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Abstract—Determining fault current direction in islanded
inverter-based microgrids is highly challenging due to the un-
conventional and limited fault current contribution of inverters.
This paper explores the application of a combined support vector
machine (SVM) and synthetic harmonic injection method for
determining fault current direction in such microgrids under
balanced faults. A training set is created and an SVM is
trained for each relay by applying forward and reverse faults
in PSCAD/EMTDC and using MATLAB. The trained SVM is
then used to predict fault current direction for a balanced fault
at a different location. Simulation results are provided to analyze
the performance of the proposed method.

Index Terms—Inverter-based generation, machine learning,
microgrids, power system protection, support vector machines.

I. INTRODUCTION

Advances in renewable energy generation and power elec-
tronics have enabled the proliferation of inverter-based re-
sources (IBR) in power distribution systems in the form
of microgrids. Microgrids can operate in islanded or grid-
connected modes. Microgrids have enough generation capacity
to supply loads. Thus, they can maintain power supply in case
of grid faults. In addition, in case of having excess generation,
they can supply power to the grid to assist with its recovery
and reduce the frequency and duration of outages. Therefore,
microgrids are an important asset for improving the reliability
and resiliency of the grid [1].

In order to maintain the advantageous features provided by
microgrids, they should be protected from internal short-circuit
faults. This issue is challenging because of very small fault
current contribution of IBRs in the islanded mode [2] and
failure of directionality detection by conventional torque- and
impedance-based relays due to corrupted voltage and current
phasor estimations [3]. A multi-setting adaptive microgrid
protection scheme based on directional overcurrent relays
is proposed in [4]. However, this method is designed for
microgrids with synchronous generation, and it is rendered
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infeasible in inverter-based microgrids because it cannot op-
erate with small fault current magnitudes during islanded
mode. Distance protection is not recommended either due to
the presence of short lines and compromised phasor estima-
tion [1]. Differential relaying is immune to the aforementioned
challenges. However, employing differential relays for every
line is uneconomical, and they cannot operate on branched
lines because the sum of currents is no longer zero and the
bidirectional power flow caused by the IBRs makes the relay
setting to be very complex [5]. In order to overcome these
problems, a protection scheme that relies on the capabilities
of the existing IBRs and commercially available digital relays
is proposed in [6]. In this method, IBRs inject a pattern (IP)
of 3rd, 5th, and 7th harmonics when the voltage drops below
a certain threshold during a fault. IPs are measured at each
relay station (MP), and fault current direction is determined
by measuring the alignment percentage between MP and the
characteristic pattern (CP) of the relay. This method utilizes
the cosine similarity (CS) function to determine the degree
of alignment between the two patterns. However, CS is not
always reliable because the alignment threshold varies with
different conditions such as microgrid topology, IBR locations,
and ratings. The same issue exists with calculating the CPs as
nodal analysis is required for this purpose. Additionally, fault
current directionality is more reliable if it can be performed
based on local measurements and without communication. De-
termining fault current direction can be formed into a classifi-
cation problem within the realm of machine learning with two
classes: forward and reverse. Support vector machines (SVM)
are a reliable choice for solving this classification problem [7],
[8]. SVMs are preferred over artificial neural networks (ANN)
because they offer larger generalization capability. Moreover,
ANNs are difficult to execute during the sampling interval.
SVMs are used in [9]–[15] to solve power system protection
problems. References [16], [17] investigate the application of
machine learning for microgrid protection. However, both of
these methods are designed for microgrids with synchronous
generators and are not applicable to inverter-based microgrids.

In this paper, SVM is used alongside the synthetic harmonic
injection method proposed in [6] to detect fault current direc-
tion in an islanded inverter-based microgrid under balanced
faults. SVM replaces the CS function to eliminate the need for
calculating an alignment threshold and CPs for the protective978-1-7281-9023-5/21/ $31.00 © 2021 IEEE
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Fig. 1. Block diagram demonstration of the modified IBR controller for
implementing the method proposed in [6].

relays. The harmonic patterns measured at each relay are
unique and linearly-separable under forward and reverse faults.
This makes SVM a reliable tool and enables its simple imple-
mentation. Studies are performed in PSCAD/EMTDC software
to create a dataset for training the SVM. The fitcsvm
function in MATLAB is used to train the SVM. Simulation
results are provided to demonstrate the effectiveness of the
proposed method.

The rest of this paper is structured as follows. Section
II provides an overview of the method proposed in [6].
An overview of SVM theory is presented in Section III.
Section IV discusses the problem setup. Section V analyzes
the performance of the proposed method. Finally, conclusions
are presented in Section VI.

II. OVERVIEW OF SYNTHETIC HARMONIC
INJECTION-BASED PROTECTION

Fig. 1 shows the modified per-phase IBR controller for
implementing the method proposed in [6]. The upper control
loop is the conventional IBR controller. The output current of
the IBR io is measured, converted into dq values, and fed
to the current control loop. Based on the reference output
current, which is either determined by PQ control or droop
control, the reference fundamental modulation signal m∗

a is
generated by this loop and fed to the PWM block to control
the inverter. The lower loop is designed for injecting synthetic
harmonics during faults in the microgrid. The relationship for
each synthetic harmonic ihinj is designed as:

ihinj =Î
h
inj sin (hωt+ θ)

h = 3, 5, 7,
(1)

where Îhinj is the magnitude of the hth synthetic harmonic, ω
is the fundamental angular frequency, and θ is the phase shift
of each synthetic harmonic. The magnitude of the injected
harmonics Îhinj is calculated using (2) to limit the total rms
current of the IBR to 120% of its rated current I rated

DG :

Îhinj = 0.38I rated
DG . (2)

The phase shift of the synthetic harmonics are set to θ instead
of hθ to convert the 3rd and 5th harmonics into positive-
sequence components rather than zero- and negative-sequence
components. Thus, the low-order harmonics can be utilized
with the help of this manipulation.
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Fig. 2. Directional element logic proposed in [6].

A per-phase voltage threshold is considered for triggering
the synthetic harmonic current injection in the faulted phases.
Based on the IBR LVRT standard defined in IEEE Std 1547-
2018 [18], this threshold is set to 0.88 pu. As soon as the
filtered terminal voltage of the IBR vg drops below 0.88 pu,
a modified modulation signal m∗

h is added to the reference
fundamental modulation signal m∗

a to enable the injection of
synthetic harmonics by the IBR.

The control loop for injecting synthetic harmonics is de-
signed in the abc frame. It includes a low-bandwidth controller
to regulate the grid current ig and a high-bandwidth controller
to regulate IBR current io. The controllers are of proportional-
resonant type with the following transfer function

F (s) = Kp +
Krs

s2 + ω2
o

, (3)

where Kp is the proportional gain, Kr is the resonant gain,
and ωo is the resonant frequency which is set to the frequency
of the injected harmonic current.

Fig. 2 shows the directional element logic used in [6]. In
this logic, the three-phase currents are measured and converted
into sequence components. The FFT function is applied to
the positive sequence current to measure the three injected
harmonics. Therefore, a three-element vector of three mea-
sured harmonics ~MP is constructed. Each relay also has a
predefined characteristic pattern ~CP. When vg < 0.88 pu, the
alignment percentage of the two vectors is measured using the
CS function:

cos (θ) =
〈 ~MP, ~CP〉
‖ ~MP‖‖ ~CP‖

, (4)

where 〈·, ·〉 denotes inner product, ‖ · ‖ is the norm function,
and θ is the angle between the two vectors. If the result of
(4) is 1, the two vectors are completely aligned. However,
in t4he method proposed in [6], the two vectors are said to
be aligned if cos (θ) is larger than λ = 0.85. This method
uses the permissive overreaching transfer trip (POTT) and
direction zone-interlocking (DZI) methods for primary and
backup protection, respectively. Fig. 2 shows an example
system to illustrate these two methods. In this system, the relay
R23 has three zones of operation. Primary protection is set for



faults in Zone 1, backup protection is set for faults in Zone 2,
and the operation is blocked for faults in Zone 3. If both R23
and R32 detect a forward fault, the primary POTT is activated
for R23. However, if one relay detects a reverse fault and the
other detects a forward fault, an external fault is detected.
A communication system is required for implementing DZI
for backup protection. R23 sends its POTT signal to R12 and
receives the POTT signal from R34. Hence, R12 can operate if
R23 fails, and R23 can act as the backup protection device if
R34 fails.

This method uses the undervoltage tripping function of IBRs
to de-energize the entire microgrid if both primary and backup
protection devices fail to operate. Thus, all IBRs trip if the
fault is not cleared within 15 cycles.

III. PROPOSED SVM-BASED APPROACH

The CS function used in [6] is not a generally reliable
method. The value of λ in this function is determined by
calculating all possible combinations of ~MPs. Due to different
IBR ratings and locations, acquiring binary ~MPs is almost
impossible, making the estimation of λ quite complicated. In
addition, an optimization problem is solved and nodal analysis
is performed for determining ~CPs, which should be rerun
each time a change occurs in its input information, including
microgrid topology, IBR ratings, and locations. Moreover, the
method proposed in [6] relies on communication between re-
lays, which reduces its reliability. In this paper, the CS function
is replaced with an SVM to detect fault current direction
for balanced faults in an islanded inverter-based microgrid.
Therefore, calculating λ is no longer required, and the relay
stations do not need to be set to specific ~CPs. Additionally, the
proposed approach relies on local measurements at each relay
to determine fault current direction. Hence, no communication
is required. SVM is a branch of machine learning algorithms
that can be used to solve classification, regression, and density
estimation problems. The main logic behind SVM is to find
the optimal support vectors (SV) to construct the optimal
hyperplane for pattern recognition. Maximizing margins and
minimizing the error becomes the main goal of SVM if no
optimal hyperplane exists. This hyperplane is calculated by
solving the following optimization problem:

min
w

1

2
||w||2 + C

(
l∑

i=1

ζi

)
subject to yi (w · xi + b) ≥ 1− ζi, ζi ≥ 0 ∀i,

(5)

where xi is the ith feature sample in the training set, and yi
is the ith class label which can take +1 or −1. This problem
is usually solved through its dual form:

max LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyj
(
xTi xj

)
subject to 0 ≤ αi ≤ C ∀i,

∑
i

αiyi = 0.
(6)

In case the input data is nonseparable, a kernel function
K (·, ·) is found such that K (xi, xj) = xTi · xj . Utiliza-
tion of kernels allows to obtain a nonlinear SVM capable
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Fig. 3. CIGRE 12.47 kV benchmark system.

of handling nonseparable data in the training set. There
are three general types of kernel choices: the linear kernel
Qij = K (xi, xj) = xTi · xj , the polynomial kernel Qij =

K (xi, xj) = (γ (xi · xj) + r)
d, and the radial basis function

(RBF) kernel Qij = K (xi, xj) = exp
(
−γ||xi − xj ||2

)
. After

the proper kernel is selected, the nonlinear decision function
is built as below:

f (x) = sign

(
l∑

i=1

αiyiK (x, xi) + b

)
, (7)

where b is calculated by αi (yi (w · xi + b)− 1) = 0, i =
1, . . . , l, such that αi is not zero.

IV. PERFORMANCE ANALYSIS

A. Training the SVM

In this paper, the 12.47 kV CIGRE benchmark distribution
network shown in Fig. 3 is modeled in PSCAD/EMTDC
software as the study system. The two upper switches are
opened so that the microgrid operates in the islanded mode.
The three bottom switches are closed to create a meshed
network. Based on the optimization carried out in [6], some
IBRs inject only one harmonic while others do not inject any
harmonics. The harmonics injected by the IBRs are listed in
Table I. An SVM is trained for each relay in Fig. 3 by applying
forward and reverse balanced faults. For training each SVM,
the magnitudes of the three current harmonics are sampled
with a period of 30 µs for one cycle after the fault is detected
by the method in [6]. With a nominal frequency of 60 Hz, the
number of samples is 106/ (30× 60) = 556. In this paper,
relays R910 and R109 are selected as examples for analyzing
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Fig. 4. SVM training results including optimal SVs and hyperplanes for (a)
R910 and (b) R109.

the performance of the proposed method. A bolted three-
phase fault is applied at the midpoint of line 9-10, and the
measurements are recorded as the forward direction samples
for both relays. Two other three-phase faults are also applied
at the midpoints of line 9-8 and 11-10, and the measurements
are recorded as reverse direction samples for R910 and R109,
respectively. Thus, there is a X1121×3 input space and a Y1121×1

output vector for each relay. An SVM model is trained for
each relay using the fitcsvm function in MATLAB. Figs.
4(a) and (b) show the input space, optimal SVs, and the
optimal hyperplane found using fitcsvm for R910 and
R109. The data for forward and reverse faults are linearly
separable. Therefore, fitcsvm is able to find the optimal
hyperplane in three-dimensional space for implementing large-

(a)

(b)

Fig. 5. SVM prediction results for a fault at the midpoint of line 8-3 for (a)
R910 and (b) R109.

margin classification. Table II summarizes the linear kernel
parameters for R910 and R109.

B. SVM Validation

To validate the performance of the trained SVMs, a bolted
balanced fault is applied at the midpoint of line 8-3. For
this fault, R910 should detect reverse direction while R109
should detect forward direction. Fig. 5(a) shows the new
harmonic pattern along with the input space and the optimal
hyperplane of R910. This figure shows that the SVM model
is successfully able to detect the reverse direction for R910.
The accuracy of the trained model for this relay is 100%.
This means that the trained SVM is able to predict the correct
direction for all of the new samples. Fig. 5(b) shows the
harmonic pattern measured at R109 against its input space and



TABLE I
OPTIMAL HARMONIC INJECTION PATTERN FOR IBRS IN THE STUDY

SYSTEM

IBR Bus Injected Harmonic IBR Bus Injected Harmonic

1 I3 8 0
2 0 9 I5

3 0 10 0
4 I3 11 I7

5 0 12 I5

6 0 13 0
7 I7 14 0

TABLE II
TRANIED SVM MODEL PARAMETERS

Relay β1 β2 β3 b

R910 −0.0845 2.4394 0.1618 −1.4340

R109 0.0793 −0.1904 0.0146 1.0172

hyperplane. This figure shows that the R109 SVM model can
determine the forward direction for this relay. The accuracy
for this SVM is 88%, which means the SVM is able to
predict the correct direction for 88% of the new samples. Table
III summarizes the results from the conventional method in
[6] and the proposed method for the same fault. This table
shows that the conventional method detects forward direction
at relay 910 while it should have detected reverse direction.
However, the proposed method correctly detects the direction
as reverse. This is because the result of the CS function in
the conventional method for this relay is 91%, which is above
the threshold λ = 0.85. This originates from the fact that
designing ~CPs and λ without having binary ~MPs is quite
complicated and not generally reliable. However, the proposed
method does not rely on the CS function. Therefore, it is able
to correctly determine the fault current direction.

V. CONCLUSIONS

This paper proposes a method to detect fault current direc-
tion for balanced faults in islanded inverter-based microgrids
using SVM and synthetic harmonic injection via IBRs. The
proposed method replaces the CS function with an SVM
to detect fault current direction. Therefore, it increases the
reliability of the protection system and simplifies its design.
The performance of the proposed method is analyzed on two
relays protecting the same line. A training set is created by
simulating balanced faults in forward and reverse directions in
PSCAD/EMTDC software, and an SVM model is trained for
each relay using the fitcsvm function in MATLAB. Simula-
tion results demonstrate that the proposed method successfully
detects the direction of the fault current.
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