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Abstract The wrinkle pattern exhibited upon stretching a rectangular sheet has attracted considerable
interest in the “extreme mechanics” community. Nevertheless, key aspects of this notable phenomenon
remain elusive. Specifically—what is the origin of the compressive stress underlying the instability of the
planar state? what is the nature of the ensuing bifurcation? how does the shape evolve from a critical,
near-threshold regime to a fully developed pattern of parallel wrinkles that permeate most of the sheet?
In this paper we address some of these questions through numerical simulations and analytic study of the
planar state in Hookean sheets. We show that transverse compression is a boundary effect, which originates
from the relative extension of the clamped edges with respect to the transversely contracted, compression-
free bulk of the sheet, and draw analogy between this edge-induced compression and Moffatt vortices in
viscous, cavity-driven flow. Next, we address the instability of the planar state and show that it gives rise to
a buckling pattern, localized near the clamped edges, which evolves—upon increasing the tensile load—to
wrinkles that invade the uncompressed portion of the sheet. Crucially, we show that the key aspects of the
process—from the formation of transversely compressed zones, to the consequent instability of the planar
state and the emergence of a wrinkle pattern—can be understood within a Hookean framework, where the

only origin of nonlinear response is geometric, rather than a non-Hookean stress—strain relation.

1 Introduction

A familiar, yet quite nontrivial pattern formation phe-
nomenon, is the parallel array of wrinkles that extend
throughout a ribbon—a thin, rectangular-shaped solid
sheet—upon pulling its clamped edges apart (Fig. 1a)
[1,2]. Recalling that buckling and wrinkling of a thin
solid body emerge in response to compression, one may
readily conclude that the visible array of wrinkles par-
allel to the stretching axis, Z, is due to a compressive
component of the stress tensor, along the transverse
axis, y. However, while a transverse contraction (i.e.,
negative strain, ,, < 0) in response to longitudinal
tension, o,, =~ T > 0, is the essence of the classical
Poisson effect, the appearance of transverse compres-
sion (i.e., oyy < 0) is far less obvious. Indeed, if the
pulled edges were not clamped, the whole sheet would
have contracted uniformly in the transverse direction,
the stress would have been perfectly uniaxial and ten-
sile everywhere (i.e., €y, o< —vT', where v is the Pois-
son ratio, and 0, = T, 0y, = 05y = 0), and the pla-
nar, unwrinkled state, would have been stable. Hence,
the emergence of transverse compression is necessar-
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ily a boundary effect, which may exist only near the
clamped edges. While numerical and analytical studies
of the planar (unwrinkled) state did reveal the presence
of zones with small transverse compression close to the
clamped edges [1,3], the physical mechanism underly-
ing this boundary effect remains elusive.

Even more puzzling than the mere existence of trans-
versely compressed zones in the planar state is the
ensuing elastic instability. Rather than forming a buck-
ling pattern, characterized by a thickness-independent
topography that relieves the transverse compression,
the stretched sheet appears to develop a highly cor-
rugated topography, whereby the characteristic wave-
length X of transverse undulations has been reported to
be proportional to the square root of the sheet’s thick-
ness ¢ [2]. Elastic instabilities of thin bodies that give
rise to a thickness-dependent wavelength, A ~ t* (with
a > 0) are often called “wrinkling” and are known to
occur in supported sheets subjected to uniaxial com-
pression, whereby the resistance of the attached sub-
phase to deformation competes with the tendency of the
sheet to minimize bending energy'. For instance, the
undulation wavelength of uniaxially compressed solid

1 “buckling” is thus understood as a particular instance of

“wrinkling,” where the power a = 0.
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Fig. 1 a Schematic drawing of “model A”: a rectangular
sheet with width W and length L, subjected to longitu-
dinal tensile loads, T' (force/length) that pull on the two
short edges, z = £L/2, while the long edges are free. The
short edges are clamped, such that both normal (out-of-
plane) displacement, ((z = +L/2,y), and transverse (in-
plane) displacement, uy(z = £L/2,y), vanish, and their
longitudinal displacements are u,(z = +L/2,y) ~ £TL/2.
b Schematic drawing of “model B”: a similar sheet is sub-
jected to uniform stretching of its two short edges, such that
Oyuy(z = £L/2,y) = a, while {(z = £L/2,y) = u.(z =
+L/2,y) = 0. ¢ The transverse component of the planar
stress, evaluated from our SE simulations along the mid-
line, oyy(x,y = 0), of the stretched sheet (model A, dashed-
dotted red curve) and the corners-pulled sheet (model B,
with vg = 0, solid blue curve). Also plotted is the ana-
lytic solution (dashed green). The transverse stress profile
exhibits a non-monotonic profile, whereby each of the edges
at = £1L is under transverse strain ((1 — va7) in model
A, and @ = (1 — vaT) in model B), and two correspond-
ing transversely compressed zones whose extent and dis-
tance from these edges ~ W. The level of the transverse

sheets that are floating on a liquid bath or attached to
a compliant elastic medium scale as A ~ ¢, and A ~ ¢3/4,
respectively [4,5]. However, why does the transverse
compression of a suspended sheet give rise to a highly
curved wrinkle pattern, A ~ ¢'/2, whose bending energy
is substantially larger than a buckling pattern (A ~ t%)
that is also capable of relieving transverse compression?

Realizing that the observed wrinkle pattern in this
system cannot be described through a standard “post-
buckling” approach, in which the out-of-plane deflec-
tion of a (naturally planar) sheet is assumed to affect
only slightly the planar stress, Cerda and Mahadevan

@ Springer

O:O 0.5
y/W

compression is small, but nonetheless finite fraction of the
transverse tension at the edge (the maximal compression is
—oryy(:I:%L:F:z:ma967 y =0)} =~ 0.0057, where Tpar ~ 1.5W).
d A plot analogous to ¢ for the corners-pulled sheet (model
B) but with Poisson ratio vg = va (red) rather than
vg = 0 (dashed blue) exhibits an almost indistinguish-
able profile of the transverse stress. e-f The deformation
¢(x,y) of the stretched sheet (model A, in panel E) and
the corners-pulled sheet (model B, in panel F) in the near-
threshold regime, T' ~ 2T.(e). For each model we show
a topographic map and a corresponding transverse cross
section, ((z = %L — Zmaz,Yy). &h Deformation patterns
analogous to (E-F), but in the far-from-threshold regime,
T ~ 118T.(¢). The deformation in Model B, shown in f and
h, features undulations in the longitudinal direction in addi-
tion to transverse buckling, indicating that the longitudinal
stress component o, is slightly compressive in this case.
One may attribute this to Poisson effect, whereby the net
tensile load required to pull the corners transversely apart
implies small longitudinal confinement, which is eventually
relieved by buckling along the Z-axis

(CM) proposed to address the system in a strictly dis-
tinct, “far from threshold” (FT) regime, T >> T, where
T. is a threshold value, below which the compressed pla-
nar state is stable [6]. In this approach, which is based
on “tension field theory” [7-11], the wrinkle pattern is
assumed to be fully developed throughout the whole
sheet, and cannot be described as a perturbation to the
compressed planar stress, but rather to a compression-
free stress field, attained by a hypothetic sheet, with
finite stretching modulus and no bending modulus. The
CM model inspired a multitude of experimental and
theoretical works that addressed the far-from-threshold
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regime of wrinkle patterns in various systems of ultra-
thin sheets subjected to confinement by capillary effects
or other forces [12,13]. However, the ingenuous proposal
to focus on the FT parameter regime evades some of the
basic puzzles exhibited by the system (Fig. 1a) that was
the original object of the CM model. Specifically—what
is the origin of transversely compressed zones underly-
ing the instability of the planar state? why the out-of-
plane deflection of the sheet does not remain localized
to these near-edge zones but develops instead into a pat-
tern of small wrinkles that permeate the uncompressed
bulk?

In this paper and a subsequent one we revisit the
uniaxial stretching of a Hookean ribbon-shaped sheet
with clamped edges, and address the planar state, its
instability, and the transition from the near thresh-
old regime, T' 2 T, to the far-from-threshold regime,
T > T.. A primary tool that we employ in our studies
is numerical simulations with Surface Evolver (SE) [14],
which we find to be an excellent method for finding the
planar state as well as the energetic minimum of fully
developed wrinkled states in the far-from-threshold
regime of very thin sheets. Our rationale in focusing
on Hookean elasticity (i.e., a linear stress—strain rela-
tionship) is twofold. First, despite the practical impor-
tance of effects associated with non-Hookean response,
most notably the re-stabilization of a planar, unwrin-
kled state when the imposed tensile strain is sufficiently
large (0.3-0.5 [3,15-20]), the Hookean response unrav-
els the universal (i.e., material-independent) mecha-
nism through which transverse compression emerges
and wrinkles develop. Second, since the instability
threshold T, vanishes rapidly with the sheet’s thick-
ness (more precisely, T, vanishes with thickness ¢ faster
than the stretching modulus), Hookean mechanics is
expected to govern for sufficiently thin sheets not only
the transversely compressed planar state and its insta-
bility, but also the fully developed wrinkle pattern in
the far-from-threshold regime, T" > T.. The focus of
this paper is the planar stress and the characterization
of its instability. In the subsequent article we address
the evolution of this instability from the near-threshold
regime to a fully developed wrinkle pattern in the far-
from-threshold regime.

Starting in Sect. 2 with numerical and analytical
study of the planar state, we show that the ultimate
cause of transverse compression is the extension of
the clamped edges relative to the transversely con-
tracted bulk of the sheet. We elucidate this subtlety
by analyzing a specific set-up (model B in Fig. 1) and
demonstrate how transverse compression in a rectangu-
lar sheet with free long edges can occur even without
exerting longitudinal tensile load. In Sect. 3 we address
the instability of the planar stress and show that it is
essentially an Euler buckling, whose spatial extent is
restricted to the transversely compressed zones of the
sheet. A direct corollary of this observation is that the
emergence of wrinkles in this set-up, whereby the wave-
length vanishes with the thickness of the sheet, does not
occur at the near-threshold regime (T' 2 T.); instead, it
may only be observed in the far-from-threshold regime,
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Fig. 2 The identical transverse stress profile in model A
and model B indicates that the ultimate cause for a trans-
versely compressed zone in the planar state is a relative
extension of the short edge with respect to the bulk. This
may be a direct outcome of pulling the short edge outward
(model B) or the collective effect of imposing longitudinal
tension, clamping the short edge, and positive Poisson ratio
(model A)

T > T.. In Sect. 4 we provide evidence for the transi-
tion from near-threshold buckling to far-from-threshold
wrinkling, and defer an in-depth study of the latter to
a subsequent paper.

2 The planar state

The observation that longitudinal tension does not
induce transverse compression if the short edges are
unclamped (or alternatively if v < 0) suggests that the
primal cause for transverse compression is neither uni-
axial tension nor positive Poisson ratio, but rather a rel-
ative extension of the short edges in comparison to the
bulk of the sheet. In order to elucidate this geometrical-
mechanical effect, we contrast in this section the planar
state of our set-up, hence called “model A” (Fig. 1a),
with the planar state of another system, called “model
B” (Fig. 1b), in which a relative extension of the edge is
imposed directly on a rectangular sheet, with arbitrary
Poisson ratio and no longitudinal tension.

2.1 Displacement, strain, and Hookean mechanics

Since our focus here is on small strains we express the
components of the strain tensor u;; through derivatives
of the displacement field, whose in-plane components
are uy, u, and whose out-of-plane component is (:

Upr = Optuy + 5(0:0)% 5 uyy = Oyuy + 5(9,0)* 5
and invoke the Hookean stress—strain relationship [21]:
Ozx = ﬁY(um + Vuyy) j0yy = ﬁy(uyy + Vizz) ;
Oxy = H%Yua,y . (2)

The two problems we address in this section, “model
A” and “model B,” are defined below through suitable
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boundary conditions (BCs) on the stress tensor and the
displacement field. Since we consider only small strains,
we employ the standard approach of Hookean elasticity
theory, and assume the BCs hold at the edges of the
original, undeformed sheet, namely the long edges y =
:l:%W and the short edges = = :I:%L.2

In analyzing the planar state we consider a displace-
ment field with ¢ = 0. A useful tool for this analysis is
the Airy potential — a scalar function @(z, y) such that:

90

Oyy = 02 y Oxg =

9% 920

Oy2 P ey =  dxdy (3)

The mechanical equilibrium equation, 0d;0;; = 0,
becomes the bi-harmonic equation for the Airy poten-
tial:

Vio =0. (4)
2.2 Model A versus model B

The mathematical description of our original set-up
(“model A} Fig. 1a) consists of a non-homogeneous
BC:

m‘%

/ 0uole = +LL,y)dy = TW, (5)

w
2

expressing the fact that a force TW is pulling each
of the short edges outward (and applies also for any
—%L <z< %L by force balance consideration). Addi-
tionally, there are four homogeneous BCs:

at y=+£IW: 04y =04 =0 (5b)

Ouy,
dy

at v =+3L: u, =0; =0. (5¢)

The first two Eq. (5b) reflect the fact that the long
edges are free, namely o;;n; = 0, where 7 = =£7 is
the outward normal to the long (undeformed) edges,
respectively. The last two Eq. (5¢) imply that the short
edges are displaced as rigid, inextensible sticks, pulled
apart along the Z-axis, such that their displacement is
given by u, = Const and u, = 0.

With the aid of Eq. (3) the BCs (5a, 5b, 5¢) may be
converted to a set of four BCs for the Airy potential:

aty=+iW: &=0 (5d)
and G — T (5¢)
at = +£5L: ﬁ—ygﬁzo (5f)
and %H +u)£§zz =0. (5g)

2 The error incurred by considering BCs through the unde-
formed, rather the deformed sheet, is a higher order in T'/Y".
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Equation (5d) follows from the first part of (5b), which
implies that @(z,y = :I:%W) = Cy+Cyx, with arbitrary
constants Cy,Cy, upon choosing the natural gauge:
Co = C1 = 0. Integrating o,y(z,y = j:%W) over x
one readily obtains from the second part of Eq. (5b)
that 8,®(x, £1W) is independent on z, and Eq. (5e) is
thus obtained directly from Eq. (5a), which is valid—
as explained above—for any —1L < z < 1L. Using
the strain-displacement relations (1), Eq. (5f) follows
directly from the first part of Eq. (5¢), whereas Eq. (5g)
follows from the second part of (5¢) after some tedious,
but straightforward algebraic manipulations.

Turning now to “model B” (Fig. 1b), we describe the
BCs in analogous manner to Eq. (5). First, the absence
of exerted tension along the z-axis implies that:

w

/ i Ous(x =1L, y)dy = 0, (6a)

2

(as well as for any —%L <z < %L) Second, three
BCs are identical to their homogeneous counterparts in
model A:

at y =+£3W: 0y =04y =0 (6b)
ou
at v = +£3L: 8; =0, (6c)

whereas the last BC is non-homogenous

at x =+iL: %:a (6d)
Y

such that o > 0 is a transverse strain imposed directly
at the short edges. The conversion of the BCs (6a—6d)
into BCs for the Airy potential proceeds along the same
steps that led from Egs. (5a—5¢) to Egs. (5d-5g), yield-
ing:

aty::t%W: =0 (6e)
and g—j =0 (61)
at w =+iL: ((;pxzj—ugzgf:alf (6g)
and g+(2+y)822€22 =0. (6h)

Note that the planar stress of a Hookean sheet is deter-
mined by a purely linear problem, namely both the
strain—displacement relation (1) and the stress—strain
relation (2) are given by linear equations, and conse-
quently the stress, strain, and displacement fields for
each of the two models are fully determined by solving
a linear PDE (4) subjected to the corresponding BCs
[Egs. (ha—5g) for model A or Egs. (6a—6h) for model
BJ. Furthermore, each of the two models consists of a
single non-homogeneous BC [Eq. (5a) for model A and
Eq. (6d) for model B], and therefore the stress field in
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each model is unique up to a scale factor (and similarly
the strain and displacement fields). Namely, denoting
the planar stress field for model A under a given exerted
longitudinal tension T" by o;(x,y;T), and the planar
stress field for model B under a given edge extension «
by oi;(x,y; o), we have that:

model A : o;(x,y; To) = 2o (x,y; Th)

model B @ 0y(z, y;a2) = G2045(,y; 1) (7)

2.3 Numerical simulations

We employ SE to study the planar state of the two
models, implementing an equilateral-triangular mesh of
density 6.95 x 10° (total area/cell area). The SE built-
in “linear_elastic” method is adapted for computing the
strain energy, and “star_perp_sq_mean_curvature” and
“star_gauss_curvature” to compute bending energy.

For model A, we consider a sheet with a relatively
large length-to-width ratio, % = 8, a Poisson ratio
va = 0.32, and some exerted longitudinal tension T
whose actual numerical value is arbitrary [see Eq. (7)].
For model B, we consider a sheet with the same length-
to-width ratio, % = 8, and Poisson ratio vg = v4 or
vp = 0. Since in model B uy, = 0 in the bulk, we make
the extension of the short edge relative to the bulk iden-
tical to model A (where u,, = 0 at the clamped edge
and —v4T/Y in the bulk), by choosing the edge exten-
sion parameter in model B to be « = v7T/Y.

While the longitudinal stress components, o, (z,y),
of the two models are obviously distinct, Fig. 1c, d show
that the transverse stress, oy, (z,y) in the two models
is essentially identical. Furthermore, the direct effect
of the Poisson ratio is negligible, as can be seen by
comparing the transverse stress of model B with vg =
va and v = 0. As Fig. 1c, d show, the transverse stress
is positive (tensile) in the vicinity of the short edges,
becoming compressive at a distance ~ 1.5 - W from
each short edge, and remains compressive over a strip
of length ~ W after which it vanishes exponentially.

Our numerical solution of the planar stress in the two
models indicates that the essential cause of transverse
compression in a rectangular sheet is the extension of
the short edge relative to the bulk. As the schematic
in Fig. 2 shows, this effect can be attained directly (as
is the case in model B) even for a sheet with v = 0
with no longitudinal tensile load, or indirectly—as in
our original model A—Dby applying longitudinal tension
and clamping the short edges of a sheet with positive
Poisson ratio.

2.4 Analytical solution
2.4.1 Equivalence of model A and model B

The identity of the transverse stress components in
models A and B can be understood by decomposing
the Airy potential of model A into “bulk” and “edge”
terms:
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Fig. 3 Our SE simulations of the planar state in Hookean
sheets with various aspect ratios, L = L/W. In order to
conveniently show the values of d* and d},, we shift the
r-axis, * — T + %, such that the left clamped boundary
(not shown) is at = 0, and show only the left half of the
sheet. The transverse stresses of different L/W suggest the
existence of a parameter regime (i) where the stress may be
purely tensile and the planar state is thus stable (% < 2d*);
(ii) where transverse compression exists around the middle
of the sheet (2d* < & < 2d},); and (iii) where transverse
compression exists in two zones (% > 2d;,). For d*, the
numerical value extracted from our SE simulations is d* =~
0.625, whereas for d},, the extracted value is dj, ~ 0.8 — 1.0
(the uncertainty is a consequence of a very shallow local
maximum of oyy(z,0).)

model A = &(z,y) = Py(z,y) + Pe(x,y)
where : @y(z,y) = 2T(y* — 1) . (8a)

If the short edges were not clamped (i.e., if the first
part of Eq. (5¢) had been replaced by 8§uy = 0, such
that wy,(z = £5L,y) may be nonzero), then &, = 0,
and the resulting stress, associated only with @, would
have been constant: 0., = T, 0yy = 0,y = 0. However,
clamping implies that @.(z,y) # 0, since it must satisfy
the non-homogenous set of BCs:

aty=+iW: &,=0 (8b)
and % =0 (8¢)
at v =+iL: %2:; uAa;QB; =vsT  (8d)
and iﬁ%(ﬂm 8‘9;5;2 =0. (8¢)

Remarkably, the BCs (8b—8e) are identical to the BCs
satisfied by the Airy potential @(z,y) of model B (6e—
6h), with vp = v4, and edge extension o = vAT/Y !
This observation immediately explains our numerical
result: the planar stress field of the original problem
(model A) is identical (up to a constant, purely uniaxial
stress, 0y = T, 0y, = 0gy = 0) to the stress field in
a sheet whose short edges are pulled outward, and no
longitudinal tension.

@ Springer
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2.4.2 The origin of transverse compression

The above discussion reveals that the origin of trans-
verse compression in a longitudinally stretched sheet
whose short edges are clamped is the “edge-induced”
potential @, (x,y) in decomposition (8a), or equivalently
the Airy potential of our model B. It is thus natural to
seek a solution using a basis of eigenfunctions of the
bi-harmonic equation:

D4 (x,y) = e P cos (pi)
b ZW b
@i’s(a:,y) = e_p'iWW sin (pl%) , (9a)

where {p;}?2, is a discrete set of (generally complex)
eigenvalues, which must be determined through the
BCs (6e-6h), and the symmetry: &(z,y) = P(x, —y)
has been exploited.

Assuming {Re p;} > 0, the basis functions (9a)
describe deformations that decay as /W — oo, hence
— supplemented by the analogous set of functions (p; —
—p;) that describes deformations that decay as /W —
—oo—this basis is useful to describe deformations of a
very elongated sheet, namely, L/W > 1. In the follow-
ing calculation we consider this limit (which may be
loosely called an “infinitely long” sheet). Our numer-
ical simulations show that for L/W larger than 3—4,
the stress profile is nearly indistinguishable from the
one obtained by a calculation based on the basis func-
tions (9a) and the assumption L/W > 1. Let us con-
sider then —L/2 < x < 0 and express the solution
&, (z,y) through the basis functions (9a):

Pe(x,y) = Re{z Ci (27°(x,y) + A, 0" (x, y))} ;
Z (9b)

In order to determine the eigenvalues {p;} and the
sequence of coefficients {A;},{C;}, we must apply the
BCs (8b—8e). This is a rather tedious process, which
requires an inverse Laplace transform [22], and we thus
defer it to an appendix. Nevertheless, it is useful to
note that the eigenvalues {p;} are determined by the
equation:

p; +sinp; =0, (9¢)

and in turn determine the coefficients {A;} through the
simple relation:

Aj = —2cot B | (9d)

while obtaining the sequence {C;} requires an explicit
evaluation of an inverse Laplace transform. The numer-
ical values of {|p;|} and {|C;|} are plotted in Fig. 4 (for
1 <4 <20, where the order is determined by increasing
|pi|’s). Remarkably, Eq. (9¢) reveals two facts on whose
importance we will elaborate below: (a) All eigenvalues
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Fig. 4 The magnitudes of the first 20 eigenvalues |p;| and
coefficients |C;|, show that |p;| increases in constant incre-
ments while |C;| is decreasing quickly, and thus only the
leading term contributes significantly to the solution

Table 1 The values of the three leading poles (p;), and
corresponding pairs of coefficients (A;, C;) in the expansion,
Eq. (9b), for the Airy function

Di A;
i=1 4.212 + 2.2515 0.332 + 1.78;
i= 10.713 + 3.103; 0.168 + 1.94;
i=3 17.073 4 3.5515 0.111 + 1.97j
vp = 0.32 (x107?) vp =0 (x1073)
Cy 109 — 213; 131 — 229
Cs —22.9 + 13.5j —26.1 +11.7j
Cs 8.68 — 2.84j 9.49 — 1.525

The values of the coefficients C; are normalized by the edge
extension a (model B) or v4T/Y (model A). Note that the
poles p; and coefficients A; are independent on the Poisson
ratio

p; are non-real numbers. (b) the eigenvalues p; and the
coefficients A; do not depend on the Poisson ratio vg,
and approach a well-defined limit values as the length-
to-width ratio % — 00.

In Table 1 we report the values of the three eigen-
values p; with the smallest (positive) real parts, which
govern sum (9b), together with the corresponding val-
ues of A; and C;. Note that C; is proportional to «, so
that upon normalizing by a they depend only on the
Poisson ratio.

Figure 1c, d show that approximating the Airy poten-
tial through the first term in sum (9b), i.e.,

D (z,y)

~ Re {Cle_pl% [cos (pl %)

—2cot (%) % si (pl %)} } ; (9e)

matches already very well the transverse stress obtained
in the numerical solution at the vicinity of the short
edges of a sheet with % = 8. Furthermore, the
analytic solution of the edge-induced Airy function
D (z,y), given by Eq. (9b) with the numerical values of
{pi, A;, C;} in Table 1, provides some valuable insights
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into the mechanism by which transverse compression
develops in an elongated sheet.

e First, Table 1 indicates that the dependence on
Poisson ratio, which stems only from the sequence {C;},
is very weak. This observation, which has been noted
already in our numerical analysis, substantiates the
rationale illustrated in Fig. 2—the primary cause of
transverse compression is the extension of the short
edges relative to the bulk, rather than the Poisson ratio
of the sheet.

e Second, the unavoidable presence of transversely
compressed zone in a sufficiently long sheet is a direct
consequence of the fact that all eigenvalues {p;},
namely roots of Eq. (9¢), are complex. The implication
is revealed by evaluating o,, from the approximated
Airy potential (9¢) along the centerline (y = 0) of a
semi-infinite sheet:

(r)
oyy(z,y=0)xe ™ Wcos[p() wt+al,
) T T 2
Y e
C@PY) +201 pl pl C(T)

(9f)

where the superscripts () and (") refer to the imaginary
and real parts, respectively. It is evident from the first
line of Eq. (9f) that the imaginary component of the
root, pgl) # 0, gives rise to negative (i.e. compressive)
transverse stress at f%L +d'W <z < ffL +d W

and %L —d; W <z< %L — d*W, where:

d" = (r/2 - g)/pgi) ~ 0.646
ar, = d* +tan (" /p\") /p\Y ~ 0.864 . (9g)

e Third, Eq. (9g), indicates that the response of a
rectangular sheet whose short edges are extended rel-
ative to the bulk, can be classified into three types,
depending solely on the aspect ratio, %:

(I) For % < 2d* there is no transverse compression.
Here, the transverse stress, which is obviously tensile at
the far edges (z = £1 L), does not have enough room to
vary significantly, hence the whole sheet is under pure
(biaxial) tension.

(II) For 2d* < & < 2dy, there is a single transversely
compressed zone located around the center of the sheet.
Here, the sheet is sufficiently elongated such that the
transverse stress has enough room to approach negative
values away from the tensed edges, but not to overturn
and decay to zero. Hence, the two compressive zones,
generated by each of the tensed edges, are merged into
a single one.

(ITI) If & > 2d, the sheet is long enough such that
there are two transversely compressed zones, each of
them starts at a distance d*W from a tensed edge, and
extends over a length o« W. We note that since the
eigenvalue p; is complex, the Airy potential @.(z,y),
Eq. (9e), gives rise to additional transversely com-
pressed zones, away from the clamped edges. However,
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the exponential decay of @.(x,y) with the correspond-
ing distance (| + L/2]) implies that the magnitude of
compression in these zones is much smaller in compar-
ison to the transverse compression in the first zone.
Since the stability of the planar state to buckling is
determined by the maximal compression, these addi-
tional compressive zones have thus little effect on the
mechanics.

Figure 3 shows the transverse stress profile, obtained
from our simulations for several representative values of
the aspect ratio L/W, supporting the above classifica-
tion into three regimes. We note that the actual values
of d* and d, obtained from our simulations are rather
close, but not identical, to the theoretical prediction,

Eq. (9g). An obvious reason for this discrepancy is that
the values of d*, d¥,, reported in Eq. (9g), are obtained

from an analytic solution of the transverse stress in a

semi-infinite sheet (i.e., % — 00), and we may thus

expect corrections of O(W) to this predictions. From
this viewpoint, Fig. 3 indicates that those corrections
are in fact surprisingly small. Thus, while the above
classification has been noted before by numerous work-
ers (e.g., [3]), our analytic approach elucidates the ori-
gin of this classification through the complex values of
the eigenvalues {p;} of the bi-harmonic equation under
the BCs (8a).

e Finally, we note that employing the basis functions
(9a) yields a rapidly converging sequence and thereby
the compact expression (9e) that describes quantita-
tively the stress field throughout the whole sheet. This
global approach, which has been employed broadly
for solving the bi-harmonic equation in viscous fluid
mechanics and linear elasticity problems [22,23] is thus
advantageous to an approximation using “corner func-
tions” [24] that does not explain the emergence of trans-
verse compression.

2.4.3 Analogy to Moffatt eddies in a "driven cavity” flow

We have seen that the existence of complex eigenvalues
of the bi-harmonic equation (4) for the edge-induced
Airy potential @, gives rise to a non-monotonic trans-
verse stress oy = 0.0P., and consequently to trans-
versely compressed zones. It is useful to point out an
analogy between this (arguably non-intuitive) effect
and a classical phenomenon in fluid mechanics, known
as “Moffatt eddies” [25]. Considering a class of two-
dimensional (2D) viscous flows generated by the motion
of rigid boundaries, Moffatt showed that solutions of
the bi-harmonic equation, which describes the stream
function of 2D Stokes flows, may be characterized by
complex eigenvalues. A notable implication of this basic
observation is the emergence of eddies in the “driven-
cavity” set-up, whereby a rigid plate is moving at a
constant velocity, dragging the surface of a viscous fluid
enclosed in a deep cavity [26] (Fig. 5). The formation of
these eddies is intimately related to the complex eigen-
values that govern the stream function. The real (neg-
ative) part of the eigenvalues reflects the intuitive fact
that the magnitude of the viscous stress (and conse-
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o M

v

Fig. 5 Top: Contour plot of Airy potential ¢ that describes
the planar stress in a semi-infinite Hookean strip (9¢). The
symbols “+” and “—” indicate the sign of ¢. Bottom: Mof-
fatt eddies structure in a 2D Stokes flow in a driven rect-
angular cavity [26]. The viscous stress (and consequently
the velocity field) in an incompressible Newtonian fluid is
derived from a stream function that satisfies the bi-harmonic
equation, similarly to the way by which the elastic stress in
a solid Hookean sheet is derived from the Airy potential.

quently the speed) decays away from the driven surface,
whereas the imaginary part implies that the decaying
stress is nevertheless non-monotonic, and consequently
an alternating direction of the velocity.

Thus, the transverse compression induced in a solid
sheet by a relative extension of an edge with respect to
the bulk may be viewed as an “elastic analog” of Mof-
fatt eddies in a 2D driven-cavity viscous flow, provid-
ing a notable example of the Stokes-Rayleigh analogy
between the mechanical equilibrium of Hookean solids
and the viscous flow of Newtonian fluids.

3 Buckling instability

When subjected to compressive loads, slender solid
bodies become unstable, “trading” a highly energetic
strain (averaged through the body’s cross section),
which is penalized by the stretching modulus Y, with
curvature of the body’s mid-plane, which is penalized
by the bending modulus, B ~ Y2, The primary ques-
tion we seek to address here is how the instability mode
and the threshold value of the control parameter (lon-
gitudinal tension 7" in model A and edge extension «
for model B) depend on the sheet thickness ¢.

Before studying this instability in our problem, where
the planar stress is nonuniform (Figs. lc, d, 3), it
is useful to recall the basic example of a rectangular
sheet under uniaxial compressive load (Fig. 6), where
the planar stress is uniform and purely compressive
(Oyy = —00 <0, 0gg =0y =0).
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3.1 Instability under uniform compression

The most elementary type of an elastic instability
under a uniform uniaxial compressive load, oy, = —0o9,
is exhibited by an unsupported rectangular sheet, of
thickness ¢ and width W, whose edges, x = :l:%ﬁ, are
free (Fig. 6a). In a popular explanation of this instabil-
ity, known as “Euler buckling,” the deflected state of
the sheet is modeled as an Euler elastica—a strainless
deformation that fully converts compression into out-of-
plane deflection—and its bending energy (o< B2 1)
is compared with the strain energy of the planar state

(x 073) We note, however, that this common expla-
nation is a “far from threshold” reasoning, which does
not capture the physics at the vicinity of a continu-
ous (supercritical) bifurcation. Instead, we provide here
another explanation for the Euler instability, address-
ing it as one that emerges from a standard supercritical
bifurcation, in accord with the near-threshold analysis
that is the focus of the current paper.

Consider then some given value of ¢, and assume an
undulatory deviation {(x,y) = A-gx(y) from the planar
state, where the amplitude A is infinitesimal, and g (y)
is some function that undulates over a scale A. Gener-
ally, gx(y) is an eigenfunction of the elastic energy func-
tional, linearized around the planar state, and for this
highly symmetric problem it is simply sinusoidal. Nev-
ertheless, we prefer to keep a more general terminology
in order to highlight the commonality with our original
model problem, which is far less symmetric. Such a per-
turbation reduces slightly the strain in the planar state:
eyy — —32+C1-(4)?%, where C; > 0 is some numerical
constant. For an infinitesimal A, the strain energy is
reduced (from the planar-state) by a value o O’o(%){
whereas the bending energy (which is obviously zero at
the planar state) is increased by a value o< B(+¥)?, and
one readily finds that such a perturbation of the pla-
nar state becomes favorable once the compressive load
exceeds a threshold, of(\) ~ B/A2. Since the wave-
length A is limited by the width W, we find that the
planar state first becomes unstable to undulations at
the largest possible wavelength, when the exerted com-
pressive load exceeds a threshold value, o, = o§(W):

B £\’
Euler buckling: o, ~ W Y <W> ; A~ . (10)

Let us consider now two other variants of the insta-
bility under uniform, uniaxial compressive load. The
first variant, known as the Winkler model and depicted
in Fig. 6b, consists of a sheet attached to an elastic
substrate, which penalizes vertical displacement by an
energy (per area), %Ksub@. The additional energy cost
for undulations implies that, for a given A, a planar
state becomes unstable only if oy exceeds an enhanced
threshold value, o (\) ~ B/A?+ Ko A2, Consequently,
we find that the planar state first becomes unstable
to undulations at a wavelength, A, ~ (B/Kgwp)'?,
which may be << W, when the exerted compressive load
exceeds a threshold value, . ~ vVBKgp, ~ VY Kqub - t.
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Fig. 6 A schematic of a rectangular sheet under uniaxial
compressive load, oy, = —0o. a A classic version of the
Euler buckling instability, where the edges, x = +£/2, are
free, and the unstable mode consists of a single undula-
tion (A ~ W), regardless of the length ¢. b Attachment
to an elastic substrate (“Winkler foundation”) of stiffness
Kqub enhances resistance to undulations and thereby the
threshold o., and reducing the wavelength. c—d If the ampli-
tude is suppressed at the edges © = +{/2, the instability
mode is affected by the length ¢, such that the threshold
o, is increased in comparison to a and the near-threshold
undulation wavelength A. is decreased. For { < W the
near-threshold pattern consists of periodic undulations of
wavelength A\ ~ ¢. e The presence of longitudinal ten-
sion, 0., = T, acts as an “effective substrate” of stiffness
K ~ T/£? [6], affecting further reduction in the wavelength
and correspondingly enhancement of the threshold value o.

These two features—a wavelength that exhibits strong
dependence on the sheet thickness (i.e., A ~ t% with
By > 0) and an enhanced threshold for destabilizing
a planar state (i.e., 0./Y ~ t%» with 8, < 2) are hall-
marks of wrinkling phenomena, demarcating them from
the standard version of Euler buckling instability.

A second variant of instability under uniform, uniax-
ial compressive load, is depicted in Fig. 6¢c, d. Here,
the amplitude is suppressed at the edges x = i%f,
such that a shape A - {)\(z,y) that undulates over a
characteristic scale A along the compressive axis (7),
must vary also along the Z-axis, thereby being penal-
ized also by the bending cost of the corresponding cur-
vature, oc A/¢?. For a given ), a planar state becomes
unstable only if the compressive load exceeds, of(\) ~
B(1/X2 + X\2/¢%), and if £ < W we find that the pla-
nar state first becomes unstable to undulations of wave-
length, A; ~ £, at a threshold, o, ~ B/(* ~ Y (%)% Fur-
thermore, if the sheet is subjected also to a tensile load
04z = T along the longitudinal (z)-axis (Fig. 6e), there
will be yet another energetic penalty for undulations,
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~ T(%)Q, which is analogous to the energy implied by
an actual (Winkler) substrate, Kqup, oc T'/£2.

Putting together the effects of a real substrate,
amplitude-suppressing boundaries, and longitudinal ten-
sion, we find that, for a given wavelength A, the planar
state of a rectangular sheet under uniform compression
in the transverse (¢)-axis becomes unstable if the com-
pressive load og exceeds:

. 1 1 1
Uo()\> ~ Bﬁ + (Ksub ‘|'j—|€*2 + B£4> )\2 5 (11&)

and hence the instability is characterized by a wave-
length

B 1/4
Ac ~ min (W : (Ksub T2+ B£—4) >

(11b)

and occurs as the compressive load exceeds a threshold

oe ~ max (BW‘Q, VB(Keuy + T02 + B€—4)) .
(11c)

3.2 Why is the instability buckling-like?

Let us turn back now to our problem—where the trans-
verse stress induced by the relative edge is nonuniform
(Figs. 1c, d, 3), namely o,,(x,y) varies along both &
and § axes. One can still perform a linear stability
analysis of the planar stress to infinitesimal deflections,
C(x,y) = A gx(z,y), which undulate with a charac-
teristic wavelength \ along the g-axis and an infinitesi-
mal amplitude A. However, the lack of translation sym-
metry of the planar state implies that the eigenfunc-
tions, ga(x,y), of the corresponding (linearized) energy
functional are not simply sinusoidal Fourier modes.
Nevertheless, as we explain below the physical mech-
anisms that determine the critical wavelength A\. and
the threshold o, for the uniform compression problem,
Egs. (11a—11c), are analogous to those that govern the
instability of the nonuniform planar stress in our prob-
lem, allowing us to gain valuable insights.

Let us consider first model B, where the magnitude
oo < a-Y of the transverse compressive stress is induced
directly by the edge extension parameter, «, and the
stretching modulus Y. Here, there is no longitudinal
tension (T' = 0), and—since our sheet is unsupported
(i.e., Ksup = 0)—nor there is a real substrate effect.
Since the transverse compression in the planar state
is limited to a narrow zone in the sheet, the compres-
sive stress o(j(A) above which an undulation of wave-
length A\ becomes favorable is subjected to the effect of
amplitude-suppressing boundaries discussed above (last
term in Eq. 11a). However, since the length of the com-
pressive zone is proportional to the sheet’s width (i.e.,
£ o< W), the overall effect on the critical wavelength A,
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and threshold value o.x x a.Y is inconspicuous, and
we find the scaling:

B t\°

Turning now to our original problem (model A),
where the magnitude of the transverse compressive
stress o9 o« T, we recognize an additional contribu-
tion to o§(A), Eq. (11a), due to the energetic cost for
deflection over a length ¢ ~ W along the tensile axis.
However, since o¢ is also proportional to the longitudi-
nal tension T, we find that the minimal value of T" for
which Eq. (11a) is satisfied is again realized when the
wavelength A is a finite, thickness-independent fraction
of the sheet width, implying:

del A: Tom By (L 2 Ao~ W, (13)
model A: Te~—~Y - —=] ; Ac~W.
W2 W

Thus, notwithstanding the narrowness of the com-
pressive zone and the presence of longitudinal tension
in it, inspection of Eq. (10) and Egs. (12, 13) reveals
that the instability of the planar shape caused by rela-
tive edge extension exhibits the typical behavior of the
classic Euler buckling instability, namely a thickness-
independent critical “wavelength” A. set by the sheet
geometry, and a threshold load value that scales as the
square power of the thickness-width ratio. An impor-
tant implication of the analogy a < vT/Y between
models A and B, realized by inspecting Eqs. (12)
and (13), is that the proportionality constant for T,
in Eq. (13) diverges as v — 0. Namely, the ratio
between the magnitudes of the transverse and longi-
tudinal stress components (which is generally nonzero
near the clamped edges) vanishes as v — 0, such that
the exerted longitudinal tension needed to trigger a
transverse buckling instability diverges in this limit.

Figure 7 shows that the predicted buckling-like
behavior, characterized by the scaling rules (12, 13), is
confirmed by our simulations. In Fig. 7a, threshold val-
ues (T, for model A and «a. for model B) were obtained
for a range of sheet thicknesses by carefully probing
intervals of the control parameters (7" and «, respec-
tively), and then plotted versus the aspect ratio %,
showing an excellent agreement with the predicted scal-
ing behavior. Apart from their identical scaling behav-
ior, the threshold value of the dimensionless control
parameter T./Y in model A is larger than its counter-
part a, in model B, in accord with the enhanced resis-
tance of the former to buckling, due to the effect of lon-
gitudinal tension in the transversely compressed zone.
The enhanced resistance to undulations is reflected
also in the near-threshold pattern (Fig. le, f). While
both models exhibit near threshold a buckling (i.e.,
thickness-independent undulation) pattern, such that
the wavelength \. is a finite fraction of the width W,
this fraction is smaller in model A (by a factor of ~ %)
in comparison to its counterpart in model B.
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y/w
Fig. 7 a The instability threshold T., of a long stretched

rectangular sheet with clamped edges (model A with L =
8W), as obtained from our SE simulations, plotted ver-

sus the thickness, % The threshold value is shown to be
proportional to (%) , with a proportionality constant that
depends weakly on the aspect ratio % for L > W. This
result indicates that the instability is an Euler-like buck-
ling, due to a compressed zone of width ~ W, where the
compression is, o,y ~ —T (see text). b The transverse
profile of the shape (at & & Zmae, where the compres-
sion is maximal), plotted close to threshold. From top
to bottom: t/W = {32,16,8,4,2} x 107°. The plots indi-
cate that the critical wavelength, A, is a finite, thickness-
independent fraction of the sheet width, in accord with
FEuler buckling instability. ¢ As the exerted tension T is
increased beyond T, the energetically favorable wavelength
A becomes smaller (in comparison to A.), and develops
explicit dependence on the sheet thickness. This buckling-
to-wrinkling trend is consistent with a transition from near-
threshold to far-from-threshold behavior envisioned in [6].
The profiles are shown for y = 0. From top to bottom:
T/T. ~ 66, 118, 266, 1074, 4324

4 Beyond threshold

Upon increasing the control parameter 7' in model A
substantially above its threshold value (13), our simu-
lations (Fig. 7c) show that the near-threshold buckling
pattern undergoes two dramatic changes. First, undula-
tions expand (along the Z-axis) beyond the transversely
compressed zone of the planar state. Second, the char-
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acteristic wavelength A\ becomes substantially smaller
than its threshold value A, ~ W. For model B, the
analogous process of increasing a beyond threshold (12)
does lead to expansion of the deflected zone, but not to
any significant reduction in the characteristic undula-
tion wavelength.

A systematic study of this dramatic evolution from a
buckling pattern to wrinkles in the (Hookean) far-from-
threshold regime (T, < T < Y') in model A, requires a
detailed analysis of the strong effect of wrinkle forma-
tion on the stress field in the sheet, and its consequent
departure from the planar stress. This non-perturbative
effect, which revokes the perturbative approach under-
lying the near-threshold analysis in Sec. 3, will be the
focal point of our subsequent paper. Here, we take a
more heuristic approach to rationalize the qualitative
distinction between models A and B, by generalizing
the analysis in the preceding section beyond the near-
threshold regime.

Inspecting the considerations underlying the critical
wavelength A. (11b), one may notice that the only way
in which the planar state is explicitly affecting the wave-
length is through the length £ ~ W of the transversely
compressed zone. Assuming that even when the control
parameter exceeds considerably the threshold value the
wrinkle wavelength A is affected by the stress distri-
bution through the length ¢ of the actual compressive
zone, rule (11b) can be generalized to:

B 1/4
A~min [ W 5 < ) _4) ) (14)
Ksub + Te* + Bg*

where £, is the actual length of the compressive zone (at
a given, post-threshold value of the control parameter)
rather than its length in the planar state.

With the generalized version (14) of the wavelength
rule, one may immediately notice the difference between
models A and B. In the former, the presence of longi-
tudinal tension eventually dominates the wavelength,

hence:
B \/4
W) (15)

model A (T'>T,): A~ (

such that at a fixed value of T/Y, the wavelength A
vanishes with the sheet thickness, signifying a transi-
tion from buckling (A ~ W at T' =~ T;) to wrinkling
(A ~ tY/2 <« W for T > T.). The scaling rule of
Cerda & Mahadevan [6] is obtained by assuming that
the transversely compressed zone extends throughout
the whole sheet, i.e., £, ~ L in Eq. (15). In contrast,
for model B, the absence of longitudinal tension implies
that the pattern does not undergo a similar buckling-to-
wrinkling transition as the control parameter o exceeds
the threshold value.

The above heuristic argument deserves a healthy dose
of skepticism. Why does the transversely compressed
zone expand when the sheet is driven away from thresh-
old? Why is it justified to approximate the energetic
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cost (per area) imposed on undulations by the longitu-
dinal tension as T'(A/¢,)*? To properly address these
questions one has to consider the tension-field solution
of this problem, which forms the basis for far-from-
threshold analysis, and will be discussed in our sub-
sequent paper.

5 Summary

Focusing on the planar stress of a Hookean, rectangular-
shaped sheet under uniaxial, longitudinal tensile load,
0z = T, we showed that the emergence of transversely
compressed zones stems from the extension of the pulled
clamped edges relative to the bulk. Specifically, we
showed that an identical profile of the transverse stress
is realized by directly pulling the corners transversely
without longitudinal tension (Fig. 1c). This observation
evinces that the classic Poisson effect, namely “tension-
induced contraction” of a solid sheet, must not be con-
fused with “tension-induced compression” which under-
lies tensional wrinkling phenomena. The former is a
bulk effect, whereby transverse strain (e, ~ —vT/Y)
emerges away from the edges in order to avoid com-
pression; The latter is a boundary effect, which can be
eliminated by tailoring the boundary conditions (e.g.,
unclamping the pulled edges), and hence should be
referred to as “edge-induced (transverse) compression.”

Furthermore, we showed that edge-induced trans-
verse compression stems from a non-monotonic decay
of the Airy potential away from the edge, reflecting the
effect of complex eigenvalues of the bi-harmonic equa-
tion, in analogy to Moffatt eddies in viscous driven cav-
ity flow.

Finally, we showed that localized, transversely com-
pressed zones in the planar stress give rise to buckling
instability, with a critical wavelength A, proportional
to the sheet width W and independent on its thickness
t, and a threshold tension T, ~ (3)?Y. Both of these
relations mirror the classical Euler buckling, revealing
the anticipation of Cerda & Mahadevan [6] that the
commonly observed wrinkling pattern in this set-up,
with a wavelength A that vanishes with ¢ (Figs. 1g, 7c),
cannot be described by a standard post-buckling the-
ory that assumes moderate perturbation of the planar
stress. A description of this wrinkling pattern through
a far-from-threshold framework is the subject of a sub-
sequent publication.
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A Solution of planar stress

In this Appendix, we describe the detailed solution of model
B with BCs (6e-6h). In our analysis we follow closely the
calculation of Benthem [22], who employed Laplace trans-
formation to compute the stress at the clamped edge. Here
we go beyond Benthem solution by performing an inverse
Laplace transformation, which is required to evaluate the
stress in the whole sheet.

A.1 The singularities in the corners

Let us consider first the vicinity of one corner of the sheet
in Fig. la, where one edge is clamped and the other one is
free, and solve Eq. 4 in polar coordinates (r,0), see Fig. 8,
which depicts the left bottom corner.

9 109 10\
<W+ZE+FA‘@> ¢=0 (16)

BCs Egs. (5b, 5¢) now become

free boundary(6 = 0) :0.9 = 099 =0, (17a)
clamped boundary (6 = g) wur=ug=0. (17b)

The general solution of Eq. 16 is
&(r,0) ="t (D1 sin(y + 1)0 4+ D2 cos(y 4 1)0 (18)

+ D3 sin(y — 1)8 + D4 cos(y — 1)6)

Notice that Eq. (18) has 4 unknowns Dj;, such that the four
BCs (17) give rise to a nonzero solution only if the determi-
nant of the corresponding 4 x 4 matrix vanishes, yielding:

Lo/ m\ _4—7(1+v)?
s (“’5) BEE e (19)

For a sheet with positive Poisson’s ratio, v > 0, the solution
of Eq. (19) is v < 1, such that:
0P 1
ag ~ w ~ T’Y 5 (20)
and hence the components of stress tensor diverge at the
corner (i.e., 7 — 0). For convenience, we choose to focus

0

\

(0]

Fig. 8 A corner of a rectangular sheet. We set the corner
as the origin of polar coordinates
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on a specific value, v = 3/4, which corresponds to v =

174+4v2-8V7
4v2—1

oge and o,¢ are given by [22]:

L) (0 = g) = 017“7%,

c1 = \/8+3\ﬁc2 (21)

A.2 Laplace transformation

~ 0.32. For this value, the boundary values of

Let us address now the Airy potential in a semi-infinite sheet

(Fig. 9). For convenience, we set the width W = 2 (i.e., y —

5w, T — 3y ), and transform the origin of the coordinate

system to the middle of left edge, such that the left clamped

boundary is x = 0 and the two free boundaries are y = +1.
To solve Eq. (4), we employ Laplace transformation,

fon) = [ @@ y)edo, (22)
0
such that the transformed Eq. (4) becomes
s+ 232ﬁ + o _ s°®(0,y) + 526—@(0 )
o2 T gt = Y a5 OV
o o
+s (@(0711) + 287112(0»1/))
>’e o

+ﬁ(05 y) + 2@(07 y) (23)

With the up-down symmetry &(x,y) = &(x, —y), the sin-
gularities at corners, Eq. (21), and BC (6¢), we can assume
(22]

%P

O a0 = a((-p) 4 (et 2
+ Z an, cos(qny)
n=1
9*d o B .
Ozxdy =—0uy(0,y) = c2{(1 —y) i 1+y) i +y2 1/4}
+Z bn Sin(kny) (24)
n=1

where g, = (2n — 1)%, kn = nm and an, b, are constants

that must be computed. Equation (24) and the BCs (6g,
6h) enable us to express all boundary terms in the right

Yy
- A
Ou—) = %%
-1 Y

Fig. 9 The configuration of a semi-infinite sheet (L — o0).
We set the width W = 2 for convenience, the left boundary
x = 0 is clamped and the two boundaries y = £1 are free
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side of Eq. (23) in terms of the unknowns ci, c2 and an, by,
whereas the BCs (6e, 6f) become:

fls,y==+1)=0 (25a)
of _ _
a—y(s,y ==+1)=0. (25b)

The solution f(s,y) to Eq. (23) can now be expressed in
the following form [22]:

f(s,y) =g(s,9)

_9g(s.1) (scos s+ sin s)’cos sy + s(sin s)y sin sy
sin2s + 2s
+2@(s 1) (sin s) cos sy — (cos s)y sin sy (26)
oy’ sin 2s + 2s
where g¢(s,y) is the particular solution of the non-

homogeneous ODE (23), while the left two terms cor-
respond to solutions of the homogeneous equation (i.e.,
replacing the right side with 0), which enable satisfying the
BCs (25). The function g(s,y) is relatively complicated, and
in order to express it compactly we define an “auxiliary”
function:

R(@:$,9) = o (€7 (=39 (=1 + isy)P(1+ 5 )
+ (1 —isy) (1 + q;isy)
- F(2 + q;i8) + I'(2+ g;isy)) (27)
+e "Y(is) (=1 —isy) (1 + q; —is)
+ (1 +isy) (1 + q; —isy)

— T2+ q;—is) +I'(2+¢q; 7isy)))

where I'(z;y) is the incomplete gamma function. Then
g(s,y) can be written as

3¢y 7 7
Los1— Lot
13195 (R<4,s7 y) +R(73s +y)>
4, 3 3
3 (R<17571*y>+R<Z;3’1+y>>
1 1
+s(24+v)ar (R<71;s,17y)+R<7Z;s,1+y>>
1 5 5
- gvez (R(—Z,s,l—y)+R<—Z,s,l+y>>

9(s,y) =

= (28)
i ( i i%) - 2?}0127%
— 2275 + % + l;%
+ ; ﬁ%‘i;;wan COS qny — %byl cos kny
where b is an integration constant:
g%(o’y) = / %(0, y)dy + bo . (29)

A.3 Solution of Laplace transform and its inversion

Next we must solve all unknowns ay,, by, c1,bo that define
the function g¢(s,y), Eq. (28), substitute it in Eq. (26)
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to obtain the Laplace transform f(s,y), and perform the
inverse transform

c+i00
o) =y [ femeTds (>0 (30)

2 c—100

to obtain the Airy potential @(z,vy).

Recalling that our analysis here assumes a semi-infinite
sheet, for which we expect the stress potential @(z,y) van-
ishes exponentially away from the clamped edge at = = 0,
we note that the Laplace transform f(s,y) must not have
any poles at the right half of complex plane Re(s) > 0.
Inspection of Egs. (26, 28) reveals that the only poles origi-
nate from the contribution of the homogeneous solutions of
Eq. (23), namely, complex numbers s which solve the non-
linear equation:

sin2s+2s =10 . (31)
This equation has an infinite sequence of solutions in the
right half plane, {s; and 8;;i € N,Re (s;) > 0,Im (s;) > 0},
which can be arranged in increasing order, [sit1]| > [ss].
Requiring the residues of f(s,y) at s; and 5; to vanish, yields
an infinite sequences of algebraic equations

Res f(s1,y) = 2 (@(si, 1) — g(ss 1>sin2si) Gsiy) =0,

oy
(32)
where we used Egs. (26, 28) and defined
(sin ;) cos s;y — (cos s;)y sin s;y
G(siy) = . (33)

4 cos? s;

Equations (32, 28), together with the complementary set
of conjugate equations for the residues Res f(5:,y) =
Res f(ss,y), determine the unknowns an, by, ¢1, bo in Eq.( 28),
and thereby the Laplace transform f(s,y) through Eq. (26).
In order to obtain a numerical solution of this system of
equations, we truncate the sequence of unknowns, and keep
only the 1000 leading unknowns (ordered by increasing mag-
nitude of the corresponding poles |s;|).

Furthermore, in order to carry out the integration in
Eq. (30), we can close the contour in the left half complex
plane Re (s) < 0 and compute it through the sum of residues
of f(s,y). Noticing that the poles of f(s,y) in the complex s
plane are solutions of Eq. (31), one readily realizes that the
poles in the left half of the complex plane are {—s;, —5;},
and consequently:

(2, y) = Z Res ((f(s,y)e™; —si) + Res (f(s,y)e*; —5;))

i=1

= 4Rez (g(—s,;, 1)sin® s; — Z—Z(—si, 1)) G(s;,y)e *i°

i=1

(34)
Finally, recovering our transformation y — ZW’"‘, T — QWZ and
define p; = 2s;, we can get Eq. (9b)
®(z,y) = Re{Z Ci- (‘pi’c(i’v y) + Aid"* (x, y))} ,
sin 5 pi .2 g, pi
C; = —52- ——= 1)s i — —(——,1 35
cos? B <g( 2 ) sin”p oy 2 )) (35)
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