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Abstract

We study the problem of online learning with primary and secondary losses. For
example, a recruiter making decisions of which job applicants to hire might weigh
false positives and false negatives equally (the primary loss) but the applicants
might weigh false negatives much higher (the secondary loss). We consider the
following question: Can we combine “expert advice” to achieve low regret with
respect to the primary loss, while at the same time performing not much worse

than the worst expert with respect to the secondary loss? Unfortunately, we show
that this goal is unachievable without any bounded variance assumption on the
secondary loss. More generally, we consider the goal of minimizing the regret with
respect to the primary loss and bounding the secondary loss by a linear threshold.
On the positive side, we show that running any switching-limited algorithm can
achieve this goal if all experts satisfy the assumption that the secondary loss does
not exceed the linear threshold by o(T ) for any time interval. If not all experts
satisfy this assumption, our algorithms can achieve this goal given access to some
external oracles which determine when to deactivate and reactivate experts.

1 Introduction

The online learning problem has been studied extensively in the literature and used increasingly in
many applications including hiring, advertising and recommender systems. One classical problem in
online learning is prediction with expert advice, in which a decision maker makes a sequence of T
decisions with access to K strategies (also called “experts”). At each time step, the decision maker
observes a scalar-valued loss of each expert. The standard objective is to perform as well as the best
expert in hindsight. For example, a recruiter (the decision maker) sequentially decides which job
applicants to hire with the objective of minimizing errors (of hiring an unqualified applicant and
rejecting a qualified one). However, this may give rise to some social concerns since the decision
receiver has a different objective (getting a job) which does not receive any attention. This problem
can be modeled as an online learning problem with the primary loss (for the decision maker) and
secondary loss (for the decision receiver). Taking the social impact into consideration, we ask the
following question:

Can we achieve low regret with respect to the primary loss, while performing

not much worse than the worst expert with respect to the secondary loss?

Unfortunately, we answer this question negatively. More generally, we consider a bicriteria goal of
minimizing the regret to the best expert with respect to the primary loss while minimizing the regret
to a linear threshold cT with respect to the secondary loss for some c. When the value of c is set to the
average secondary loss of the worst expert with respect to the secondary loss, the objective reduces to
no-regret for the primary loss while performing no worse than the worst expert with respect to the
secondary loss. Other examples, e.g., the average secondary loss of the worst expert with respect
to the secondary loss among the experts with optimal primary loss, lead to different criteria of the
secondary loss. Therefore, with the notion of regret to the linear threshold, we are able to study a
more general goal. Based on this goal, we pose the following two questions:
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1. If all experts have secondary losses no greater than cT + o(T ) for some c, can we achieve
no-regret (compete comparably to the best expert) for the primary loss while achieving
secondary loss no worse than cT + o(T )?

2. If we are given some external oracles to deactivate some “bad” experts with unsatisfactory
secondary loss, can we perform as well as each expert with respect to the primary loss
during the time they are active while achieving secondary loss no worse than cT + o(T )?

These two questions are trivial in the i.i.d. setting as we can learn the best expert with respect to the
primary loss within O(log(T )) rounds and then we just need to follow the best expert. In this paper,
we focus on answering these two questions in the adversarial online setting.

1.1 Contributions
An impossibility result without a bounded variance assumption We show that without any
constraints on the variance of the secondary loss, even if all experts have secondary loss no greater
than cT , achieving no-regret with respect to the primary loss and bounding secondary loss by
cT +O(T ) is still unachievable. This answers our motivation question that it is impossible to achieve
low regret with respect to the primary loss, while performing not much worse than the worst expert
with respect to the secondary loss. This result explains why minimizing one loss while bounding
another is non-trivial and applying existing algorithms for scalar-valued losses after scalarizing
primary and secondary losses does not work. We propose an assumption on experts that the secondary
loss of the expert during any time interval does not exceed cT by O(T↵) for some ↵ 2 [0, 1).

Then we study the problem in two scenarios, a “good” one in which all experts satisfy this assumption
and a “bad” one in which experts partially satisfy this assumption and we are given access to an
external oracle to deactivate and reactivate experts.

Our results in the “good” scenario In the “good” scenario, we show that running an algorithm
with limited switching rounds such as Follow the Lazy Leader [Kalai and Vempala, 2005] and
Shrinking Dartboard (SD) [Geulen et al., 2010] can achieve both regret to the best with respect to
the primary loss and regret to cT with respect to the secondary loss at O(T

1+↵
2 ). We also provide a

lower bound of ⌦(T↵).

From another perspective, we relax the “good” scenario constraint by introducing adaptiveness to the
secondary loss and constraining the variance of the secondary loss between any two switchings for
any algorithm instead of that of any expert. We show that in this weaker version of “good” scenario,
the upper bound of running switching-limited algorithms matches the lower bound at ⇥(T

1+↵
2 ).

Our results in the “bad” scenario In the “bad” scenario, we assume that we are given an external
oracle to determine which experts to deactivate as they do not satisfy the bounded variance assumption.
We study two oracles here. One oracle deactivates the experts which do not satisfy the bounded
variance assumption once detecting and never reactivates them. The other one reactivates those
inactive experts at fixed rounds. In this framework, we are limited to select among the active experts
at each round and we adopt a more general metric, sleeping regret, to measure the performance of the
primary loss. We provide algorithms for the two oracles with theoretical guarantees on the sleeping
regrets with respect to the primary loss and the regret to cT with respect to the secondary loss.

1.2 Related work
One line of closely related work is online learning with multi-objective criterion. A bicriteria setting
which examines not only the regret to the best expert but also the regret to a fixed mixture of all
experts is investigated by Even-Dar et al. [2008], Kapralov and Panigrahy [2011], Sani et al. [2014].
The objective by Even-Dar et al. [2009] is to learn an optimal static allocation over experts with
respect to a global cost function. Another multi-objective criterion called the Pareto regret frontier
studied by Koolen [2013] examines the regret to each expert. Different from our work, all these
criteria are studied in the setting of scalar-valued losses. The problem of multiple loss functions
is studied by Chernov and Vovk [2009] under a heavy geometric restriction on loss functions. For
vector losses, one fundamental concept is the Pareto front, the set of feasible points in which none
can be dominated by any other point given several criteria to be optimized [Hwang and Masud,
2012, Auer et al., 2016]. However, the Pareto front contains unsatisfactory solutions such as the one
minimizing the secondary loss, which implies that learning the Pareto front can not achieve our goal.
Another classical concept is approachability, in which a learner aims at making the averaged vector
loss converge to a pre-specified target set [Blackwell et al., 1956, Abernethy et al., 2011]. However,
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we show that our fair solution is unapproachable without additional bounded variance assumptions.
Approachability to an expansion target set based on the losses in hindsight is studied by Mannor et al.
[2014]. However, the expansion target set is not guaranteed to be meet our criteria. Multi-objective
criterion has also been studied in multi-armed bandits [Turgay et al., 2018].

2 Model
We consider the adversarial online learning setting with a set of K experts H = {1, . . . ,K}.
At round t = 1, 2, . . . , T , given an active expert set Ht ✓ H, an online learner A computes a
probability distribution pt 2 �K over H with support only over Ht and selects one expert from pt.
Simultaneously an adversary selects two loss vectors `(1)t , `(2)t 2 [0, 1]K , where `(1)t,h and `(2)t,h are the
primary and secondary losses of expert h 2 H at time t. Then A observes the loss vector and incurs
expected losses `(i)t,A = p>t `

(i)
t for i 2 {1, 2}. Let L(i)

T,h =
PT

t=1 `
(i)
t,h denote the loss of expert h and

L(i)
T,A =

PT
t=1 p

>

t `
(i)
t denote the loss of algorithm A for i 2 {1, 2} during the first T rounds. We

will begin by focusing on the case that the active expert set Ht = H.

2.1 Regret notions
Traditionally, the regret (to the best) is used to measure the scalar-valued loss performance of a
learner, which compares the loss of the learner and the best expert in hindsight. Similar to Even-Dar
et al. [2008], we adopt the regret notion of A with respect to the primary loss as

Reg(1) , max

✓
L(1)
T,A �min

h2H

L(1)
T,h, 1

◆
.

We introduce another metric for the secondary loss called regret to cT for some c 2 [0, 1], which
compares the secondary loss of the learner with a linear term cT ,

Reg(2)c , max
⇣
L(2)
T,A � cT, 1

⌘
.

Sleeping experts are developed to model the problem in which not all experts are available at all
times [Blum, 1997, Freund et al., 1997]. At each round, each expert h 2 H decides to be active or
not and then a learner can only select among the active experts, i.e. have non-zero probability pt,h
over the active experts. The goal is to perform as well as h⇤ in the rounds where h⇤ is active for all
h⇤

2 H. We denote by Ht the set of active experts at round t. The sleeping regret for the primary
loss with respect to expert h⇤ is defined as

SleepReg(1)(h⇤) , max

 
X

t:h⇤2Ht

X

h2Ht

pt,h`
(1)
t,h �

X

t:h⇤2Ht

`(1)t,h⇤ , 1

!
.

The sleeping regret notion we adopt here is different from the regret to the best ordering of experts in
the sleeping expert setting of Kleinberg et al. [2010]. Since achieving the optimal regret bound in
Kleinberg’s setting is computationally hard [Kanade and Steinke, 2014], we focus on the sleeping
regret notion defined above.

2.2 Assumptions
Following a standard terminology, we call an adversary oblivious if her selection is independent of
the learner’s actions. Otherwise, we call the adversary adaptive. First, we assume that the primary
loss is oblivious. This is a common assumption in the online learning literature and this assumption
holds throughout the paper.

Assumption 1. The primary losses {`(1)t }t2[T ] are oblivious.

For an expert h 2 H, we propose a bounded variance assumption on her secondary loss: the average
secondary loss for any interval does not exceed c much. More formally, the assumption is described
as below.
Assumption 2. For some given c, �, ↵ 2 [0, 1] and for all expert h 2 H, for any T1, T2 2 [T ] with

T1  T2,

T2X

t=T1

(`(2)t,h � c)  �T↵ .
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We show that such a bounded variance assumption is necessary in Section 3. We call a scenario “good”
if all experts satisfy assumption 2. Otherwise, we call the scenario “bad”. This “good” constraint can
be relaxed by introducing adaptiveness to the secondary loss. We have a relaxed version of the “good”
scenario in which the average secondary loss between any two switchings does not exceed c much
for any algorithm. More formally,
Assumption 20. For some given c, �, ↵ 2 [0, 1], for any algorithm A, let At 2 H denote the selected

expert at round t. For any expert h 2 H and T1 2 [T ] such that AT1 = h and AT1�1 6= h (where

AT+1 = TA0 = 0 for notation simplicity), we have

mint>T1:At 6=h t�1X

⌧=T1

⇣
`(2)⌧,h � c

⌘
 �T↵ .

In the “good” scenario, the active expert set Ht = H for all rounds and the goal is minimizing both
Reg(1) and Reg(2)c . In the “bad” scenario, we consider that we are given an oracle which determines
Ht at each round and the goal is minimizing SleepReg(1)(h⇤) for all h⇤

2 H and Reg(2)c .

3 Impossibility result without any bounded variance assumption

In this section, we show that without any additional assumption on the secondary loss, even if all
experts have secondary loss no greater than cT for some c 2 [0, 1], there exists an adversary such
that any algorithm incurs E[max(Reg(1),Reg(2)c )] = ⌦(T ).
Theorem 1. Given a fixed expert set H, there exists an adversary such that any algorithm will incur

E[max(Reg(1),Reg(2)c )] = ⌦(T ) with c = maxh2H L(2)
T,h/T , where the expectation is taken over

the randomness of the adversary.

Proof. To prove this theorem, we construct a binary classification example as below.

In a binary classification problem, for each sample with true label y 2 {+,�} and prediction
by 2 {+,�}, the primary loss is defined as the expected 0/1 loss for incorrect prediction, i.e.,
Ey,by

⇥
1{by 6=y}

⇤
and the secondary loss is defined as the expected 0/1 loss for false negatives, i.e.,

Ey,by
⇥
1{by 6=y,y=+}

⇤
. We denote by h(b) the expert predicting � with probability b and + otherwise.

Then every expert can be represented by a sequence of values of b. At round t, the true label is negative
with probability a. We divide T into two phases evenly, {1, . . . , T/2} and T/2 + 1, . . . , T , in each
of which the adversary generates outcomes with different values of a and two experts H = {h1, h2}

have different values of b in different phases. We construct two worlds with different values of a
and b in phase 2 and any algorithm should have the same behavior in phase 1 of both worlds. The
adversary randomly chooses one world with equal probability. The specific values of a and b are
given in Table 1. Let c = 1/16.

Table 1: The values of a and b in different phases for the binary classification example.

experts\phase 1 : a = 5
8 2 : a = 3

4 (world I) 2 : a = 5
8 (world II)

h1 b = 1
6 b = 0 b = 1

6

h2 b = 0 b = 1
2 b = 0

The loss of expert h(b) is `(1)t,h(b) = (1 � a)b + a(1 � b) and `(2)t,h(b) = (1 � a)b. In phase 1 and

phase 2 of world II, `(1)t,h1
= 7/12, `(2)t,h1

= 1/16, `(1)t,h2
= 5/8 and `(2)t,h2

= 0. In phase 2 of world I,
`(1)t,h1

= 3/4, `(2)t,h1
= 0, `(1)t,h2

= 1/2 and `(2)t,h2
= 1/8. For any h 2 H, we have L(2)

T,h  T/16.

For any algorithm which selects h1 for T1 (in expectation) rounds in phase 1 and T2 (in expectation)
rounds in phase 2 of world I. If T1  T/4, then Reg(1) � (T/2 � T1)/24 � T/96 in world
II; else if T1 > T/4 and T2 � T1/4, then Reg(1) � T2/4 � T1/24 � T/192 in world I; else
Reg(2)c = T1/16 + (T/2� T2)/8� T/16 = (T1 � 2T2)/16 � T/128 in world I. In any case, we
have E[max(Reg(1),Reg(2)c )] = ⌦(T ).

4



The proof of Theorem 1 implies that an expert with total secondary loss no greater than cT but
high secondary loss at the beginning will consume a lot of budget for secondary loss, which makes
switching to other experts with low primary loss later costly in terms of secondary loss. The theorem
answers our first question negatively, i.e., we are unable to achieve no-regret for primary loss while
performing as well as the worst expert with respect to the secondary loss.

4 Results in the “good” scenario

In this section, we consider the problem of minimizing max(Reg(1),Reg(2)c ) with Assumption 2
or 20. We first provide lower bounds of ⌦(T↵) under Assumption 2 and of ⌦(T

1+↵
2 ) under Assump-

tion 20. Then we show that applying any switching-limited algorithms such as Shrinking Dartboard
(SD) [Geulen et al., 2010] and Follow the Lazy Leader (FLL) [Kalai and Vempala, 2005] can achieve
max(Reg(1),Reg(2)c ) = O(T

1+↵
2 ) under Assumption 2 or 20, which matches the lower bound under

Assumption 20.

4.1 Lower bound
Theorem 2. If Assumption 2 holds with some given c, �, ↵, then there exists an adversary such that

any algorithm incurs E[max(Reg(1),Reg(2)c )] = ⌦(T↵).

Proof. We construct a binary classification example to prove the lower bound.

The losses and the experts H = {h1, h2} are defined based on h(b) in the same way as that in the
proof of Theorem 1. We divide T into 3 phases, the first two of which have T↵ rounds and the third
has T � 2T↵ rounds. Each expert has different bs in different phases as shown in Table 2. At each
time t, the sample is negative with probability 3/4. We set c = 0.

Since (`(1)t,h(0), `
(2)
t,h(0)) = (3/4, 0) and (`(1)t,h(1), `

(2)
t,h(1)) = (1/4, 1/4), the cumulative loss for both

experts are (L(1)
T,h, L

(2)
T,h) = (3T/4�T↵/2, T↵/4). Any algorithm A achieving L(1)

T,h  3T/4�T↵/4

will incur Reg(2)c � T↵/8.

Table 2: The values of b in different phases for the binary classification example.

experts\phase 1 : T↵ 2 : T↵ 3 : T � 2T↵

h1 b = 1 b = 0 b = 0

h2 b = 0 b = 1 b = 0

Combined with the classical lower bound of ⌦(
p
T ) in online learning [Cesa-Bianchi and Lugosi,

2006], E[max(Reg(1),Reg(2)c )] = ⌦(max(T↵,
p
T )). In the relaxed version of the “good” scenario,

we have the following theorem.
Theorem 3. If Assumption 2

0
holds with some given c, �, ↵, then there exists an adversary such that

any algorithm incurs E[max(Reg(1),Reg(2)c )] = ⌦(T
1+↵
2 ).

Sketch of the proof Inspired by the proof of the lower bound by Altschuler and Talwar [2018],
we construct an adversary such that any algorithm achieving Reg(1) = O(T

1+↵
2 ) has to switch

for some number of times. For the secondary loss, the adversary sets `(2)t,h = c only if h has been
selected for more than T↵ rounds consecutively until time t� 1; otherwise `(2)t,h = c+ �. In this case,
every switching will increase the secondary loss. Then we can show that either Reg(1) or Reg(2)c is
⌦(T

1+↵
2 ). The complete proof can be found in Appendix A.

4.2 Algorithm
Under Assumption 2 or 20, we are likely to suffer an extra �T↵ secondary loss every time we switch
from one expert to another. Inspired by this, we can upper bound max(Reg(1),Reg(2)c ) by limiting
the number of switching times. Given a switching-limited learner L on scalar-valued losses, e.g.,
Shrinking Dartboard (SD) [Geulen et al., 2010] and Follow the Lazy Leader (FLL) [Kalai and
Vempala, 2005], our algorithm ASL(L) is described as below.
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We divide the time horizon into T 1�↵ epochs evenly and within each epoch we select the same
expert. Let ei = {(i� 1)T↵ +1, . . . , iT↵

} denote the i-th epoch and `(1)ei,h
=
P

t2ei
`(1)t,h/T

↵ denote
the average primary loss of the i-th epoch. We apply L over {`(1)ei,h

}h2H for i = 1, . . . , T 1�↵. Let
sSL(E) and rSL(E) denote the expected number of switching times and the regret of running L for
E rounds. Then we have the following theorem.
Theorem 4. Under Assumption 2 or 2

0
, given a switching-limited learner L, ASL(L) achieves

Reg(1)  T↵rSL(T 1�↵) and Reg(2)c  �T↵(sSL(T 1�↵) + 1). By adopting SD or FLL as the

learner L, ASL(SD) and ASL(FLL) achieve max(Reg(1),Reg(2)c ) = O(
p
log(K)T 1+↵).

Proof. It is obvious that Reg(1)  T↵rSL(T 1�↵). We denote by S the random variable of the
total number of switching times and ⌧1, . . . , ⌧S the time steps the algorithm switches. For no-
tation simplicity, let ⌧0 = 1 and ⌧S+1 = T + 1. Then Reg(2)c = EA[

PT
t=1(`

(2)
t,At

� c)] 

EA[
PS

s=0

P⌧s+1�1
t=⌧s

(`(2)t,At
� c)]  EA[

PS
s=0 �T

↵] = �T↵(sSL(T 1�↵) + 1). Both SD and FLL
have sSL(T 1�↵) = O(

p
log(K)T 1�↵) and rSL(T 1�↵) = O(

p
log(K)T 1�↵) [Geulen et al., 2010,

Kalai and Vempala, 2005], which completes the proof.

ASL(SD) and ASL(FLL) match the lower bound at ⇥(T
1+↵
2 ) under Assumption 20. But there is a

gap between the upper bound O(T
1+↵
2 ) and the lower bound ⌦(T↵) under Assumption 2, which

is left as an open question. We investigate this question a little bit by answering negatively if the
analysis of ASL(L) can be improved to achieve O(T↵). We define a class of algorithms which
depends only on the cumulative losses of the experts, i.e., there exists a function g : R2K

7! �K

such that pt = g(L(1)
t�1, L

(2)
t�1). Many classical algorithms such as Exponential Weights [Littlestone

et al., 1989] and Follow the Perturbed Leader [Kalai and Vempala, 2005] are examples in this class.
The following theorem show that any algorithm dependent only on the cumulative losses cannot
achieve a better bound than ⌦(T

1+↵
2 ), which provides some intuition on designing algorithms for

future work. The detailed proof can be found in Appendix B.
Theorem 5. Under Assumption 2, for any algorithm only dependent on the cumulative losses of the

experts, E[max(Reg(1),Reg(2)c )] = ⌦(T
1+↵
2 ).

5 Results in the “bad” scenario
In the “bad” scenario, some experts may have secondary losses with high variance. To compete
with the best expert in the period in which it has low variance, we assume that the learner is given
some fixed external oracle determining which experts to deactivate and reactivate. In this section,
we consider the goal of minimizing SleepReg(1)(h⇤) for all h⇤

2 H and Reg(2)c . Here we study two
oracles: one deactivates the “unsatisfactory” expert if detecting high variance of the secondary loss
and never reactivates it again; the other one deactivates the “unsatisfactory” expert if detecting high
variance of the secondary loss and reactivates it at fixed time steps.

5.1 The first oracle: deactivating the “unsatisfactory” experts
The oracle is described as below. The active expert set is initialized to contain all experts H1 = H.
At time t = 1, . . . , T , we let �Ht = {h 2 Ht : 9t0  t,

Pt
⌧=t0(`

(2)
⌧,h � c) > �T↵

} denote the
set of active experts which do not satisfy Assumption 2. Then we remove these experts from the
active expert set, i.e., Ht+1 = Ht \�Ht. We assume that there always exist some active experts, i.e.
HT 6= ;.

One direct way is running ASL(L) as a subroutine and restarting ASL(L) at time t if there exist
experts deactivated at the end of t � 1, i.e., �Ht�1 6= ;. However, restarting will lead to linear
dependency on K for sleeping regrets. To avoid this linear dependency, we construct pseudo primary
losses for each expert such that if h is active at time t, è(1)t,h = `(1)t,h; otherwise, è(1)t,h = 1. The
probability of selecting inactive experts degenerates due to the high pseudo losses. For those inactive
experts we cannot select, we construct a mapping f : H 7! H, which maps each expert to an active
expert. If ASL(L) decides to select an inactive expert h at time t, we will select f(h) instead. The
detailed algorithm is described in Algorithm 1. Although the algorithm takes ↵ as an input, it is
worth to mention that the algorithm only uses ↵ to decide the length of each epoch. We can choose a
different epoch length and derive different regret upper bounds.
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Algorithm 1 A1

1: Input: T , H, ↵ and a learner L
2: Initialize f(h) = h for all h 2 H.
3: Start an instance ASL(L).
4: for t = 1, . . . , T do
5: Get expert ht from ASL(L).
6: Select expert f(ht).
7: Feed è(1)t to ASL(L).
8: For all h with f(h) 2 �Ht, set f(h) = h0, where h0 is any expert in Ht+1.
9: end for

Theorem 6. Let Th⇤ denote the number of rounds where expert h⇤
is active. Running Algorithm 1

with learner L being SD or FLL can achieve

SleepReg(1)(h⇤) = O(
p

log(K)Th⇤T↵) , (1)

for all h⇤
2 H and

Reg(2)c = O(
p

log(K)T 1+↵ +KT↵) . (2)

Proof. Since `(1)m,h  è(1)m,h, we have

SleepReg(1)(h⇤) =

 
Th⇤X

t=1

EA

h
`(1)t,At

i
�

Th⇤X

t=1

`(1)t,h⇤

!


 
Th⇤X

t=1

EA

h
è(1)
t,At

i
�

Th⇤X

t=1

è(1)
t,h⇤

!

=O(
p
log(K)Th⇤T↵) ,

where the last step uses the results in Theorem 4. It is quite direct to have Reg(2)c =
O(�T↵(

p
log(K)T 1�↵ + K)) = O(

p
log(K)T 1+↵ + KT↵), where the first term comes from

the number of switching times for running ASL and the second term comes from an extra switching
caused by deactivating one expert.

For the sleeping regret for expert h⇤, the right hand side in Eq. (1) is o(Th⇤) if Th⇤ = !(T↵), which
is consistent with the impossibility result without bounded variance in Section 3. When ↵ � 1/2, the
right hand side of Eq. (2) is dominated by KT↵. This linear dependency on K is inevitable if we
want to have SleepReg(1)h⇤ = o(Th⇤) for all h⇤

2 H. The proof is given in Appendix C.
Theorem 7. Let Th⇤ = !(T↵) for all h⇤

2 H. There exists an adversary such that any algorithm

achieving SleepReg(1)h⇤ = o(Th⇤) for all h⇤
2 H will incur Reg(2)c = ⌦(KT↵) for K = O(log(T )).

5.2 The second oracle: reactivating at fixed times
Now we consider the oracle which deactivates the unsatisfactory experts once detecting and reactivate
them at fixed times. The oracle is described as follows. At given N + 1 fixed time steps t0 =
1, t1, . . . , tN with tn+1�tn = ⌦(T �) for some � > ↵ (where tN+1 = T +1 for notation simplicity),
the active expert set Ht is reset to H. At time t = tn, . . . , tn+1�2 for any n = 0, . . . , N , the experts
�Ht = {h 2 Ht : 9t0 such that tn  t0  t,

Pt
⌧=t0(`

(2)
⌧,h � c) > �T↵

} will be deactivated, i.e.
Ht+1 = Ht \�Ht. We assume that there always exists some satisfactory experts, i.e. Htn�1 6= ;

for all n = 1, . . . , N + 1.

Restarting Algorithm 1 at t = t0, . . . , tN is one of the most direct methods. Let T (n)
h⇤ denote the

number of rounds h⇤ is active during t = tn, . . . , tn+1 � 1 and Th⇤ =
PN

n=0 T
(n)
h⇤ denote the total

number of rounds h⇤ is active. Then we have SleepReg(1)h⇤ = O(
PN

n=0

q
log(K)T (n)

h⇤ T↵) =

O(
p
log(K)Th⇤T↵N) and Reg(2)c = O(

PN
n=0(

p
log(K)T↵(tn+1 � tn) + K�T↵)) =

O(
p
log(K)T 1+↵N +NKT↵).

However, if all experts are active all times, then the upper bound of SleepReg(1)(h⇤) for the algorithm
of restarting is O(

p
log(K)T 1+↵N) = O(

p
log(K)T 2+↵��), which is quite large. We consider
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a smarter algorithm with better sleeping regrets when Th⇤ is large. The algorithm combines the
methods of constructing meta experts for time-selection functions by Blum and Mansour [2007] to
bound the sleeping regrets and inside each interval, we select experts based on SD [Geulen et al.,
2010] to bound the number of switching times. We run the algorithm in epochs with length T↵

and within each epoch we play the same expert. For simplicity, we assume that the active expert
set will be updated only at the beginning of each epoch, which can be easily generalized. Let
ei = {(i�1)T↵+1, . . . , iT↵

} denote the i-th epoch and E = {ei}i2[T 1�↵] denote the set of epochs.
We let `(1)e,h =

P
t2e `

(1)
t,h/T

↵ and `(1)e,A =
P

t2e `
(1)
t,At

/T↵ denote the average primary loss of expert
h and the algorithm. And we let He and �He denote the active expert set at the beginning of epoch
e and the deactivated expert set at the end of epoch e. Then we define the time selection function for
epoch e as Ih⇤(e) = 1(h⇤ is active in epoch e) for each h⇤

2 H. Then we construct K meta experts
for each time selection function. Similar to Algorithm 1, we adopt the same expert mapping function
f and using pseudo losses è(1)e,h = `(1)e,h if h is active and è(1)e,h = 1 if not. The detailed algorithm is
shown as Algorithm 2. Then we have the following theorem, the detailed proof of which is provided
in Appendix D.
Theorem 8. Running Algorithm 2 can achieve

SleepReg(1)(h⇤) = O(
p
log(K)T 1+↵ + Th⇤

p
log(K)T↵�1) ,

for all h⇤
2 H and

Reg(2)c = O(
p
log(K)T 1+↵ + log(K)T↵N +NKT↵) .

Algorithm 2 achieves o(Th⇤) sleeping regrets for h⇤ with Th⇤ = !(T
1+↵
2 ) and outperforms restarting

Algorithm 1 when NTh⇤ = !(T ). SleepReg(1)(h⇤) of Algorithm 2 is O(
q
log(K)T 1+↵

h⇤ ) when
Th⇤ = ⇥(T ), which matches the results in Theorem 4.

Algorithm 2 A2

1: Input: T , H, ↵ and ⌘
2: Initialize f(h) = h for all h 2 H.
3: wh⇤

1,h = 1
K for all h 2 H, for all h⇤

2 H.
4: for m = 1, . . . , T 1�↵ do
5: wm,h =

P
h⇤ Ih⇤(em)wh⇤

m,h, Wm =
P

h wm,h and pm,h = wm,h

Wm
.

6: if m 2 {(tn � 1)/T 1�↵ + 1}Nn=0 then get hm from pm. else
7: With prob.

wm,hm�1

wm�1,hm�1
, get hm = hm�1; with prob. 1�

wm,hm�1

wm�1,hm�1
, get hm from pm.

8: end if
9: Select expert f(hm).

10: Update wh⇤

m+1,h = wh⇤

m,h⌘
Ih⇤ (em)(è(1)em,h�⌘è(1)em,A)+1 for all h, h⇤

2 H.
11: For all h with f(h) 2 �Hem , set f(h) = h0, where h0 is any expert in Hem+1 .
12: end for

6 Discussion
We introduce the study of online learning with primary and secondary losses. We find that achieving
no-regret with respect to the primary loss while performing no worse than the worst expert with
respect to the secondary loss is impossible in general. We propose a bounded variance assumption
over experts such that we can control secondary losses by limiting the number of switching times.
Therefore, we are able to bound the regret with respect to the primary loss and the regret to cT with
respect to the secondary loss. Our work is only a first step in this problem and there are several open
questions.

One is the optimality under Assumption 2. As aforementioned, our bounds of max(Reg(1),Reg(2)c )
in the “good” scenario are not tight and we show that any algorithm only dependent on the cumulative
losses will have Reg(1) = ⌦(T

1+↵
2 ), which indicates that the optimal algorithm cannot only depends

on the cumulative losses if the optimal bound is o(T
1+↵
2 ). Under Assumption 20, the upper bound

of the algorithm of limiting switching matches the lower bound. This possibly implies that limiting
switching may not be the best way to make use of the information provided by Assumption 2.
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In the “bad” scenario with access to the oracle which reactivates experts at fixed times, our sleeping
regret bounds depend not only on Th⇤ but also on T , which makes the bounds meaningless when
Th⇤ is small. It is unclear if we can obtain optimal sleeping regrets dependent only on Th⇤ for all
h⇤

2 H. The algorithm of Adanormalhedge by Luo and Schapire [2015] can achieve sleeping regret
of O(

p
Th⇤) without bound on the number of switching actions. However, how to achieve sleeping

regret of o(Th⇤) with limited switching cost is of independent research interest.

In the “bad” scenario where Assumption 2 does not hold, we assume that c is pre-specified and known
to the oracle. Theorem 1 show that achieving max(Reg(1),Reg(2)c ) = o(T ) with c = maxh L

(2)
T,h is

impossible without any external oracle. How to define a setting an unknown c and design a reasonable
oracle in this setting is an open question.

Broader Impact
This research studies a society-constrained online decision making problem, where we take the
decision receiver’s objective into consideration. Therefore, in a decision making process (e.g.
deciding whether to hire a job applicant, whether to approve a loan, or whether to admit a student
to an honors class), the decision receiver (e.g., job applicants, loan applicants, students) could
benefit from our study at the cost of increasing the loss of the decision maker (e.g., recruiters,
banks, universities) a little. The consequences of failure of the system and biases in the data are not
applicable.
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