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Abstract

A tacit assumption in linear regression is that (response, predictor)-pairs correspond to
identical observational units. A series of recent works have studied scenarios in which this
assumption is violated under terms such as “Unlabeled Sensing and “Regression with Un-
known Permutation”. In this paper, we study the setup of multiple response variables and
a notion of mismatches that generalizes permutations in order to allow for missing matches
as well as for one-to-many matches. A two-stage method is proposed under the assump-
tion that most pairs are correctly matched. In the first stage, the regression parameter
is estimated by handling mismatches as contaminations, and subsequently the generalized
permutation is estimated by a basic variant of matching. The approach is both compu-
tationally convenient and equipped with favorable statistical guarantees. Specifically, it is
shown that the conditions for permutation recovery become considerably less stringent as
the number of responses m per observation increase. Particularly, for m = Q(logn), the
required signal-to-noise ratio no longer depends on the sample size n. Numerical results on
synthetic and real data are presented to support the main findings of our analysis.

1. Introduction

Linear regression and its numerous extensions is an object of timeless interest in statistics
and related disciplines. Continuous research efforts are being made to increase the range of
situations in which it can be applied with success. A specific challenge that has attracted
considerable interest recently is regression in the absence of correspondence between predic-
tors and responses, i.e., both are given as separate samples X = {x;}"; and Y = {y;}I,,
but it is not (fully) known a priori which elements from X and ) are matching pairs in
the sense of belonging to the same observational unit. Motivated by a number of appli-
cations in engineering, regression in this setting has been discussed in a series of recent
papers (Emiya et al., 2014; Unnikrishnan et al., 2018; Pananjady et al., 2018; Abid et al.,
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2017; Hsu et al., 2017; Haghighatshoar and Caire, 2017; Pananjady et al., 2017; Dokmani¢,
2019; Shi et al., 2020; Tsakiris et al., 2020; Wang et al., 2018; Tsakiris and Peng, 2019).
On the other hand, the above setup has a long history in statistics under the term “Broken
Sample Problem” dating back to the early 1970s (DeGroot et al., 1971; Goel, 1975; DeGroot
and Goel, 1976, 1980; Bai and Hsing, 2005; Wu, 1998; Chan and Loh, 2001) and a related
line of research involving record linkage and statistical analysis based on merged data files
(e.g., Neter et al. (1965); Lahiri and Larsen (2005); Goel and Ramalingam (2012); Scheuren
and Winkler (1993, 1997)) partially motivated by government agencies like the U.S. Cen-
sus Bureau that routinely combines data from multiple surveys and/or external data to
address questions of interest. In this context, the primary interest is in the estimation of
parameters (e.g., covariance matrix, regression coefficients, ...) rather than restoration of
the correspondence between elements of X and ). Instead, the focus is on the adjust-
ment of subsequent analyses for potential mismatches resulting from errors or ambiguities
in record linkage based on quasi-identifiers. In fact, unique identifiers such as the social
security number often need to be removed because of privacy concerns. Accordingly, in
an alternative perspective on the broken sample problem, identification of matching pairs
in X and ) is undesired because ) contains sensitive data, but an adversary makes the
attempt to use external data along with identifying information stored in X to retrieve
matching pieces in ). Well-known instances of such “linkage attacks” are the identification
of the medical history of the former governor of Massachusetts (Sweeney, 2001) and the
partial de-anonymization of Netflix movie rankings with the help of publicly available data
in the Internet Movie Database (IMDDb) (Narayanan and Shmatikov, 2008). Broken sample
problems thus bear a relationship to data confidentiality; we refer to Domingo-Ferrer and
Muralidhar (2016) for a detailed discussion.

Related Work. A starting point of recent research on the subject is the work by Unnikrishnan
et al. (2018) which studies linear regression in the absence of noise with a scalar response that
is observed up to an unknown permutation of the entries, i.e., y; = x;rr* (i)ﬁ*, i=1,...,n,

for a permutation 7* on {1,...,n}. The authors show that 3* € R% can be recovered with
probability one by exhaustive enumeration over all permutations if n > 2d and the entries
of X are drawn i.i.d. from a distribution absolutely continuous w.r.t. the Lebesgue measure
on R. Alternative proofs of this result have been obtained in Tsakiris (2018); Dokmanié¢
(2019). Pananjady et al. (2018) study computational and statistical limits of recovering 7*
for Gaussian {x;}? ; and Gaussian additive noise with variance 0. They show that least
squares estimation recovers 7* exactly if the signal-to-noise ratio SNR = ||3*||3/0? = n?()
which is also shown to be sharp up to a constant factor in the exponent. At the same
time, least squares estimation of 7* is proved to be NP-hard. Abid et al. (2017); Hsu
et al. (2017) shed light on the estimation of 8* under similar setups as in Pananjady et al.
(2018). Specifically, Hsu et al. (2017) establish that the requirement SNR = §2(d/ loglogn)
is necessary to ensure low relative squared fs-estimation error which is a dramatic gap
compared to the requirement SNR = Q(d/n) if 7* is known. The paper (Abid and Zou,
2018) proposes Expectation-Maximization (EM) schemes to tackle the least squares problem
for estimation of 7*. A clever initialization strategy for those schemes based on algebraic
considerations is developed in Tsakiris et al. (2020). The paper (Slawski and Ben-David,
2019) assumes that 7* is k-sparse, i.e., 7"(i) = ¢ except for kK < n indices, and analyzes
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a convex formulation for estimating §* in this setting. A similar sparsity assumption is
employed in Shi et al. (2020) for spherical regression. Order-constrained regression problems
with unknown permutation are discussed in Flammarion et al. (2019); Rigollet and Weed
(2019); Carpentier and Schliiter (2016); Ma et al. (2020).

Contributions. While several papers have elucidated important aspects of linear regression
with unknown permutation for a scalar response, only few papers (Pananjady et al., 2017;
Zhang et al., 2019a,b; Slawski et al., 2019; Zhang and Li, 2020) consider multivariate re-
sponse, i.e., the {y;} ; are m-dimensional, m > 1. This case is of independent interest for
at least two reasons. First, in the context of record linkage it is natural to assume that both
data sets X and Y to be merged are multi-dimensional. Second, the availability of multiple
responses affected by the same permutation is expected to facilitate estimation as is con-
firmed by the results herein. Indeed, the requirements on the SNR to achieve permutation
recovery can be considerably weaker, with potential drops from SNR = n2() for m = 0(1)
to SNR = Q(1) for m = Q(logn). Similar benefits are shown in Pananjady et al. (2017);
Zhang et al. (2019a); Slawski et al. (2019). The results in Pananjady et al. (2017) concern
the prediction or denoising error rather than estimation of 7*. Zhang et al. (2019a) provide
information-theoretic lower bounds for permutation recovery; however, the computational
scheme therein is only investigated empirically without theoretical support. The method
in Slawski et al. (2019) requires m 2 d to perform well; another downside of the approach
is its cubic runtime in n. None of the aforementioned papers on the case m > 1 contain
rigorous results regarding the estimation of the regression parameter. In order to enable the
latter, the tolerable number of mismatches k£ herein is limited to a sufficiently small fraction
of the number of samples, i.e., k/n < ¢ for ¢ small enough. In this regime, estimation of the
regression coefficients and restoration of the correct correspondence is shown to be possible
based on convex optimization.

Moreover, we consider a more general notion of faulty correspondence between X and )
which goes beyond permutations, specifically allowing for missing matches and one-to-many
matches. The effectiveness of the approach is demonstrated by experiments on synthetic
and real data sets as well as a case study pertaining to data integration.

QOutline. In §2, we state the problem and setting under consideration as well as the approach
taken. Our main theoretical results are presented in §3. Empirical corroboration based on
synthetic and real data is provided in §4. We conclude with a summary and an overview
on potential directions of future research in §5.

Notation. The symbol I is used for the indicator function with value one if its argument is
true and zero else. For a positive integer ¢, I; denotes the ¢ x ¢ identity matrix, and S/~!
denotes the unit sphere in Rf. We write |S| for the cardinality of a set S. The complement
of S with respect to context-dependent base sets is denoted by S¢, and conv .S denotes the
convex hull of S. For a matrix A, ||All2 = omax(A) denotes its spectral norm respectively
maximum singular value, ||A|r denotes its Frobenius norm, and range(A) denotes the
column space of A. The i-th row of A is denoted by A;., and is treated as column vector.
For an index set I and a vector v of real numbers, v; denotes the subvector corresponding
to I. We write a V b = max{a, b} and a A b = min{a, b}. Positive constants are denoted by
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C, ¢, c1 etc. We make use of the usual Big-O notation in terms of O, o, {2 and ©. We often
use a < b, b 2 a, and a < b as shortcuts for a = O(b), b = Q(a) and a = ©(b), respectively.

2. Problem statement and proposed approach

We start by fixing the setup under consideration herein before outlining our approach. We
then provide a toy data example in order to illustrate some of the main challenges and
characteristics of the given problem and the proposed approach.

2.1 Setup

As stated in the introduction, we assume that we are given two samples X = {x;} ; and
Y = {yi}}, taking values in R? and R™, respectively, that are related by the model

siyi = B* Xge() + 0556, 1<i<n, (1)

where 6* : {1,...,n} — {0,1,...,n} is a map representing the (unknown) underlying
correspondence between observations in X and ), with the convention that x¢ := 0, and
s; = [(6*(i) # 0) indicates whether y; has a match among X, 1 < i < n. For the set of
non-matches N' = {i : 5, = 0}, we suppose that {y;}icn is independent of X.

If 6*(i) = i for 1 < i < n, the above model reduces to an ordinary multivariate regression

model with m responses and d predictor variables, regression coefficients B* € R¥™™  and
random error variables {€;}" ;. Model (1) can be expressed equivalently via
SY =0*XB* +0SE, (2)

where Y and E are n-by-m matrices whose rows are given by {y[} and {€; }, respectively,
S = diag(s1, .. .,5n), X is an n-by-d matrix with rows {x; }?_,, and ©* = (©7;)1<i,j<n has
entries O, =1 1f 0*(i) = j for j # 0, and zero otherwise. Observe that by construction, ©*
is contained in the following set of matrices

M:{GGR"X”: 0, €{0,1},1<i,j <n, Zj(%jgl,lgign} (3)
DP={0cR™: 0'0 =1, 0;;c{0,1},1<4,j <n}, (4)

which contains the set of n-by-n permutation matrices P in (4). Model (1) is hence more
general compared to existing work in which 8* is restricted to be a permutation. In par-
ticular, the generalization herein allows for missing matches via ©;. =0 for i € N, as well
as for one-to-many matches, i.e., more than one element in ) may correspond to the same
element in X'; cf. Figure 1 for an illustration. We note that the case of one-to-many matches
is also considered in Pananjady et al. (2017), cf. Section 2.4 therein.

Depending on the application, the goals in the setup (1) concern estimation of B* and/or
©*. If ©* is recovered exactly by an estimator ©, i.e., the event {@ ©*} occurs, estima-
tion of B* becomes an ordinary regression problem. In post-linkage data analysis, ©* can
be used to model error in the file linkage process, caused, e.g., by ambiguities resulting from
the use of quasi-identifiers (say, the combination of age, gender, and race), but is typically
treated as a nuisance parameter while primary interest concerns B*. By contrast, in the
setting of linkage attacks, the adversary aims at leveraging the linear relationship between
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Figure 1: Hlustration of the generalized permutation model herein for n = 5 including a
missing match (y3) and a one-to-many match between (y1,ys) and x4.

elements of X and ), and hence B* is only regarded as a means to retrieve ©*. In the
sequel, we adopt neither viewpoint and consider estimation of both B* and ©*.

Assumptions. Below, we summarize and discuss the main assumptions of our analysis.

e The map 0* is said to be k-sparse if 8*(i) = i except for indices S, C {1,...,n} with
|S«| < k for k < n. Equivalently, S, = {i: ©}; # 1}. Model (2) implies that

Y = XB* + ®* + 0SE, (5)

where @7 = yi—B*Tx; if 0*(i) = 0 and ;. = B*TXQ*(i)_B*TXi otherwise, 1 <i < n.
Observe that k-sparsity of 8* implies that ®* has at most k& non-zero rows. Throughout
this paper, we shall impose constraints on the size of k. As of now, if ¢ > 0 and k is
not restricted, no practical estimation scheme with provable guarantees is known even
if 0* is a permutation. Apart from that, the sparse regime is relevant to applications
in record linkage as elaborated in detail in the case study in §4.

e The matrix X has i.i.d. Gaussian rows x; ~ N(0,X), 1 < i < n. Without loss of
generality, we assume that > = I; as can be ensured by re-defining B* accordingly.

e Likewise, the matrix F has i.i.d. Gaussian rows €; ~ N(0,1,), 1 < i < n, and is
independent of X.

The second assumption and the first part of the third assumption do not appear critical to
our approach, but they considerably simplify results and proofs and thus aid presentation.
The main results in this paper continue to hold for X and E with i.i.d. sub-Gaussian rows
up to slight modifications, cf. Appendix F. Moreover, it is common to assume that the m
entries of the noise terms {¢;}?"_; are correlated; such extension can be accommodated, too.

Finally, we note that representation (5) is general enough to cover various other scenarios
involving mismatched data in regression. For example, it also applies if a subset of the
predictors is collected jointly with the response, i.e., we observe samples D; = {(xgl), Vi)
and Dy = {xz(?)}?:l with {xgl)}?zl and {xz(?)}?:l having dimension d; and dg, respectively,
d1 + do = d, and associated regression model

yi = BEHT)XED + Bg)xg)@.) +o€,1=1,...,n, (6)
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where 6* is a permutation of {1,...,n}. Here, model (6) is subsumed by (5) by setting

B
* _ (1) x _ pxT(2) T (2)
B 2| @5 = By — B,

=1 p 1<i<mn,and § = I,. The approach and its
analysis below applies to this and presumably also to other modifications with slight changes.

2.2 Approach

We suggest to tackle estimation of B* and ©* in a two-stage approach that we motivate as
follows. Suppose first that there are no missing matches so that y O =11<1i<n,

and denote by M the corresponding subset of M that excludes matrices with all-zero rows.
Joint least squares estimation, i.e., ming x5 pegaxm||Y — O©X B||%, is NP-hard (Pananjady
et al., 2018). However, if B* is known, least squares estimation of ©* reduces to a tractable
optimization problem that decouples along the rows of Y:

n
min |~ 05 = 3 { i [y - 5713 ™
OeM = Usisn

Assuming for simplicity that the minimizing indices :7\(1) for the optimization problems inside
the curly brackets are unique, we have C:)i?(i) =1, 1 < i < n; all other entries of 8) equal
zero. If in addition 6* is known to be one-to-one (i.e., a permutation), minimization over
M can be replaced by minimization over P (4). The latter optimization problem reduces
to a linear assignment problem (Burkard et al., 2009), a specific linear program that can be
solved efficiently by specialized techniques such as the Hungarian Algorithm (Kuhn, 1955)
or the Auction Algorithm (Bertsekas and Castanon, 1992).

In the case of missing matches, taking the minimum in (7) over M instead of over M
cannot be expected to ensure the successful identification of missing matches. In fact, a row
of zeroes in © means that the corresponding row of Y is paired with the zero vector rather
than with any of the {B*Tx; }?:1, but the use of the zero vector as a reference for missing
matches is not meaningful. This observation prompts the following modification of (8):

~ 1 ifj=j()and|ly; — B* x5 |l2 < 7,
1=j<n 0  otherwise, 1<14,5 <n,

where {; (i) ?_, are the minimizing indices as above, and 7 > 0 is a suitably chosen thresh-
old whose choice is discussed in Theorem 2 below.

So far, B* was supposed to be known. If B* is unknown, it has to be replaced by an
estimator B. At this point, our approach makes use of the sparsity assumption for 6*. In
view of relation (5), we consider

1

min
BERdxm =cRnxm 2n-m

n
1Y — XB — Vg3 + A IIEi e, 9)
i=1

for a tuning parameter A\ > 0, where = targets =* := ®*//n with ®* as in (5), and ||Z; |2
being used as a convex surrogate for I(||=; |2 > 0), 1 < ¢ < n, in order to promote row-wise
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sparsity of = (Yuan and Lin, 2006; Eldar and Mishali, 2009; Lounici et al., 2011). The use
of the re-scaled quantity =* in place of ®* is done merely for technical reasons. We note
that a variant of (9) for a single response variable has been employed in the context of linear
regression with outliers (She and Owen, 2012; Laska et al., 2009; Nguyen and Tran, 2013).

Algorithm 1 Block coordinate descent for minimizing (9)

Compute the QR factorization X = QR of X, and initialize XB® = QQ"Y, 2 = 0.
1. Update for =

2t (1 — a)z® 4 oDGroUPTHRESHOLD(Y — XBW 7)/\/n,  7:=m-vn- A,
where for a matrix A with rows {a;}!_; and n > 0, GROUPTHRESHOLD(A, ) is defined by
a; < a; - (1 —=n/llaill2) ., i=1,...,n, (1)+ = max{-,0}.

2. Update for X B:
XBHY (1 =y XBW 4 40QQT (v — /nzt+Y).

The step sizes a®),4(®) < (0,1) are chosen by back-tracking line search (Bertsekas, 1999).

Optimization problem (9) can be solved efficiently by block coordinate descent as out-
lined in Algorithm 1 that has performed extremely well throughout our experiments, typ-
ically converging after a small number of iterations. Formal convergence results follow
immediately from the general framework in Tseng (2010).

The estimator B resulting from (9) can potentially be refined by a least squares re-
fitting step after removing data corresponding to S(¢) = {1 <i < n: HHZ |2 > t}, where
Z denotes the minimizing = in (9) and ¢ is a suitably chosen threshold. The rationale is to
remove mismatches as they hamper parameter estimation. This yields

Lo > lyi = B il (10)

zéS t)
In summary, this yields the following two-stage (or optionally three-stage) approach for
estimating B* and subsequently ©*.

1. Estimate B* from (9), and optionally refine via (10).
2. Estimate ©* from (8) with B* replaced by the estimator obtained in step 1.

It is worth pointing out that sparsity of ©* is incorporated at step 1. only. The proce-
dure (8) can be modified accordingly by applying it only for the indices corresponding to
the k largest values among {||y; — B*"x;||3}1<i<n, and setting Oy = 1 for all remaining i.
We do not study this modification in the sequel since it does not fundamentally change the
statistical limits in recovering ©* as stated in Theorem 2 below.

Hlustration. An illustration of the above approach is provided in Figure 2. The data set
consists of monthly average temperatures of n = 46 U.S. cities as reported on Wikipedia
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Jan Mar May Jul Sep Nov X Yy Feb Apr Jun Aug Oct Dec
16 33 59 74 62 34 Minneapolis | Memphis 46 63 80 82 64 44
-8 12 50 63 45 3 Fairbanks San Antonio 56 70 83 85 71 53
1 54 72 83 75 53 Memphis Fairbanks -1 33 61 57 24 -4
34 44 64 78 68 47 Baltimore Dallas 50 66 81 86 68 47
46 58 74 86 78 57 Dallas Tampa 63 72 82 83 76 63
23 35 56 72 63 39 Milwaukee* Pittsburgh 31 51 69 72 53 33
61 67 78 83 82 69 Tampa Minneapolis 21 48 69 71 49 20
29 40 60 73 64 43 Pittsburgh* Portland 44 52 64 70 55 40
52 62 7 85 80 61 San Antonio | Baltimore 36 54 73 76 57 37
41 48 58 69 65 47 Portland Milwaukee 26 46 67 71 52 27

S Baltimore Dallas Fairbanks Las Vegas® Memphis Minneapolis

9(5) Milwaukee  Seattle Fairbanks  Dallas Baltimore Minneapolis

continued:
S Phoenix Portland  San Antonio  San Francisco!  Seattlef Tampa
é\( 5 ) | Las Vegas Memphis Phoenix San Francisco San Antonio  Tampa

Figure 2: Top: mismatched subset of the U.S* cities temperatures data set. Bottom: esti-
mated subset of mismatched cities S and estimated correspondence 6(.S). Aster-
isked cities Milwaukee and Pittsburgh did not end up included in S since the misfit
resulting from shuffling happened not to be substantial enough. The superscript
T refers to cities not affected by shuffling yet included in S.

(2019). The data set is broken into two samples X and ) with the former containing the
temperatures of the odd numbered months (January, March, ..., November) and the latter
containing the temperatures of the even numbered months. For a random subset of k£ = 10
cities, we randomly permute matching records in X and ). Linear regression is used to pre-
dict the m = 6 temperatures in Y from X. Due to high correlations among predictors, we
work with the top d = 3 principal components as regressors. In the absence of partial data
shuffling, this yields a reasonable goodness of fit overall in terms of a coefficient of determi-
nation R? =~ 0.73, apart from poor model fit for several west coast cities (Los Angeles, San
Diego, Seattle and San Francisco) with mild winters and small seasonal differences, as well
as for cities in desert regions (Las Vegas and Phoenix) with extreme temperatures during
summer. After data shuffling, model fit drops to R? ~ 0.4. The approach outlined above
shows some potential in this setting. With the choice of A = % -00/+/n - m, where oy is the
estimated error variance from the regression model in the absence of partial data shuffling,
we ensure R? ~ 0.62. Subsequent restoration of the correct correspondence between X and
Y is restricted to observations in S = {i : ||§,H2 > v/2may}; for all other observations,
no mismatches are assumed, i.e., @” =1,i¢ S. The results highlight the challenges that
are encountered in the estimation of ©*. Most crucially, the more an observation is distinct
from the rest, the easier it is identified as mismatch and the easier to retrieve its matching
counterpart, with Fairbanks here being the most distinct instance. On the other hand, the
temperature differences between Milwaukee and Pittsburgh are only marginal, and accord-
ingly this mismatch remains undetected. Moreover, it is hard to disentangle cities affected
by shuffling and poor fit of the linear model, respectively. Nevertheless, re-matching suc-
ceeds for three cities (Fairbanks, Minneapolis, Tampa) and gets close in case of Phoenix —
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Las Vegas and San Antonio — Phoenix.

Alternatives to (9). Formulation (9) treats mismatches in the same way as generic data
contamination (outliers). A promising alternative approach if an upper bound on k is
known and m = 1 can be found in Bhatia et al. (2017). A direct extension of this approach
to the multiple response case with row-sparse contaminations is given by

B € argmin|Y — @ — XB||}, where ® € argmin [Py (Y — ®)[[} subject to > I(®;. #0) < k,
BeRde, (PG]R'!LXNL z:l
(11)

where PJX denotes the projection on the orthogonal complement of range(X). Following Bha-
tia et al. (2017), the rightmost optimization problem in (11) is tackled via iterative hard
thresholding (Blumensath and Davies, 2009), and the result is substituted into the leftmost
optimization problem to obtain an estimator for B*. In our experiments, the performance
of (11) is rather similar to that of the three-stage approach (10).

Given that both (9) and (11) treat mismatches as generic contaminations, it is worth
exploring whether the additional structure under consideration here can be leveraged for
improved performance. In the following, we present two approaches that are based on
optimization over the polyhedron

C— {@eR"X”: Oy 0,1, 1<ij<n, ¥,0;<1,1 gign}. (12)
The first proposal can be seen as an immediate refinement of (9):

IPXOY 1 + A YT~ ©)Teill2, (13)

. 1
min
eeC 2n-m

with P as defined below (11) and {e;}?; denoting the canonical basis of R”. Similar to (9),
the penalty in (13) is motivated by the fact that (I — ©*)Y has only few non-zero rows.
Given an upper bound on k, an alternative to (13) is given by the optimization problem

|[PxOY |3 subject to 31, ©; > n — k. (14)

min

eeC 2n - m
Given a minimizer © of (13) or (14), an estimate of B* is obtained via least squares regres-
sion of OY on X. Both (13) and (14) are convex problems; (14) is a quadratic program.
In spite of this, (13) and (14) have significant computational drawbacks compared to the
approaches (9) and (11) since the former involve n? variables and thus scale poorly with
problem size. According to own experiments, state-of-the art solvers for quadratic programs
such as cplexgp in CPLEX! take prohibitively long to solve instances of (14) even for n = 200.
In Appendix G, we present reasonably practical algorithms for obtaining approximate solu-
tions of (13) and (14) based on the conditional gradient (aka Frank-Wolfe) method (Jaggi,
2013), which are also used in an empirical comparison with our primary proposal (9) in §4.
In that comparison, neither (13) nor (14) achieves substantial improvements over (9).

1. http://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
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3. Main results

This section provides theoretical results on the approach introduced in the previous section.
Theorem 1 quantifies the error in estimating B*, while recovery of the correct correspon-
dence in terms of ©* is discussed in a separate subsection.

~
—_

Theorem 1 Consider model (5) and the minimizer (B,E) of (9) with A > 2o, where

Hnd O 4logn —d lo
Ao = 1+ 4/ , = (L 24 g") A, 15

and suppose d/n < 1/4. Then for any e € (0,1/3), there exist constants c.,c. > 0 so that
if k < con/log(n/k), it holds that

IE - E*|F D) A+ o
—_— <2 “A/m - k 16
N " )\—)\g\f (16)

with probability at least 1 —2/n — 3.5 - exp(—cLn). Furthermore,

IB=B|r _ 1 gy 2dViog(n)) IE— =k
vm - 1— 4dVlogn n Vvm
V n

with probability at least 1 — 2exp(—3(d Vlogn)) — exp(—(d - m) V log(n - m)).

In order to better understand the consequences of Theorem 1, we spell out essential scalings
in (n,k,d, m) below. According to (15), the parameter A should be chosen proportional to

Ao < \/7%1(1 + /log(n)/m) (17)

in which case % < \/% (1 4+ /log(n)/m) which are familiar rates for multivariate

~

regression with block sparsity regularization (Lounici et al., 2011). At the same time, the

estimation error for the regression coefficients scales as % < \/d/in + %, where
the first term on the right hand side equals the estimation rate of least squares regression in
the absence of mismatches while the second term reflects the slack arising from the presence
of the latter. The bottom line is that the estimation error is in check as long as the fraction
of mismatches k/n is small. In fact, the condition preceding (16) imposes a bound on that
fraction as well. In experiments, performance degrades more noticeably once k/n > 0.3.
Theorem 1 also indicates a positive influence of the number of response variables m in that
one can choose A =< im once m 2> logn which in turn eliminates the factor v/logn in (17)
and thus also in (16). This is a known benefit of block sparsity regularization in comparison
to element-wise sparsity regularization (Lounici et al., 2011).

Restoring Correspondence

In this subsection, we study recovery of ©*. To begin with, we suppose that the regression
parameter B* is known, and establish one sufficient and one necessary condition for exact

10
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recovery of ©* based on the oracle estimator (8). A crucial quantity in the analysis is

o IBT (i = x)|13
TEETTEE 1
the minimum squared distance among all pairs of linear predictors scaled by HB*H?7 A
lower bound on 72 is clearly needed in order to reliably match noisy responses {yi}l~, to the
corresponding elements in {B*"x;} | if there exists a pair (i, j) such that || B*T (x; —x;)||2
is smaller than the noise level, then there is a good chance that the corresponding responses
get swapped. The following two lemmas provide upper and lower bounds in (18).

* |12
Lemma 1 Let srank(B*) := ||||]]33 *||||§
2

in (18). There exist universal constants o € (0,1) and  such that for any € > 0, with
probability at least 1 — n=2¢, it holds that

denote the stable rank of B*, and consider > as defined

) ‘ —2(14¢) 2
47 > min { 2nesank(BY) o o (19)

The stable rank of B* as defined in the lemma crucially governs the scaling of ~. It is
instructive to consider the extreme case srank(B*) = 1: we then obtain 42 > n~=¢ for
C > 0. Results in Slawski and Ben-David (2019) on the case m = 1 show that 2 < n=2
with constant probability, which indicates sharpness of the above result in this case up to
a constant in the exponent of n. On the other hand, if srank(B*) = m 2 logn, we have

—2(14¢€)

InFeank(BT) = exp <_ 2(1+¢)

Immlog(2”)> =Q(1),

i.e., the lower bound on 72 does no longer decay with n. Additional insights can be obtained
by considering the special case in which all non-zero singular values of B* are equal to b, > 0
and thus also srank(B*) = rank(B*) = r. For r = 2(¢+ 1), ¢ > 0, the quantity (18) then
becomes analytically tractable based on a closed form expression for y2-random variables
with an even degrees of freedom.

Lemma 2 Consider 2 as defined in (18) and suppose that B* has exactly r = 2(q+1), q €
{0,1,...} non-zero singular values equal to b, > 0. Then for all § >0

2

(Lower Bound): P (72 > Z(n 2 6)z> >1-46/2.
e

Moreover, if n > 8(r/2)"/2,
(Upper Bound): P (72 <2 82/’”7172/’”) > 0.75.

Lemma 2 sheds some light on the range of the exponent x in the previous Lemma 1, and
provides essentially matching upper and lower bounds on 2, where “essentially” refers to
n=4T <~=< n=2/" i.e., the match is up to constant factors and a factor 2 in the exponent.

11
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In order to address the case of missing matches, we shall also consider
2 . * 1 2 *1(12
Yo = min [lyi — B x;3/[B*[|7, (20)
ieN
1<j<n
where we recall that NV = {i : 6*(i) = 0} denotes the set of missing matches. The quan-

tity (20) exhibits scalings very similar to 72 (18) as discussed in the remark following
Lemma B.1 in Appendix B.

Equipped with Lemma 1 & 2, we are in better position to interpret the following theorem.
Theorem 2 Let B = B(X,Y) be an estimator of B*, and let ©O(B) = (@U(E)) denote the

estimator (8) with T > 19 := o(v/m+2+/log n) + maxi<j<n|x;l 2| B* — B||y and B* replaced
by E, i.e.,

6,;(B) =

. 1, ifj=7(i)and |ly; — BTXA pllz <7,
0 otherwise, 1<i4,5 <n,

where the index j(i) is defined by |y; — ETX}‘(Z-)HQ = mini<j<nlly; — ETXJ'HQ, 1<i<n.
Let 4% and ¢ be as in (18) and (20), respectively, and define the signal-to-noise ratio by

* |2
SNR = %. Consider the event

1B - B3

2
H || 14 4logn 72
o2m 11282X Xil2,2 V. m " o2m

Conditional on B, with probability at least 1 — P(B°) — 1/n, {©(B) = ©*}. Conversely, in
the case that 6*(i) # 0 for 1 < i < n, the following holds:

o There exists ¢ > 0 so that if SNR < ¢'%8™ P(O(B*) # ©*) > 1/3.

e If additionally m = O(1), there ewists ¢ > 0 so that if min{y3,7?}SNR < ¢,
P(O(B*) # ©*) > 1/3.

B = { min{y2,7*} SNR > 36 max

The above theorem contains both an achievability result in the form of a sufficient
condition for successful recovery of ©* given any estimator of B, as well as inachievability
results concerning failure of recovery in the situation where B* is known. As explained in
more detail below, the above sufficient and necessary conditions agree up to multiplicative
constants in certain regimes. To shed more light on the implications of the theorem, it is
instructive to consider certain special cases of interest and to discuss them in connection
with the error bounds stated in Theorem 1.

i) The conditions of Theorem 2 involve SNR as the ratio of the signal energy || B*||%/m
per response variable and noise variance o2. If B = B* and every element of ) has
match in X, the condition of the event B becomes

min{3, 7?}SNR > 2(1 + y/log(n)/m)>. (21)
If m = O(1), the scaling of 4? according Lemmas 1 and 2 imply that the condition
SNR = Q(n¢) for a constant ¢ depending on srank(B*) suffices for recovery of ©*.

12
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ii) The second bullet in Theorem 2 implies that for m = O(1), the condition SNR =
Q(n®) is also necessary (up to a constant factor in the exponent of n). In particular,

Theorem 2 qualitatively recovers earlier results in Pananjady et al. (2018) and Slawski
and Ben-David (2019) on m = 1.

iii) Regarding the scaling of m, the threshold case appears to be m < logn = srank(B*).
In this regime, (21) requires only SNR = Q(1) which is a far less stringent condition
compared to the regime of uniformly bounded m. Again, the sufficient condition is
matched up to a constant multiplicative factor by the necessary condition stated in
the first bullet of Theorem 2.

iv) Once m respectively srank(B*) grow at a faster rate than log n, the necessary condition
of the first bullet is no longer aligned with (21). It remains an open question whether
Theorem 2 can be sharpened in this regard.

We now discuss the situation in which B* is replaced by an estimator B. In the ab-
sence of mismatches, random matrix theory LVershynin and Rudelson, 2011) shows that
ordinary least squares estimation obeys E[||B — B*||3/(c?m)] < (d + m)/(n - m) while
maxi<;<n|X;i||3 < d with high probability assuming that d > logn, which implies that the
first term in the outer “max” of the event 13 is at best of the order d?/(n-m). A slightly less
favorable condition is obtained when substituting the error bound of the proposed estimator
in Theorem 1. In this case,

IB — B*|3/(c*m) < ||B — B*|[}/(c’m) < (k+d)/n

with the stated probability, and thus Theorem 2 yields the condition n 2 d- (kV d). In
summary, the effect of replacing B* by the proposed estimator can either be compensated
by imposing a more stringent condition on SNR or the ratio d/n.

Lastly, let us comment on the case of missing matches, i.e., NV # ), and the choice of
7. As long as 7 is chosen proportional to the threshold 7y, the requirements on the SNR
remain qualitatively unchanged. The dependence of 79 on the noise level is intrinsic, hence
approximate knowledge of ¢ is inevitable to guide the choice of 7. While 7y also depends on
|B — B*||, the latter can be estimated given bounds on the estimation error as discussed
in the preceding paragraph. Clearly, 7 can be set to zero whenever it is known that A" = ().

Identification of Mismatched Data

In the following, we discuss a simpler task than recovery of ©* namely recovery of S, =
{1 <i<n: 0°(i) # i}, or equivalently, S, = {1 <i < n: Ef # 0} with % = &*/\/n
as defined in (5). The following statement provides a condition that ensures that we can
separate mismatched data S, and correctly matched data S¢ in terms of {||=;.[[2},, where

Z is obtained from optimization problem (9) and analyzed in Theorem 1.

Proposition 1 Let = be as in Theorem 1, and let 42, v, and SNR be as in Theorem 2.

~
=

~.|
it 3
7,

9 > HlaXz‘eS,§||§i,:||2 if

We then have min;cg,

) 4maX1§iSnH\/ﬁ(§i,: - E*)H%
min{~32,y?}SNR > o2m .

(22)
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The practical consequences are as follows: if it holds that min;eg, HEZHQ > maXiesguéi’;HQ,

we can sort the {||§z 2}, and retain the observations corresponding to the [vn| smallest
elements for v € (0, (1 —k/n)]. Any choice of v = (1) in that range identifies Q C Sg with
|Q| = 2(n). The least squares estimator B of B* using observations in @ only, i.e.,

B = argmin Y |ly; — B x|
BeRAxm {25

can substantially improve over the estimator B in Theorem 1. The condition of Proposition 1
tends to be easier to satisfy than that for recovery of ©* in Theorem 2. The right hand
side of (22) is of the order O(1 +log(n)/m) and O(k{1 +log(n/m)}) in the best and worst
33
Hé — E*||%./k, i.e., the error in Frobenius norm is spread out roughly evenly over Q(k) rows.

—_
—

case, respectively, in view of Theorem 1; the best case is obtained if max;||=;. — =F.

4. Experiments

In the sequel, we present empirical evidence supporting central aspects of our analysis, and
provide numerical comparisons to the alternative methods outlined at the end of §2 as well as
to an extension of the EM scheme in Wu (1998); Abid and Zou (2018) for multiple response
variables. For simplicity, we confine ourselves to the case in which ©* is a permutation
matrix, i.e., an element of (4). Accordingly, the minimization in (7) is performed over the
set of permutation matrices by means of the Auction Algorithm (Bertsekas and Castanon,
1992). We note that this modification does not affect our theoretical results. Specifically,
the achievability result in Theorem 2 continues to hold because it asserts recovery over a
superset of (4). Similarly, the inachievability results continue to hold if ©* is required to
be a permutation.

Synthetic data

Setup. Data is generated according to the model
yi = B*TXQ*(Z‘) + o€, i=1,...,n,

where the {x;}}' ; and {¢;}]~,, are i.i.d. from N(0,Iz) and N(0, I,,), respectively, 0* is a
random permutation that shuffles {1, ..., k} uniformly at random, and is the identity map
when restricted to the remaining indices, i.e, 8" (i) = ¢ for ¢ > k. The matrix B* is obtained
by first generating a d-by-d matrix (i.e., d = m) with i.i.d. N(0, 1)-entries, then computing
its singular value decomposition B* = USV T, and replacing the diagonal entries {s, ..., s4}
of S according to s; < j79, 1 < j < d for ¢ € {0,0.05,0.1,0.2,0.5,1,2,5}; finally, B* is
re-scaled such that ||B*||% = m. This construction ensures that the stable rank srank(B*),
which has a critical influence on the recovery of ©* varies between m = d (achieved for
g = 0) and 1 (achieved for ¢ — o0). In addition, the signal-to-noise ratio then results as
SNR = 72 with ¢ € {0.01,0.02,0.05,0.1,0.2,0.5,1,2}. Lastly, the fraction of mismatches
k/n varies between 0.05 and 0.4 in steps of 0.05 with n € {200,500,1000} and d/n €
{0.03,0.06,0.12}. For each configuration of (n,d, k,q,c), 100 independent replications are
performed.
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In the experiments, the following approaches are compared:

naive, oracle. Plain least squares and estimation of B* with knowledge of ©*, respectively.

proposed. B* is estimated according to (9) with the choice A = \* = 4o \/iim which is the
lower bound on A suggested by Theorem 1 when treating /4 log(n)/m simply as 1.

proposed+. The re-fitting approach (10) building on proposed, cf. also Proposition 1.
Assuming that k is known, the set of mismatches S, is estimated by S = {1 < i < n:
IZi:ll2 > t(n—k)}, where t(;, 1 < i < n, denotes the i-th order statistic of the {[|Z; |2 }7-;.

CRR. “Consistent Robust Regression”, following the title for the approach (11) used in Bha-
tia et al. (2017). The number of mismatches k is assumed to be known.

EM. The EM-scheme in Wu (1998); Abid and Zou (2018) in which ©* is treated as missing
data in conjunction with the use of the EM algorithm. Since the E-step involves intractable
integration over the set of permutation matrices, MCMC is employed to approximate this
step. In our implementation, the permutation is initialized as the identity, and the number
of MCMUC iterations per EM iteration is set to 10,000 given a ”burn-in period” of 1,000.

DS-reg. The approach (13) that arises as a refinement of proposed, and here involves
optimization over the set of doubly stochastic matrices of size n. We consider A € 27P\*,
p € {-1,0,...,3}, with A* as in the description of proposed above, and choose p replication
by replication to minimize the estimation error w.r.t. ||| of the resulting estimator of B*.

DS-cons. The approach (14) with k& assumed to be known.

DS-reg+, DS-cons+. Re-fitting approaches associated with DS-reg and DS-cons. The set
Sy isestimated by S ={1<i<n: ©;< t(n_k)}, where © is the estimator of ©* from (13)
and (14), respectively, and t~(i), 1 < ¢ < n, denotes the i-th order statistic of {ém}?zl

Since solving the optimization problems associated with DS-reg and DS-cons entails
substantial additional efforts even with customized solvers (Appendix G) given O(n?) vari-
ables, we only consider a reduced set of configurations for (n,d, k, ¢, o) with n € {200, 500},
d/n = 0.03, and g = 0, while the ranges for k/n and ¢ remain unchanged. In addition, the
number of replications per configuration is lowered to 20.

Results (I): Estimation of B*. For better comparison across experimental configurations,
we visualize the following “standardized” estimation error

o im™V2|| Bt — B¥||p — \/d/n, (23)

where B is a placeholder for the various estimators mentioned in the previous paragraph.
Note that (23) approximately equals zero in expectation for the oracle estimator equipped
with ©*, thus (23) can be interpreted as the excess error relative to that oracle. For the esti-
mator B analyzed in Theorem 1, the quantity (23) is expected to be proportional to \/k/n.
Selected results are shown in Figure 3, which displays averages of (23) for n € {500, 1000}
and o € {0.05,0.1,0.2}; the number of different values for o considered in a single plot had
to be limited to ensure readability since for naive and EM, (23) still depends substantially
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on 0. To account for that, shaded areas are used to represent the ranges of (23) for those
two approaches; the upper and lower margins of the shaded areas represent the normalized
estimation error for ¢ = 0.05 and o = 0.2, respectively, while the dashed lines inside the
shaded areas correspond to o = 0.1. Accordingly, the performance of naive and EM (initial-
ized by naive) relative to (23) improves, which is unsurprising given that as ov/m 7 ||B*||r
(recall that ||B*||p = /m), the error induced by mismatches is of the same order as the
noise in which case the gap between naive and oracle narrows. With the same reasoning,
remedies for mismatches compared here are most effective if ov/m/||B*|F is small: for ex-
ample, proposed achieves a roughly tenfold reduction in standardized estimation error over
naive for o = 0.05; that margin reduces gradually with increasing o.

n = 500, d/n = 0.03

n= 500, d/n = 0.06 n =500, d/n=0.12

- o o
S S <)
5 -~ & 5
05/ S 05! RN © |
S 0 T 5§ GoC 505 S
© © -7 © LoF
E o5l E % E -7
=i = = 0r
3 —:*proposei. oracle @ 05 —e—proposed oracle & g
o Proposef o —=—proposed+ o Propose! oracle
@ —4—CRR a CRR Q.05 —=—proposed-+
815 3 ' B —4-oRR
) ) ©
2 2 2
§ - s -1.5 IS
< < n
S2 sm S . =
<3 o o
kel k=] k<]

-3 4 S
0.05 0.1 0.15 0.2 025 03 035 04 0.05 0.1 0.15 0.2 025 03 035 04 0.05 0.1 0.15 0.2 025 0.3 035 04
k/n k/n k/n

n = 1000, d/n = 0.03 n = 1000, d/n = 0.06 41N =1000,d/n=0.12

——*—proposed oracle —e—proposed oracle —e—proposed oracle
0 5+proposed+ _________ 05 —=—proposed+ _ _ __ -~ —=—proposed+ 4
P—4—CRR __---" S —9CRR __----°
o -

log10(standardized estimation error)
log10(standardized estimation error)
log10(standardized estimation error)

25— —~—x % 2 \
0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.05 0.1 0.15 0.2 025 0.3 0.35 04 0.05 0.1 0.15 0.2 025 0.3 0.35 04
k/n k/n k/n

Figure 3: Average standardized estimation errors (23) on a log;y-scale, with one curve for
each o € {0.05,0.1,0.2}. For naive (in red) and EM (in green), the resulting
curves do not cluster together, and are hence captured by the upper (o = 0.05)
and lower (o = 0.2) boundaries of the shaded areas plus a dashed line (o = 0.1).

Figure 3 also shows that refitting after applying proposed and estimating S, consid-
erably boosts performance. The performance of the resulting approach proposed+ is in-
distinguishable from CRR. While EM performs on par with the oracle for n = 500 (and
n = 200, not shown), the approach degrades with n. One likely explanation is that the
challenges associated with the E-step become more severe with n: specifically, the MCMC
approximation tends to be less reliable for larger values n. For the same reason, EM is at
least an order of magnitude slower than proposed+ and CRR.
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singular value decay exponent q = -1 15 singular value decay exponent q = -2 15 singular value decay exponent q = -5
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k/n k/n k/n

log2(standardized estimation error)
log2(standardized estimation error)
log2(standardized estimation error)

—1m71/2||Best_B* ||F
(d/(n—k))/2
fitting approach proposed+ (lines) and EM (shaded areas) for different rates of
decay of the singular values of B* corresponding to decreasing srank(B*) from left
to right. Curves for different combinations of n and ¢ appear in the same plots;
due to poor clustering of those curves for EM in conjunction with the chosen error
normalization, their range is indicated by shaded areas for better readability.

Figure 4: Average standardized estimation errors = (logy-scale) of the re-

In Figure 4, the performance of proposed+ relative to EM is investigated in more
detail. In addition to poor scalability with n, the competitiveness of EM also hinges on the
stable rank of B* not to be too small. The sequence of three plots in Figure 4 indicates a
transition from superior to comparable and eventually not competitive performance of EM
as the singular values in B* decay more rapidly.

Finally, Figure 5 provides a comparison to the approaches DS-reg and DS-cons. De-
spite the additional sophistication involved, the results only indicate minor improvements,
which largely disappear when considering refitting. In particular, the observed gains in
performance do not appear to justify the massive computational effort associated with the
solution of the optimization problems underlying DS-reg and DS-cons.

n =500, d/n = 0.03
—e&—proposed

—+—DS-reg
0 —»*—DS-cons =

n =200, d/n = 0.03

—e@—proposed

—#—DS-cons+

.5 2.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
k/n k/n

log10(standardized estimation error)
o \ )
log10(standardized estimation error)

Figure 5: Average standardized estimation errors (23) of DS-reg and DS-cons in compar-
ison to proposed along with their counterparts for refitting.
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Results (I1): Recovery of ©*. We evaluate the normalized Hamming distance 2 >°7 | 1(6*(i) #

n
0(i)), where the matrix counterpart of 6 is given by O, i.e., the plug-in estimator (7)

(modified to incorporate the constraint that ©* is a permutation) with B* replaced by
B from (9). In light of Theorem 2 and Lemmas 1 & 2, recovery of ©* is successful if
72 - SNR < n—¢/srank(B") . SNR is large enough. We therefore plot the normalized Hamming
distance in dependency of the (log) “normalized” SNR —c/srank(B*)log(n)—2log(c), where
the choice ¢ = 0.7 was found to ensure a reasonable alignment of the results across different
experimental configurations. Figure 6 indicates that recovery of ©* follows a phase tran-
sition: if the normalized SNR drops below a certain threshold, the normalized Hamming
distance rises sharply. This observation is in alignment with the inachievability results in
Theorem 2. Interestingly, plug-in estimation (lower panel) does not lead to a significant
degradation in performance compared to the situation in which B* is known (upper panel)
even if the fraction of mismatches is noticeable (k/n = 0.4).

1 5 1 1
8
* * 8 *
c0.8 B* known c0.8 B* known c0.8 B* known
% n =500, d=m=15 % n =500, d=m=30 % b n =500, d=m=60
[&] [&] [&]
c c c
$0.6 30.6 $0.6
(2] (2] (2]
el kel kel
(o)) (=] (=]
£04 £04 £04
€ IS €
§ 5 5
T0.2 T0.2 T0.2 21
0 0 0
4 2 0 2 4 6 4 2 0 2 4 6 4 2 0 2 4
log(normalized SNR) log(normalized SNR) log(normalized SNR)
1 1 1
5
plug-in estimation plug-in estimation plug-in estimation
co8 k/n=0.4 co8 k/n=0.4 co08. 8 k/n=10.4
9 n =500, d=m=15 9 n =500, d=m=30 g =500, d=m=60
j j o
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-4 -2 0 2 4 6 -4 -2 0 2 4 6 -4 -2 0 2 4
log(normalized SNR) log(normalized SNR) log(normalized SNR)

Figure 6: Average Hamming distance (scaled by 1/n) between ©(B*) and ©* (top row)
and between O(B) and ©* (bottom row) vs. the (log) normalized SNR =
—c/srank(B*)log(n) — 2log(c). The numbering indicates different values of the
parameter ¢ controlling srank(B*), with higher numbers for larger ¢ (smaller
srank(B*)). The better the curves align, the more accurate the predicted depen-
dence on the normalized SNR.
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Table 1: Overview on the data sets considered in this paragraph. R? here refers to the
coefficient of determination in the absence of shuffling.

Full Name Short Name n d m R?

SARCOS robot arm (Rasmussen and Williams, 2019)  sarcos 44,484 10 6  0.76

Flight Ticket Prices (Tsoumakas et al., 2011) ftp 335 30 6 0.89

Supply Chain Management (Tsoumakas et al., 2011)  scm 8,966 35 16 0.58
Real Data

We consider three benchmark data sets for multivariate regression as tabulated in Table 1.
The data sets are preprocessed versions of their original counterparts. The columns of
the matrices X and Y were centered, and X was subsequently reduced to an adequate
number of principal components since due to (almost) linearly independent predictors the
oracle least squares estimator (here assigned the role of B*) would (essentially) not be
defined. For sarcos, one of the response variables was removed to improve goodness of
fit, and hence to observe a better contrast in performance with an increasing fraction of
mismatches. Likewise, two outliers with Cook’s distance > 0.7 were removed from ftp.
We randomly permute varying fractions (between 0.05 and 0.4) of the rows of Y, and
investigate to what extent the proposed approach is able to restore the goodness-of-fit (in
terms of the coefficient of determination R?) and the regression coefficients of the least
squares estimator in the complete absence of mismatches that here takes the role of B*.
The performance of the proposed approach is compared to naive least squares based on
the permuted data. For each data set, we consider 20 independent random permutations
forA each value of k/n. Performance with regard to permutation recovery is assessed via
1(©(B*Y) — 0"Y||r/||(I, — ©*)Y|F, ie., via the relative reduction in error induced by
random shuffling. This is a somewhat less stringent metric than the Hamming distance
reported for synthetic data. The change in metric is motivated by the fact that exact
permutation recovery cannot be expected for the data sets under consideration given that
separability in terms of (18) relative to the noise level is poor. Approach (9) is run with
the choice A = M - \/% for M € {0.25,0.5,1,2} and 0y denoting the root mean square
error of the least squares estimator in the absence of shuffling. We consider the same list of
competitors and associated settings as for the synthetic data experiments, apart from the
omission of DS-reg and DS-cons given the aforementioned scalability issues.

As can be seen from Figure 7, the results are not sensitive to the choice of the multiplier
M. The proposed approach consistently improves over naive least squares once the fraction
of mismatches exceeds 0.2, and yields more pronounced improvements as that fraction
increases. Two-stage estimation of ©* yields noticeable reductions of the error ||(I, —
©*)Y || p induced by shuffling. Approaches proposed+ and CRR (equipped with knowledge
of k), yield only occasional and rather minor improvements over proposed. Interestingly,
EM exhibits poor performance even for moderate n (data set ftp), often falling short of naive

f. Here and in the sequel, the reported R? refers to the R? on the original data (i.e., before shuffling) given
an estimator B**" obtained from the shuffled data (cf. caption of Figure 7).
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Figure 7: Top panels: Goodness of fit in terms of the coefficient of determination R? = ||Y —
X B*Y|2/||Y||%. Middle panels: Relative estimation errors || B®' — B*|| ¢ /|| B*||F,
where B* here refers to the oracle least squares estimator equipped with knowl-
edge of ©*. Bottom panels: Performance in approximate recovery of ©* evaluated
in terms of H(é(BeSt) — MY ||r/||(In — ©")Y||r. Each of the black lines corre-
sponds to one specific value of the multiplier M in A = May/y/n - m.

in sharp contrast to the results observed for the synthetic data. This raises the question
whether competitive performance of EM is tied to specific properties of Gaussian design.

Case Study

We here illustrate the use of the proposed approach and its competitors in data integration
scenarios based on a setting designed to mimic the analysis of data obtained from multiple
sensors in an asynchronous fashion. The specific example presented in the sequel is based
on the Multi-Site Beijing Air Quality data set (Chen, 2017) which contains measurements
of various air pollutants and climate parameters recorded at an hourly rate from March 1st,
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2013 to February 28th, 2017. For demonstration purposes, we confine ourselves to complete
records from the site Nongzhanguan for the years 2016 and 2017 (n = 9,726). A linear
regression model is fitted in which the response variables are given by the square roots of the
air concentrations of the pollutants PM2.5, PM10, SO2, NO2, O3 (m = 5) and the predictor
variables are given by temperature, dew point temperature, air pressure, precipitation, wind
speed, CO concentration, and all associated quadratic terms plus intercept (d = 28). This
model achieves an R? ~ 0.725.

At the next stage, we suppose that the response and predictor variables are collected by
two different sensors, with temperature and air pressure collected by both sensors. In order
to recreate the situation of mismatch error in record linkage that commonly results from
the use of inexact or erroneous identifiers (Christen, 2012), the two sets of measurements
are merged based on incomplete time stamps (day and hour are missing) and inaccurate
temperature and air pressure measurements (rounded to integers). Requiring that linked
records must agree on this combination of four matching variables implies that the merged
file is of the form [©*X Y], where ©* is a permutation matrix that can be arranged in
block diagonal structure with the blocks corresponding to groups of measurements having
the same combination of matching variables. It is assumed that the data analyst has no
knowledge about the linkage process, in particular about the use of matching variables
and the resulting block structure of ©*; this setting is typically referred to as “secondary
analysis” in the record linkage literature (Chambers and da Silva, 2019).

Only 1,379 out of n = 9,726 observations yield singleton blocks, i.e., they are uniquely
identifiable based on the matching variables, while all other observations belong to blocks of
size two up to 20. To fix ©* = bdiag( ()7 ,G)E‘K)), we set ©7) = argmaxg|| Y[ —G)Y(l)||%i
where Y(;) denotes the rows of Y corresponding to the [-th block, 1 <1 < K = 3,625, and
the argmax is over all permutations associated with the respective block. While the resulting
nominal fraction of mismatches [{i : ©}; # 1}|/n ~ 0.63 does not appear to fit the sparse
regime, the majority of mismatches do not introduce substantial contamination in the sense
that ||Y;. — Yp«(;):[lF is within the noise level; to a good extent, this can be attributed to
the fact that the responses tend to be more similar within blocks than across blocks.

The same regression model as above is fitted based on the merged records [©*X Y.
Naive least squares regression leads to a noticeable drop of the R? ~ 0.66 and a root mean
squared error (RMSE) of 431.4 relative to the original (i.e., based on [X Y]) regression
parameter estimate B*. Application of the approach (9) with the choice A\ = \/7%,
o can be taken as the root mean squared prediction error of either the original or the naive
least squares fit, lifts the R? to 0.70 and reduces the RMSE for the regression parameter
to 318.1. Following the proposed two-stage method, we use the resulting estimator B to
correct mismatches by solving the following optimization problem:

where

gli%HY —T(0*X)B|[3  subject to Il = 1if ||Y;. — ©F XB||r < v2mo (24)
U :

I = 0if |Yi, — O] XB|r < |[Yi, - ©.XB|r,

for 1 <1i,j < n, where P denotes the set of all permutation matrices (4). Note that perfect

recovery corresponds to I1 = (©*)~!. The additional constraints are imposed as a means

1. This optimization problem reduces to a linear assignment problem.
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to achieve sparsity of II in the sense of small Hamming distance to the identity: the first
constraint sets diagonal elements to one for which the discrepancy between observed and
fitted values is within a factor of v/2 of the noise level, and the second constraint excludes
pairings that do not lead to improvements in terms of fit.

Given the minimizer II of (24), it is worth attempting a re-fit of the regression model
based on data [ﬁ(@*X ) Y]. As shown in the top panel of Figure 8, the solution I1 is able to
reduce mismatch error to an extent that is comparable to the error of the original regression
model. Moreover, the bottom panel of Figure 8 shows that the fitted values of the re-fit
agree considerably better with the fitted values based on [X Y] relative to the fitted values
of naive least squares (plot of the first principal component is meaningful here since here
srank(Y) &~ 1). Accordingly, the R? of the refit increases to 0.715 close to the original 0.725.

In addition, we consider the competitors CRR and EM as alternatives. CRR achieves
slightly better performance than (9) with an oracular choice of its tuning parameter (sparsity
level k); choosing the latter so as to minimize the R? at 0.717 yields the choice k/n = 0.19
while an R? of 0.71 or higher is achieved within the entire range k/n € [0.09,0.32]. The
"effective” fraction of mismatches is expected to be contained in that interval. By contrast,
the performance of EM is rather poor, with an additional drop of the R? compared to naive
least squares. At the same time, the R? achieved by EM on the mismatched data is close
to 0.8 (i.e., much larger than 0.725), which indicates substantial overfitting. A numerical
summary of the performance of the approaches compared here can be found in Table 2

Table 2: oracle: least squares fit based on the original data (X Y]; prop: short for proposed;
prop- H CRR-II: least squares refit after solving (24) with B obtained according
to (9) and (11), respectively. The second and third row contain the RMSE in
estimating B* including intercepts (a) and not including intercepts (b). Note that
the combination of both tends to provide a more accurate picture: EM achieves a
decent value for (a) despite poor performance based on R? and confirmed by (b).

oracle | naive | prop | prop4+ | CRR | EM prop—ﬁ CRR-II
R? 0.725 | 0.66 | 0.70 | 0.712 | .717 | 0.625 | 0.715 0.715

B*-RMSE* 0 431.4 | 318.1 | 295.81 | 259.1 | 280.6 | 298.9 304.8

B*-RMSE’ 0 4.11 | 3.94 3.98 3.42 | 5.97 3.67 3.58

5. Conclusion

In this paper, we have presented a computationally appealing two-stage approach to mul-
tivariate linear regression in the presence of a small to moderate number of mismatches.
The proposed approach can be used to safeguard against a potentially dramatic increase in
the estimation error that can be incurred when ignoring the possibility of mismatches, as
demonstrated in terms of statistical analysis and supported by a series of empirical results.
Moreover, under certain conditions involving “separability” of pairs of data points and the
signal-to-noise ratio, it is shown that the true correspondence between those pairs can be
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RMSE | (Y,XB*) | (Y,0*1Y) | (Ily,0*'Y) | (Ily,0* 1Y) | (IlY,0* 1Y)
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Figure 8: Table at the top: RMSEs of various quantities (4, B), i.e., ||A — Bl||r/+v/n-m.
The first entry equals the RMSE of the original least squares fit, the second entry
equals the mismatch error introduced by ©*, and the remaining entries show the
reduction based on (24) in combination with three methods for obtaining B. Top
plots: Mismach error vs. residual error, before (left) and after correction based
on (24) with B from (9) (right). Bottom plots: the fitted values based on [©*X Y]
vs. fitted values based on [X Y] (left), and the fitted values based on [@*X Y]
vs. fitted values based on [II(©*X) Y] (right). “Fitted values” here refer to the
projection on the leading eigenvector (first principal component) of X B*.
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perfectly recovered. A key result in this paper asserts that the availability of multiple,
linearly independent response variables (as measured by the stable rank of the regression
coefficients) considerably simplifies the problem as it increases separability.

A limitation of the proposed approach is that it imposes a stringent limit on the allowed
fraction of mismatches. In fact, as long as a sufficiently large superset of correctly matched
data (of size Q(n)) can be identified, the regression parameter can still be estimated at the
usual rate. Accordingly, the given problem does not appear hopeless even for significantly
larger fraction of mismatches, say, up to 1 — § for § bounded away from zero. Closing this
gap is a worthwhile endeavor for future research. A second direction of future work concerns
extension of the setup beyond classical linear models, specifically more flexibility regarding
the range of the response variables (binary, mixed discrete/continuous etc.).
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Appendix A. Proof of Theorem 1
(1) Bound on ||Z* — 2| .

A crucial observation is that the joint optimization problem (9) in B and = can be decom-
posed into two optimization problems involving only B and =, respectively, as stated in the
following Lemma.
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~

Lemma A.1 Consider optimization problem (9) with solution (B, Z) and denote by Py the
projection on the orthogonal complement of range(X). Then, if n > d, with probability one

1
2n-m

(1

€ X, X:=argmin

n
PX(Y = V)3 + A (12l (25)
=1

[

9

Be { <XTX>1 XT(Y — /nE)

n n

€ 36} (26)

The proof is along the lines of the proof of Lemma 1 in Slawski and Ben-David (2019),
and is hence omitted. Note that P%Y = Px(y/nZ* + o E) with E = SE. The optimization
problem in (25) thus becomes

. 1
min
= 2n-m

n
P (VRE" + 0E — VnZ)|l5+ A _[1Zi: (27)
1=1

In the sequel, we study an equivalent vectorized problem. Accordingly, we define

&=1ED sE T eR™, E=[El;.. B
P 0 ... O
Lo : (28)
PR¥ =L, oPr=| " X |
s L0
0 ... 0 Px

with ® denoting the Kronecker product, the subscripts . ; refer to the j-th column, j =
1,...,m, and “” here means row-wise concatenation. Moreover, for any v € R™™, we let

ol] = (vj)jeci, i=1,...,n, Gi={i,i+n,...,i+(m—1)-n}.

With this in place, the (2, ¢)-norm with respect to G1, ..., G, is defined by

1<i<n

n 1/q
[v]l2,q == (Z\\vm@) , 1<g<oo, and [[v]l2,00 := max [, (29)
=1

ollz0 := D 1([lo"]|2 > 0), (30)
i=1

where the latter is not a norm; it counts the number of non-zero groups of components,
with each of the {G;}?_, forming a group. Note that ||{*||2,0 < k with support

S,={1<i<n:05;#1}={1<i<n: ||, >0}

We also observe that for all v,w € R™™

zn: MOLG
=1

[oll22 = llvll2, [ (v,w)| = 2,00 (31)

n
< D 1o llwl < ofl2flw
i=1
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by the inequalities of Cauchy-Schwarz and Holder.
After these preparations, we are in position to state another Lemma. First note that
optimization problem (27) can be expressed in vectorized form as

1
min
& 2n-m

IP%®(Vng" + 08) — PRPev/nl3 + A [1€7])2, (32)
=1

Letting 5= & — E, where E is a minimizer of (32), we have the following basic inequality

1

2n-m

(P28, o) + A > (1€, (33)

n-m
1€Sx

IPx=V/ndll3 + 2D _[IEW ), <
i=1

which is obtained by evaluating (32) at £ = 0, expanding squares and re-arranging.

Lemma A.2 Consider 0 in (33) and Let Ao be a number such that

1 _
IPx®0¢]l2,00 < Ao (34)

Vn-m B

Then for any X > 2Xo, it holds that either & = 0 or 6/|8]|2 € 2conv(By(k')) N S¥™1,
where for v > 0, Bo(r) = {v € R" : |v]20 < 7, |[v|l2 < 1} according to (29) and

2
K= (1+350) &k < 16k,

Proof As an immediate consequence of (33) and the triangle inequality, we obtain that

) 1 ~ . ~ .
A ot < ﬁ_mup)%@é,aar A 1072 < Aolldllz + A D (181,
i€S¢ 1€S, i€S,

where the second inequality is a result of (31) and (34). If k = 0, S, = ), we must have
6 =& =& = 0 as the above inequality would be violated otherwise, and the claim of the
lemma follows. On the other hand, if £ > 1, combination of the left and right hand side of
the above chain of inequalities yields

A 1012 < Aollollaa + A D162 = Ao | D112 + DS | + A D16,

iS¢ i€Ss i€Ss iS¢ €S
; A+ Ao ;
= D 1182 < 75 D100
iese 0 ies,
-~ A+ Ao . A4 Ao -
Ollay < 1+ -2 oy < (1 k0]2- 35
[l < (14350 ) I8 < (14 3530 ) VAIBl: (39)
ZGS*
The assertion then follows from Lemma E.1 provided in a separate section below. |

As in the above Lemma, under event (34), inequality (33) implies

1 e e A+ Ao ~ A+ Ao =
P < 1 =
o [IPx® Vo 3+ < </\0< ) T VE[0]l2 = A e VE[|o]2 (36
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by following the steps leading to (35). We now lower bound the Lh.s. of (36). Let A =
{Q)N, CRy: Ne{1,2,...,}, 2N, A <2}. In light of Lemma A.2, we have

1

) oll5 > ||6 Asvs]|2.

LIPEEVASIE 2 185 min RS, Al
>, AsvseSnm—l

()

Structuring each vs into sub-vectors vs’ € R™, [ =1,..., m, we obtain

l
IPXE 32, Asvs|l3 = ZHPXZ A2,

{As}EA, {vs}cBo (K", {As}EA, {vs}cBo (K",
Z )\svs gn-m— 1 Z Asvs gn-m— 1

Since each vy is k’-group sparse according to the partitioning defined by {G;}7_,, each vgl)
is at most k’-sparse in the ordinary sense, i.e., having at most k¥’ non-zero entries. Letting
Bo(k') = {v € R" : |jv|]|p < k'} denote the usual k’-sparsity ball in R™, we have

l
min anxz Ao |2

{As}eA, {vs}CBo(K),
Z )\Svsegnm 1

. = l
= min S oIPk 2, Al 3
Osyed, fwycBok), 1
. AP yesn-t
(YOYCRL, T, (YD) =1

min min P ul|3
T ORI 0 )2 12{7 uGQConV(Bo(k’))ﬂS"*J’ xull
= min IPxull3
u€2conv(l§0 (k"))nsn—1
=dist?(2conv(Bo (k")) N S"~ 1, range(X)). (37)

In order to lower bound this squared distance, we apply Gordon’s Theorem (cf. Lemma E.3
below) with K = 2conv(By(k’)) N'S"~! and V = range(X) noting that the latter random
subspace follows a uniform distribution on the Grassmannian G(n, d), thus we identify p = n,
p—q=d< qg=n—d. Itis well-known that v, = \/r2/(r +1) = (1 — O(1/\/7))\/T ~ /T
as r — 00; to simplify our argument, we henceforth replace v, by /r. Translated to the
setting under consideration, the condition w(K) < (1 — ¢)y, — €vp in Lemma E.3 reads

1 ! n—1 €
EW(QCOHV(BQ(/{ )NS") <vVn—d T

vn. (38)

Invoking the assumption d/n < 1/4, the r.h.s. of (38) evaluates as (v3/2 — 12)y/n. Re-
garding the Lh.s. of (38), it follows from standard results (cf. Plan and Vershynin (2013a),
Lemma 2.3) that the Gaussian width w(2 conv(By(k')) NS~ 1) < 74/k'log(en/k’). Tt thus
follows that for any e € (0,1/3), there exists ¢, c. > 0 so that if

k <cc-n/log(n/k)
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inequality (38) is satisfied, so that with probability at least 1 —3.5-exp(—cLn), (37) is lower
bounded by €2. Combining (36) and this lower bound on (37), we conclude that
_ S _1/2% _ A4+ A
mE = B e = m T2l < 672 20im - S0V
The lemma below elaborates on the choice of g, which completes the proof of the bound
on m~Y/2||E — =*||p.

Lemma A.3 With probability at least 1 — 2/n, it holds that

1 - 41
T P00 < 0 with Mo = % <1+\/ ff”) st = (5248 ) A1,

Proof

1 1® o TeTpl
PyY0¢ = —— max ||[E S Py
P40 = T max TS TP
where {¢;}™; is the canonical basis of R". Observe that conditional on P%, ETSTPxe; is a
zero mean-Gaussian random vector with covariance matrix ||S Px¢;||3 - I, 1 < i < n. Since
|S|l2 < 1 and since P is a random projection in the sense of DasGupta and Gupta (2003),
it follows from results therein that for all g > 0

In particular, with the choice u = \/2417%3 =:cq,

Lo 12 . (n=d 1
P (g;g;HS Pxeill > un,d> <1/n, fina= ("T +4/24 05") Al

Combining this result with Lemma E.2 with » = m, L = n, maxi</<r, 0¢ = pin, 4, we have

IPZ0€]|200 < fin.ao{v/m +21/logn}
with probability at least 1 — 2/n. This finally yields the choice

tndO 4logn
A = —= IL+4/—— 1.
0 \/n-m< * m )

(IT) Bound on |B* — B||p.

Let omin(-) and omax(-) denote the minimum and maximum singular value functional, re-
spectively. Invoking Lemma A.1, we bound

T -1 7 —_ B
H(an> X—\/E(GSE+\/H(: — =)
Vvn
) e
"o lle IIE=FF
<0 +

N \/ﬁ Jmin(X/\/ﬁ)’

F

|B - B*||r <
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1 T

where we have used that (XTTX> X—\/; = (%) , with T denoting the Moore-Penrose
T _2

pseudo-inverse, and opax ((\%) ) ot ((X/y/n)!). Consider T' = S% (X:LX> %S’

and let I'® = I,,, ® . We then can write

_1XT 2
|(52) " Tose| — e

vn F
where e is a standard Gaussian random vector of dimension n - m. By straightforward
adaptations of Lemma 3 in Slawski and Ben-David (2019) that is based on a concentration
result for quadratic forms in Hsu et al. (2012), we obtain that

7 (Jos e

The proof is completed by appealing to concentration results (e.g., Corollary 5.35 in Ver-
shynin (2012)) to lower bound opin(X/y/n) with X having i.i.d. standard Gaussian entries.

- V/5(d-m Vlog(n - m)
F omin(X/v/1)

’X) < exp(—(d-m) Vlog(n-m)).

Appendix B. Proofs of Lemmas 1 and 2

Lemma 1 is an immediate consequence of the following result.

Lemma B.1 (Proposition 2.6 in Latala et al. (2007))
Let g ~ N(0,1;). There exist universal constants oy € (0,1) and k > 0 such that for any
a € (0,ap)

sup P ([l — BTl < | B*l|r ) < exp (slo(a) srank(B") .
peER™

Lemma 1 is obtained by applying Lemma B.1 with p = 0, g = Xi\;;j, and then using a
union bound over pairs, i.e., {min;<;||B*" (x; — x;)|l2 < 6} C UKj{HB*T(xZ- —x;)|l2 < 6}
for any § > 0. We then choose « as the term inside the curly brackets in (19) to conclude
the result.

Remark 1. Lemma B.1 immediately implies that the quantity 73 (20) exhibits qualitatively
the same lower bound as 72 according to Lemma 1: since it is assumed that {y; : i € N'}
and {x; : 1 <j <n} are independent, we have

P ( miy [y — B xl2 < <SS By [Py - BTxlla < 61y
l<]<n iEN j=1

< [Nn sup P(|lu — B*Txj]l2 < 6),
peR

and thus Lemma B.1 can be applied as in the proof of Lemma 1. Since |[M|n < (3), the
lower bound (19) also holds true for 73 up to a constant factor, i.e., 43 > v2.
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Remark 2. A similar albeit slightly weaker result than Lemma B.1 holds true if the entries of
g are independent, unit variance sub-Gaussian random variables (see, e.g., §2.5 in Vershynin
(2018)). Specifically, Theorem 2.5 in Latala et al. (2007) implies that

* 1 * *
sup P <||,u —B Tg||2 < §HB ||F> < 2exp (—c - srank(B*)),
pER™

for some constant ¢ > 0. The main difference of the above result and that of Lemma B.1
is that the tail bound in the latter can still be driven to zero even if srank(B*) = O(1) by
choosing the parameter o appropriately. On the other hand, if a is chosen as a constant
bounded away from zero, the two results yield qualitatively the same conclusions.

Regarding Lemma 2, we first prove the lower bound. We observe that under the assumption
of B* having constant non-zero singular values, ||B*T (x; — x;)||3 ~ 2b2x2(r), where x2(v)
denotes the Chi-Square distribution with v € {1,2,...} degrees of freedom. It is easy to
verify that for r =2(¢ + 1), ¢ € {0,1,...},

POCE() < 2) = 1 — exp(—2/2) S 2"

s=0

— 2=0. (40)
s!

Combining (40) with a union bound over pairs i < j, we obtain

P (r;g;l\B*Wxi X))l < 2bzz) < (’;) (1 —exp(—z2) 30 L ,2)> R

s=0

Below, z is chosen s.t. the r.h.s. of the above inequality is upper bounded by §. We have

(5) <1—exp<—z/2>i(zf)s> = (5) (et > G ) < () 5

s=0 s=q+1

(42)

where the inequality follows from a Taylor expansion with Lagrange form of the remainder:

exp(z/2) = Z (2/2)° + exp() (2/2)7 for some € € [0, z/2]

s=0 s! (q + 1)!
L (2/2)° o (2/2)F exp(§) . (2/2)0+!
= exp(z/2) — 52% a s%;rl S (ot 1)!(2/2) + < exp(z/2)m_

Using that (q—il)! < ((g+1)/e)~(@+D (42) can be upper bounded as

<;’> exp <—(q +1)log <2(Z+€1)>> < ”22 <2(Zzl)>(qﬂ) ,

Choosing z = 2(q + 1) - (n=26)"/(¢+1) ensures that the probability in (41) is bounded by g.

€
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We turn to the upper bound in Lemma 2. Let ny = |§]. We first use that for any z > 0

P <minHB*T(xi —x;)|3 < z) >P ( min [|(B*) " (x2; — x2i_1)||3 < z)

i<j 1<i<n/2

=1-P(3(r) > z/202)"2, (43)

where we have used that {||B*T (xo; — x2;-1)[13}712, big 202x2(r). Using (40) and setting
z =c-4b% in (43) for ¢ > 0 to be determined below, we obtain that

q n2
. " c
P (%1”3 Txi —x))|3 < z) >1- (Z g exp(—c))

s=0
oo n2
S
=1-|1- Z — exp(—c)
St s
+1 n2
>1- (1 - exp(—c)) . (44)

Choosing ¢ = §%/(@+)p=1/(¢+1) (¢ 4 1) and using that (¢ + 1)! < (¢ + 1)9t!, we obtain the
following lower bound on (44)

1= (1= Zep(-a)") " 21— exp (~(0/2) exp(—0))

as long as n > 6. Setting § = &8, the above probability is lower bounded by 0.75 if n >
8(q + 1)?". Combining this with the choice of z = ¢ - 4b? in (43) yields the assertion.

Appendix C. Proof of Theorem 2
We first show that (:)(E)Z =0, =0fori e N ={1 <i<n: ()= 0} For this

purpose, it needs to be established that min;cy mini<j<y, ||y — ETXj|’2 > 7. We have

. . 5T . . T 5
min min |ly; — B xjl > min min |ly; — B x;l2 — max [lx;2| B* — B2

> y9o/mSNRY? — max ||x;]|2]|B* — B2
1<j<n
. * — 2) J— . * J— D
> 2 { o [ B = Bl 7~ o o 15— Bl > 7.

in view of the event B defined in the theorem.
Next, we show that ©(B);. # 0 if i € N° This is implied by demonstrating that
max;cpe|ly; — BTXG*@) |2 < 7. We have

- - ~
max|ly; — B xg~(3)ll2 < max|ly; — B* xg-3)ll2 + 1I£chl§><n||XjH2||B* — B2
< o max [lelo + max x| B* - Bll>.
1<i<n 1<j<n
Consider the event

{JIIE%XHGZ'”Q S(n/%—i—%/logn}. (45)
<i<n
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By Lemma E.2, event (45) holds with probability at least 1 —1/n. Observe that conditional
on the event (45), max;cnre||y; — BTXQ*(Z-) |2 < 710 < 7 with 79 as defined in Theorem 2.

Finally, we show that for ¢ € N, it holds that @(E)w*(i) = 1 which then in conjunction

with the two previous results implies that @(E) = ©*. For this purpose, we consider

N N {lyi— BTl < lys - BTx;13}

ieEN<c 1<j<n
J#0*(3)

= N {18 =B) e+ oeilly < 1B 00 — BT + o3|
ieNc 1<j<n
3707 (3)

= N {18 =B xp 13+ 2(B" = B) o5, 0€4)
iENC 1<j<n

PO < B ey = BT+ 2B Txgs) — BT, 061) |
= N {18 =B xpl13 + 2(B" = B) o5, 0€0)

€N 1<j<n T 9 5 T 12
700 < B (xg ) — %) 3+ 1B — BY) x5+

+ 2<B*T(X9*(i) - Xj), (B*T - ET)X]'> + 2<B*TX9*(7;) - ETX]‘, UEZ'>}
=N N {15 =B) %13~ (B = B) 3+

iENE 1<j<n
J#6" (@) «
<(B B* ) ( —Xg*()) O’Ei>+2<B T(Xj—Xg*(i)),U€i>+

+ 2B () — %), (BT = BI)xy) < 1B (e — 39) 13}

5 H B —B) Txg-(1)II3 2[|o€i|2
SANA o)~ x)IB 1B ooy — 3z
ieEN<c 1<j<n 0] J112 9 (1) 3112
J#0*(3)
2(B*T — BT)x;]|2 N 2[|(B — B*) T (xj — xg+(3)) |2 ]| o€l 2 <1
| B*T (xg+(5) — %) |2 I1B*T (xg+(y — %513 -
~ 2 ~
|B* — B2 max [[%]2 20 max | €2 2||B* — Bll2 max [|x]|2
1<< + 1<i<n + 1<i<n
min; ;|| B*T (x; — x;)|l2 min; ;|| B*T(x; — xj)[l2 ~ min;<;[| B*T (x; — x;)||2
20 maxi <;<nl|€l|2 2|| B* — Bl|2 maxi<i<pxi]|2
min;< || B*" (x; —x;)lla ming;||B*"(x; — x;)|l2
Given the event B, we have that
min|| BT (x; — x:)[l2 = 7Bl = 70 /mSNR". (47)

Plugging (47) into (46) and (45), it is easy to verify that under the conditions of the theorem
the left hand side of the event in (47) is upper bounded by 1/36+1/3+1/3+4+1/9 < 1 with
the stated probability.
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We now turn to the converse statement in the regime m = O(1) (second bullet); the
converse statement without restriction on m is given subsequently. Let (ig,jo) denote the
pair of indices such that

T . T
I1B* (Xio—on)\|§=I}1<1§lllB* (xi = x;)[13 = 2?1 B*[17

and suppose that iy = 0*~1(iy) # (). For the event {O(B*) = ©*} to hold it is required that
T T
lyiy = B* %313 < llyy — B* %5013
* T * T
S2oey, B (xj, — Xip)) < [B™ (xi — x5, I3

B*T(x;, — Xi,)

=2( o€y CL <||B*" (xi, — x;

<O-€ZO’||B*T(X’L'0Xj0)||2 <l (Xio = Xjo) |2
B*T (xj, — Xiy)

=2 i < B*
<“% 1B (i —%30)]l2 >—7” Ie

B*T(x;, — %4,) >
=2( o€, jo ~ o < vo/mSNRY/?
< O BT (xip — Xjo) |2

Note that conditional on x;,,x;, the left hand side follows a N (0, 40?)-distribution. It is
easy to show that if g ~ N(0,1), P(|g| < 6) < 6 and thus P(g > §) > 3(1 — §)for all § > 0.
Hence if

2 1 4
NRY2 < 2~ 26NR < — = 4
S <3\/m<:>75 <9m ¢, (48)

O(B*) # ©* with probability at least 1/3.
We now turn to the converse statement without restriction on m (first bullet). Note
that the event {O(B*) = ©*} implies the event

N {19~ B x0-lB < min Iy~ 513

*T * 1 * 1
SN N {20 (e BT - xo @ I1B7T 05 — xee )l < 1B 50y — BT}
=1 j#6* (i)
c {20 (e BT oy — 50 1B Gty = o)) < 1B - = BT e}
=1

(49)

where n(i) = 0*(:) — 1 if 6*(i) > 2 and n(i) = 6*(i) + 1 otherwise. Now note that conditional
on the {x;}!" ;, the collection

{(ei, BT (%) — %0-(0)) /1 BT (i) — X)) |12), 1 < i < m}

are i.i.d. N (0, 1) random variables. By standard concentration arguments for the maximum
of a collection of Gaussian random variables (cf. Ledoux and Talagrand (1991), p. 79), we
thus have

P | max 20 ( €, B:TT(XW) ~ %) < 20c¢py/logn ‘{xi}?zl < 2/5, (50)
1<i<n ||B ( 77(1) — Xg* )||2
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for a constant ¢y > 0. At the same time, concentration of Lipschitz functions of Gaussian
random variables yields

t2 B* 2
P(||B*" (xy(5) = Xg+3) I3 > (1 +)*2|| B*[|7) < exp <HH§) (51)

Let imax be the index such that

e B*T<Xn(imax)—xe*(imax)) — max (e B*T(Xn(i)_XG*(i))
"B (R i) — 0% (iman) 2 [ TS0\ T IBET (Xp3) — Xoe(3)) |2

N (imax)

Since {(B* (%) — Xg-(1))/|B* " (%y(i) — Xg=i))ll2, | B* " (%06) — Xg-() |23}y arve pairs of
independent random varlables we combine (50) and (51) to conclude that the event A; NAs
occurs with probability at least 1/3, where

B*T(x,; — Xg+ (4
A = {20 <eimax, HB*T(( (imax) 0" (im) > > QCoax/logn}

Xn(imaX) - XG*(imax )H2

Az = {1B™T (Rpfiman) = X+ i) 12 < VIS| B[ 5 = 7 VISmSNR/2}

Combining (49) and the previous display then yields that @(B*) # O* with the stated
probability if
4 2logn ,logn

SNR =: )
<18 18 m ¢ m

Appendix D. Proof of Proposition 1

By the triangle inequality and the fact that =7 = 0 for all ¢ € 5§, we have

min | 2 — maEle = min| =, 2 - 2 max 1S5, - =5

> = e =22 —-= . 52
> minl|E;, 2 - 208 - E*)lr (52)

In the sequel, we derive a lower bound on min;es, [|Z7 ||2 in a fashion similar to the previous
proof. For any i with 6*(i) = 0, we have

IVRZ; N2 = lly: = B* " xilla > 70[|B*| r = 70 - 0 VSNRY/m. (53)
On the other hand, for any ¢ with 6*(i) ¢ {0,4}, we have
IVnZ; ll2 = [1B* x5y — B* " xill2 > v B*|p = v - 0V/SNRy/m (54)
Combining (52), (53) and (54) yields the assertion.
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Appendix E. Auxiliary Results

Lemma E.1 For any r > 1, we have the inclusion
{fveR™™: |v|la <1, |Jv|l21 < V/r} C 2conv By(r), (55)
with ||-||2,1 and Bo(r) are defined in (29) and Lemma A.2, respectively.

Proof The proof is an adaptation of a standard argument in the sparsity literature,
cf. Lemma 3.1 in Plan and Vershynin (2013b). Pick an arbitrary element v contained in
the left hand side in (55), and consider subsets T; C {1,...,n}, |Ty| < r, and corresponding
vectors v(Ty) € By(r) such that

(v(Tr)); = {vj it € User, G,

0 else.

and such that 7} contains the r indices of {1,...,n} corresponding to the r largest norms
among {|[v!||2}7_,, T» contains the r indices corresponding to the next r largest norms
among {|[v¥|2}7,, and so forth. Observe that v = 3", v(T}) and that for any ¢

. 1 . 1
_ (4] - [y, = =
[0(Te41) 2,00 = iglﬁflllv l2 <~ ;Hv l2 = ~llo(To)l2.
1€Ty

As a result,

1
[0(Tes1)ll2 < Vrl[o(Tesr) 12,00 = WHU(TE)HQ,L

Consequently,

D Io@)llz = loTll2 + Y _llo(To)2
L

>2

<1+ \};ZHU(TDHM

>1

<1+ 23 el

£>14€T)

1
<1l+—
<1+ \/;Hv

l21 < 2.
In conclusion, we have demonstrated that
v(Ty)
v=> i [v(T0)2, Ao <2,
2 o @l 2
—— X

€Bo (T‘)

and thus v € 2conv By(r). Since v was an arbitrary element of the left hand side in (55),
the proof is complete. [ ]
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Lemma E.2 Let go ~ N(0, O’%L«), 1 < ¢ < L, be isotropic Gaussian random vectors. Then:

P (max llgell2 > 1glea<XLUE{\/;+ 2\/10gL}> <1/L.

1<¢<L

Proof We note that E[||g|l¢] < o¢/r, £ = 1,...,L, and that the map = — |z||2 is 1-
Lipschitz. By concentration of measure of Lipschitz functions of Gaussian random vectors,
we hence have

P(llgellz = oo(vr +2y/log L)) < exp(—2log L), £=1,..., L.

The result then follows from a union bound over {1,...,L}. [ |

Lemma E.3 (Gordon’s Escape Theorem (Gordon, 1988)) Let K be a closed subset
of the unit sphere in RP, let v, = By n(o,1,)[ll9ll2], and let e € (0,1). If the Gaussian width
(cf. §7.5 in Vershynin (2018)) of K obeys w(K) < (1—e)vy—evy, then a (p—q)-dimensional
subspace V' drawn uniformly from the Grassmannian G(p,p — q) satisfies

(1— )y —evy — w(K)>2> |

3+etey/y,

1
P(dist(K,V) >¢)>1— gexp (— <

2

Appendix F. From Gaussian to sub-Gaussian

In this section, we state and prove a result analogous to Lemma E.3 above for random
subspaces V' generated by a p-by-(p — ¢) matrix A with i.i.d. isotropic sub-Gaussian rows,
ie., B[(A;.,v)%] = 1 and |[(A;.,v)]ly, < L < oo for all v € RP79, 1 < i < n, where |||y,
denotes the sub-Gaussian norm of a random variable (see, e.g., §2.5 in Vershynin (2018)).

Lemma F.1 Let V = range(A) with A as above, and let K be a closed subset of the unit
sphere in RP. For any e, € (0,1), if

1 2(p—q)+ O LY w*(K)

P>1 0 e V%{(p—q)\/logp} (56)

then P(dist(K, V) > €) > 1-2( exp(—w?(K))+exp(—c{(p—q)Vlog p})), where Cy,Ca,c > 0
are universal constants depending only on L.

It is worth noting that the condition (56) is comparable to the condition in Lemma E.3

which after term simplifications becomes p > ﬁ((p —q) +w?(K)), which corresponds to

the first (and leading) term on the right hand side of (56).

Proof Let V1 denote the orthogonal complement of V in RP, respectively. Accordingly,
denote by Py and Py 1 the orthoprojectors on V' and VL, respectively. Note that

dist? (K, V) = inf [Py €[l3 = 1 — sup|[Pyé|3. (57)
(eEK (e

40



TwO-STAGE APPROACH TO MULTIVARIATE LINEAR REGRESSION WITH SPARSELY MISMATCHED DATA

Hence in order to lower bound dist?(K, V), it suffices to upper bound supge i ||PvE[|3. As-
suming for now that A is non-singular, we have

sup||Py¢||3 = sup T A(ATA)TATE
EeK (eK

< sup|(ATA) " 2AT¢|3
ek

_ 1
< [(ATA) 25 sup | ATENR < —— 5 sup [ ATE]3. (58)
gek Omin(A)? ek

min
In order to bound the second factor on the right hand side, we invoke the following result:
Lemma F.2 (cf. Exercise 9.1.8 in Vershynin (2018)). Let A, L, and K be as above. Then
for any u > 0, the following event occurs with probability at least 1 — 2 exp(—u?):

up I47€ll = VP =] < CLw(K) +u).

Invoking the above lemma with the choice u = w(K'), we obtain that

p (g}g\m%rb <Vp—q+ C’LQw(K)> > 1 - 2exp(—w?(K)). (59)

At the same time, concentration results (Vershynin, 2012, Theorem 5.35) on the minimum
singular value of random matrices with sub-Gaussian rows yield that for any o € (0,1)

P(0min(A)% > (1 — @)?p) > 1 — 2exp(—c{(p — q) Vlogp}) (60)

provided that p > %{(p —q) V log p} for positive constants ¢ = ¢y, and C' = Cf, depending
only on the sub-Gaussian norm L of the rows of A. Combining (57), (58), (59) and (60),
we obtain that with the probability stated in the theorem, it holds that

2(p — q) + C"L'w?(K) _

inf ||P 2>1-— > ¢
{lélKH VJ-g”Q = (1 —a)2p =

1 2(p—)+C" LY w*(K)

as long as p > 1= (=) for any € € (0, 1), which concludes the proof. |

Appendix G. Conditional gradient method for optimization of (13) &
(14)

We start with optimization problem (14). Let

1 1
f(©) = 5 IPxOY |7, Vf(©)= mP)L<9YYT

n-m

be the objective and gradient, respectively, of (14). Following Algorithm 1 in Jaggi (2013),
the conditional gradient (Frank-Wolfe) updates for minimizing f over C; = {© € C :
>t 104 >n—k} with C defined in (12) are given as follows.
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Algorithm 2 Frank-Wolfe method for minimizing (14)

Initialize ©©) = [,,.
Repeat for t =0,1,...

DY « argmintr(©@'Vf(©M)), O+ (1 —a™e® 4+ o®p®,
0cCy

tr(Px DO YYTOMT)

where a®) = argmin, . f((1 - a®)0® + aD®) = L DOYYTDOT)
X

The dominant computational cost in the above algorithm is incurred for the argmin over Cy,
which requires the solution of a linear program with n? variables and O(n) linear constraints.

A similar algorithm can be applied for optimization problem (13). An additional com-
plication arises from the penalty in (13) which renders the objective non-smooth. As a
workaround, we apply the above Frank-Wolfe scheme to a successively smoothed objec-
tive (Nesterov, 2005).
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