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ABSTRACT

File transfers in high-speed networks require network and file sys-
tem parallelism to increase resource utilization and reach high
speeds. However, creating arbitrarily large numbers of I/O threads
and network connections overwhelms system resources and causes
fairness issues. In this paper, we introduce Falcon that combines a
novel utility function with state-of-the-art online optimization algo-
rithms to discover the optimal transfer settings that achieves high
performance, while keeping system overhead low and ensuring fair
resource sharing between competing transfers. Our extensive eval-
uations in several dedicated and production high-speed networks
show that Falcon can find near-optimal solution in as little as 20
seconds and outperforms existing transfer application by 2x to 6x.
Furthermore, unlike existing transfer optimization solutions that
result in unfair resource allocation when multiple transfers run con-
currently, Falcon is guaranteed to converge to Nash Equilibrium
with the help of its game theory-inspired utility function.
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1 INTRODUCTION

Rapid evolution of instrument technologies along with growing
storage and compute capacities have led to unprecedented increase
in amount of data generated by scientific applications. For example,
advancements in high-throughput genome sequencing technology
increased output size per single run from around 5 MB in 2006
to more than 5 GB in 2018, a three order of magnitude increase
in 12 years. As science projects are increasingly distributed and
collaborative, growing data sizes demands high-speed data trans-
fers to move data between geographically separated institutions
in a timely manner. Yet, majority of data transfers fall short to
reach beyond few gigabit-per-second throughput despite the avail-
ability of high-speed networks with up to 100 Gbps bandwidth,
dedicated data transfer nodes, and high-throughput parallel file
systems, mainly due to lack of scalable data transfer applications.
Legacy file transfer applications (e.g., FTP, scp) are initially designed
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Figure 1: Although transferring multiple files concurrently
helps to improve transfer throughput significantly, the op-
timal value of concurrency depends on many static and dy-
namic factors, thus necessitates an adaptive solution.

for low-speed internet transfers (i.e., in the order of megabytes per
second), thus they fail to perform well for large-scale scientific
transfers in high-speed networks. Specifically, network and I/O par-
allelism is essential to reach beyond few gigabit-per-second transfer
throughput in high-speed networks since neither single network
connection nor single I/O thread is sufficient to reach higher speeds.

Single TCP stream is typically limited to 30 Gbps throughput due
to memory and CPU limitations. Similarly, single file read/write
speed is in less than 10 Gbps with hard drives and less than 30
Gbps with solid state drives even with disk striping, such as RAID.
Yet, these numbers are much lower in productions systems due to
resource interference. To validate this, we transferred a 500 X 1GiB
files between two isolated servers in same local area network that
are configured with RAID array (with 4 NVMe SSDs) storage sys-
tem and connected through 40 Gbps link. Figure 1(a) shows that
transferring one file-at-a-time (i.e., concurrency = 1) obtains less
than 8 Gbps throughput in one network (i.e., HPCLab) and less than
2 Gbps throughput in another networks (i.e., XSEDE) mainly due to
write I/O limitations. However, transferring multiple files simulta-
neously increases throughput to around 30 Gbps in both networks,
3 — 15x increase compared to baseline configuration. On the other
hand, finding the optimal concurrency value is a challenging task
due to large search space and prohibitive cost of exhaustive profil-
ing. Deriving accurate analytical models for production systems is
also nearly impossible due to challenges associated with collecting
real-time performance metrics from all components of end-to-end
transfers that span across multiple clusters and network domains
that are managed by separate entities. Specifically, HPC clusters
and research network providers typically do not share performance
metrics for system resources such as load on storage servers and
queue size of network devices in the real-time which would play
significant role on the observed transfer performance.

Figure 1(b) illustrates the impact of concurrency on transfer
throughput when it is used to transfer various types of datasets (e.g.,
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lots of small files and single very large file) in different networks
settings (e.g., dedicated local-area network and shared wide-area
network). Evidently, the optimal concurrency level is not same for
all transfers as it depends on many factors. Even more challenging
is that the optimal solution can be different for identical transfers
(i.e., transfer of the same dataset between the same end points) over
time due to change in background traffic. While high concurrency
values typically yield high performance, using arbitrarily large val-
ues can lead decrease in throughput in addition causing congestion
(both at the network and file system level) and unfair resource
allocation between competing transfers [7]. As a result, while con-
current file transfers is essential to increase resource utilization
and achieve high transfer performance, the optimal concurrency
level depends on many static (e.g., network and file systems settings)
and dynamic (e.g., network congestion) factors, making it challenging
to estimate. Previous work in this are involve heuristic [9, 12], su-
pervised learning [11, 29, 39], and real-time optimization [47, 48]
models. Despite yielding higher throughput than baseline settings,
heuristic models fail to offer robust performance in all networks
as they fail to incorporate dynamic conditions into their models.
Supervised learning models can make precise predictions, however,
deriving an accurate and flexible model requires large amount of
historical data to be collected in wide range of transfer conditions
(e.g., dataset, background traffic, etc.), which could take weeks or
months. Real-time optimization algorithms can discover the opti-
mal settings in the runtime, however, existing solutions in this area
suffer from long convergence time and failure to provide fairness
and stability guarantees in shared environments.

In this paper, we introduce Falcon which combines game theory-
inspired utility function with the state-of-the-art online search
algorithms to discover optimal concurrency level swiftly while
ensuring fairness among competing transfers. As opposed to previ-
ous high-speed transfer optimization solutions which solely focus
yielding higher transfer throughput, Falcon innovates a novel util-
ity function to discover “just-enough” concurrency that can obtain
near-optimal transfer performance while lowering system overhead
and ensuring fair resource allocation. Our extensive evaluations
in various network settings with up to 40 Gbps bandwidth show
that Falcon- with the help of fast and efficient online optimization
models—achieves 2 — 6x higher throughput compared to the state-
of-the-art file transfer optimizations solutions. More importantly,
Falcon is the first algorithm that guarantees fairness between com-
peting transfers by incorporating regret terms into its utility function.
In summary, we make following unique contributions to the field:

e We introduce Falcon which innovates a novel game theory-
inspired utility function to evaluate the performance of trans-
fer settings which rewards high throughput and penalizes
increased system overhead.

e We implement three online optimization algorithms (i.e., Hill
Climbing, Gradient Descent, and Bayesian Optimization) for
Falcon to swiftly sweep large search space in real-time. The
results show that Gradient Descent and Bayesian Optimiza-
tion can discover optimal transfer settings in as little as 20
seconds and yield close-to-maximum transfer throughput in
all network settings while ensuring fair resource allocation
between competing transfers.
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Figure 2: State-of-the-art transfer optimization solutions,
Globus [9] and HARP [11] are unable to achieve high-
performance due to lack of adaptive parallelism (a). They
also fail to guarantee fairness between competing transfers

(b).

o We evaluate the performance of Falcon in several shared
and production high-speed networks with different bottle-
neck scenarios to validate its effectiveness in wide range of
conditions.

2 MOTIVATION

Although file transfer optimization has been studied extensively
in the past, we identify two major issues with existing solutions
as failure to guarantee high performance in all networks and unfair
resource sharing when multiple transfers compete. We next discuss
that these two issues cannot be overcome through simple extensions
of existing solutions due to potential side-effects; increased overhead
on system resources in particular.

Poor Transfer Performance: Despite the availability of high-
speed networks and high-capacity parallel file systems, existing
file transfer applications and services fall short to take full bene-
fit of these resources due to lack of adaptive resource parallelism.
Figure 2(a) demonstrate the performance of two state-of-the-art
file transfer optimization solutions for a transfer between Comet
and Stampede2 supercomputer that are connected with 40 Gbps
network bandwidth. Globus [9] uses fixed and mostly suboptimal
transfer settings hence obtains less than 6 Gbps throughput. On
the other hand, despite attaining higher throughput than Globus,
HARP [11] also underperforms by obtaining only around 50% of
maximum throughput. This is mainly because of the fact that its
lacks historical data in this network, so makes predictions by ana-
lyzing transfer logs gathered in 10 Gbps networks. While collecting
new data to re-train HARP for this network will improve its perfor-
mance, it can take weeks to months to collect sufficient amount of
data, which is not feasible to perform in all networks.

Unfair Resource Sharing: In the presence of multiple inde-
pendent file transfers competing for limited available resources,
convergence to a fair stable state is desired behavior. This well-
known concept in game theory which requires competing agents
either use same fixed strategy or periodically update their strat-
egy using a symmetric, strictly concave utility function [45]. Thus,
transfer optimization algorithms that employ fixed strategy (e.g.,
Globus [3]) will converge to a stable state, however they will fail to
adapt to changing conditions since the optimal strategy depends on
dynamic conditions such as the number of competing transfers. On
the other hand, solutions that tune transfer settings only once at
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Figure 3: Network topology used for single transfer experi-
ment in Emulab.
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Figure 4: While running concurrent transfers is required to

improve file transfer throughput, aggressive use of it would

lead to congestion in the network .

the beginning of the transfer (e.g., HARP [10]) fails to provide fair
resource sharing between the competing transfers as “late-comers”
will have an unfair advantage by choosing a setting that favors them
with high transfer throughput. Yet, extending existing transfer solu-
tions to run the optimization process periodically to adapt changing
conditions will not work either since their throughput-oriented
utility models (i.e., higher transfer throughput yields higher utility)
do not meet strictly concave utility requirement of fair convergence.
As an example, the utility, u, of a transfer task creates n concurrent
transfers (i.e., concurrency = 4) each obtaining ¢ throughput! can
be calculated by

u(n,t)=2t=nxt (1)
i=1

when utility is set to be linearly proportional to transfer through-
put. Fair resource sharing requires the second derivation of utility
functions to be negative, but it returns 0 for Equation 1, thus it
cannot guarantee fairness between competing transfers. Figure 2(b)
illustrates this behavior for HARP which utilizes historical analysis
to find a transfer setting that maximize transfer throughput [11].
It is clear that when the second HARP transfer joins, it chooses a
setting that favors to itself and yields nearly 2x of the throughput
of the first transfer.

Overburdened Network and End Hosts: A naive solution to
maximize transfer throughput in high-speed networks while en-
suring fairness can be implemented by using fixed transfer setting
that involves high values for concurrency parameter, such as 30.
However, high levels of concurrency can overwhelm end system
and network resources by creating too many processes and network
connections. To demonstrate this, we evaluate the performance of
a file transfer when concurrency is set to values between 1 and
32 in a simple network topology as depicted in Figure 3. While
hardware limits for disk read/write speed 1 Gbps, we throttle read
1I/0 throughput of a single process to 10 Mbps to emulate the behav-
ior of parallel file systems in which concurrent I/O yields higher

ISince each transfer thread uses the same congestion control algorithm to transfer
similar size files between the same end points, they will attain similar throughput as
most commonly used TCP variants (e.g., Reno, Cubic, HTCP, and BBR) guarantees
fairness among competing flows with the same RTT [17, 31]
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Figure 5: Falcon uses online optimization to discover opti-
mal transfer settings quickly. The utility function rewards
high throughput while penalizing increased system over-
head to ensure convergence to fair and optimal solution.

throughput compared to single threaded I/O. Since network band-
width is 100 Mbps, 10 concurrent transfers is needed to achieve
100 Mbps aggregate I/O throughput, thereby reaching to maximum
transfer speed. Although more than ten concurrent transfers also
yields 100 Mbps throughput, it results in significant increase in
packet loss due to network congestion at the bottleneck link as
shown in Figure 4. Specifically, while packet loss is below 2% when
concurrency is smaller than 10, it increases drastically and reaches
to 10% for concurrency value of 32. In addition increased packet loss,
high concurrency values also overburden end hosts and storage sys-
tems due processing overhead of concurrent processes/threads [7].
Consequently, there is a need for high-speed file transfer optimiza-
tion solution that can tune the level of transfer parallelism in real-
time to provide high-performance and fair bandwidth sharing
while keeping system overhead at minimum. We therefore introduce
Falcon that combines a game-theory inspired utility function with
state-of-the-art online optimization algorithms to address these
limitations.

3 FALCON: ONLINE HIGH-SPEED FILE
TRANSFER OPTIMIZATION ALGORITHM

Falcon implements online learning to find optimal transfer set-
tings in the runtime as illustrated in Figure 5. It adopts a black-box
approach and uses sample transfers to evaluate different transfer
settings. The benefit of this black-box approach is the generality and
applicability to a diverse set of network systems without making
any assumption about underlying infrastructure. Such abstraction
makes it possible to develop intuitive understanding of the system
conditions through simple performance metrics such as throughput
and packet loss rate. Falcon first selects a transfer setting, n and
runs a sample transfer to evaluate its performance. Once the sam-
ple transfer is executed for a sufficient amount of time, it captures
performance metrics and uses a utility function ,U, to convert a set
of performance metrics to a scalar value that quantifies the effec-
tiveness of the transfer setting 7. Finally, it processes the calculated
utility value using online optimization algorithms (e.g., Bayesian
optimization, online gradient descent) to predict a new transfer set-
ting npew closer to the optimal. Compared to existing optimization
algorithms for high-speed file transfers, Falcon makes two novel
and key contributions. First, it innovates a game-theory inspired
utility function that incorporates regret (i.e., penalty) term for in-
creased packet loss and concurrent transfer count to keep system
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overhead at minimum and ensure fairness among competing
transfers. Second, it implements three state-of-the-art online opti-
mization algorithms, Hill Climbing, Gradient Descent, and Bayesian
Optimization, to scan search space and converge to the optimal
expeditiously. We first apply Falcon to tune the number of con-
current transfers (i.e., n = {concurrency}) as it has been shown to
be the most effective parameter in the optimization of large-scale
file transfers [11, 33, 47]. In § 4.4, we demonstrate that Falcon can
be extended to tune additional transfer parameters to offer more
precise solutions for long-running bulk data transfers. Note that
Falcon operates in the application layer, so it does not rely on any
specific transport protocols and can easily be extended to support
any transfer application including FTP, GridFTP, and bbcp. In fact,
multiparameter optimization of Falcon is implemented in GridFTP
as it gives a flexibility to tune several transfer settings and readily
available in most production high-performance computing clusters.

3.1 Utility Function

Utility functions need to involve a regret term to converge to a
fair and optimal solution [23, 45, 51, 52], thus Falcon incorporates
packet loss into its utility function as

u(ng, ti, L) = njt; — nit;L; X B (2)

where n; is the number of concurrent file transfers, ¢; is average
throughput of each transfer, and L; is packet loss rate. B is a constant
coefficient that is used to determine the severity of punishment
for increased packet loss. While the value of B can be customized
for specific application scenarios, we find that B = 10 works well
with most commonly used TCP variants (i.e., TCP Cubic and Reno,
and HSTCP) by keeping packet loss rate below 1% while achieving
over 95% network utilization. As a result, the utility function in
the form of Equation 2 addresses overhead and fairness issues
when suboptimal concurrency values cause increased packet loss.
However, as high-performance networks with up to 40/100 Gbps
capacity are being built, transfer bottlenecks are shifting toward end
hosts. For example, the network service provider of most research
and education institutions in the U.S., Internet2, supports 100 Gbps
connectivity to most sites and is upgrading its backbone capacity to
400 Gbps [4]. On the other hand, it is challenging, if not impossible,
to attain 100 Gbps I/O throughput in production clusters due to
inevitable resource interference. Moreover, most HPC clusters use
data transfer nodes with 10/40 Gbps Network Interface Cards (NICs),
limiting maximum possible transfer rate to smaller values compared
to network bandwidth. Consequently, little to no packet loss is
observed in many production systems, necessitating an additional
penalty term to limit the excessive use of concurrency. We therefore
propose a cost function that penalizes the use of high concurrency
by incorporating the value of concurrency into the utility function
as

u(nj, t;, L) = njt; — nit;Li X B — njt; X n;C (3

where C is a constant coefficient that is used to adjust the rate of
penalty for increased concurrency. Previous studies show that the
utility functions that incorporate monotonically increasing penalty
terms in linear form guarantees high performance for single trans-
fer and optimal and fair convergence for competing transfers (i.e.,
Nash Equilibrium) [23, 52] . However, we find that it is challenging
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to achieve both high-performance and fair and optimal convergence
when concurrency regret is incorporated in linear forms similar
to Equation 3. Figure 6 presents estimated utility value when C
is set to 0.01 (nearly 1% punishment for each concurrency) and
0.02 (2% punishment) when the optimal concurrency level is 48; i.e.,
48 concurrent transfers are needed to reach full I/O and network
utilization. When C is set to 0.02, the utility value peaks at con-
currency value 25 which in turn results in lower than maximum
throughput. We experimentally validate this behavior by config-
uring I/O limitation per process (as described in § 2) to require
48 concurrent I/O threads to reach maximum possible throughput
in Figure 6(b). The transfer converges to suboptimal concurrency
value of 26 hence obtains 45% lower transfer throughput than the
optimal. Smaller C values such as 0.01 are able to converge to opti-
mal configurations for single transfer scenario both theoretically
(Figure 6(a)) and empirically(Figure 6(c)), but results in suboptimal
convergence behavior when there are multiple competing trans-
fers due to increased sensitivity to measurement jitters. Figure 6(c)
illustrates that although the utility function with linear penalty of
1% (i.e.,C = 0.01) converges to the optimal solution when there is
only one transfer in the system, it fails to do so when the second
one joins. The optimal solution requires both transfers to create 24
concurrent transfers to yield maximum throughput with minimal
overhead, they converge to 36 — 38 concurrent transfers which
overburdens system resources unnecessarily .

To address these issues, we test a nonlinear form of regret for
concurrency as

nit;
u(ng, t, Li) = # —nitiLi X B 4)

where K is constant. As throughput improvement ratio is not di-
rectly proportional to increased concurrency (i.e., the ratio of gain
starts to lower at higher concurrency values), the value of K can be
tuned to require small but non-negligible gain (e.g., 1%) for increas-
ing concurrency values. By doing so, we ensure that the utility will
increase as long as non-negligible amount of throughput gain is
observed and decrease upon exceeding the optimal concurrency
value. Figure 6(a) and 6(b) show that the utility function that incor-
porates penalty for concurrency in a nonlinear form converges to
the optimal both theoretically and empirically for single transfer
optimization. It also converges to a fair and optimal solution when
multiple transfers compete as presented in § 4.2.

In the presence of multiple computing transfer tasks, each Falcon
agent will enter a regret minimization dynamics to lower packet
loss and concurrency punishment. Intuitively, packet loss can only
stay the same or increase as the number of concurrent transfers is
increased. Thus, the term 1 — L; X B will follow monotonically de-
creasing pattern for the increasing number of concurrent transfers.
Thus, the utility function given in Equation 4 is guaranteed to be
concave as long as 1n<l_"tf is concave. It is also true when transfers are
sender-limited (i.e., transfer bottleneck is I/O or NIC) since packet
loss rate, L;, will be return 0. Therefore, if the second derivative
of I"g—,fj is negative (i.e., first derivative is strictly decreasing), then
the utility function in the form of Equation 4 is guaranteed to be
strictly concave, a condition that needs to be satisfied to converge
to fair and optimal state.
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Figure 6: Comparison of linear (Eq 3) and nonlinear (Eq 4) forms of regret for concurrency in the utility function. Linear form
of regret either fails to yield high performance for single transfer (C = 0.02 in (a) and (b)) or causes suboptimal convergence
when multiple agents compete (c). Thus, Falcon incorporates concurrency penalty into its utility function in a nonlinear form.

Proof: Let’s denote I"(lnt: = f(n), then second derivative of f(n)
becomes
f"(n) = ;K™ InK(-2 +n; InK) (5)
Since, tj, nj, and K are non-negative values, t;K~" In K will return
greater than 0. Thus, f”/(n) can only be negative if (=2 + n; InK
is negative. Consequently, Equation 4 is guaranteed to be strictly
concave aslongasn; < ﬁ Hence, the value of K defines the upper
limit for the number of concurrent transfers, n, that can be created
before f”’(n) moves out of strictly concave region. Setting K to
1.01 will expect at least 1% increase in throughput when comparing
two consecutive concurrency values to prefer the larger one and
require the optimal concurrency level to be less than or equal to 200
to guarantee Nash Equilibrium. Our experimental analysis show
that while lower the value of K helps to increase the upper limit for
concurrency value, it causes stability issues in the case of competing
transfers due to increased sensitivity to throughput fluctuations. We
therefore set K = 1.02 (i.e., at least 2% throughput gain required for
each new concurrent transfer) to strike a balance between stability
and reduced upper limit. Please note that larger K values, such as
1.10, will further improve resiliency against measurement noises,
however it will cause transfers to converge to suboptimal results
when the optimal concurrency is high since the optimal solution
falls out of concave region.

3.2 Online Search Algorithm

A naive approach to discover the optimal solution can be imple-
mented by evaluating the performance of all possible transfer set-
tings (i.e., brute-force method), but is not feasible due to large
search space and expensive nature of evaluating different settings.
Specifically, it takes several seconds to accurately measure the
performance of a transfer configuration due to connection estab-
lishment cost? as well as slow convergence of TCP transfers in long
fat networks. We therefore implemented Hill Climbing, Gradient
Descent, and Bayesian Optimization to discover the optimal solu-
tion quickly. In addition, dynamic nature of resource interference
in networks and file systems require search algorithms to always
search for the optimal to adapt the changing conditions and maxi-
mize the utility. Thus, we configured the optimization algorithms to
keep exploring the search space throughout the transfer. Note that
Falcon uses a separate thread to gather and process performance

2Concurrency requires new processes and network connections to be created

metrics, thus the optimization process does not interfere with the
transfer performance.

Hill-Climbing: In Hill-Climbing algorithm, the search process
first determines the search direction to follow, then evaluates po-
tential values sequentially as long as the utility is increasing at
which point the search direction is reversed to continue the search
in the other direction. In the context of the optimal concurrency
exploration, the search process starts with a minimum concurrency
value of 1 and increments it by one as long as the utility is higher
than previous value. Even if the current optimal is detected, the
search process will keep evaluating higher and lower values peri-
odically in order to detect and adapt to changes. To compare two
concurrency values n;, and n;;1 of two consecutive time intervals
with corresponding utility values u; and uj41, we first calculate the
rate of change, y;, as follows:

o Ui Ui

i Ui+l

If y is greater than a non-negative threshold (3% by default), the
search process will continue the search in the same direction to
evaluate next concurrency value. As an example, if the search direc-
tion is downward (i.e., evaluating concurrency values lower than
the current one) and y is larger than the threshold, then it will test
n; — 1 unless n; = 1.

Gradient Descent: Online Gradient Descent (OGD) is exten-
sively used for online convex function optimization due to its ability
to adapt step size dynamically. Since the utility function in Equa-
tion 4 is strictly concave when n < 100, we can apply OGD? to
search for the optimal concurrency value for transfers. As GD re-
quires gradient (i.e., slope) calculation, we estimate it as follows:
For a given concurrency value n, we test concurrency values n + €
and n — € using sample transfers and calculate their utility values,
u1 and uy, respectively. Then, the gradient can be approximated
byy = ”5;?1 . Note that since concurrency can only take integer
values, we use 1 for the e. For example, to calculate the gradient
at n = 40, Falcon will evaluate concurrency values of 39 and 41
through sample transfers and calculate y using corresponding util-
ity values.

Note that gradient cannot be used directly to estimate the next
concurrency value as its scale is different. Thus, we convert y to

3We can convert the utility to cost function by multiplying it with —1 to apply Gradient
Descent.
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Figure 7: Performance comparison of Hill Climbing, Gradient Descent, and Bayesian Optimization in finding the concurrency
level in Emulab. While Gradient Descent and Bayesian Optimization can converge to the optimal in less than 30 seconds, it

take more than 250 second for Hill Climbing.

the rate change for concurrency by dividing it to the utility of
n—easA = # and use it to predict next concurrency value,
Npew = N + A. To further improve the convergence speed while
avoiding to take arbitrarily large steps due to sampling errors, we
use a monotonically increasing learning factor 6 to gradually build
confidence over search direction and adjust the steps size dynam-
ically via npew = n + 6A. We initiate 0 to a relatively small value
and increase it as long as the search moves in the same direction in
consecutive intervals. Specifically, we initialize 6 to 1 and increase
it by one at each time step as long as the gradient is positive and
reset to the initial value otherwise. Falcon runs Gradient Descent
continuously even after it discovers the current optimal to adapt
dynamic conditions. It does this by checking higher and lower val-
ues around the current optimal to find if they yield higher utility
than the current solution.

Bayesian Optimization: Although Gradient Descent offers
quick convergence over Hill Climbing method by taking advantage
of the concavity of the utility function, it has two drawbacks. First,
gradient calculation requires two sample transfers (i.e., n + 1 and
n — 1) to be executed, which may slowdown convergence speed
since each sample transfer takes at least 3 — 5 seconds to accurately
evaluate the performance of a transfer setting. Second, despite tak-
ing advantage of gradient to adjust step sizes, it requires careful
tuning of step size parameters, 6 and y, to take full benefit of GD,
which can be a daunting task. We therefore implement sequential
model based optimization, more precisely Bayesian Optimization
(BO), to address these limitations using a non-parametric search
method.

BO is widely used for black-box optimizations especially when
cost function is expensive to evaluate [27, 43, 49, 50]. It aims to
estimate analytical form of black-box functions by processing ob-
served events via surrogate models, such as Gaussian Process. It
starts with a prior probability and calculates posterior probability
after an event is observed using Bayes’ theorem which states that if
one of the conditional probabilities is known along with individual
probabilities of two dependent events, then the other conditional
probability can be calculated as

P(B|A) x P(A)

P(AIB) = =7 &

(6)
where A and B are the two conditionally dependent variables with
associated probabilities of P(A) and P(B) and conditional probabil-
ities of P(A|B) and P(BJA).
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Figure 8: Hill Climbing suffers from slow convergence speed
and fails to achieve fairness among competing transfers.

In the context of online transfer optimization, BO seeks to find a
distribution that can capture the behavior of utility function with
respect to value of concurrency parameter. It starts the process with
a random sampling phase during which the utility of randomly se-
lected concurrency values are evaluated. Although large number
random sampling allows BO to discover the search space better,
it increases the search time, thus we limit the random sampling
phase to three samples in our experiments. We also set the prior
distribution to uniform distribution to avoid any potential bias for
optimal solution. We use Gaussian Process as a surrogate model
and limit the number of past observations used in the model to 20 in
order to (i) adapt dynamic system conditions quickly and (ii) lower
the computational cost of Gaussian Process. While using entire
history is helpful to find the optimal solution and build confidence
over time, it hampers the discovery of new optimal when system
conditions change. Limiting the number of past observations forces
the optimizer to keep exploring the search space periodically and
discover the new optimal quickly. Moreover, Gaussian Process (GP)
is notorious for its expensive computational cost which increases
as more data becomes available. Using a fixed number of past ob-
servations guarantees that GP processing delay stays in the order
of milliseconds. Moreover, we utilize GP-Hedge algorithm [13] to
tune the hyperparameters of BO, such as exploration-exploitation
ratios and acquisition functions, in real-time.

4 EVALUATION

We assess the performance of Falcon in four networks as listed in
Table 1 out of which Campus Cluster and XSEDE are production
HPC clusters, HPCLab is an isolated lab cluster, and Emulab is an
emulated network testbed. Except Emulab, all clusters have parallel
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Figure 10: Performance evaluation of Falcon with Bayesian Optimization in different networks
Testbed Storage Bandwidth | RTT | Bottleneck we use Emulab and throttle per-process I/O throughput to require
Emulab RAID-0 SSD 16 30ms | Network 48 concurrent transfers before network bandwidth can become
XSEDE L 1 4 Disk . . . . .
S ustre 06 0ms | Disk Read the bottleneck. The results as illustrated in Figure 7 indicate that
HPCLab NVMe SSD 40G 0.lms | Disk Write . . . .
Hill Climbing takes nearly 7x longer to converge to the optimal
Campus Cluster | GPFS 10G 0.lms | NIC

Table 1: Specifications of test environments. OSG and Comet
sites are used for XSEDE experiments.

file systems or RAID arrays as storage solution due to which con-
current file transfers is required to achieve full I/O utilization. Since
Emulab nodes have direct-attached single disk storage volumes, we
throttle per process disk read throughput to necessitate concurrent
I/O accesses to reach maximum performance, similar to parallel file
systems. We also configured network topology in Emulab in a way
that (Figure 3) network bandwidth becomes the bottleneck once
sufficient number of concurrent transfers are created. We use OSG
and Comet clusters for XSEDE experiments, which are connected
via high-speed network. HPCLab and Campus Cluster servers are
located in the same local-area network, thus delay between the
hosts are less than a millisecond. To determine the bottleneck for
file transfers, we used profiling tools (e.g., Iperf [5], bonnie++ [1])
that can capture “true” capacity of resources. We set the duration of
sample transfers (i.e., evaluating the performance of a concurrency
value) to 3 seconds in local area transfer and 5 seconds for wide-area
transfers. Finally, we used a dataset containing 1000 X 1 GB files
to conduct the transfers. § 4.4 presents results of Falcon when it’s
used for small and mixed datasets transfer optimizations.

4.1 Efficiency for Single Transfer

We first assess the performance of Falcon with Hill Climbing, Gra-
dient Descent (GD) and Bayesian Optimization (BO) in terms of
convergence speed and transfer throughput for single transfer sce-
nario when the optimal is concurrency level is high. Specifically,

compared to GD and BO as it uses a fixed step size of 1 while search-
ing for the optimal solution. The impact of slow convergence is
exacerbated when multiple transfers are executed in parallel as
demonstrated in Figure 8. Although using a strictly concave func-
tion for utility calculations guarantees Nash Equilibrium between
competing transfer tasks (i.e., agents) as long as all agents employ
a similar strategy, it takes extremely long for Hill Climbing due to
slow convergence speed. On the other hand, both GD and BO can
converge to the optimal after 4 — 5 sample transfers. Therefore, we
only evaluate the performance of Falcon with GD and BO search
algorithms in the rest of the paper.

Figure 9 and 10 present the performance of Falcon in all four
networks with GD and BO online search implementations. We limit
the I/O performance to 100 Mbps per process in Emulab with 1
Gbps network bandwidth, so 10 concurrent transfers is needed for
full utilization. BO, after few initial random sampling, learns the
optimal search region and focuses around concurrency value of 10
as shown in Figure 10(a). Since the number of past observations
used in the surrogate model is limited, it periodically conducts
search space exploration even after converging to the optimal. GD,
on the other hand, starts the search with a initial concurrency value
of 2 but converges to the optimal quickly by adjusting the step
size. Upon convergence, the concurrency value bounces between
9 and 11 as it evaluates higher and lower values for continuous
optimization. Although BO also runs continuous search, it can
adjust the frequency of explorations based on recent observations,
thereby offering more consistent performance over GD. Both BO
and GD are able to reach over 25 Gbps throughput in HPCLab
which requires around 9 concurrent transfers to reach maximum
write I/O throughput. Similarly, BO and GD yields similar high
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performance in Campus Cluster and XSEDE transfers by obtaining
around 9.2 Gbps and 5.4 Gbps transfer throughput, respectively.

4.2 Convergence Analysis for Competing
Falcon Transfers

We next assess the efficiency and fairness of Falcon when multiple
transfer tasks run simultaneously. Note that this is different than
concurrency in a way that concurrency transfers multiple files for
same transfer task whereas competing transfer tasks refer transfer
that are transferring completely separate datasets and likely submit-
ted by different users. We assume that all agents (i.e., transfer tasks)
uses the same utility function as in Equation 4 and employ the same
(either GD or BO) search optimization algorithm. Figure 11 shows
that GD supports fair resource sharing between the competing
transfers while sustaining high network utilization. Compared to
BO (as presented in Figure 12), GD leads to smaller fluctuations
in throughput upon convergence as its adaptive step size policy
constrains the search region in a small space once the optimal has
been discovered. On the other hand, unlike single transfer scenario,
Falcon BO agents do not settle to a fixed concurrency value when
multiple agents compete since BO agents take larger steps during
exploration phase. Nevertheless, average throughput of competing
flows is nearly identical with the help of strictly concave utility
function.

For HPCLab transfers (Figure 11(b) and 12(b)), we observe that
when the second and third Falcon transfer agents join, they can
quickly grab their fair share (i.e., 12 — 13 Gbps for two transfers and
7 — 8 Gbps for three transfers). Moreover, when one of the transfers
completes, the remaining one(s) can quickly increase their utiliza-
tion to sustain high performance. Figure 13 presents concurrency
values for Falcon-GD agents when they compete against each other
in Emulab where the bottleneck link capacity is 1 Gbps and I/O limit
per process is 20 Mbps. Thus, it requires 48 concurrent transfers to
reach maximum utilization. When there is only one transfer in the
system, it quickly converges to the optimal concurrency value of 48
to maximize throughput. Once the second transfer joins, the first
transfer reduces its concurrency to 20 — 33 range to let the second
transfer claim its fair share. Note that even if fair resource sharing
can also be achieved when both transfers uses concurrency value
of 48, it will result in higher packet loss despite obtaining the same
throughput (i.e., around 500 Mbps for each transfer) when they
both create 20 — 25 concurrency transfers as illustrated in Figure 4.
When the third transfer joins, all they all select concurrency values
around 10 — 23 to make sure that total concurrency value large
enough to fully utilize available resources yet not too high to cause
extreme network packet loss, computation, and and I/O overhead.
Moreover, Falcon agents can also quickly notice the departure of
competing transfers and increase their concurrency accordingly to
claim the available network bandwidth.

4.3 Comparison to State-of-the-Art

Figure 14 compares the single transfer performance of Falcon against
two state-of-the-art file transfer optimization solutions for the trans-
fer of 1 TB dataset that consisting of 1000 X 1 GB files. Globus [3]
is a web-based transfer service that is widely used in science and
education community to schedule large file transfers. It relies on
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heuristic solution to tune concurrency along with parallelism and
pipelining. It uses fixed settings to configure the value of transfer
settings, thus fails to react to dynamic conditions. HARP [10], on
the other hand, relies on historical data to drive regression models
to estimate transfer throughput based on concurrency, parallelism
and pipelining parameters. We observe that while Globus is too
conservative when selecting the number of concurrent transfers to
avoid congestion, HARP can be too aggressive to maximize through-
put. Although HARP can reconfigure the transfers settings in the
runtime to adapt changes [11], its performance is inherently limited
due to relying on historical data.

Globus underperforms significantly compared to Falcon in all
three networks. Specifically, it yields around 9 Gbps throughput
in HPCLab whereas Falcon attains more than 22 Gbps. HARP, on
the other hand, yields 25 — 35% lower throughput than Falcon in
HPCLab and XSEDE networks while obtaining comparable results
in Campus Cluster. The convergence behavior of HARP in the
presence of multiple HARP agents, however, is far from optimal
as late comers have higher advantage over existing transfers as
illustrated in Figure 2(b). Specifically, even though overall system
utilization increases from 16 Gbps to around 22 Gbps when the
second HARP transfer starts, the first transfers only yields half the
throughput of the second transfer, causing fairness issues.

4.4 Multi-parameter Optimization

Although concurrency is the most effective parameter in increasing
transfer throughput due to offering both I/O and network paral-
lelism [33, 47], additional transfer parameters such network par-
allelism and command pipelining can be tuned to further improve
transfer performance, especially for long running transfers. Paral-
lelism determines the number of concurrent network connections
to create to transfer each file, which can be helpful to improve the
performance in the case of transferring few large files. Pipelining,
on the other hand, sends multiple file transfer commands to source
and destination servers back-to-back such that the transfer of next
file can start immediately after the transfer of previous file com-
pletes. Pipelining is mainly helpful when transferring many small
files by eliminating the pauses between consecutive transfers, by
amplifying the impact of short pauses. In terms of system overhead,
parallelism can overburden network resources by creating too many
concurrent flows. On the contrary, pipelining has negligible impact
on system resources since it is merely command caching on source
and destination servers. Therefore, we modified the cost function
in Equation 4 to incorporate a penalty term for parallelism as

(n; X pi)ti

u(ni, ti, Li) = KD

—n;t;L; X B (7)
where p; refers to the level of parallelism. Note that parallelism can
be used in together with concurrency, so n; X p; is used to calculate
the total number of network connections created for a given transfer.
As an example, if parallelism is set to 4 while concurrency is set
to 5, then Falcon will transfer 5 files simultaneously and create 4
network connections for each file, resulting in a total of 20 network
connections to be used. To optimize the search process, we adopted
conjugate gradient descent which provides efficient search for multi-
parameter optimization problems [18].
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Figure 15 demonstrates the performance comparison of multi-
parameter optimization for transfers from Stampede2 to Comet
clusters that are connected with 40 Gbps network bandwidth and
60 ms delay. We evaluate the performance for the transfer of three
different datasets as small that contains files whose size range be-
tween 1 KiB to 10 MiB for total of 120 GiB, large which contains files
whose size range between 100 MiB to 10 GiB with a total of 1 TiB,
and mixed that contains all files in small and large datasets with a
total size of 1.2 TiB. We observe that Falcon yields up to 30% higher
throughput when used to tune (concurrency, parallelism, and pipelin-
ing altogether (Falcon_MP) compared to its performance when
tuning only concurrency (Falcon) for small and mixed datasets.
This can be attributed to the the importance of command pipelining
when dataset contains very small files. On the other hand, it results
in 18% decrease in overall throughput for large dataset which can
be attributed to two reasons. First, the utility function for multipa-
rameter optimization (Equation 7) is not strictly concave function,
thus there is no guarantee that it will converge to the optimal
solution. Second, multiparameter optimization takes significantly
longer time (up to 3% longer) to converge to a solution compared to

single parameter optimization counterpart, causing more time to be
spent in during the search phase in which throughput is typically
lower than the throughput after convergence.

4.5 Friendliness Towards Non-Falcon Transfers

To evaluate the Falcon’s friendliness to Globus and HARP, we run
Falcon along with the others for the transfer of a 1.1TiB dataset
that consists of files whose size range between 100MiB and 10GiB
between Stampede2 and Comet clusters. When alone, Falcon is
able to yield 26 — 28 Gbps throughput as shown in Figure 15. When
the Globus transfer is started, is selects the concurrency value of
2 and obtains 4.9 Gbps throughput. Then, we initiate the HARP
transfer which creates 11 concurrent transfers based on real-time
sample transfer results and transfer logs in the historical dataset.
Its throughput stabilizes at around 10.5 Gbps without affecting the
performance of the Globus transfer as end-to-end transfer capacity
is more than their cumulative throughput. Finally, we start the
Falcon transfer at around 120s. The Gradient Descent (GD) im-
plementation increases its concurrency gradually and converges
to 16 — 18, which returns 12 — 13 Gbps throughput as shown in
Figure 16(a). Although GD evaluates higher concurrency values and
observes an increase in throughput, the improvement rate does not
meet the desired level (i.e., nearly 2% for every concurrency value)
once aggregate utilization nears to the capacity. As a result, it affects
the performance of Globus and HARP transfers only marginally
(around 15 — 20%). Therefore, it is fair to say that the GD imple-
mentation “plays well” in the presence of non-Falcon transfers by
utilizing the spare capacity and abstaining aggressive behaviour
against the competing flows.

On the other hand, Bayesian Optimization (BO) model is more
aggressive against the non-Falcon transfers as it can probe very
high concurrency values (> 40) during the initial search phase and
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Figure 16: Performance analysis of Falcon when competing
against non-Falcon transfers.

obtain higher utility. In contrast, When multiple Falcon-BO trans-
fers compete and one of them selects a high concurrency value, the
others will respond by increasing their concurrency as well, causing
all transfers to suffer from increased packet loss and/or decreased
throughput to concurrency ratio. As a result, all transfer agents
lower their concurrency to improve their utility. In the case of com-
petition against HARP and Globus transfers, however, BO observes
higher throughput gain which counteracts the increase in the con-
currency value thereby leading to higher utility. In Figure 16(b),
Falcon-BO creates 41 transfers to maximize its gain in exchange of
severe performance degradation (around 70%) for HARP and Globus
transfers performance as shown Figure 16(b). These results indicate
that GD is a better fit for transfer optimizations in shared networks
as it is able to maximize resource utilization without having severe
impact on the performance of non-Falcon transfers.

4.6 Bayesian Optimization vs Gradient Descent

Transfer Throughput: Both Bayesian Optimization (BO) and Gra-
dient Descent (GD) perform fairly well in all networks as they
achieve high utilization and fair resource sharing. On the other

hand, BO is able to yield slightly higher throughput for single
transfer scenario as it is able to adjust its exploration frequency
dynamically. In other words, as opposed to GD which evaluates the
performance of alternative transfer settings around the optimal at
fixed intervals (typically once in every 20 seconds) to detect and
adapt to changing network conditions, BO can lower its search
frequency if it realizes that system conditions are more or less sta-
ble. By doing so, it spends less time with suboptimal settings and
attains higher average throughput. In the presence of competing
transfers, however, BO performs similar to GD in terms of continu-
ally evaluating alternative settings as actions taken by any one of
the competing Falcon agents triggers all others to search for the
new optimal. As a result, they both achieve similar and close-to-
optimal aggregate throughput when multiple transfers compete for
the same resources.

Search Phase Stability: GD explores the search space is a more
systematic way by identifying the search direction first and gradu-
ally increases its step size as it builds confidence. On the other hand,
BO can probe any value in the defined search space during intial
search phase, which could result in sample transfers with very high
concurrency or parallelism values. This in turn may overwhelm end
hosts and networks if the search space is not configured properly.
For instance, if maximum values of concurrency and parallelism
are defined as 32 for both parameters, then BO may probe a transfer
setting when both concurrency and parallelism is set to 32, caus-
ing 1,024 network connections to be created. One potential fix to
this problem involves dynamically configuring maximum values
for search parameters in a way that they will be set to relatively
small values and incremented only if the optimal is found to be
closer to the maximum settings. For instance, maximum value of
concurrency can be set to 16 at the beginning of the transfer and
is incremented to 32 only after BO finds the concurrency value of
16 to be the the optimal configuration. It is important to note that
such dynamic approach will cause a delay in the search discovery
of the optimal setting as it will limit BO’s ability to full scale search
at the beginning. Another and potentially more important concern
is the effective implementation of dynamic search space adjust-
ments in the presence of competing transfers since the optimal
transfer settings will not be static in such conditions. This may
also cause competing transfers to possibly have different search
space, violating critical requirement to achieve fair resource sharing
among competing agents. As a result, GD offers more predictable
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and conservative solution to explore large search spaces without
overwhelming system resources.

Convergence Stability: When there is only one transfer in the
system, both GD and BO offer relatively stable performance as
they either keep the optimal solution or evaluate values around the
optimal. On the other hand, GD offers more robust performance
when multiple transfer tasks execute simultaneously as it has more
restricted action space compared to BO which can test the opposite
ends of the search space in consecutive intervals.

Ease of Use: Although we use GP-Hedge to tune most hyperparam-
eters of BO, it still requires upper limit to be defined for concurrency
value in order to draw the boundaries of search space. While setting
upper limit to large values (e.g., 100) will ensure to find the optimal
in almost all networks, it has two implications. First, it will likely
to probe very large concurrency values during random sampling
phase which may overwhelm end hosts and file system. Second, it
will expand the search space significantly thereby increasing the
convergence time. On the contrary, GD can detect the limits itself
based on gradient and utility calculations. On the other hand, GD
requires fine tuning of step size calculations for 6 and y parameters.

5 RELATED WORK

As the trend toward more data-intensive applications continues,
developers and users need to invest significant effort into mov-
ing large datasets between distributed sites efficiently. To keep up
with increasing transfer rates, Internet-2 has upgraded its backbone
network bandwidth to 400 Gbps [4]. Although there are efforts to re-
duce the amount of data transferred across wide area networks, such
as data reduction [38, 44] and in-situ processing [16, 30], it is criti-
cal to fully utilize available network bandwidth for the end-to-end
performance required by most commercial and scientific applica-
tions, where data transfer is inevitable. For example, it is estimated
that cosmology simulations will create 50 PiB data monthly, part of
which needs to be moved across supercomputer centers and storage
sites which requires roughly 1TiB/hour transfer rates [15]. Even
though the existing high-speed networks with hundred-gigabit-per-
second bandwidth partially mitigates network bottlenecks, many
users still experience difficulty reaching the theoretical maximum
throughput, causing underutilization of resources. Moreover, pre-
vious work on transfer optimization between cloud datacenters
mainly focus on the scheduling of transfers to mitigate network
congestion [26, 32, 37]. We believe that this work can complement
transfer scheduling solutions as Falcon will ensure that selected
network paths are utilized efficiently to avoid resource wastage.
ESNet developed ScienceDMZ [6, 19, 40] and Data Transfer
Nodes (DTN) [2] to improve the performance of high-speed file
transfers. ScienceDMZ mainly helps to separate science flows from
regular internet traffic to mitigate interference. It also creates a
special path for scientific flows to bypass firewalls and other middle-
ware devices to eliminate performance issues. While ScienceDMZs
and custom DTNs address some of the issues, several major rea-
sons for poor transfer performance remain unsolved, such as low
disk I/O performance, poor transport protocol performance, and
buffer size limitations. A common way to address performance prob-
lems for file transfers is tuning application-layer transfer settings
such as pipelining [21], parallelism [22, 28, 36], concurrency [33],
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buffer size [25], block size [41], and striping [8]. These parameters
when tuned carefully can significantly improve the end-to-end data
transfer performance. There have been several attempts to tune
some of these application-layer parameters to maximize transfer
throughput using heuristic models [9, 12], historical data-based
models [11, 29, 39], and stochastic approximation [34, 48]. Ito et
al. [24] proposed Golden Section Search [42] algorithm to auto-
matically adjust the number of parallel TCP connections for the
GridFTP transfer protocol. Thulasidasan et al. applied dynamic
right-sizing [20], an automatic and scalable buffer management
technique for enhancing TCP performance, to wide-area data trans-
fers [46]. Prasanna et al. [14] proposed direct search optimization to
dynamically tune transfer parameters on the fly based on measured
throughput for each transferred chunk. While these solutions offer
better performance over supervised models, they typically take long
time to converge to a solutions. Moreover, fairness is not guaranteed
in solutions as they simply focus on increased throughput.

Globus [3] is a widely-adopted, robust data transfer service which
uses heuristic approach to tune three application-layer parameters,
pipelining, parallelism and concurrency. Yun et al. proposed Prob-
Data [48] to tune the number of parallel streams and buffer size
for memory-to-memory TCP transfers using stochastic approxima-
tion. ProbData is able to explore the near-optimal configurations
through sample transfers but it takes several hours to converge
which makes it impractical to use for most transfers in high-speed
networks that last less than few hours [35]. Also, shared nature of
production systems causes background traffic to change drastically
over several hours, so it may even fail to converge due to large
variations in sample transfers. Moreover, it does not guarantee
stable and fair resource allocation in shared environments which
is significant barrier in adoption by scientific community as most
of the production-level high speed networks (i.e., XSEDE, ESNet,
Internet-2 etc.) are shared by hundred of users if not more. Yildirim
et al. proposed PCP [47] to the values of application layer parameter
in the runtime. It uses simple hill climbing method to identify the
optimal value, thus lead to suboptimal performance in most cases.

6 CONCLUSION AND FUTURE WORK

File transfers in high performance networks require end-to-end
parallelism to efficiently utilize available resources. However, de-
termining the optimal level of parallelism is challenging task as
suboptimal solutions can lead to underutilization or overwhelmed
network and file systems. Previous work in this area implemented
heuristic and supervised learning solutions both of which fail to
satisfy high resource utilization while inducing low overhead to
end systems and networks. To address this problem, we introduce
Falcon that combines novel utility function with state-of-the-art
online optimization techniques to guarantee high performance, fair
resource sharing, and minimal overhead. Specifically, Falcon con-
structs a novel utility function that rewards high throughput while
penalizing for increased packet loss and the number of active con-
current processes. To minimize the search overhead and converge to
optimal transfer settings quickly, Falcon utilizes online search algo-
rithms Hill Climbing, Gradient Descent and Bayesian Optimization
models. The experimental results show that Falcon yields up to
6x higher throughput compared to state-of-the-art solutions while
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keeping its overhead at minimum. More importantly, Falcon con-
verges to a fair and stable state in the presence of multiple inde-
pendent transfers. We further demonstrate that Falcon can easily
be extended to tune multiple transfer parameters, paving the way
for high-precision tuning for long-running science workflows with
stringent performance expectations.

As a future direction, we will evaluate the performance of Falcon
for emerging congestion control algorithms such as BBR [17] to
check the feasibility of developing a congestion control-agnostic
solution. Moreover, we aim to explore cross-layer optimization
solutions to tune application- (e.g., the number of concurrent trans-
fers) and transport- (e.g., loss and delay tolerance) layer parameters
together to remove redundancies and yield higher overall perfor-
mance. Finally, we are working toward the release of open-source
version of Falcon. To this end, we intend to develop cloud-based
web service to deploy Falcon which will facilitate its adoption by a
wider user community by eliminating tedious installation process.
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