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Sparse Convex Hull Coverage

Georgiy Klimenko*

Abstract

Given a set P of n data points and an integer k, a fun-
damental computational task is to find a smaller subset
@ C P of only k points which approximately preserves
the geometry of P. Here we consider the problem of
finding the subset @ of k points which best captures
the convex hull of P, where our error measure is the
sum of the distances of the points in P to the convex
hull of @. We generalize the problem to allow the set R
that we must select @ from to differ from P, as well as
to allow more general functions of the distances of the
uncovered points of P, such as other norms or weighted
distance functions.

We prove that approximating the convex hull in this
manner in the plane can be solved by either a simple
graph based or dynamic programming based algorithm
in polynomial time. Complementing this result we show
that in dimensions 3 and higher the problem is NP-hard.
Moreover, we give an algorithm which in 3 dimensions
selects O(klog(n/e)) points to get a solution whose error
is at most 1 + € times the optimal k£ point error. This
generalizes to O(kl%/?] log(n/¢)) points for any constant
dimension d.

1 Introduction

Given a point set P C R?, the convex hull of P, de-
noted CH(P), is a fundamental geometric structure, in-
tuitively capturing the region covered by P. Here we
consider the problem of covering P as best as possible
by the convex hull of a subset of only & points from P,
in effect sparsely approximating CH(P). This natural
problem relates to the problem of approximating convex
sets by polytopes, for which countless papers have been
written (see the extensive survey [5]). Much of this pre-
vious work has focused on the objective of minimizing
the maximum distance of an uncovered point from the
hull of the selected points (i.e. Hausdorff distance), or
approximating the volume in the case of smooth con-
vex bodies. Here we instead study approximating the
convex hull of a discrete point set under the objective
of minimizing the sum of the distances of the uncovered
points, an objective which when compared to the max
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objective is more robust to outliers as the error is no
longer determined solely by the single furthest point.
Our framework also allows for much more general cost
functions of the distances, and in particular allows for
any £, norm or weighted distance functions. We further
generalize the problem such that the selected k points
defining our hull are required to come from a set R that
can differ from P, thus capturing scenarios where the
covering objects differ from the covered ones. This is
natural from a feature selection standpoint, where R
represents a set of known possible features which we
wish to represent a set of observed objects P. For such
problems the convex hull is a particularly relevant struc-
ture as it represents the set of all weighted averages of
the selected points. Moreover, the Carathéodory theo-
rem states that any point in the convex hull of the cho-
sen subset can be represented as a convex combination
of d + 1 of the chosen points, yielding a sparse repre-
sentation in low dimensions. (In higher dimensions one
can use the approximate Carathéodory theorem [2].)
More generally, given a set P C R? of n points, finding
a smaller set of only k points which approximately cap-
tures the geometry of P under some measure is a ubiqui-
tous computational task. Two standard such problems
of interest are k-clustering and subspace fitting. In k-
clustering the objective is to select a subset of k center
points so as to minimize some norm of the vector of dis-
tances from each point in P to its nearest center. For
example, k-means seeks to minimize the ¢ norm [1],
where it is known that even planar k-means is NP-hard
[11]. For subspace fitting the objective is to select the
k-dimensional subspace minimizing some norm of the
distances to the linear subspace, e.g. the solution under
the ¢ norm is known to be the top k singular vectors
when viewing P as a matrix. If one restricts the se-
lected k points to come from P, then the clustering and
subspace fitting problems become the standard discrete
k-clustering and CUR~decomposition [4] problems.
Our problem of approximating the convex hull can be
viewed as naturally lying between clustering and sub-
space fitting, when restricting the selected subset to
come from a set R. Specifically, viewing the selected
subset of k points @ C R as a basis, the problems are
defined by how we allow each point in P to be repre-
sented by ). In subspace fitting, any linear combination
is allowed, in convex hull coverage only convex combi-
nations are allowed (i.e. non-negative and summing to
1), and in clustering not only are the combinations con-
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vex but are all zero except for a single 1 (i.e. the nearest
center). That is, one can define an entire spectrum of
problems based on how one restricts reconstruction from
the basis, and convex hull coverage is a natural set point
on this spectrum. In this sense, other standard prob-
lems such as non-negative matrix factorization (NMF),
which is known to NP-hard [15], can be seen as another
set point on this spectrum. (NMF typically restricts
the basis to non-negative vectors, though restricting to
input points is also commonly studied [10].)

Another related topic is coresets, which are small sub-
sets of the input which can be used as a proxy for the full
set. There are numerous coresets results (see chapter 48
in [13]). Relevant to the current paper, it is known that
for any point set P contained in the unit ball,' there
is a subset S C P of O(1/(@1/2) points such that
all of P is with distance e from CH(S). Worst case
point sets require such an exponential dependence on d,
and thus [3] considered coresets whose size is measured
relative to the given instance, showing that if some k
points achieves € error, then a greedy algorithm select-
ing O(k/2/3) points achieves O(¢'/?) error. This result
was later extended by [14] to get analogous results for
approximating the conic hull, which consists of all non-
negative combinations, and thus relates to NMF.

Our Contribution. For point sets R, P C R? of m and
n points, respectively, we initiate the rigorous study of
the convex hull coverage problem, where the goal is to
find a subset @ C R of k points minimizing the sum
of distances from the points in P to their projection
onto the convex hull of @, that is 3° p|lp — CH(Q)]|.
Furthermore, we generalize the problem to allow any
cost function of the form >° . p g,(|[p—CH(Q)]|), where
each g, can be any monotonically increasing real valued
function such that g,(a) = 0 if and only if o = 0. Thus
we can model for example weighted sums or other £,
norms of the distances of the points in P to the hull (by
taking the pth power of the norm).

We prove that convex hull coverage can be solved ex-
actly in the plane in O(m*k + m?n + mnlog(n)) time
via dynamic programming. Interestingly, for the spe-
cial case when P = R, we can show that by care-
fully assigning weights the problem nicely reduces to
the problem of finding a minimum cost k length cycle
in a directed graph. This yields a simpler graph based
algorithm with O(n®logk) running time. To comple-
ment our results in the plane, we argue that the con-
vex hull coverage problem is NP-hard for d > 3, even
when restricting our objective to the sum of distances
(i.e. the g, are all the identity function). Furthermore,

L Any point set can be scaled to lie in the unit ball, effectively
meaning € is measured relative to the diameter before scaling,
which is in some sense necessary. Via an affine transformation,
one can ague such coresets exist for directional width where error
is relative to the diameter in each direction, see [9].
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we argue that even if one restricts to instances where
P = R, the problem remains NP-hard for d > 4. Fi-
nally, we argue that a geometric set cover based algo-
rithm yields an approximation in constant dimensions
for the sum of distances. Namely, for d = 3 greedily se-
lecting O(klog(n/e)) points in an appropriate way gives
a solution whose error is at most 1 + € times the opti-
mal k point error. This generalizes to O(k!%/?] log(n /<))
points for any constant dimension d.

One of the main challenges of convex hull coverage for
d > 3 is that it lacks certain independence properties of
related problems. For example, in k-clustering, the clus-
ter centers partition the points based on their nearest
center, whereas the projection of a point onto the convex
hull is determined by several hull vertices. For subspace
approximation under the Frobenius norm there is inde-
pendence among the dimensions, in the sense that the
kth singular vector is determined by finding the opti-
mum vector in the orthogonal subspace of the first k—1
singular vectors. Note also that previous coreset results
focused on the max measure, where a given error € rep-
resents a precise constraint that all points must satisfy.
On the other hand, for our sum measure, an error ¢
represents a budget that the algorithm must now de-
cide how to allocate amongst the various points.

2 Preliminaries

Given a point set X in R?, let CH(X) denote its con-
vex hull. For two points z,y € R? let zy denote
their line segment, that is zy = CH({z,y}). Through-
out, given points z,y € R%, ||z — y|| denotes their Eu-
clidean distance. Given two compact sets X,Y C R,
[|X —Y|| = mingex yey ||z — y|| denotes their distance.
For a single point x we write ||z — Y| = ||{z} — Y.

Definition 1 Let P C R be a set of n points, where for
each point x € P, there is an associated monotonically
increasing real valued function g, such that g, (o) =0 if
and only if o = 0. Then we call any function of the form
(@ P) = X e pr g2 (lo—CHQ)II), where Q C RY and
P’ C P, a hull coverage function. We let Fp denote the
set of all such functions.

In the above definition we assume the g, functions
can be evaluated in constant time. The following is the
main problem studied in this paper.

Problem 2 Given a set P C R? of n points, a set R C
R? of m points, and a function f € Fp, select a subset
@ C R of at most k points which minimizes f(Q, P).
That iS, Q = argmianRJQKk f(Q, P)

3 Exact Computation in the Plane

In this section we give polynomial time algorithms for
Problem 2 when d = 2. First, we give a simple graph



CCCG 2020, Saskatoon, Canada, August 5-7, 2020

based algorithm for the special case when P = R, fol-
lowed by a slightly more involved dynamic programming
algorithm for the general case.

3.1 A graph algorithm for a simpler case

In this section we argue that by assuming P = R, one
can solve Problem 2 in the plane by converting it into
a corresponding graph problem. Specifically, construct
a weighted and fully connected directed graph Gp =
(V, E) where V = P. Given an order pair of points p, g,
let P, 4 denote the subset of P in the closed halfspace
whose boundary is the line through p and ¢ and lies to
the left of the ray from p to . Then we define the weight
of the directed edge (p, q) to be w(p,q) = f({p, ¢}, Pp.q)-
For a cycle of vertices C' = {p1,...,pxr}, let w(C) denote
the sum of the weights of the directed edges around the
cycle. Throughout, we only consider non-trivial cycles,
that is cycles must have at least two vertices.

For a set of points @, let CH 1 (Q) denote the clockwise
list of vertices on the boundary of CH(Q). Observe that
any subset @@ C P corresponds to the cycle CH(Q) in
Gp. Moreover, any cycle C' correspond to the convex
hull CH(C).

Lemma 3 Consider an instance P, R, f, k of Problem 2
in the plane where P = R. Let C' be any cycle in Gp,
and let Q) be an optimal solution. Then,

D w(C) = f(C,P),  2)w(CHL(Q)) = f(Q,P).

Proof. First, observe that w(C) and f(C,P) can be
decomposed into the contribution of each point.

F(CP) =) gl —CH(O)) and

peEP

w(C) = > f{a,b},Pup) = > gp(llp — abl]).
(a,b)eC pEP (a,b)eC
s.t. pEP,

To prove the first part of the lemma, we thus argue
that for any p € P, its contribution to w(C) is at least as
large as its contribution to f(C, P). Assume p ¢ CH(C),
since otherwise it does not contribute to f(C, P). It suf-
fices to argue there exists an edge (a,b) € C, such that
p € Pay, since ||[p—ab|| > |[p—CH(C)|| and g, is a mono-
tonically increasing function. So assume otherwise that
there is some point p € P such that p lies to the right of
all edges in C'. Create a line ¢ that passes through p and
any interior point of any edge (a,b) € C, but does not
pass through any point in R. ¢ splits the plane into two
halfspaces. As p is to the right of any edge and is out-
side the convex hull of the points, all edges intersecting
¢ have to begin at the same halfspace, and end at the
other halfspace. This implies C' is not a cycle, which is
a contradiction.

To prove the second part of the lemma for an optimal
solution @, we argue that for any p € P, its contribution
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Figure 3.1: b,c € CH({a,d,p}) when p € P, and p €
P.y.

to f(Q, P) is equal to its contribution to w(CH(Q)).
If p € CH(Q) then it lies to the right of all edges in
CHL(Q), and so its contributions to both w(CH(Q))
and f(Q, P) are zero. So consider a point p ¢ CH(Q).
Let ab be the closest edge of CH(Q) (where b follows a
in clockwise order). Note that ||[p —CH(Q)|| = ||p — ab||
and p € Py, and thus the contributions of p to f(Q, P)
and w(CHL(Q)) are equal if and only if p lies to right of
all other edges in CH 1, (Q), as otherwise p has a positive
contribution to another edge since by definition g,(a) >
0 for a« > 0. So suppose otherwise, that p lies to the left
of some other edge cd (note it may be that b = ¢). Thus
p is in the intersection of the halfspace to the left of
the line from a through b and to the left of the line
from ¢ through d, see Figure 3.1. This implies that
b,c € CH({a,d,p}). Solet Q" = QU {p}\ {b,c}, then
CH(Q) C CH(Q'). This implies f(Q’, P) < f(Q,P) as
Q' contains p but @Q does not, which is a contradiction
with @ being an optimal solution as |Q'| < |Q]. (Note
that assuming P = R was used to ensure that @' was a
possible solution.) O

Theorem 4 Given an instance P, R, f, k of Problem 2
in the plane where P = R, it can can be solved in
O(n®logk) time, where n = |P| = |R)|.

Proof. Let C' be a minimum cost cycle in Gr subject
to having at most k vertices. The claim is that the set
of vertices in C' is an optimal solution to Problem 2,
that iS, f(C, P) = minXgR,|X|§k f(X,P) By part 1)
of Lemma 3, w(C) > f(C, P), and thus if C' is not op-
timal, then the optimal solution must have cost strictly
less than w(C). However, by part 2) of Lemma 3, the
optimal solution corresponds to a cycle in Gr with the
same cost, which contradicts C' being minimum cost.
Now we analyze the running time. Computing Gg
takes O(n?) time as there are O(n?) edges, and com-
puting the weight of each edge takes O(n) time, as it
is a sum of at most n constant time computable func-
tions. To compute the minimum cost cycle with < k
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edges, it suffices to compute the all pairs shortest path
distances for paths with < k& —1 edges, since afterwards
in O(n?) time we can add the final edge of each cycle.
It is known that for a graph with n vertices the all pairs
shortest path distances for paths with < k — 1 edges
can be computed in O(n3logk) time, see for example
the matrix multiplication algorithm in [7]. Thus, the
overall running time is O(n®logk). O

3.2 Dynamic programming for the general case

We now argue that when P is allowed to differ from R
we can still compute the optimal solution in the plane in
polynomial time by using a slightly more involved and
slightly slower dynamic program.

Let V = {v1,...,vr} € R be the vertices of some
convex hull of points from R, labeled in clockwise order,
where v is the vertex of V' with smallest y-coordinate.
Consider our cost function f(V,P) = > _pge(|lr —
CH(V)||). Any point z € CH (V) contributes zero to f,
as we required ¢,(0) = 0. So consider any point z € P
lying outside of CH (V). The projection of 2 onto CH (V)
is either a vertex v; or a point on the interior of an edge
v;—1v;, for some i. Thus the edges and vertices of the
hull define a partition of points in P which lie outside
the hull, which we now formally describe.

Consider the ray with base point v;_; and directed
from v;—1 towards v;. Define r;(v;—1,v;) to be the ro-
tation of this ray by 7/2 to the left, that is the ray
with base point v;—1 and direction (v;—1.y — v;.y,v;.® —
vi—1.x). Define r.(v;—1,v;) to be ray with the same
direction, but with base point v;. Then slab(v;—1,v;)
is defined as the region of the plane interior to and
bounded by the edge v;—1v; and (between) the rays
ri(vi—1,v;) and r.(v;—1,v;). See Figure 3.2. De-
fine cone(vi—1,vi,vi+1) as the closed region bounded
rr(vi—1,v;) and r(vi,viy1), again see Figure 3.2. In
other words, slab(v;—1,v;) and cone(v;_1,v;,v;+1) are
the subsets of points in the plane outside of CH(V)
whose projection onto CH(V') lies on the interior of
v;—1v; or on the vertex v;, respectively. In particular,
for a point set P, define

suMgiab(vi—1,v;) = f({vie1, vi}, P N slab(vi—1,v;))

= Y b —CH{v—r v D)

pEslab(vi—1,v;)

SUMcone(Via1,Vi, Vig1) = f({vi}, P N cone(vi—1,v;, vig1))

= > glllp—wil))

pEcone(vi—1,Vi,Vit1)

Observe that sumgap(v;_1,v;) only depends on v;_;
and v; and suMcone(vi—1, Vi, vi4+1) only depends on v;_1,
v;, and v;41. In particular, these quantities are respec-
tively defined for any pair or triple of points in R, and
for now assume they have all been precomputed.
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Figure 3.2: Three consecutive vertices on the hull, and
the corresponding defined slabs and cone.

By the discussion above, for ordered vertices V of a
convex hull we can rewrite our cost function as

FV,P) =" gu(llz —CH(V)I) =
xeP
k (3.1)
Z(Sumcone(vifla Vi, Vig1) + SUMs1ab(Vis Vig1)),
i=1

where indices are mod k, i.e. vg = v and vgy1 = v1.
This equation suggests a natural recursive strategy to
minimize f(V, P) (over choices of V') by guessing the
vertices of V' in clockwise order.

First, at the cost of an additional linear factor in
the running time, we guess the point with the small-
est y-coordinate from the optimal hull.? We call this
the starting point and denote it by s (i.e. v1 = s). Let
Rs be the subset of points in R whose y-coordinate is
greater than that of s. As we assumed s is the lowest
point in the optimal solution, we can disregard points
in R\ R. Next, we sort all other points in R, clockwise
radially around s (i.e. from the negative x axis clock-
wise about s to the positive x axis) and process points
in this order.

One issue we must deal with first is that in Equa-
tion 3.1, suMmeone(Vk, s,v2) depends both on the choice
of vy and vy. To break this cyclic behavior we cut the
cone for s in two. So cast a ray in the negative y-
direction from s and call it r,, and observe that as s
is the lowest vertex r, must lie in the cone for s. We
cut the cone for s along r; and assign each piece to its
adjacent slab. Specifically, suppose we set vy = u for
some u € Ry. Then define sumgiqrt(s,u) as the union
the region sumgqp(s, u) with the cone lying between the
rays 75 and (s, u) (including rg). Similarly, if we set
vk = w, then define sume,q(w, s) as the union of the re-
gion sumgqp(w, s) with the cone lying between the rays

2We can assume all points have distinct y-coordinates, by ap-
plying a small random rotation, which does not affect f.
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rr(w, s) and ry (excluding rs). Then we have,

f(va P) = SUMstart (5, 'U2)+

k—1

Z(Sumcone (Vie1, V4, Vig1) + sumsiap(vi, vig1)) (3.2)
1=2

+ (Sumcone (kala Uk, 5) + Sumend(vk; 5))

Given the above equation breaking the cost function
into a linear ordered set of cones and slabs, it is rela-
tively straightforward to compute the optimal solution
using dynamic programming. Due to space, the pseu-
docode and proof have been moved to Appendix A. We
remark that achieving the specific running time of the
following summarizing theorem though is non-trivial. In
particular, a roughly O(m) factor is saved over the naive
time bound by using sweeping both to batch dynamic
programming table entries together and to implicitly
precompute the sum.q,. values.

Theorem 5 Given an instance P, R, f,k of Problem 2
in the plane, it can be solved in O(m3k + m?n +
mnlog(n)) time, where n = |P| and m = |R]|.

4 Hardness in Higher Dimensions

A convex polytope T = (V, E) in R, will be defined
as a graph where the vertices V are a set of points in
convex position in R3, and the edges E are the edges of

CH(V). [8] proved the following variant of vertex cover
is NP-hard.

Problem 6 (Polytope Vertex Cover) Given a con-
vex polytope T = (V, E) in R® and an integer k, is there
a subset U C'V of k vertices such that each edge in E
is incident to a vertex in U?

The following is the decision version of our main prob-
lem, Problem 2.

Problem 7 Given a set P C R? of n points, a set R C
R? of m points, a function f € Fp, and a parameter ¢,
is there a subset Q@ C R of at most k points such that
f(Q.P)<e.

We now show Problem 7 is NP-hard for d > 3, where

F(Q,P) = > cpga(llr — CH(Q)]]) is a natural and
simple function. Namely, we set g.(||z — CH(Q)|]) =

||z —CH(Q)|| for all z. We denote this sum of distances
function as sd(Q, P) =) cp ||z — CH(Q)]|.

Theorem 8 Problem 7 is NP-hard for d > 3, f = sd.

Proof. We give a polynomial time reduction from
Problem 6. Let T = (V,E) and k be an instance of
Problem 6. We first define several quantities based on
T. For any edge e € E, define a vector ue = (n1+nz)/2,
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where nq and ny are the normals of the planes of the two
faces adjacent to e. For any edge e = (v1,v3), consider
the plane z, containing e and with normal u.. Let h. be
the distance from z, to the convex hull of V' after remov-
ing the endpoints of e, i.e. he = ||ze —CH(V \{v1,v2})]],
and let h = min.cg h.. (Note h is non-zero as V is in
convex position.) Finally, let I, be the length of the
edge e, and let | = max.cp l..

We construct our instance of Problem 7 as follows.
We use the same value of k, and set R = V. P will
contain one point for each edge e € E, denoted p.. We
place p. outside CH (V') at a distance x in the direction
of ue from the midpoint of e, where x is a value to be
determined shortly. Finally, we set € = ny/a2 + (1/2)?,

and recall f(Q,P) =sd(Q,P) =2 ,cpllp = CH(Q)|].
Observe that for any edge e € E, if at least one of its

endpoints is selected, then the distance from p. to the
hull of the selected vertices is at most /a2 + (I/2)% <
Va2 + (1/2)2. Thus if U C V is a vertex cover of V,
then sd(U, P) < ny/z? + (1/2)? = €. On the other hand
if U is not a vertex cover, then there is an edge e for
which neither endpoint is selected, in which case the
distance from p. to the hull of the selected vertices is
at least = + h. Thus the total distance of all points to
the hull is at least (n — 1)z + (x + h) = nx + h, as by
construction for any ¢’ € E we have ||p. —CH(R)|| = «.
Thus if we select = such that nx + h > ¢, then U is
vertex cover if and only if sd(U, P) < e. To ensure this

inequality holds, set x = 182—}?. Then we have

12 2n\? 12
Esnyat = (8_h> )
2n h\? 2n
. —_— —_ = ¢ —_— h: h
=y (8h+n> nogp ThEnEE

By lifting to R* we can argue that the problem re-
mains NP-hard for the restricted variant where P = R,
i.e. the case considered in Section 3.1. The proof is
more technically challenging, though at a high level uses
a similar approach and thus has been moved to Ap-
pendix B for space.

O

Theorem 9 Problem 7 is NP-hard for d > 4, f = sd,
and P = R.

5 Approximation in Higher Constant Dimensions

Given the hardness of our problem when d > 3, it is
natural to consider approximations. For the Set Cover
problem, it is well known that if &k sets cover the ground
set, then the greedy algorithm covers the ground set
with O(klogn) sets. Our hull problem is also a cover-
age problem, though it is more challenging as the points
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in P are not covered by the individual points we select
but rather convex combinations of them. Despite this,
we argue a similar greedy approach works, though it de-
pends on the number of facets of the convex hull of the
optimal k£ point solution. In 3d the number of facets
is O(k), yielding a (1 + €) approximation to the error
with only O(klog(n/e)) points, similar to Set Cover.
In higher constant dimensions, however, the worst case
facet complexity is O(kL%/2]). On real world inputs the
complexity may be significantly lower (see [12] for the
facet complexity of randomly sampled points), thus our
analysis suggests that greedily selecting roughly a loga-
rithmic factor more points may be a reasonable heuristic
in practice for small constant dimensions.

In this section we assume P and R are contained in
the unit ball, which as remarked in the introduction is
equivalent to measuring the error relative to the diam-
eter, as is standard.

Previously we considered the sum of distances func-
tion sd(Q,P) = > ,cpllr — CH(Q)||. Similarly, we
can define the maximum distance function md(Q, P) =
maxzep ||t — CH(Q)||. We have the following corre-
sponding optimization problem, considered in [3].

Problem 10 Given a set P C R? of n points and a
set R C R? of m points, select a subset Q C R of at
most k points which minimizes md(Q, P). That is, Q =

arg mianRJQlSk md(Q, P)
For an instance P, R C R? and k of Problem 10, define

md(Q, P),

and optmg = md(optng, P).

Optmd := optmd(P, R, k) = arg Qgg}ilglgk

Similarly define
teq := opteg(P, R, k) = i d(Q, P
Optyq op sd( aRa ) argQggﬂg|§ks (Qa )a
and optsd = sd(optsd, P).

Lemma 11 ([3]) Let P,R C R and k be an instance
of Problem 10, where d is a constant. Then in polyno-
mial time one can compute a set Qo of O(klog k) points
such that md(Qo, P) < optmd(P, R, k).

Let Qg be the set described in the above lemma. Ob-
serve that

Sd(QOaP)
n

= —_ < —
gleagllp CH(optmd)ll_gleagllp CH (optsa)l|

S md(QOa P) S Optmd

<> |lp— CH(optsa)|| = optsa,
peP

that is Qg achieves an n-approximation to the optimal
sum distance cost optg.
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For any subset Q@ C R, let Z(Q,P) = sd(Q, P) —
sd(optsd, P) = sd(Q, P) — optsq. For convenience Z(Q)
will denote Z(Q, P) when P is the full point set. The
proof of the following helper lemma is in Appendix C.

Lemma 12 Given an instance P,R C R% and k of
Problem 2, where f = sd and d is a constant, for any
subset Q@ C R such that Z(Q) > 0, there exists a d-
simplex A such that Z(Q U A) < (1 — —{77) Z(Q),

where ¢ s a constant.

We remark that the running time of Lemma 11 from
[3] depends exponentially on d, and thus the same is
true for the following theorem which makes use of it.

Theorem 13 Given an instance PR C R? and k of
Problem 2, where f = sd and d is a constant, in
polynomial time one can compute a set @ C R of
O (k4 Nog(n/e)) points such that sd(Q, P) < (1 +¢) -
opt (P, R, k).

Proof. Use Lemma 11 to compute a set Q9 C R of
O(klog k) points such that sd(Qo, P) < n-optsd (P, R, k).
We will iteratively add subsets of d + 1 points to Q; for
1 ={0,1,...,m — 1} where m is the total number of
iterations. Let A; := argminac g |a|=a+15d(Qi UA, P)
that is, A; is the d-simplex whose addition to the current
hull minimizes the sum of distances. In the ith iteration
we add Al to Ql to obtain Q»L'+1 = Ql U Al

Recall that Z(Q.,) = sd(Qm,P) — opteg. Thus if
Z(Qm) < € - optsd then sd(Qm, P) < (1 + ¢)optsg as
desired. If at any iteration Z(Q;) < 0, then Z(Q,,) <
0 < e-optyy, since adding more points in later iterations
can only further decrease the error. So assume that
Z(Q;) > 0, then by lemma Lemma 12, there exists a
simplex A such that Z(Q; UA) < (1— ﬁ) Z(Q;).
Note that since Z(Q; UA) = sd(Q; UA, P) — optsq, we
have Z(Q;11) = Z(Q;UA;) < Z(Q;UA) since we chose
A; to minimize sd(Q;UA;, P) and opty is fixed. Thus we
have Z(Q;41) < (1 — CM%) Z(Q;), and inductively

2@ < (1= —r ) 2(@0)

1 meoe_
< (1 - m) 1 - Optsd,

where the second inequality follows as sd(Qo, P) <
n-optyy. Thus if we select m such that (1 — ﬁ)m <

(e/n), then Z(Q) < €-opty as desired. Note that (1 —
—77)™ < eap(m/ckl?/?)) and rearranging the equa-
tion exp(m/ckl¥2l) = ¢/n gives m = ckl¥/? log(n/¢).
As we are adding d + 1 points in each round, and d
is a constant, we thus get O(kl%/?log(n/c)) points in
total. g

Corollary 14 Given an instance P, R C R® and k of
Problem 2, where f = sd, in polynomial time one can
compute a set Q@ C R of O(klog(n/e)) points such that
sd(Q, P) < (1+¢) -opted(P, R, k).
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A Proofs from Section 3.2

We now argue that the recursive algorithm shown in Al-
gorithm 1, minimizes Equation 3.2 over all V' C R, such
that V' = {v1 = s,va,..., v} are the ordered vertices
of a convex hull with lowest point s. This algorithm
makes use of the function right(u,v,w) which returns
true if the ordered triple (u, v, w) represents a right turn
and returns false otherwise. The following simple helper
lemma ensures that we do not need to check for a right
turn at s (i.e. where we split the problem), as long as
we check everywhere else.

Lemma 15 Let V = {v1,vs,...,vx} be a sequence of
points such that vy is the lowest point, and va, . .., v are
in clockwise sorted order around vy. If for all1 < i < k,
(vi_1,v;,v;41) @S a right turn, where vy 1 = v1, then V
are the ordered vertices of a convex hull.

Proof. By definition V' are the ordered vertices of a
convex hull if V' represents a simple closed convex chain.
First, because the vertices in V' = {vy,..., v} are given
in clockwise sorted order around vy, the closed chain V'
must be simple (i.e. when rotating a ray from vq, the
edges of the chain always cross it in the same direction).
In order for the chain to be a closed convex chain, it
must make a right turn at every vertex. We are already
explicitly given that a right turn is made at every vertex
except for vy. To see why (v, v1,v2) is a right turn, ob-
serve that vy is lower than both v and vs, and moreover
v comes after vs in clockwise order about v1. These two
facts combined imply the angle Zvgvivg is < 7 (i.e. the
angle subtended by rotating vive clockwise about vy to
v1vy), that is a right turn. O

Given the above discussion about breaking the cost
function into cones and slabs according to Equation 3.2,
the proof of correctness of Algorithm 1 is now fairly
straightforward.

Lemma 16 Given an instance P, R, f,k of Problem 2
in the plane, Algorithm 1 computes the optimal solution

cost, namely mingc g |q|<k f(Q, P)-

Proof. For any s € R, we now argue cost; =
ming,er, (SuMstart(s,v) + RECALG(s, k — 1, s,v)) is the
minimum cost k length convex hull with lowest point
s. This will imply WRAPPER computes the optimum
solution as it takes the minimum of this quantity over
all s € R.

Suppose that cost is not infinite. By the structure
of the recursive algorithm, this can only happen if in
each recursive call determining costs that best is not
infinite. The places where best can be set to a non-
inifinite value are lines 4 and 9, and if the return value
of best is set by line 4 then this represents a terminal
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Algorithm 1 Recursive Algorithm

1: function RECALG(s, k', u,v)

2 best = oo

3 if right(u,v,s) then

4 best = suMeone (U, v, ) + sumenq(v, s)

5: if ¥’ =1 then

6 return best

7 for w € R, after v in clockwise order do

8 if right(u,v,w) then

9 best = min{best, sumcone(u,v,w) +
suMgap(v,w) + RECALG(s, k' — 1,v,w)}

10: return best

11: function WRAPPER(R, P, k)

12: best = oo

13: for s € R do

14: for v € R, in clockwise order do

15: best = min{best, sumstare(s,v) +

RECALG(s, k —1,s,v)}

16: return best

call. Moreover, observe that executing line 4 or 9 re-
quires satisfying a right turn check on the proceeding
line. Thus there must have been a sequence of recursive
calls made with a corresponding sequence of vertices
V = {v1 = s,v2,...,0s} such that for all 1 < i < &,
right(vi—1,v;,v;+1) = true (where v,y1 = v1), which
by Lemma 15 implies V' are the ordered vertices of
a convex hull. (Note that s being lowest is enforced
by considering only Ry, and the clockwise ordering of
V' is enforced the ordering of the for loops.) More-
over, we have costs = sumsiqart(s,v2) + RECALG(s, k —
1,8,v2), and from line 9 for all 1 < ¢ < k we have
RecAlg(s,k—i+4+1,v;—1,v;) = suMeone(Vie1, Vi, Vit1) +
sumsiap(vi, vit1) + RecAlg(s, k — i,v;,v;41), and from
line 4 we have RecAlg(s,k — Kk + 1,0_1,0;) =
SUMcone (Ve—1, Vg, §) + SuMeng(vpr, ). Thus putting all
these equations together we have

costs = suMgiar(s,v2)+

Kk—1

Z(Sumcone ('Uifla (%3 Ui+1) + Sumslab(vi; vi+1))

1=2

+ (Sumcone(vnfla Uk, 5) + Sumend(vna 5)) = f(va P)

where the last equality follows from Equation 3.2. Thus
if costs is not infinite then we know it represents the
true cost of some valid set of convex hull vertices V.
Conversely, by a similar logic it is easy to see that cost
is never infinite since for the ordered sequence of ver-
tices of any convex hull all the right turn checks will
be satisfied and in the algorithm when looking for the
next vertex we try all possible vertices that remain in
the sorted order. (Note co may be returned if there
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is no non-trivial convex hull, i.e. if s is the highest
vertex in R, a case which can be treated separately.)
Thus what remains is to argue that the output cost
and vertices selected correspond to a minimimal cost
solution, however, this is immediate from the above.
Specifically, let V; be the set of all clockwise ordered
convex hull vertices such that all have the same prefix
{v1,...,v;}. Then minyey, f(V, P) is determined by
selecting {v;41,...vx} S0 as to minimize the cone and
slab sums they determine, which as argued above is pre-
cisely what lines 9 and 4 do. In particular, because the
cones and slabs define an ordered partition of P, mini-
mizing their cost over the remaining vertices, does not
affect the cone and slab cost determined by the previ-
ously selected vertices, and thus the recursive algorithm
correctly returns the minimal cost overall. ]

As the correctness of our approach is established
by the above lemma, the proof of the following theo-
rem mainly focuses on running time. The proof saves
roughly an O(m) factor over the naive time bound by
using sweeping both to batch dynamic programming ta-
ble entries together and to implicitly precompute the
SUMcone values.

Theorem 5. Given an instance P, R, f,k of Prob-
lem 2 in the plane, it can be solved in O(m3k + m?n +
mnlog(n)) time, where n = |P| and m = |R]|.

Proof. First, observe that the recursive Algorithm 1
can easily be turned into a dynamic program, as the
k' parameter strictly decreases in each recursive call.
Moreover, it is easy to modify the code such that it
returns the actual vertices instead of just the cost of
the hull.

The correctness of this algorithm follows from
Lemma 16. For the running time, first observe that
for every vertex s € R we can compute R; and the
clockwise sorted order of all points in R around s, in
O(m?logm) time. So assume this is done initially, and
moreover assume for now that all the cone and slab
sums have been precomputed. The dynamic program
will compute the value of RECALG(s, k', u,v) for each
quadruple (s, k', u,v). Naively this takes O(m) time per
quadruple since the for loop on line 7 requires a table
lookup for each point in R. Thus overall the dynamic
program takes O(m?k) time as the table size is O(m3k).
However, we can save an O(m) factor in the running
time by instead computing for each triple (s,%’,-,v),
the entire column of u values in O(m) time as follows.

Fix s, K/, and w. Define cost(u,v,w) =
SUMcone (U, v, W) + sumgep(v,w) + RECALG(s, k' —
1,v,w). For any u € Rs coming before v in the
clockwise order about s, the recursive algorithm com-
putes RECALG(s,k',u,v) = min,ey () cost(u,v,w),
where Y(u) is the set of points w € R, such that
right(u,v,w) = true and moreover w is after v in the
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Figure A.1: S,41 with 4 points shown shaded blue
on the right. The two points determining = =
SUMcone (Wit1,V, ) — SUMeone (Ui, v, -) shown in shaded
yellow on the left.

clockwise order about s. Specifically, this is all points in
the region determined by sweeping the ray from v to s
counterclockwise until it hits the line passing through
u and v. See Figure A.1. So let ui,...,u, be the
vertices in Rs; coming before v in the clockwise order
about s, but labelled by their counterclockwise order
about v. Then Y(u;) € Y(ui+1), and in particular
Sit1 = Y(usy1) \ Y(u;) are the set of points in the
wedge lying between the line though u; and v and the
line through u;41 and v (again see Figure A.1). Observe
that the S; are disjoint sets, and moreover,

RECALG(s, k', u;11,v) = min

cost(Ujt1,v, W
wEY (uit1) (i1, 0, w)

=min{ min cost(u;+1,v,w), min cost(u;+1,v,w)}

wESit1 weY (u;)
Observe that miny, ey (u,) cost(tiy1,v,w) =
mingey (u,) cost(ui, v,w) + = for a fixed value
x that does not depends on w. Namely, =z =
SUMcone (Wit1,V, ) — SUMcone (Ui, v,+) (see Figure A.1),
as the cone sum is the only term in cost(u,v,w)
depending on w. Then given we already computed
RECALG(s, k', u;,v) = ming,ey (u;) cost(uq, v, w),
by the above equation the time to compute
RECALG(s, k', u;411,v) is proportional to just |S;].
Thus as the S; are disjoint, this takes O(m) time over
all the w;, resulting in O(m3k) time for the entire
dynamic program.

Now we must consider the time to precompute the
cone and slab sums. For any pair u,v € R, sumgqp(u, v)
can be computed in O(n) time by scanning the points in
P to see which fall in the slab, and thus for all pairs in
R the sum slab cost can be computed in O(m?n) time.
As sumcone(u, v, w) is determined by three vertices in
R, similarly computing these values would take O(m3n)
time, however, we now argue that they can be implic-
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b, b,

ap Qq

Figure B.1: The edge (ap, aq) with added points in the
added dimension

itly computed more efficiently as follows. First, fix any
vertex v € R. Recal the boundary of cone(u,v,w) is
determined by the rays r,(u,v) and r;(v,w) (defined
above). So let U and W be the sets of all vertices
that come before and after v in the clockwise sorted
order about s, respectively, and let R, = Uy,cp 7(u,v)
and R; = Uyew m(v,w). Now sort all the vectors in
R,UR;UP in clockwise order around v, starting from the
first vertex occurring after the negative y-axis direction.
Now walk through the vertices in order maintaining a
rolling sum, which initially is zero. If the next vertex w
is in P then we add g,(||v — w||) to the sum, otherwise
if w € R, then we assign the current sum as value,(w)
and if w € R; we assign the current sum as value;(w).
Observe that given vertices u,w € R where u comes
before v and w comes after v in clockwise order about
s, that sumeone(u, v, w) = value;(w) — value, (v). Thus
while we do not explicitly compute sumeone(u, v, w) for
all triples, by computing all of the value; and value,
values, then by taking a difference of two such values in
constant time we have access to sumeone(u, v, w). This
takes O((n + m)log(n + m)) time per vertex in R and
thus for all vertices in R takes O(m(n +m)log(n+m))
time. Thus precomputing all the slab sums and im-
plicitly precomputing all the cone sums overall takes
O(m?n +m?log(m) +mnlog(n)) time. Thus total run-
ning time of the entire algorithm is O(m3k + m?n +
mnlog(n)). O

B Proof from Section 4

Theorem 9. Problem 7 is NP-hard for d > 4, f = sd
and P = R.

Proof. We give a polynomial time reduction from
Problem 6. Let T = (V,E) and k be an instance of
Problem 6. For any edge e € E, let {. denote its
length and m, its midpoint. Define the quantity h =
min{¢, hy, ho}, where £ = min.cp e, hy = min,cy ||p —
CH(V\{p})Ha and hy = min(el,ez)GE ||m(el,ez) _CH(V\
{e1,e2})|]. Then for each point p = (ps,py,p:) €
V, define the points a, = (pg,py,p-,0) and b, =
(Pz, Py, P=, 1), and for each edge (p,q) € E define the
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point ¢pq = (Pt Putds Petds by gee Figure B.1.

Define the sets A = {a, |p€V} B ={b, | peV}
and C = {cp 4 | (p,q) € E}. Intuitively, we wish to give
all points in B unit weight, and give n? weight to all
points in A and C. To accomplish this let A’ and C’ be
the multi-sets consisting of n? copies of all points in A
and C, respectively. Our instance of Problem 7 in R*
is defined by P = R= A UBUC’, kg =k +n, and
€ = nh. Note that any solution to Problem 7 containing
a point from A’ (or C'), does not change in cost if we
add one of its duplicates or exchange it for a duplicate.
Thus we can assume the optimal solution does not se-
lect duplicates, and so below we write A C P and refer
to selecting points from A.

Let W C V be a vertex cover of size k for the given
instance of Problem 6, and let B(W) = {b = (p,h) €
B | p € W}. The claim is that B(W)UA is a solution to
our instance of Problem 7 with cost < e. First, observe
that |[B(W)UA| = k+n = ko as required. Next, observe
that naturally this gives zero error to all points in A" and
B(W). The same is true for any point ¢, , € C’. To
see this observe that since W is a vertex cover, it must
contain at least one of p or g. Without loss of generality
suppose it contains ¢, in which case by, € B(W). Thus
B(W) U A contains both b, and ap, and since ¢, 4 is
defined as the midpoint on the segment between b, and
ap, it is in their convex hull, i.e. it is covered with zero
error. Thus the error can only come from points in
B\ B(W), however, the error for these points is easily
upper bounded by € = nh, as |B\ B(W)| < n and since
for any point b, € B we have ||b, — a,|| = h and a,, is
in our solution.

Now let @ be a solution to Problem 7 with k¢ points
and error < e. We first argue that A C Q). Suppose
otherwise that some point ag € A is not in (). We now
lower bound ||ag —CH(Q)||. Specifically, we will assume
Q@ = P\ {ao}, as this minimizes ||ag — CH(Q)|| over all
possible Q. Observe, that ¢, , € CH(Q) for any point
Ccpq € C, since by, by € @, and at least one of a, or a4 is
in @Q. Thus every point in CH(Q) either lies in CH(A \
{ap}), in CH(B), or on a segment between a point of
CH(A\{ag}) and CH(B). Let «, 8 be the closest points
to ag in CH(A\{ao}) and CH(B), respectively. Then by
the definition of h, ||ag—«|| > h, and ||ag—CH(B)|| = h.
Moreover, it is not hard to see that the closest segment,
between a point of CH(A \ {ao}) and CH(B), to aop is
the segment between o and . Thus the distance form
ap to CH(Q) is at least (v/h2 + h%)/2 = h/\/2. Since A’
contains n? copies of ag, the error of Q for Problem 7
is at least n2\h/_ ¢ (for n > 2). Thus all points in A
must have been selected.

Observe that for any point ¢, 4, € C, that ¢, 4 €
CH(ap, aq,bp) and cp 4 € CH(ap, aq,by), see Figure B.1.
That is, since A C @, if a point ¢, 4 is in @), exchanging
it for either b, or b, can only enlarge CH(Q). Thus with-
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out loss of generality we assume ) contains no points
from C. Moreover, for any c, 4 € C, at least one of b,
or by is in @, since otherwise ¢, , ¢ CH(Q), in which
case by the same argument as above for ag, we have Z2(QUAj)= _ Z _Z(QUA]-,Pl-) +Z(QUA;, Fj)
lep.a—CH(Q)I| > (v/(h/2)7 + (h]22)/2 = h/ /5. Since ielelizi
C" contains n? copies of ¢, 4, the total error is then at
least nQ% > ¢ (for n > 3), a contradiction. Thus < Z Z(Q,P) = Z[]Z(Q,Pi) - Z(Q,P;))
i€l

for every point ¢, , at least one of b, or b, is in @), or i€[e],i#j
equivalently W = {p | b, € Q} is a vertex cover of E. 1
Moreover, it must be that |W| =k, as ko = n + k and < \1- ¢ kld/2] Z(Q)

all n points of A were selected. Thus all that remains is
to argue that the error due to B\ W is less than ¢ (as all O
other points are in CH(Q)). However, since all points in
A are in @, this error is as most (n —k)h <nh=¢e. O

C Proof from Section 5

Lemma 12. Given an instance P,R C RY and k of
Problem 2, where f = sd and d is a constant, for any
subset Q@ C R such that Z(Q) > 0, there exists a d-
simplex A such that Z(Q UA) < (1— m) Z(Q),

where ¢ is a constant.

Proof. Let {A1,As, ..., Ay} be the d-simplices of the
d-dimensional triangulation of CH(optsq) with the min-
imum number of d-simplices. It is known that ¢ <
c - kl9/2] where ¢ is a constant (using for example the
bottom vertex triangulation of [6]). Let { Py, Ps, ..., Pe}
be the partition of P where p € P; if and only if
llp — Ail| = |lp — CH(optsq)||- (If the projection is on
a common point of more than one simplex, assign one
arbitrarily.) Now, rewrite Z(Q) as

4
2@Q) =Y > (e =CH(Q)I| - ||z — CH(optsa)l])

i=1x€eP;

Let Avg := # denote the average of Z(Q) over the
partitions P;. Hence, there exists a simplex A; with

corresponding partition P; such that

Z(Q.Py) =) (o= CHQ)I| — ||z — CH(opts)|])
T€EP;

Z(Q)

Z AVg Z C'de/QJ,

where note the last inequality is where we used Z(Q) >
0. Finally, we have Z(Q UA;, P;) =sd(Q U A;, Pj) —
sd(optsd, Pj) = sd(Q U A;, P;) —sd(Aj, P;) < 0. Thus,

25



