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Abstract
In the Correlation Clustering problem, we are
given a weighted graph G with its edges labelled
as “similar” or “dissimilar” by a binary classi-
fier. The goal is to produce a clustering that
minimizes the weight of “disagreements”: the
sum of the weights of “similar” edges across clus-
ters and “dissimilar” edges within clusters. We
study the correlation clustering problem under
the following assumption: Every “similar” edge
e has weight we ∈ [αw,w] and every “dissimi-
lar” edge e has weight we ≥ αw (where α ≤ 1
and w > 0 is a scaling parameter). We give a
(3 + 2 loge(1/α)) approximation algorithm for
this problem. This assumption captures well the
scenario when classification errors are asymmet-
ric. Additionally, we show an asymptotically
matching Linear Programming integrality gap of
Ω(log 1/α).

1. Introduction
In the Correlation Clustering problem, we are given a set
of objects with pairwise similarity information. Our aim
is to partition these objects into clusters that match this in-
formation as closely as possible. The pairwise information
is represented as a weighted graph G whose edges are la-
belled as “positive/similar” and “negative/dissimilar” by a
noisy binary classifier. The goal is to find a clustering C
that minimizes the weight of edges disagreeing with this
clustering: A positive edge is in disagreement with C, if its
endpoints belong to distinct clusters; and a negative edge is
in disagreement with C if its endpoints belong to the same
cluster. We call this objective the MinDisagree objective.
The MinDisagree objective has been extensively studied
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in literature since it was introduced by Bansal, Blum, and
Chawla (2004) (see e.g., (Charikar et al., 2003; Demaine
et al., 2006; Ailon et al., 2008; Pan et al., 2015; Chawla
et al., 2015)). There are currently two standard models for
Correlation Clustering which we will refer to as (1) Corre-
lation Clustering on Complete Graphs and (2) Correlation
Clustering with Noisy Partial Information. In the former
model, we assume that graph G is complete and all edge
weights are the same i.e., G is unweighted. In the latter
model, we do not make any assumptions on the graph G.
Thus, edges can have arbitrary weights and some edges
may be missing. These models are quite different from
the computational perspective. For the first model, Ailon,
Charikar, and Newman (2008) gave a 2.5 approximation
algorithm. This approximation factor was later improved to
2.06 by Chawla, Makarychev, Schramm, and Yaroslavtsev
(2015). For the second model, Charikar, Guruswami, and
Wirth (2003) and Demaine, Emanuel, Fiat, and Immorlica
(2006) gave anO(log n) approximation algorithm, they also
showed that Correlation Clustering with Partial Noisy In-
formation is as hard as the Multicut problem and, hence,
O(log n) is likely to be the best possible approximation for
this problem. In this paper, we show how to interpolate
between these two models for Correlation Clustering.

We study the Correlation Clustering problem on complete
graphs with edge weights. In our model, the weights on the
edges are constrained such that the ratio of the lightest edge
in the graph to the heaviest positive edge is at least α ≤ 1.
Thus, if w is the weight of the heaviest positive edge in
the graph, then each positive edge has weight in [αw,w]
and each negative edge has weight greater than or equal to
αw. We argue that this model – which we call Correlation
Clustering with Asymmetric Classification Errors – is more
adept at capturing the subtleties in real world instances than
the two standard models. Indeed, the assumptions made by
the Correlation Clustering on Complete Graphs model are
too strong, since rarely do real world instances have equal
edge weights. In contrast, in the Correlation Clustering with
Noisy Partial Information model we can have edge weights
that are arbitrarily small or large, an assumption which is
too weak. In many real world instances, the edge weights
lie in some range [a, b] with a, b > 0. Our model captures a
larger family of instances.
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Furthermore, the nature of classification errors for objects
that are similar and objects that are dissimilar is quite dif-
ferent. In many cases, a positive edge uv indicates that the
classifier found some actual evidence that u and v are simi-
lar; while a negative edge simply means that the classifier
could not find any such proof that u and v are similar, it does
not mean that the objects u and v are necessarily dissimilar.
In some other cases, a negative edge uv indicates that the
classifier found some evidence that u and v are dissimilar;
while a positive edge simply means that the classifier could
not find any such proof. We discuss several examples below.
Note that in the former case, a positive edge gives a substan-
tially stronger signal than a negative edge and should have
a higher weight; in the latter, it is the other way around: a
negative edge gives a stronger signal than a positive edge
and should have a higher weight. We make this statement
more precise in Section 1.1.

The following examples show how the Correlation Cluster-
ing with Asymmetric Classification Errors model can help
in capturing real world instances. Consider an example from
the paper on Correlation Clustering by Pan, Papailiopou-
los, Oymak, Recht, Ramchandran, and Jordan (2015). In
their experiments, Pan et al. (2015) used several data sets
including dblp-2011 and ENWiki-20131. In the graph dblp-
2011, each vertex represents a scientist and two vertices
are connected with an edge if the corresponding authors
have co-authored an article. Thus, a positive edge with
weight w+ between Alice and Bob in the Correlation Clus-
tering instance indicates that Alice and Bob are coauthors,
which strongly suggests that Alice and Bob work in similar
areas of Computer Science. However, it is not true that
all researchers working in some area of computer science
have co-authored papers with each other. Thus, the negative
edge that connects two scientists who do not have an article
together does not deserve to have the same weight as a posi-
tive edge, and thus can be modeled as a negative edge with
weight w− < w+.

Similarly, the vertices of the graph ENWiki-2013 are
Wikipedia pages. Two pages are connected with an edge if
there is a link from one page to another. A link from one
page to the other is a strong suggestion that the two pages
are related and hence can be connected with a positive edge
of weight w+, while it is not true that two similar Wikipedia
pages necessarily should have a link from one to the other.
Thus, it would be better to join such pages with a negative
edge of weight w− < w+.

Consider now the multi-person tracking problem. The prob-
lem is modelled as a Correlation Clustering or closely re-
lated Lifted Multicut Problem (Tang et al., 2016; 2017) on
a graph, whose vertices are people detections in video se-

1These data sets are published by (Boldi & Vigna, 2004; Boldi
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quences. Two detections are connected with a positive or
negative edge depending on whether the detected people
have similar or dissimilar appearance (as well as some other
information). In this case, a negative edge (u, v) is more
informative since it signals that the classifier has identified
body parts that do not match in detections u and v and thus
the detected people are likely to be different (a positive edge
(u, v) simply indicates that the classifier was not able to find
non-matching body parts).

The Correlation Clustering with Asymmetric Classification
Errors model captures the examples we discussed above. It
is instructive to consider an important special case where
all positive edges have weight w+ and all negative edges
have weight w− with w+ 6= w−. If we were to use the
state of the art algorithm for Correlation Clustering on Com-
plete Graphs on our instance for Correlation Clustering with
Asymmetric Classification Errors (by completely ignoring
edge weights and looking at the instance as an unweighted
complete graph), we would get a Θ(max(w

+
/w−,w

−
/w+))

approximation to the MinDisagree objective. While if we
were to use the state of the art algorithms for Correlation
Clustering with Noisy Partial Information on our instance,
we would get a O(log n) approximation to the MinDisagree
objective.

Our Contributions. In this paper, we present an approxi-
mation algorithm for Correlation Clustering with Asymmet-
ric Classification Errors. Our algorithm gives an approxi-
mation factor of A = 3 + 2 loge 1/α. Consider the scenario
discussed above where all positive edges have weight w+

and all negative edges have weight w−. If w+ ≥ w−, our
algorithm gets a (3 + 2 logew

+/w−) approximation; if
w+ ≤ w−, our algorithm gets a 3-approximation.
Definition 1. Correlation Clustering with Asymmetric Clas-
sification Errors is a variant of Correlation Clustering on
a Complete Graph. We assume that the weight we of each
positive edge lies in [αw,w] and the weight we of each neg-
ative edge lies in [αw,∞), where α ∈ (0, 1] and w > 0.

We note here that the assumption that the weight of posi-
tive edges is bounded from above is crucuial. Without this
assumption (even if we require that negative weights are
bounded from above and below), the LP gap is unbounded
for every fixed α (this follows from the integrality gap ex-
ample we present in Theorem 1.3).

The following is our main theorem.
Theorem 1.1. There exists a polynomial time A = 3 +
2 loge 1/α approximation algorithm for Correlation Clus-
tering with Asymmetric Classification Errors.

We also study a natural extension of our model to the case
of complete bipartite graphs. That is, the positive edges
across the biparition have a weight between [αw,w] and the
negative edges across the bipartition have a weight of at least
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αw. We provide the details of this result in the full version.
Note that the state-of-the-art approximation algorithm for
Correlation Clustering on Unweighted Complete Bipartite
Graphs has an approximation factor of 3 (see Chawla et al.
(2015)).

Theorem 1.2. There exists a polynomial time A = 5 +
2 loge 1/α approximation algorithm for Correlation Clus-
tering with Asymmetric Classification Errors on complete
bipartite graphs.

Our next result shows that this approximation ratio is likely
best possible for LP-based algorithms. We show this by
exhibiting an instance of Correlation Clustering with Asym-
metric Classification Errors such that integrality gap for the
natural LP for Correlation Clustering on this instance is
Ω(log 1/α).

Theorem 1.3. The natural Linear Programming relax-
ation for Correlation Clustering has an integrality gap
of Ω(log 1/α) for instances of Correlation Clustering with
Asymmetric Classification Errors.

Moreover, we can show that if there is an o(log(1/α))-
approximation algorithm whose running time is polynomial
in both n and 1/α, then there is a o(log n)−approximation
algorithm for the general weighted case (and also for the
MultiCut problem). However, we do not know if there is
an o(log(1/α))−approximation algorithm for the problem
whose running time is polynomial in n and exponential in
1/α. The existence of such an algorithm does not imply
that there is an o(log n)−approximation algorithm for the
general weighted case (as far as we know).

We show a similar integraplity gap result for the Correlation
Clustering with Asymmetric Classification Errors on com-
plete bipartite graphs problem. Please find the details in the
full version of the paper.

Theorem 1.4. The natural Linear Programming relax-
ation for Correlation Clustering has an integrality gap
of Ω(log 1/α) for instances of Correlation Clustering with
Asymmetric Classification Errors on complete bipartite
graphs.

Throughout the paper, we denote the set of positive edges
by E+ and the set of negative edges by E−. We denote
an instance of the Correlation Clustering problem by G =
(V,E+, E−). We denote the weight of edge e by we.

1.1. Ground Truth Model

In this section, we formalize the connection between asym-
metric classification errors and asymmetric edge weights.
For simplicity, we assume that each positive edge has a
weight of w+ and each negative edge has a weight of w−.
Consider a probabilistic model in which edge labels are
assigned by a noisy classifier. Let C∗ = (C∗1 , . . . C

∗
T ) be the

ground truth clustering of the vertex set V . The classifier
labels each edge within a cluster with a “+” edge with prob-
ability p+ and as a “−” edge with probability 1 − p+; it
labels each edge with endpoints in distinct clusters as a “−”
edge with probability q− and as a “+” edge with probability
1− q−. Thus, (1− p+) and (1− q−) are the classification
error probabilities. We assume that all classification errors
are independent.

We note that similar models have been previously studied
by (Bansal et al., 2004; Elsner & Schudy, 2009; Mathieu &
Schudy, 2010; Ailon et al., 2013; Makarychev et al., 2015)
and others. However, the standard assumption in such mod-
els was that the error probabilities, (1− p+) and (1− q−),
are less than a half; that is, p+ > 1/2 and q− > 1/2. Here,
we investigate two cases (i) when p+ < 1/2 < q− and (ii)
when q− < 1/2 < p+. We assume that p+ + q− > 1, which
means that the classifier is more likely to connect similar
objects with a “+” than dissimilar objects or, equivalently,
that the classifier is more likely to connect dissimilar objects
with a “−” than similar objects. For instance, consider a
classifier that looks for evidence that the objects are similar:
if it finds some evidence, it adds a positive edge; other-
wise, it adds a negative edge (as described in our examples
dblp-2011 and ENWiki-2013 in the Introduction). Say, the
classifier detects a similarity between two objects in the
same ground truth cluster with a probability of only 30%
and incorrectly detects similarity between two objects in dif-
ferent ground truth clusters with a probability of 10%. Then,
it will add a negative edge between two similar objects with
probability 70%! While this scenario is not captured by
the standard assumption, it is captured by case (i) (here,
p+ = 0.3 < 1/2 < q− = 0.9 and p+ + q− > 1).

Consider a clustering C of the vertices. Denote the sets of
positive edges and negative edges with both endpoints in
the same cluster by In+(C) and In−(C), respectively, and
the sets of positive edges and negative edges with endpoints
in different clusters by Out+(C) and Out−(C), respectively.
Then, the log-likelihood function of the clustering C is,

`(G; C) = log
( ∏
(u,v)∈In+(C)

p+ ×
∏

(u,v)∈In−(C)

(1− p+)

×
∏

(u,v)∈Out+(C)

(1− q−)×
∏

(u,v)∈Out−(C)

q−
)

= log
(

(p+)|In
+(C)|(1− p+)|In

−(C)|

· (1− q−)|Out+(C)|(q−)|Out−(C)|
)

= |In+(C)| log p+ + |In−(C)| log(1− p+)

+ |Out+(C)| log(1− q−) + |Out−(C)| log q−
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=
(
|E+| log p+ + |E−| log q−

)
︸ ︷︷ ︸

constant expression

−
(
|Out+(C)| log

p+

1− q−
+ |In−(C)| log

q−

1− p+
)

︸ ︷︷ ︸
MinDisagree objective

.

Let w+ = log p+

1−q− and w− = log q−

1−p+ . Then, the neg-

ative term –
(
|Out+(C)| log p+

1−q− + |In−(C)| log q−

1−p+

)
–

equals w+|Out+(C)| + w−|In−(C)|. Note that |Out+(C)|
is the number of positive edges disagreeing with C and
|In−(C)| is the number of negative edges disagreeing with
C.

Now observe that the first term in the expression above –(
|E+| log p+ + |E−| log q−

)
– does not depend on C. It

only depends on the instance G = (V,E+, E−). Thus,
maximizing the log-likelihood function over C is equivalent
to minimizing the following objective

w+(# disagreeing “+”edges)+w−(# disagreeing “−”edges).

Note that we have w+ > w− when p+ < 1/2 < q− (case
(i) above); in this case, a “+” edge gives a stronger signal
than a “−” edge. Similarly, we have w− > w+ when
q− < 1/2 < p+ (case (ii) above); in this case, a “−” edge
gives a stronger signal than a “+” edge.

2. Algorithm
In this section, we present an approximation algorithm for
Correlation Clustering with Asymmetric Classification Er-
rors. The algorithm first solves a standard LP relaxation
and assigns every edge a length of xuv (see Section 2.1).
Then, one by one it creates new clusters and removes them
from the graph. The algorithm creates a cluster C as fol-
lows. It picks a random vertex p, called a pivot, among yet
unassigned vertices and a random number R ∈ [0, 1]. Then,
it adds the pivot p and all vertices u with f(xpu) ≤ R to
C, where f : [0, 1] → [0, 1] is a properly chosen function,
which we define below. We give a pseudo-code for this
algorithm in Algorithm 1.

Our algorithm resembles the LP-based correlation clustering
algorithms by Ailon et al. (2008) and Chawla et al. (2015).
However, a crucial difference between our algorithm and
above mentioned algorithms is that our algorithm uses a
“dependant” rounding. That is, if for two edges pv1 and
pv2, we have f(xpv1) ≤ R and f(xpv2) ≤ R at some
step t of the algorithm then both v1 and v2 are added to
the new cluster St. The algorithms by Ailon et al. (2008)
and Chawla et al. (2015) make decisions on whether to add
v1 to St and v2 to St, independently. Also, the choice of
the function f is quite different from the functions used

Algorithm 1 Approximation Algorithm
input An instance of Correlation Clustering with Asym-

metric Weights G = (V,E+, E−,we).
Initialize t = 0 and Vt = V .
while Vt 6= ∅ do

Pick a random pivot pt ∈ Vt.
Choose a radius R uniformly at random in [0, 1].
Create a new cluster St; add the pivot pt to St.
for all u ∈ Vt do

if f(xptu) ≤ R then
Add u to St.

end if
end for
Let Vt+1 = Vt \ St and t = t+ 1.

end while
output clustering S = (S0, . . . , St−1).

by Chawla et al. (2015). In fact, it is influenced by the paper
by Garg, Vazirani, and Yannakakis (1996).

2.1. Linear Programming Relaxation

In this section, we describe a standard linear programming
(LP) relaxation for Correlation Clustering which was intro-
duced by Charikar, Guruswami, and Wirth (2003). We first
give an integer programming formulation of the Correlation
Clustering problem. For every pair of vertices u and v, the
integer program (IP) has a variable xuv ∈ {0, 1}, which
indicates whether u and v belong to the same cluster:

• xuv = 0, if u and v belong to the same cluster; and

• xuv = 1, otherwise.

We require that xuv = xvu, xuu = 0 and all xuv satisfy the
triangle inequality. That is, xuv + xvw ≥ xuw.

Every feasible IP solution x defines a partitioning S =
(S1, . . . , ST ) in which two vertices u and v belong to the
same cluster if and only if xuv = 0. A positive edge uv is in
disagreement with this partitioning if and only if xuv = 1;
a negative edge uv is in disagreement with this partitioning
if and only if xuv = 0. Thus, the cost of the partitioning is
given by the following linear function:∑

uv∈E+

wuvxuv +
∑

uv∈E−

wuv(1− xuv).

We now replace all integrality constraints xuv ∈ {0, 1} in
the integer program with linear constraints xuv ∈ [0, 1] .
The obtained linear program is given in Figure 1. In the
paper, we refer to each variable xuv as the length of the
edge uv.



Asymmetric Correlation Clustering

min
∑

uv∈E+

wuvxuv +
∑

uv∈E−

wuv(1− xuv).

subject to

xuw ≤ xuv + xvw for all u, v, w ∈ V
xuv = xvu for all u, v ∈ V
xuu = 0 for all u ∈ V
xuv ∈ [0, 1] for all u, v ∈ V

Figure 1. LP relaxation

Algorithm 2 One iteration of Algorithm 1 on triangle uvw
Pick a random pivot p ∈ {u, v, w}.
Choose a random radius R with the uniform distribution
in [0, 1].
Create a new cluster S. Insert p in S.
for all a ∈ {u, v, w} \ {p} do

if f(xpa) ≤ R then
Add a to S .

end if
end for

3. Analysis of the Algorithm
The analysis of our algorithm follows the general approach
proposed by Ailon, Charikar, and Newman (2008). Ailon
et al. (2008) observed that in order to get upper bounds
on the approximation factors of their algorithms, it is suf-
ficient to consider how these algorithms behave on triplets
of vertices. Below, we present their method adapted to our
settings. Then, we will use Theorem 3.1 to analyze our
algorithm.

3.1. General Approach: Triple-Based Analysis

Consider an instance of Correlation Clustering G =
(V,E+, E−) on three vertices u, v, w. Suppose that the
edges uv, vw, and uw have signs σuv, σvw, σuw ∈ {±},
respectively. We shall call this instance a triangle (u, v, w)
and refer to the vector of signs σ = (σvw, σuw, σuv) as the
signature of the triangle (u, v, w).

Let us now assign arbitrary lengths xuv, xvw, and xuw
satisfying the triangle inequality to the edges uv, vw, and
uw and run one iteration of our algorithm on the triangle
uvw (see Algorithm 2).

We say that a positive edge uv is in disagreement with S
if u ∈ S and v /∈ S or u /∈ S and v ∈ S. Similarly, a
negative edge uv is in disagreement with S if u, v ∈ S. Let
cost(u, v | w) be the probability that the edge (u, v) is in

disagreement with S given that w is the pivot.

cost(u, v | w) =

{
Pr[K | p = w], if σuv = “+”;

Pr[L | p = w], if σuv = “−”.

where K denotes the event of u ∈ S, v /∈ S or u /∈ S, v ∈ S
andL denotes the event of u ∈ S, v ∈ S. Let lp(u, v | w) be
the LP contribution of the edge (u, v) times the probability
of it being removed, conditioned on w being the pivot.

lp(u, v | w) =

{
xuv · Pr[M | p = w], if σuv = “+”;

(1− xuv) · Pr[M | p = w], if σuv = “−”.

whereM denotes the event of u ∈ S or v ∈ S. We now
define two functions ALGσ(x, y, z) and LP σ(x, y, z). To
this end, construct a triangle (u, v, w) with signature σ edge
lengths x, y, z (where xvw = x, xuw = y, xuv = z). Then,

ALGσ(x, y, z) = wuv · cost(u, v | w)

+ wuw · cost(u,w | v)

+ wvw · cost(v, w | u);

LP σ(x, y, z) = wuv · lp(u, v | w)

+ wuw · lp(u,w | v)

+ wvw · lp(v, w | u).

We will use the following theorem from the paper by
Chawla, Makarychev, Schramm, and Yaroslavtsev (2015)
(Lemma 4) to analyze our algorithm. This theorem was first
proved by Ailon, Charikar, and Newman (2008) but it was
not stated in this form in their paper.

Theorem 3.1 (see (Ailon et al., 2008) and (Chawla et al.,
2015)). Consider a function f with f(0) = 0. If for all
signatures σ = (σ1, σ2, σ3) (where each σi ∈ {±}) and
edge lengths x, y, and z satisfying the triangle inequality,
we have ALGσ(x, y, z) ≤ ρLP σ(x, y, z), then the approx-
imation factor of the algorithm is at most ρ.

3.2. Analysis of the Approximation Algorithm

Proof of Theorem 1.1. Without loss of generality we as-
sume that the scaling parameter w is 1. We consider two
cases α ≤ 0.169 and α ≥ 0.169. To simplify the exposition,
here we consider the more interesting case of α ≤ 0.169;
we consider the other case in the full version of the paper.
Define f(x) as follows (see Figure 2),

f(x) =

{
1− e−Ax, if 0 ≤ x < 1

2 −
1
2A ;

1, otherwise;

where A = 3 + 2 loge 1/α.
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Figure 2. This plot shows functions f(x) used in the proof of The-
orem 1.1 for α ∈ {0.001, 0.01, 0.1}. Additionally, it shows op-
timal functions fopt(x) (see Section 4 for details). Note that ev-
ery function f(x), including fopt(x), has a discontinuity at point
τ = 1/2− 1/2A; for x ≥ τ , f(x) = 1.

Our analysis of the algorithm relies on Theorem 3.1. We will
show that for every triangle (u1, u2, u3) with edge lengths
(x1, x2, x3) (satisfying the triangle inequality) and signature
σ = (σ1, σ2, σ3), we have

ALGσ(x1, x2, x3) ≤ A · LP σ(x1, x2, x3). (1)

Therefore, by Theorem 3.1, our algorithm gives an A-
approximation.

Without loss of generality, we assume that x1 ≤ x2 ≤ x3.
When i ∈ {1, 2, 3} is fixed, we will denote the other two
elements of {1, 2, 3} by k and j, so that j < k. For i ∈
{1, 2, 3}, let ei = (uj , uk) (the edge opposite to ui), wi =
wei , xi = xujuk , yi = f(xi), and ti = A · lp(uj , uk|ui)−
cost(uj , uk|ui). Observe that (1) is equivalent to

3∑
i=1

witi ≥ 0. (2)

Now express ti’s in terms of xi’s and yi’s.

Claim 3.2. For every i ∈ {1, 2, 3}, we have

ti =

{
A(1− yj)xi − (yk − yj), if σi = “+”
A(1− yj)(1− xi)− (1− yk), if σi = “−”

Proof. First assume that σi = “+”. Then

ti = A · lp(uj , uk|ui)− cost(uj , uk|ui)
= Axujuk · Pr[uj ∈ S or uk ∈ S | p = ui]

− Pr[uj ∈ S, uk /∈ S or uj /∈ S, uk ∈ S | p = ui]

= Axi · Pr[f(xk) ≤ R or f(xj) ≤ R]

− Pr[f(xk) ≤ R < f(xj) or f(xj) ≤ R < f(xk)]

= Axi(1− yj)− (yk − yj),

where we used that yk = f(xk) ≥ f(xj) = yj (since
xk ≥ xj and f(x) is non-decreasing). Now assume that
σi = “−”. Similarly, we have

ti = A · lp(uj , uk|ui)− cost(uj , uk|ui)
= A(1− xujuk) · Pr[uj ∈ S or uk ∈ S | p = ui]

− Pr[uj ∈ S, uk ∈ S | p = w]

= A(1− xi) · Pr[f(xk) ≤ R or f(xj) ≤ R]

− Pr[f(xk) ≤ R, f(xj) ≤ R]

= A(1− xi) · (1− yj)− (1− yk).

Let us say that edge ei pays for itself if ti ≥ 0. Note that
if all edges e1, e2, e3 pay for themselves then (2) holds and
we are done. We now show that negative edges pay for
themselves.

Claim 3.3. If σi = “−”, then ti ≥ 0.

Proof. We need to show that A(1− yj)(1− xi) ≥ 1− yk.
First, if xk ≥ 1

2−
1
2A then yk = 1 and the inequality trivially

holds. Suppose that xk < 1
2 −

1
2A . Then A > 1

1−2xk ≥
1

1−xk−xj ≥
1

1−xi (here, we used the triangle inequality
xk + xj ≥ xi). Thus

A(1− yj)(1− xi) ≥ A(1− yk)(1− xi) ≥ 1− yk.

Positive edges do not necessarily pay for themselves. How-
ever, if x3 < 1

2 −
1
2A , then all edges pay for themselves.

Claim 3.4. Suppose that x3 < 1
2 −

1
2A . Then ti ≥ 0 for

every i.

Proof. Since x3 < 1
2 −

1
2A , for every i ∈ {1, 2, 3} we have

xi <
1
2 −

1
2A and thus yi = f(xi) = 1− e−Axi .

Let us now fix i and prove that ti ≥ 0. If σi = “−”, then,
by Claim 3.3, ti ≥ 0 and we are done. So we assume that
σi = “+”. Then,

yk − yj = e−Axj − e−Axk = e−Axj
(

1− e−A(xk−xj)
)

≤ e−AxjA(xk − xj) ≤ e−AxjAxi = A(1− yj)xi
where the first inequality follows from the inequality 1 −
ex ≤ −x, and the second inequality follows from the trian-
gle inequality. Thus, ti = A(1−yj)xi−(yk−yj) ≥ 0.
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We conclude that if x3 < 1/2− 1
2A , then (2) holds and we

are done. The case x3 < 1/2− 1
2A is the most interesting

case in the analysis; the rest of the proof is more technical.
As a side note, let us point out that Theorem 1.1 has depen-
dence A = 3 + 2 loge 1/α because (i) f(x) must be equal
to C − e−Ax or a slower growing function so that Claim 3.4
holds (ii) Theorem 3.1 requires that f(0) = 0, and finally
(iii) we will need below that 1− f

(
1
2 −

3
2A

)
≤ α.

From now on, we assume that x3 ≥ 1
2 −

1
2A . We show that

positive edges of length at least 1/A pay for themselves.

Claim 3.5. If σi = “+” and xi ≥ 1/A, then ti ≥ 0.

Proof. We have, ti = A(1 − yj)xi − (yk − yj) ≥ (1 −
yj)− (yk − yj) = 1− yk ≥ 0.

Now we prove that we may assume that σi = “+” if xi <
1/2− 1/(2A).

Claim 3.6. Suppose that xi < 1
2 −

1
2A . If (2) holds for σ

with σi = “+”, then (2) also holds for σ′ obtained from σ
by changing the sign of σi to “−”.

Proof. To prove the claim, we show that the value of ti is
greater for σ′ than for σ. That is, A(1−yj)xi−(yk−yj) <
A(1− yj)(1− xi)− (1− yk). (Note that the values of tj
and tk do not depend on σi and thus do not change if we
replace σ with σ′). Since f is non-decreasing, yk ≥ yj .

xi <
1

2
− 1

2A
=

1

2
+

1

2A
− 1

A
≤ 1

2
+

1

2A
− (1− yk)

A(1− yj)
.

Thus, 2A(1 − yj)xi < A(1 − yj) + 1 − yj − 2(1 − yk).
Therefore, A(1−yj)xi− (yk−yj) < A(1−yj)(1−xi)−
(1− yk), as required.

Observe that if x1 ≥ 1
A , then all xi ≥ 1

A and thus, by
Claims 3.3 and 3.5, all ti ≥ 0 and we are done. Similarly, if
x2 ≥ 1

2 −
1
2A ≥

1
A (since A ≥ 3), then t2 ≥ 0 and t3 ≥ 0;

additionally, y2 = y3 = 1, thus t1 = 0 and we are done.
Therefore, we will assume below that

x1 <
1

A
, x2 <

1

2
− 1

2A
, x3 ≥

1

2
− 1

2A

(the last assumption was made above). By Claim 3.6, we
may also assume that σ1 = “+” and σ2 = “+”. Recall
that we assumed that α < 0.169. In this regime, A > 5
and, therefore, x2 ≥ x3 − x1 ≥ ( 1

2 −
1
2A ) − 1

A > 1
A and

x3 ≥ 1
2 −

1
2A > 1

A . Thus, by Claims 3.3 and 3.5, t2 ≥ 0
and t3 ≥ 0 (edges e2 and e3 pay for themselves). If t1 ≥ 0,
we are done. So we will assume below that t1 < 0. Then,

w1t1 + w2t2 + w3t3 ≥ 1 · t1 + αt2 + αt3 (3)

(recall that we assume that e1 is a positive edge and thus
w1 ≤ 1).

Since x3 ≥ 1
2 −

1
2A , we have y3 = 1. Now we separately

consider two possible signatures σ = (“+”, “+”, “+”) and
σ = (“+”, “+”, “−”).

First, assume that σ = (“+”, “+”, “+”). Because of (3),
to prove (2), it is sufficient to show

(1− y2) + α(1− y1) + α(y2 − y1) ≤
≤ A(1− y2)x1 + αA(1− y1)x2 + αA(1− y1)x3.

Note that x2 ≥ x3−x1 ≥ 1
2−

1
2A−

1
A = 1

2−
3
2A . Therefore,

1− y2 ≤ 1−
(

1− e−A( 1
2−

3
2A )
)

= e−
3
2−loge

1
α+ 3

2

= e− loge
1
α = α.

Thus, (1−y2)+α(1−y1)+α(y2−y1) ≤ αy2+2α(1−y1).
To finish the analysis of the case σ = (“+”, “+”, “+”), it is
sufficient to show that

αy2 + 2α(1− y1) ≤A(1− y2)x1 + αA(1− y1)x2

+ αA(1− y1)x3.

This inequality immediately follows from the following
claim (we simply need to add up (4) and (5) and multiply
the result by α).

Claim 3.7. For c = 0.224, we have

(2− c)(1− y1) ≤ A(1− y1)x2; and (4)
y2 + c(1− y1) ≤ A(1− y1)x3. (5)

Proof. Since c ≥ 2 − loge
1

0.169 ≥ 2 − loge
1
α (recall that

α ≤ 0.169), we have 2 − c ≤ loge
1
α = A

2 −
3
2 ≤ Ax2.

Therefore, (4) holds.

We also have, c ≤ 0.169+loge
1

0.169 +1−e ≤ α+loge
1
α+

1− e. Thus, e− α ≤ A
2 −

1
2 − c ≤ Ax3 − c. Therefore,

e−1 (Ax3 − c) ≥ 1− αe−1

= 1− e−A( 1
2−

1
2A ) ≥ y2, (6)

where we used that x2 < 1
2 −

1
2A and y2 = f(x2) =

1− e−Ax2 . Observe that from inequalities (6) and x1 < 1
A

it follows that

y2 ≤
(

1− f
(

1

A

))
(Ax3 − c) ≤ (1− y1)(Ax3 − c),

which implies (5).

Now, assume that σ = (“+”, “+”, “−”). We need to
prove the following inequality,

(1− y2) + α(1− y1 + 1− y2) ≤
≤ A(1− y2)x1 + αA(1− y1)(x2 + 1− x3). (7)
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As before,

(1− y2) + α(1− y1 + 1− y2) ≤
≤ α+ α(1− y1 + 1− y2) ≤ α+ 2α(1− y1). (8)

On the other hand,

A(1−y2)x1 + αA(1− y1)(x2 + 1− x3) ≥ (9)
≥ αA(1− y1)(1− x1 + x1 + x2 − x3)

≥ αA(1− y1)(1− x1)

≥ αA(1− y1)

(
1− 1

A

)
= α(1− y1)(A− 1)

where the second inequality is due to the triangle inequality
and the third inequality is due to x1 < 1

A . Finally, observe
that 1 ≤ 2e−1 loge

1
α = e−1(A − 3) ≤ (1 − y1)(A − 3).

We get,

α(1− y1)(A− 1) ≥ α+ 2α(1− y1). (10)

Combining (8), (9), and (10), we get (7).

This concludes the case analysis and the proof of Theo-
rem 1.1.

4. Better approximation for values of α
appearing in practice

We note that the choice of function f(x) in Theorem 1.1 is
somewhat suboptimal. However, for every α ∈ (0, 1], we
can compute the optimal function fopt(x) (with high preci-
sion) using linear programming. Using this function fopt,
we can achieve an approximation factor Aopt better than the
approximation factor Athm = 3 + 2 loge 1/α guaranteed
by Theorem 1.1.2 While asymptotically Athm/Aopt → 1
as α → 0, Aopt is noticeably better than Athm for many
values of α that are likely to appear in practice (say, for
α ∈ (10−8, 0.1)). We list approximation factors Athm and
Aopt for several values of α in Table 1; we also plot the
dependence of Athm and Aopt on α in Figure 3.

5. Integrality Gap
In this section, we give a Θ(log 1/α) integrality gap exam-
ple for the LP relaxation presented in Section 2.1. Notice
that in the example each positive edge has a weight of w+

and each negative edge has a weight of w− with w+ ≥ w−.

Proof of Theorem 1.3. Consider a 3 regular expander G =
(V,E) on n = Θ((α2 log2 α)−1) vertices. We say that two
vertices u and v are similar if (u, v) ∈ E; otherwise u and

2It is also possible to slightly modify Algorithm 1 so that it
gets approximation Aopt without explicitly computing f . We omit
the details here.

Table 1. Approximation factors Athm and Aopt for different α-s.

loge 1/α 1/α Athm Aopt

0 1 3 3
1.61 5 6.22 4.32
2.30 10 7.61 4.63
3.91 50 10.82 6.07
4.61 100 12.21 6.78
6.21 500 15.43 8.69
6.91 1000 16.82 9.62
8.52 5 000 20.03 11.9

10 22 026.5 23 14.2
15 3.3× 106 33 22.6
20 4.9× 108 43 31.3

0 10 20
0

20

40

loge 1/α

A

Athm

Aopt

Figure 3. Plots of approximation factors Athm and Aopt.

v are dissimilar. That is, the set of positive edges E+ is E
and the set of negative edges E− is V ×V \E. Let w+ = 1
and w− = α.

Lemma 5.1. The integrality gap of the Correlation Clus-
tering instance Gcc = (V,E+, E−) described above is
Θ(log 1/α).

Proof. Let d(u, v) be the shortest path distance in G. Let
ε = 2/ log3 n. We define a feasible metric LP solution as
follows: xuv = min(εd(u, v), 1).

Let LP+ be the LP cost of positive edges, and LP− be the
LP cost of negative edges. The LP cost of every positive
edge is ε since d(u, v) = 1 for (u, v) ∈ E. There are 3n/2
positive edges in Gcc. Thus, LP+ < 3n/ log3 n. We now
estimate LP−. For every vertex u, the number of vertices
v at distance less than t is upper bounded by 3t because
G is a 3-regular graph. Thus, the number of vertices v
at distance less than 1/2 log3 n is upper bounded by

√
n.

Observe that the LP cost of a negative edge (u, v) (which
is equal to α(1− xuv)) is positive if and only if d(u, v) <
1/2 log3 n. Therefore, the number of negative edges with a
positive LP cost incident on any vertex u is at most

√
n.
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Consequently, the LP cost of all negative edges is upper
bounded by αn

3
2 = Θ(n/ log 1/α). Hence,

LP ≤ Θ(n/ log 1/α) + 3n/ log3 n = Θ(n/ log 1/α).

Here, we used that log n = Θ(log 1/α).

We now lower bound the cost of the optimal (integral) solu-
tion. Consider an optimal solution. There are two possible
cases.

1. No cluster contains 90% of the vertices. Then a con-
stant fraction of positive edges in the expander G are
cut and, therefore, the cost of the optimal clustering is
at least Θ(n).

2. One of the clusters contains at least 90% of all ver-
tices. Then all negative edges in that cluster are in
disagreement with the clustering. There are at least(
0.9n
2

)
−m = Θ(n2) such edges. Their cost is at least

Ω(αn2).

We conclude that the cost of the optimal solution is at least
Θ(n) and, thus, the integrality gap is Θ(log(1/α)).

We note that in this example log(1/α) = Θ(log n). How-
ever, it is easy to construct an integrality gap example where
log(1/α) � Θ(log n). To do so, we pick the integrality
gap example constructed above and create k � n disjoint
copies of it. To make the graph complete, we add negative
edges with (fractional) LP value equal to 1 to connect each
copy to every other copy of the graph. The new graph has
kn� n vertices. However, the integrality gap remains the
same, Θ(log 1/α).
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