p; u|σ1|p; d〉 = c2/ep ≡ bp. The corresponding time- 686

dependent amplitudes in each two-level state |�p(t )〉 = 687

Cp;d (t )|p; d〉 +Cp;u(t )|p; u〉 have to fulfill [28] 688

i d Cp;u(t )/dt = [ep − A(t )ap]Cp;u(t ) − A(t )bp Cp;d (t ),

(A2a)

i d Cp;d (t )/dt = −A(t )bpCp;u(t ) − [ep − A(t )ap]Cp;d (t ).

(A2b)

As we will need it for below, let us perform a unitary 689

transformation to another basis set [28], that is based on the 690

instantaneous lower (D) and upper (U) energy eigenstates 691

|p;Dt 〉 and |p;Ut 〉. These are defined based on the full Dirac 692

Hamiltonian, H (t )|p;Ut 〉 = ep(t )|p;Ut 〉 and H (t )|p;Dt 〉 = 693

−ep(t )|p;Dt 〉, where the instantaneous energy eigenvalue 694

takes the form ep(t ) ≡ [[ep − A(t )ap]2 + [A(t )bp]
2]1/2. For 695

a fixed momentum p, the state |�p(t )〉 = Cp;d (t )|p; d〉 + 696

Cp;u(t )|p; u〉 can be equally expressed based on the 697

superposition |�p(t )〉 = Cp;D(t )|p;Dt 〉 +Cp;U (t )|p;Ut 〉. 698

The corresponding expansion coefficients Cp;D and Cp;U are 699

given by the solution to 700

i d Cp;U (t )/dt = αp(t )Cp;U (t ) + βp(t )Cp;D(t ), (A3a)

i d Cp;D(t )/dt = β∗
p (t )Cp;U (t ) − αp(t )Cp;D(t ), (A3b)

where the two matrix elements are given by 701

αp(t ) = [[ep − A(t )ap]
2 + [A(t )bp]

2]1/2, (A4a)

βp(t ) = i dA/dt c2/[2αp(t )
2]. (A4b)

In order to avoid an infinite number of created electron- 702

positron pairs, we constrain the length of our interaction 703

region to L, noting that the actual number of created pairs 704

N (t ) created by a spatially constant electric field E (t ) 705
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naturally has to increase linearly proportional to L. This706

number is computed here by the sum over all of upper state707

populations, which diverges with increasing L. We therefore708

introduce the number density, N (t ), defined as N (t )/L.709

In the free basis, this corresponds to Nfree(t ) =710

L−1�p|Cp;u(t )|2 and with regard to the instantaneous energy711

basis, it is given by N (t ) = L−1�p|Cp;U (t )|2. While, in712

principle, Nfree(t ) and N (t ) match only after the pulse E (t ) is713

turned off [28], in the perturbative limit they are similar. We714

note that the traditional quantum Vlasov equation [29–33]715

is equivalent to the projection on the instantaneous energy716

states.717

APPENDIX B718

In this Appendix we derive the perturbative form of the719

cross section κI for the high-frequency region. As the differ-720

ences between Eqs. (A2) and (A3) show up only in higher or-721

ders of E0, both equations lead to the same cross section. For a722

given momentum p, we assume that in lowest order, Eq. (A2a)723

simplifies to i dCp;d (t )/dt = −epCp;d (t ). The corresponding724

solution Cp;d (t ) = exp(i ep t ) is then inserted into the rhs of725

Eq. (A2a). If we neglect the time-dependent on-diagonal term,726

the equation can be integrated leading to727

Cp;u(t ) = i bp

∫ t

dτ exp[−i ep(t − τ )]A(τ ) exp (i epτ ).

(B1)
If we assume a monochromatic field A(τ ) =728

c E0/ω0[exp(iω0 t ) + exp(−iω0 t )]/2, and neglect the term729

with a too rapidly oscillating phase, we obtain730

Cp;u(t ) = i bp exp (−i ep t )c E0/ω0

∫ t

dτ exp (i 2ep τ )

× exp(−iω0 t )/2, (B2)

which can be integrated to731

Cp;u(t ) = −bp exp(−i ep t ) c E0/(2ω0)

× {exp[−i (ω0 − 2ep)t] − 1}/(ω0 − 2ep). (B3)

Therefore, the population in the upper level for each two-732

level system is given by733

|Cp;u(t )|2 = c6 E2
0

/(
4ω2

0

)
e−2
p sin2[(ep − ω0/2)t]/

(ep − ω0/2)
2, (B4)

where we have also used bp = c2/ep. In order to obtain the734

total population, we have to sum over all individual pop-735

ulations associated with all positive and negative momenta736

N (t ) = L−1�p|Cp;u(t )|2 where pn = n(2π/L). If we convert737

the summation to a continuous integral, we obtain738

N (t ) = 1/(2π ) c6 E2
0

/(
4ω2

0

) ∫
d pe−2

p sin2[(ep − ω0/2)t]/

(ep − w0/2)
2. (B5)

As the next step, we approximate the energy denominator739

e−2
p by the resonant value (ω0/2)2, which allows us to factor740

this (now p independent) term out of the integral. Due to the 741

inherent symmetry between positive and negative momentum 742

states, we can restrict the summation to positive values. If 743

we use the integral ∫ dx Sin2[xt]/x2 = πt , we obtain the 744

expression 745

N(t ) = 1/(2π )E2
0 c

5[(ω0/2)
2 − c4]−1/2/(

2ω3
0

)
πt . (B6)

As a result we obtain for the scaled variable κI(ω0) ≡ 746

E−2
0 dN/dt the final expression 747

κI(ω0) = c5[(ω0/2)
2 − c4]−1/2

/(
2ω3

0

)
.

APPENDIX C 748

The derivation for the rate in region I of Appendix B is 749

similar to the one often employed in quantum optics or atomic 750

physics, see the Fermi Golden rule. The derivation of κII, 751

however, provides some interesting physical insight. It is well- 752

known from quantum optics that (due to parity conservation) 753

the traditional two-level system of atomic physics [22–25,34] 754

does not permit any resonance if the energy difference 2ep 755

of the two levels is equal to an even multiple of the laser’s 756

frequency ω0. As we have argued above, the two-level system 757

derived from the Dirac equation is conceptually different 758

due to the additional time-dependent on-diagonal coupling 759

elements. In order to better distinguish mathematically be- 760

tween the different dynamical roles of the (same) field A(t ) = 761

A0cos(ω0t ) associated with the diagonal and the off-diagonal 762

couplings, we have temporarily renamed the on-diagonal 763

coupling field Aon(t ) = Aoncos(ω0t ). If we introduce the two 764

probability amplitudes Dp;d and Dp;u defined as 765

Dp;u(t ) ≡ exp

(
i
∫ t

dτ [ep − Aon(τ )ap]

)
Cp;u(t ), (C1a)

Dp;d (t ) ≡ exp

(
−i

∫ t

dτ [ep − Aon(τ )ap]

)
Cp;d (t ), (C1b)

then the equations of motion for the variables read 766

i d Dp;u(t )/dt = −bp exp

(
2i

∫ t

dτ [ep − Aon(τ ) ap]

)

×A(t )Dp;d (t ), (C2a)

i d Dp;d (t )/dt = −bp exp

(
−2i

∫ t

dτ [ep − Aon(t )ap]

)

×A(t )Dp;u(t ). (C2b)

This means that the time dependence of the effective force 767

field that couples the variablesDp;u(t ) andDp;d (t ) is no longer 768

solely proportional to A(t ), but to the more complicated form 769

exp(2i
∫ t dτ [ep − Aon(τ )ap])A(t ), which contains odd as well 770

as even order harmonics if the field A(t ) is monochromatic. 771

This immediately explains why the Dirac-like two-level sys- 772

tem is sensitive to the even-order resonances. If we perform 773

the integral in the exponent exp(2i
∫ t dτ [ep − Aon(τ )ap]) = 774

exp(2iep t − 2i(apAon/ω0) sin(ω0t )), then we can apply the 775

Jacobi-Anger expansion for exponentiated trigonometric 776

functions in terms of the n-th Bessel functions of the first 777
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kind, given by exp(i x sin t ) = �n Jn(x) exp(i n t ). As a result, we obtain778

i d Dp;u(t )/dt = −bp exp (2iep t )�n Jn(−2ap Aon/ω0) exp (i nω0 t )A(t )Dp;d (t ), (C3a)

i d Dp;d (t )/dt = −bp exp (−2iep t )�n Jn(2ap Aon/ω0) exp (i nω0 t )A(t )Dp;u(t ). (C3b)

As we are only interested in the lowest-order perturbative effect due to Aon, we can expand the Bessel function up to first order779

as J0(x) = 1, J1(x) = x/2 and J−1(x) = −x/2. We obtain780

�nJn(−2apAon/ω0) exp (i nω0 t ) = 1 − apAon/ω0 exp (iω0 t ) + apAon/ω0 exp (−iω0 t ), (C4a)

�n Jn(2apAon/ω0) exp (i nω0 t ) = 1 + apAon/ω0 exp (iω0 t ) − apAon/ω0 exp (−i ω0 t ). (C4b)

We then use A(t ) = A0[exp (iω0t ) + exp (−iω0t )]/2 and retain among the eight terms only those ones with the smallest phase781

factor, which for our frequency range is ±(2ep − 2ω0)t . We, therefore, obtain782

i d Dp;u(t )/dt = −bp ap Aon/ω0 A0 exp [i 2(ep − ω0)t]/2Dp;d (t ), (C5a)

i d Dp;d (t )/dt = −bp ap Aon/ω0 A0 exp [−i 2(ep − ω0)t]/2Dp;u(t ). (C5b)

Similarly as in Appendix B, in perturbation theory, we can assume Dp;d (t ) = 1 such that we can integrate the first equation783

from t = 0 to t and obtain784

Dp;u(t ) = bpapAon/ω0A0{exp [i 2(ep − ω0)t] − 1}/[4(ep − ω0)], (C6)

such that we obtain for the upper population785

|Dp;u(t )|2 = |Cp;u(t )|2 = b2p a
2
p A

2
on

/
ω2
0 A

2
0 {sin2[(ep − ω0)t]/[4(ep − ω0)

2]. (C7)

We would like to stress again that here the two-photon-like resonance is proportional to A2
on A

2
0 and therefore completely absent786

for the traditional two-level system (for which Aon is zero). If we replace bp = c2/ep, ap = c p/ep, Aon = A0 = cE0/ω0, then this787

simplifies to |Cp;u(t )|2 = c10p2 E4
0 ep

−4 ω−6
0 Sin2[(ep − ω0)t )/[4(ep − ω0)2]. Finally, if we sum over all final populations (as we788

did in Appendix B) we obtain789

N (t ) = (1/π )c7
(
ω2
0 − c4

)1/2/(
4ω9

0

)
E4
0 πt . (C8)

As a result we obtain for the scaled variable κII(ω0) ≡ E−4
0 dN/dt the final desired expression790

κII(ω0) = c7
(
ω2
0 − c4

)1/2/(
4ω9

0

)
.
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