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Abstract We address the fully developed wrinkle pattern formed upon stretching a Hookean, rectangular-
shaped sheet, when the longitudinal tensile load induces transverse compression that far exceeds the
stability threshold of a purely planar deformation. At this “far-from-threshold” parameter regime, which
has been the subject of the celebrated Cerda—Mahadevan model (Cerda and Mahadevan in Phys Rev Lett
90:074302, 2003), the wrinkle pattern expands throughout the length of the sheet and the characteristic
wavelength of undulations is much smaller than its width. Employing Surface Evolver simulations over a
range of sheet thicknesses and tensile loads, we elucidate the theoretical underpinnings of the far-from-
threshold framework in this setup. We show that the evolution of wrinkles comes in tandem with collapse
of transverse compressive stress, rather than vanishing transverse strain (which was hypothesized by Cerda
and Mahadevan in Phys Rev Lett 90:074302, 2003), such that the stress field approaches asymptotically
a compression-free limit, describable by tension field theory. We compute the compression-free stress field
by simulating a Hookean sheet that has finite stretching modulus but no bending rigidity, and show that
this singular limit encapsulates the geometrical nonlinearity underlying the amplitude—wavelength ratio of
wrinkle patterns in physical, highly bendable sheets, even though the actual strains may be so small that
the local mechanics is perfectly Hookean. Finally, we revisit the balance of bending and stretching energies
that gives rise to a favorable wrinkle wavelength, and study the consequent dependence of the wavelength

on the tensile load as well as the thickness and length of the sheet.

1 Introduction

A classic example of energy-driven pattern formation
in materials [2] is the parallel wrinkles that emerge in
a rectangular solid sheet upon clamping its short edges
and pulling them apart (Fig. 1). Despite the apparent
simplicity of this phenomenon that beautifully demon-
strates how the spontaneous emergence of patterns in
continuous media emerge through symmetry-breaking
instability of a homogeneous, featureless “base state”,
the actual mechanism underlying tension-induced wrin-
kles that permeate most of the stretched sheet is rather
subtle and, arguably, counter-intuitive. A first difficulty
pertains to the non-intuitive nature of the base state—a
planar deformation of the sheet where the exerted lon-
gitudinal tension T' conspires with the clamping of the
short edges to induce transversely compressed zones,
localized at a short distance from the clamped edges
[3,4]. In a preceding paper [5] we showed that as the ten-
sile load exceeds a thickness-dependent threshold 7T, the
sheet undergoes an Euler-like instability in the trans-
versely compressed zones, where the “wavelength” of
the buckled shape is determined solely by the sheet’s
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width W, and unaffected by its thickness (¢ < W)
nor by its length (L > W). A second difficulty, which
we address in this article, is the transition from the
near-threshold pattern of localized buckling at T 2> T
to a pattern of fine, elongated wrinkles that pervade
the stretched sheet, whose characteristic “wavelength”
A < W depends on the sheet’s thickness ¢ and the ten-
sile load T

Realizing that the observed wrinkle pattern in this
system cannot be described by a standard “post-
buckling” approach, in which the out-of-plane deflec-
tion is assumed a perturbation of the planar state
[6], numerous researchers employed non-Hookean mod-
els, attempting to capture the elastic response of the
stretched sheet at finite (O(1)) strain [4,7-14]. How-
ever, while certain aspects of this problem do indeed
stem from non-Hookean response (most notably, the
reentrance of a stable planar state when the exerted
tensile strain exceeds a finite value, typically 0.3-0.4
[7,8,10-12]), the transition from the near-threshold
localized buckling shape at T' 2 T, (NT) to a spatially
extended wrinkle pattern at the far-from-threshold
regime, T > T, (FT), does not stem from non-Hookean
response. Instead, the FT wrinkle pattern can be fully
characterized by the framework of Hookean elasticity,
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Fig. 1 A Schematic drawing of a rectangular sheet with
width W and length L, subjected to longitudinal tensile
loads, T =T -Y (force/length) that pull on the two short
edges, * = £L/2, while the long edges are free. The short
edges are clamped, such that both normal (out-of-plane)
displacement, {(z = £L/2,y), and transverse (in-plane) dis-
placement, u,(z = +L/2,y), vanish, and their longitudinal
displacements are u,(z = +L/2,y) ~ +TL/2. B Charac-
teristic wrinkle pattern attained by a highly bendable sheet
(e =~ 0.0085¢.) in the Hookean FT parameter regime

in which the stress tensor (averaged throughout the
thickness of the sheet) has linear dependence on the
corresponding strain tensor, but the nonlinear effect
of the out-of-plane deflection on the strain within the
sheet is taken into consideration. This “mechanically
linear” (i.e., Hookean stress—strain relationship), yet
“geometrically nonlinear” (i.e., rotationally invariant
displacement-strain relationship) approach to elastic-
ity underlies the celebrated Foppl-von Kdrman (FvK)
equations and was shown to describe quantitatively
fully developed wrinkle patterns in a variety of exam-
ples [15-22].

The essential reason that a Hookean, geometrically
nonlinear framework suffices to explain the fully devel-
oped wrinkle pattern was noted in a seminal 2003
paper of Cerda and Mahadevan (CM) [1]. Since for
very thin sheets the threshold tensile load may be
arbitrarily small—more precisely, T, ~ Y(¢)* [5],
where Y is the stretching modulus—the FT regime
T > T, is reached while the characteristic strain (T'/Y)
remains very small, such that Hookean response is a
valid approximation everywhere in the deformed sheet.
Motivated by this observation, these authors intro-
duced a model to describe the Hookean FT regime,
T. < T <Y, assuming that the formation of wrinkles
affects a strong, non-perurbative deviation of the stress
field from the planar stress. The mechanism invoked by
the CM model is strictly distinct from standard “post-
buckling” analysis, which assumes that the planar stress
is only mildly perturbed (and therefore characterizes
the buckled shape in the NT regime, T' 2 T.). In the
CM model wrinkles are assumed to expand through the
whole length L > W of the sheet, rather than being
confined to the transversely compressed zones of the
planar state, and the wrinkle wavelength A and ampli-
tude A are determined by effective rules that interweave
mechanics and geometry, yielding:
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% 1/4
A~ (B/Kog) /4 = (T> L2 (1a)

AN\/EA (1b)

where B ~ Y2, Y, and v are, respectively, the bending
and stretching moduli and Poisson ratio of the sheet,
and K.g = T/L2 is the stiffness of a tension-induced
“effective substrate” that governs the resistance to out-
of-plane deflection. Briefly, Eq. (1a) reflects a balance
between the energetic costs of bending due to trans-
verse undulations (o< B(A/A?)?), and the associated
pulling of stretched longitudes of the sheet between
the clamped edges (ox T(A/L)?). Equation (1b) follows
from a second, “transverse inextensibility” assumption:
“As the sheet wrinkles in the y direction under the
action of a small compressive stress, it satisfies the con-
dition of inextensibility.” [1]. According to this assump-
tion, wrinkles do not emerge to relax (transverse) com-
pressive stress but rather to prevent transverse strain,
€yy ~ —vT/Y (which is the transverse contraction
of the sheet in the planar, unwrinkled state of the
stretched sheet).

The CM model [1] attracted a remarkable level
of interest and provoked research activity that far
exceeded its original realm of application. Specifically,
the proposal that wrinkle patterns in thin solid bod-
ies should be considered far-from-threshold phenom-
ena and correspondingly be analyzed through a the-
oretical framework that is sharply distinct from tradi-
tional post-buckling methods inspired a multitude of
experimental and theoretical studies in ultarthin sheets
subjected to confinement by capillary effects or other
forces [23-36]. In particular, these studies provided
strong support to the reasoning underlying CM prin-
ciple (la) that determines the wrinkle wavelength: a
balance between the bending modulus and the stiff-
ness of an effective substrate, which may be an actual
foundation, or induced by a boundary load or curved
topography that imply tension perpendicularly to the
compressed axis [19,37].

Nevertheless, the validity of the second CM prin-
ciple (1b) has been challenged by observations that
the wrinkle amplitude in experiments and simulations
is substantially smaller than this prediction [4,7,8]
(even at the Hookean regime, where the amplitude is
observed to increase with applied tension [13]). Fur-
thermore, the mere rationale of the transverse inex-
tensibility assumption underlying Eq. (1b) is confound-
ing. According to this assumption, wrinkles emerge to
prevent the transverse contraction in the bulk of the
stretched sheet (i.e., away from the clumped edges)
and one would thus expect to observe wrinkling even
if the pulled edges were not clamped, in which case
the whole sheet contracts transversely. Putting it in
more formal terms, according to Hookean mechanics
a vanishing transverse strain in a sheet under longi-
tudinal tension (o,, = T) implies transverse tensile
stress (gyy = 0 = 0y, = vT), whereas a vanishing
transverse compression implies a transverse contrac-
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tive strain (oyy = 0 = €, = —vT/Y). Hence, the
CM assumption of vanishing transverse strain appears
to be at odds with the Poisson effect, which posits
that the minimization of elastic energy is attained by
eliminating transverse stress. Thus, paradoxically, for a
sheet under longitudinal tensile load T > T., the CM
Eq. (1b) implies that the elastic energy of a wrinkled
state is larger than the corresponding energy of a planar
state!

Seeking to clarify these obscure aspects of the CM
model, we revisit in this paper the Hookean FT regime,
T. < T < Y of this problem. We implement a the-
oretical framework, known as “FT analysis” [35,38],
that has been applied successfully for studying vari-
ous wrinkling problems—a systematic expansion of the
FvK energy around the singular limit of a hypothetic,
infinitely bendable sheet, which cannot accommodate
any compressive stress, and its stress field is the sub-
ject of tension field theory (TFT) [39-43]. A central
part of this approach is that the transverse (compres-
sive) stress, rather than the transverse strain, vanishes
with the bendability of the sheet, yielding a “slaving
condition” between the wrinkle amplitude and wave-
length. In contrast to previous studies, where FT analy-
sis have been used mostly for highly symmetric systems,
amenable to analytic solution of the TFT equations,
the current problem does not yield itself to analytic
solution; hence, we employ the numerical software Sur-
face Evolver for finding the energetic minimum in the
FT regime, where sheets are populated by fine, fully
developed wrinkles. Combining theoretical considera-
tions and numerical simulations, we offer a modified
version of the CM model for the Hookean FT regime in
this problem, which is compatible with the rationale of
Poisson effects, and revise accordingly its central pre-
diction, Eq. (1).

In Sect. 2 we describe the general principles of TFT
and the corresponding FT analysis of the wrinkle pat-
tern, and provide a revised version of the amplitude—
wavelength ratio (Eq. 1b) in terms of a “confine-

ment function”, ®7F TQ(I‘), that emanates from TFT
and characterizes the fraction of transverse arclength
that must be “wasted” by wrinkles in order to ensure
an asymptotically compression-free stress field in the
stretched sheet. In Sect. 3 we present results of our
numerical simulations in the FT regime, showing that
the emergence of wrinkles comes in tandem with an
intricate collapse of the transverse compressive stress,
whereby the compression level vanishes asymptotically
(as T/T, — oo while T <« Y) in comparison to the
corresponding planar state, but the spatial extent of
the transversely compressed zones is increased. These
numerical results substantiate the rationale underlying
the FT analysis and highlight similarities and differ-
ences with other tensional wrinkling phenomena. In
Sect. 4 we describe numerical simulations of a hypo-
thetic sheet with finite stretching modulus (Y > T') but
no bending modulus (B = 0), which allows us to obtain
numerically the tension field limit of a compression-free
stress field. We extract from these simulations the con-
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finement function ®7F Tz(a:) and show how it encapsu-
lates the intrinsic geometrical nonlinearity that stems
from infinitesimal out-of-plane deflections on the in-
plane transverse strain, even though the exerted lon-
gitudinal tensile strain T/Y may be arbitrarily small
(so that Hookean mechanics is valid). In Sect. 5 we
turn to discuss the various aspects of the wrinkle pat-
tern, specifically the wavelength A\, and the amplitude—
wavelength ratio. We elucidate some subtlety in evalu-
ating the dependence of the effective, tension-induced
stiffness, on the width W and length L of the sheet.
While our numerical simulations strongly support the
dependence of A on the tensile load T" and bending mod-
ulus B of the sheet, we argue that the length’s depen-
dence predicted in the CM model, Eq. (1la), may not
necessarily be valid for L > W. In Sect. 6 we conclude
with a summary of results and a discussion of open
questions.

2 Elements of far-from-threshold analysis

2.1 Overview

The various parameters and variables of the model
system, as well as the linear (Hookean) relationship
between the stress and strain tensors, o;; and gy,
respectively, and the FvK equations of mechanical equi-
librium were given in Sect. 2 of our preceding paper [5],
where we addressed the planar state and its buckling
instability. Here we follow the same conventions, shown
in the schematic Fig. 1. Specifically, we denote (-) a
dimensionless version of a physical parameter or vari-
able (-), where stresses (integrated over the thickness
t of the sheet) are normalized by the stretching modu-
lus Y, and lengths are normalized by the width W. The
problem is to find the displacement field, u = (u,, uy, ¢)
that minimizes the enthalpy

U = E — Work (2)

where the elastic energy E and Work are given by

1
E = 5/dgcdy B(V?()? + 04je4
Work =2-T - W -u,(x = L/2,y). (3)

Note that since we consider small-strain conditions
(T < 1), we could simplify the above equations in
two ways: first, mechanically—by assuming a Hookean
stress—strain relation (Eq. 2 of [5]), and second,
geometrically—by assuming a small-slope deflection
from the plane (|[V({| < 1) and correspondingly using
Mongé representation in the strain-displacement rela-
tion (Eq. 1 of [5]), and approximating the mean curva-
ture by %VQC . We also took advantage of the symmetry
x <> —x. In this FvK framework, the nonlinear response
emanates solely from the geometrically nonlinear cou-
pling of out-of-plane displacement to the strain tensor
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in the sheet, of which the most important component
for our problem is:

Eyy = Oyuy + 2(0,()* . (4)

This relation shows that even for large in-plane trans-
verse displacement, it is possible for the corresponding
strain to be arbitrarily small by tuning suitably the
deflection from the plane, namely, (9,¢)?~—29,u, =
leyy| <[Oyuyl.

Using our normalization convention, one readily finds
that the physics is governed by three dimensionless
groups:
=D E=L (5)

TW? W

T
T==
Y

The parameter T is the characteristic tensile strain
imposed on the sheet in the longitudinal axis z; the
parameter € is recognized as the inverse of the “bend-
ability” [38] (which must not be confused with the com-
ponents of the strain tensor, ¢;;); and the parameter L
is the aspect ratio. We focus on the “corner” in parame-
ter space (T'< 1,e< 1, L>>1), namely the Hookean, yet
geometrically nonlinear response of long, highly bend-
able ribbons.

In the preceding paper [5] we showed that the pla-
nar state (i.e., ¢ = 0) becomes unstable and devel-
ops a buckling pattern (with a wavelength A\, ~ W/3)
when the exerted tension exceeds a threshold value
T. ~ Y(t/W)2. Notably, when expressing the system
through the dimensionless groups (5), the threshold
occurs along a “vertical” line (e.,T) in the parameter
plane (¢, T), where

€~ 107° . (6)

for any L larger than about 4. Hence, for the rest of
this paper, we will refer to the threshold through the
value €. of the dimensionless parameter e. (A reader
who finds it more convenient to associate a threshold
with the value of the tensile load may readily convert:
T. ~ B/e.W?).

Underlying the NT analysis, which is valid for € < e,
there is an expansion:

U(T,€) = Uprane(T) + AU (7)
where Uplane(T) is the enthalpy of the planar state,
which does not depend on the bending modulus (hence
is e-independent), and AU is negative for ¢ < €. such
that |AU| ~ (e —€.)? < Uplane(T) for € < ¢.. The buck-
ling shape can be found by minimizing AU, assuming
a perturbation with infinitesimal amplitude and negli-
gible correction to the planar stress.

The basic premise of the FT framework is a descrip-
tion of the deformed sheet for a regime in the parameter
space (¢!, T) far beyond the threshold line, i.e., € < ..
This is done through an expansion of the elastic energy
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around the singular limit e — 0 for a fixed geometry (L)

and tensile load per thickness (7). For an experimenter
whose setup comprises a single sheet, i.e., fixed thick-
ness and aspect ratio L, on which the exerted tensile
load is gradually raised or lowered, thereby changing
smoothly both T" and ¢, such an approach may sound
as an obscure mathematical trickery. Nevertheless, we
shall show that this theoretical framework bears invalu-
able advantages for actual computations as well as for
conceptual understanding.

Underlying the FT analysis (for a sheet with a given

L), there is an expansion:

(](T7 6) = UTFT(T) + Usub<T7 €)
sit. Usup/Urrr — 0 as e — 0, ()

where the “dominant” contribution Urpr(T) is obtained
by solving tension field theory for a hypothetical sheet
with finite stretching modulus and zero bending mod-
ulus, and Ug,p (7', €) > 0 is a subdominant contribution
to the energy, associated with the direct energetic cost
of wrinkling: bending the film and deforming the sub-
strate. Crucially, UTFT(T) < Uplane(T'), hence—for any

finite T" and sufficiently small €, it is the FT expansion
(8), rather than its NT counterpart (7), which provides
a reliable evaluation of the energy, and whose minimiza-
tion should be used for characterizing the deformation.

The energetic hierarchy (8) entails three principles
that comprise the F'T expansion:

(a) an asymptotic, compression-free stress field;
(b) “slaving” the wrinkle amplitude to its wavelength;
(c) a “wavelength rule”.

In the rest of this section we explain these general
principles, specializing to our model system. In Sects. 3—
5 we demonstrate through numerical simulations how
these elements govern the wrinkle pattern in our prob-
lem.

2.1.1 Asymptotic compression-free stress field

In the limit ¢ — 0, the stress tensor in the wrinkled
sheet approaches a compression-free limit value. That
is, for 0 < € < €. the stress tensor can be approximated
as:

od TFT -~
oij(x; T, e) o T (x;T) 9)

where the principal components of the tensor J%TFT)
(x;T) are nonnegative everywhere in the sheet. The
approximation symbol indicates O(e?) corrections, with

B > 0. A central premise of TE'T is that the compression-
free stress field G(TFT)(X; T) is a well-defined ten-

i

sor, obtained directly through the energy minimization

procedure underlying the dominant part Uppr(7') in
Eq. (8)—allowing the deformation to have any (wrinkly,
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highly curved) out-of-plane component while ignoring
its energetic cost. This amounts to solving the force
balance equations for the stress tensor, subject to non-
negativity of its principal components.

Being independent on the small parameter €, the ten-

(TFT)
sor o,

i (x;T) characterizes the smoothly varying,
gross features of the wrinkle pattern, the most basic
of them is the extent of the wrinkled zone. The TFT
solution marks two regions:

unwrinkled :  $L—2*<|z[<3L
wrinkled :  |z|<iL—2*, (10)
where x* denotes the extent of the transversely tensed,
unwrinkled zone near each clamped edge. In the unwrin-
kled zone, near the clamped edges, UEJTFT) (x;T) is char-
acterized by two positive (i.e., tensile) principal compo-
nents; in the wrinkled, central region, only one principal
component is positive and wrinkles undulate along the
axis perpendicular to the corresponding principal direc-
tion. For setups characterized by some spatial (e.g.,
axial [28,33,38,44] or translational [32]) symmetry, this
direction is typically determined by the underlying sym-
metry, whereas in our problem the clamping of the short
edges breaks translational symmetry. Nevertheless, we
expect the deviation of the principal directions from
%, 1, correspondingly, to be at most O(T'), and since we
consider only T' < 1, we ignore such deviations when
analyzing our numerical simulations.

Notably, the actual stress field o;;(x;T,€) is not
compression-free, but rather comprises a small residual
compressive (i.e., negative) stress component in the per-
pendicular axis at the wrinkled zone (§). Nevertheless,
this residual stress component vanishes as e — 0. The
absence of residual compression from the TFT stress
field, a%TFT) (x;T), is intimately related to the fact that
agFT) (x;T) determines only the gross features of the
pattern but carries no information on the fine features,
specifically the wrinkle wavelength A. Finally, let us
note that the extent of the wrinkled zone, which is
determined by z* in Eq. (10), may depend on T and
L (even though the actual dependence turns out to be
rather weak), but not on e. This independence on € of
all TFT-derived expressions is crucial for understanding
the amplitude—wavelength “slaving” condition, which
we discuss next.

2.1.2 Amplitude—wavelength slaving condition

Since TFT ignores the energetic cost associated with
out-of-plane deflection ((x), any contraction of length
is facilitated by “wasting” the excess length through
some ((x). Specifically, this means that the transverse
strain, e,y(x), Eq. (4), “decouples” from the corre-
sponding derivative, 0yu,(x), of the transverse dis-
placement (as long as the latter is contractive, i.e., neg-
ative). On the other hand, compatibility of the TFT
stress field (RHS of Eq. 9) with the limit value of the
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stress in a Hookean sheet (LHS of Eq. 9) requires that
0r oyy =Y (eyytreg,) and T & 04y = Y (epp+vey,).
As a consequence, the TFT solution implies a “slaving”
condition for all feasible out-of-plane deflections:

1
eyy = Oytty + 5(9,0)?

— %(aygf = -0y, —vT . (11)

Let us define:

¥ = o [ @07 dy (12)
1

)2
A@) = [uy (x —V2V> o, (w VQVH (13)

where A(x) is the contractional transverse displacement
and ®2(z) is the corresponding “confinement function”,
namely, the excess length wasted by out-of-plane deflec-
tions ( normalized by the width W of the undeformed
sheet). From Eq. (11) we obtain that in the TFT solu-
tion, these are related through the relation:

OTFT? (1) = ATFT () — v T (14)

Similarly to the convergence of the stress to the

compression-free TF'T value, Eq. (9), the functions ®(x)

and A(z) of Hookean, bendable sheets converge to their

respective TFT values in the limit ¢ — 0, hence, for

€ < 1 we have that:

O(x;T,€) ~ OTFT (0T ; A(a; T, e) = ATFT (2, T)

(15)

[Note that since ®7F7 () is determined by TFT, it van-
ishes at © — z*, Eq. (10)]. Using a common wrinkling
ansatz for the out-of-plane displacement:

((z,y) = Az) - g (%) - cos <)2\ery)>

with: ¢(0) =1, (16)

where A(x) and A(x) are, respectively, the wrin-
kle “amplitude” and “wavelength”, and g(§) is a
slowly varying “envelope” (such that (¢'(¢) ~ O(€%)),
Eqgs. (12,15) imply a “slaving” of the ratio between
wrinkle amplitude and wavelength of actual sheets (0 <
€ < €.) to the TFT value (of hypothetic sheets with
e=0):

~C- T (g) | (17)

(where C' is some numerical constant, which does not
depend on € or T)).
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As long as Eq. (12) is satisfied, one may consider
UgFT) (x;T) as the stress field in a hypothetic sheet
characterized by finite stretching modulus and Hookean
stress-strain relation but zero bending modulus. We
note by passing that since we consider T'<1, the inte-
grand in Eq. (12) is 3(9,()? ~ [\/1+ (9,()? — 1], that
is the portion of the transverse arclength “wasted” by
out-of-plane undulations.

Equations (12,14) highlight two intimately related flaws
in the original Cerda—Mahadevan model [1]:

e Firstly, Eq. 2 of Ref. [1] invokes an equality of the
excess length wasted by wrinkles and the transverse
displacement of the free edges, namely:

CM assumption (I) :
w

Ju @ {\/m—l} ~ uy G%) . (x_g)

2
(or : B2 (z) = A(x)) . (18)
Contrasting this with Egs. (14,17), we see that
CM assumption ignores the transverse strain, —v7,
which exists in fact also in the fully developed,
compression-free wrinkled state.

e Secondly, Cerda—Mahadevan assumed that the trans-
verse displacement of the free edges, A(z) - W,
is identical to its counterpart in the planar state,
namely,

CM assumption (II) :

A(z)~vT . (19)
However, Eq. (14) shows that in order for wrinkles
to exist away from the clamped edges the in-plane
transverse displacement of the free edges, A(x)- W,

must exceed the Poisson value, vTW. This is cru-
cial for understanding the very mechanism by which
transverse compressive stress is relieved from the
planar state: further transverse shrinking of the pla-
nar projection of the deformed sheet (in comparison
to the planar state) is necessary in order to “make
room” for wrinkles.

2.1.3 Effective substrate and wrinkle wavelength

For given geometry and loading (i.e., given L, T'), there
are infinitely many functions ¢(x,y) that are compat-
ible with Eq. (12) and are therefore legitimate can-
didates to describe the wrinkle pattern. For a given
0 < € K €, this degeneracy is lifted by minimizing
the residual, sub-dominant contribution U,y in Eq. (8),
associated with the explicit energy cost of out-of-plane
deformations in the functional (2), subject to the slav-
ing constraint (17). One sub-dominant contribution is
the bending energy, o Br? , where Kyy R~ 85( is the

. vy’ .
curvature due to wrinkly undulations, whereas other
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contributions are often gathered into an “effective sub-
strate” term, oc Keg(? [1,19], with an effective stiffness:

Ko = Koup + Keurv + Kiens - (20)
The various parts of K.g correspond to a real substrate
attached to the sheet (Kgup, e.g., a heavy liquid bath
[16,36,45—47] or a compliant solid [48]), a curvature
imposed along the axis perpendicular to wrinkly undu-
lations (Kcupy [19,37]), and also a tensile load exerted
along that axis through the boundaries (Kiens [1]).

In order to elucidate the simultaneous effect of bend-
ing rigidity and effective substrate, it is useful to con-
sider the ansatz (16) and amplitude—wavelength slaving
(17). One may note that the bending energy becomes

~ BOTFT? /A2, whereas the effective substrate energy
is ~ Keg®TFT?)2, favoring, respectively, large and
small wavelength. Such a constrained minimization of

the sub-dominant energy yields the scaling relations:

B \4 B
A~ (Keff> and Opes ~ Vi

where the residual compressive stress in the undulatory
axis (0,es = 0yy In our problem) is obtained by treat-
ing it as the Lagrange multiplier associated with the
slaving constraint (17). As was pointed out by Cerda
and Mahadevan [1], Kiens is the only effective stiffness,
among the three terms on the RHS of Eq. (20), which is
operative in our system, making it a primary example—
along with the axisymmetric Lamé setup [49-51]—for
“tensional wrinkling” phenomena. Nonetheless, a quan-
titative evaluation of Kiens and A beyond the scal-
ing level (1,21) requires some subtle considerations, on
which we elaborate below.

In the CM model, the wrinkle amplitude is assumed to
vary smoothly between the two clamped edges (where
A = 0), and the tension-induced stiffness is therefore
estimated as Kiens ~ 1/ L2, corresponding to the resis-
tance of a stretched string to deflection (see Eq. (1a)
and the subsequent paragraph). More recently [19] it
was pointed out that a quantitative estimate of the
tension-induced stiffness must take into consideration
the actual gradient of the TFT confinement function

(21)

®TFT?(3), Eq. (14), so that a more accurate expres-
sion for the tension-induced stiffness is:

TFT TFT
i () _ P (LC)
Keens () ~ @) b(x) = TFT (7|’ (22)
where afF T(z) is the tensile component of the TFT

TFT

stress tensor (a‘ ~T in our problem), i.e., along the

wrinkles. A spatially varying stiffness may give rise to
a spatially varying wavelength A(z) [19], which requires
the proliferation of localized defects, where wrinkles
are “born” or “terminate”. However, if the necessary
defects are too costly energetically [17,36,52], the pat-
tern may consist of a spatially uniform wavelength,
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determined through a global balance of bending and
effective substrate energies, whereby an effective stiff-
ness Kiens is obtained by integrating over the excess
energy associated with the variation of the wrinkle
amplitude along the tension direction:

1y g
B Nd L AT ety
/\%01<K > i Kiens =T 12 .
tens f 2; —x d:]jCI)TFT (,’I,‘)2
2
(23)

where z* marks the end of the wrinkled zone, Eq. (10),
and the numerical prefactor C; is determined by the
envelope function g(y/W') of the wrinkle ansatz (16).

Even if the TFT confinement function ®7#7(z) is
known analytically, evaluation of the integral for Kiens
in (23) is hindered by a logarithmic divergence, since
®TFT (z) ~ \/|lz — (£ — 2*)|, near the end of the wrin-
kled zone [25,38]. A similar difficulty is in axial geome-
tries [17,53], where it was found that regularization
gives rise to a smooth wrinkle “foot” (i.e., a “boundary
layer” around z = (3L — 2*)). In Sect. 5 we will dis-
cuss a similar effect found upon applying Eq. (23) to
our problem.

3 Asymptotic collapse of transverse
compression

Similarly to Ref. [5], we employ Surface Evolver
(SE) for numerical simulations, focusing now on the
FT regime, namely, sheets with finite, small bend-
ing rigidity, such that 0 < e¢ < €. A characteris-
tic example of such a fully developed wrinkle pat-
tern is shown in Fig. 1B. In our simulations we
implement an equilateral-triangular mesh of density
(total area/cell area) of 6.95 x 10°, and use the SE
built-in method “linear_elastic” for computing the in-
plane strain energy, and the methods “star_perp_sq
_mean_curvature” and “star_gauss_curvature” for com-
puting the bending energy. We consider a sheet with a
relatively large length-to-width ratio, L = 8, Poisson
ratio v = 0.4, and thickness t/W = [5x 1076 4 x 1075],
and vary the exerted tensile load 7.

Figure 2a shows the profile of the transverse stress
at the midline o, (x,y = 0), for a sequence of values
of € ~ (9.3 x 107*,0.0037,0.015) - ¢.. The collapse of
transverse compression upon decreasing e is featured
by three prominent motifs:

e First, the maximal level of transverse compression,
max |0y, (z,y = 0)|, realized at a distance @, q, from
each of the clamped edges, decreases substantially
from the planar value (=~ 0.005 - T'). Furthermore,
it vanishes upon decreasing e, max|o,,| ~ el/4
(Fig. 2B).
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Fig. 2 A The transverse component of the stress tensor
along the midline, oyy(z,y = 0) for T = 0.01. Shown here
are profiles of the planar stress (which is stable when € > ¢.)
and the stress in a wrinkled state for a few values of the
bendability parameters (¢/e. = 9.3x107%,0.0037,0.015). As
the bendability increases (¢ — 0) we observe a spatially non-
uniform collapse of the compressive stress. B The depen-
dence of the maximal compression (maxz{—/{(cyy(x,y))y})
on e vanishes at a rate proportional to €'/%. C The extent
of the compressive zone, d = |Tmaz — x*|, is evaluated
as the distance between the points of maximal transverse
compression (z = 1L — Tmas) and zero transverse stress
(x = L — z*). The value of d in the planar state is shown
in the dashed horizontal line
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Fig. 3 A While the compression level in the wrinkled state
vanishes asymptotically as € — 0, the transversely com-
pressed zones get somewhat closer to the clamped edges.
We plot here the extent, z*(¢), of the transversely tensile
zone next to each of the clamped edges (i.e., the distance
from the clamped edge at which oy, (z,y = 0) changes sign
for given T = 0.01). The red circle shows the asymptotic
value, z*, extracted from the TFT simulations in Sect. 4
of a sheet with no bending resistance, and the dashed hori-
zontal line indicates the corresponding length in the planar
stress. Inset: x*(e) converges to the TFT value z* with a

residual ~ ¢'/3

e Second, the longitudinal extent of the zone with sig-
nificant transverse compression also decreases sub-
stantially in comparison to the planar state. One
way to quantify this effect is by considering the dis-
tance d = |Tpae — 2|, between the points at which
the transverse stress becomes negative and reaches
its maximal negative value. Figure 2C shows that
d too vanishes, albeit at a much slower rate than
max |0y, |, namely: d ~ €'/9.

e Third, as is shown in Fig. 3, the longitudinal extent
z* of the transversely tensile zones next to the
clamped edges, is smaller than its counterpart in the
planar state, approaching a finite value as € — 0.

A central result of our SE simulations is presented in
Fig. 4A, where we plot the energy Ul(e) (for T = 0.01)
as a function of e. In accord with the scenario described
by Eq. (8), this plot shows that the energy is reduced
from the value Upjane of the planar state (dashed hor-
izontal line), such that the energy gain, Upgne — U (€),
associated with the formation of a fully developed wrin-
kle pattern, approaches a finite value as ¢ — 0, which
we call Upigne — UTET attributing it to the preva-
lence of tension field theory in the high bendability
limit, ¢ — 0. Assuming that the sub-dominant energy,
Usp = Ule) — UTFT | is determined by a work of
a virtual compressive load, whose magnitude is equal
to the residual compressive stress ~ max|oy,|, that
exists in a zone of length d, one may expect that
Usup ~ d - max |o,,| ~ ¢3/36 (where we used the scal-
ing relations extracted from out simulations in pan-
els B and C of Fig. 2.) This is rather close to the
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Fig. 4 A The energy U (e) of the wrinkled state for a given
tensile load, 7' = 0.01, and several values of €. The red circle
indicates the asymptotic energy UT "7 extracted from the
TFT simulations in Sect. 4, and the dashed horizontal line
is the energy Upian, of the corresponding planar stress. B
the difference U(e) — UTTT, plotted versus e, indicates that
the subdominant energy Usgyp ~ el/3

scaling extracted from direct evaluation of the energy,
Usup ~ €'/ (Fig. 4B).

Taken together, these numerical observations rever-
berate the universal scenario outlined in Sect. 2.1
for NT-FT transition between the parameter regime,
€ < €., which is governed by the transversely com-
pressed planar stress, and the regime, ¢ < €., where
the fully developed wrinkle pattern enables the stress
field to approach a distinct, compression-free profile,
thereby entailing a finite, e-independent energetic gain,
Uplane - UTFT~

4 Tension field theory: the limit of
compression-free stress field

The observations described in the preceding section
provide strong evidence to the prevalence of an asymp-
totic, compression-free stress field, which underlies
key features of the fully developed wrinkle pattern.
Nonetheless, such a stress field, which is the subject
of TFT, can be realized only by a hypothetical sheet
with no bending rigidity and hence cannot be attained
by simulating a physical Hookean sheet (i.e., € > 0), no
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matter how small € is. In this section we seek to resolve
this hurdle through SE simulations of precisely such a
hypothetical sheet, free of bending rigidity, from which
we extract directly the asymptotic stress field and the
constraints imposed on the wrinkle pattern.

For a sheet with no bending rigidity, but finite
stretching modulus Y, only tensile stress can be accom-
modated at mechanical equilibrium. Furthermore, since
curvature comes at no energetic cost, even an infinites-
imal amount of compression is fully relaxed by energy-
free, out-of-plane undulations. The only (non-physical)
mechanism limiting the scale of such undulations is the
mesh size used in the simulation. Hence, as the mesh is
made denser, the shape appears to be rougher. Never-
theless, we show in Appendix that the increasing cor-
rugation does not affect the macro-scale features of the
deformation, nor does it affect the stress components,
all of which appear to converge to well-defined values,
independent on the mesh density.

Our SE simulations of the TFT solution enable us
to compute directly the dominant energy, UTF7T in
Eq. (8), denoted by red circle in Fig. 4, rather than by
extrapolating the limit value, UT*T = limU(e — 0)
from results of SE simulation at finite values of e.
This is crucial for our ability to compute the scaling,
U(e)—UTFT ~ €'/3 of the subdominant energy (inset of
Fig. 4), which we discussed above, as well as the asymp-
totic extent of the wrinkled zone in the sheet (red circle
in Fig. 3) and how it is approached as ¢ — 0 (inset of
Fig. 3).

The most valuable reward for solving numerically the
compression-free stress is a direct computation of the
conjugated excess length, namely the confinement func-
tion, ®7F Tz(m), as well as the transverse contraction
of the planar projection, ATF7 (z), from Eqs. (12) and
(13), respectively. Let us elaborate on several important
insights that are revealed in Fig. 5.

e The mere existence of a well-defined confinement
function @TFTQ(x)(T, L) (red curve in Fig. 5A)
proves the basic premise of the FT framework
underlying the CM model (Eq. 1b). Namely, for
a given geometry (ie., L), the exerted load T
determines the transverse arclength wasted by out-
of-plane deflections, thereby enforcing a finite, e-
independent ratio between the asymptotically van-
ishing wavelength and amplitude of wrinkles. The
numerically evaluated confinement function in Fig. 5
is analogous to similar constructs in analytically
tractable models [32,34,38,44].

e As we argued in Sect. 2.1.2, the collapse of trans-
verse (compressive) stress does not require an equal-
ity of ®*(z) (12) and A(z) (13), which was pos-
tulated in the original CM model [1], and would
have implied a vanishing transverse strain. Instead,
collapse of transverse compression requires ®2(z) —
A(x) = vT, Egs. (14,15). The apparent equality
of the red curves in Fig. 5A, B supports Eq. (14),
thereby proving that underlying the fully developed
wrinkle pattern there is a collapse of transverse com-

Page 9 of 16 94

pression (stress) rather than vanishing transverse
strain.

e An important property of TFT, revealed by Fig. 5D,
is that ATFT(z) ~ T*5 > vT. Namely, the pla-
nar projection of the deformed sheet is narrower
than its counterpart in the planar state (which is
in turn directly determined by the Poisson effect).
Furthermore, the observation that the transverse
contraction ATFT(z), as well as the confinement

function ®7F T2(m), are not proportional to 7', indi-
cates that TFT is a nonlinear theory of the in-
plane strains. This is notable, since TFT has a sim-
ilar formal structure to the planar state solution,
which is obviously linear in T. Namely, both the-
ories amount to minimizing an energy functional,
expressed solely through a quadratic (Hookean)
form of in-plane displacement field (ug,u,), where
TFT is supplemented by the compression-free con-
straint (Sect. 2.1.1). The observation that ATF7 (z)

is not proportional to T" points to the obscure way by
which the compression-free constraint on the TFT
stress field (9) embodies the geometrical nonlinear-
ity (4), even though the actual out-of-plane displace-
ment ((x,y) is absent from the TFT calculation.

e The rest of the curves in Figs. 5A, B (i.e., other
than the red solid) show the analogous quantities,
extracted from the finite-e¢ SE simulations that were
described in the preceding section. In accord with
Figs. 2, 3 and 4, which indicated convergence to
the TFT limit as ¢ — 0, we observe that the con-
straints imposed by TFT on the transverse contrac-
tion and wasted arclength are reached asymptoti-
cally by physical sheets upon increasing their bend-
ability, thereby proving Eq. (15). Figure 5D suggests
that the convergence of these features to the TFT
limit values is o €!/2, somewhat more rapidly than
the convergence of the stress, energy, and the longi-
tudinal extent of the wrinkled zone to their respec-
tive TFT values.

5 The wrinkle pattern

Having established the existence of an asymptotic,
compression-free stress field, Eq. (9), and the conju-
gate amplitude-wavelength slaving constraint, Eq. (14),
imposed by TFT, we are now at a position to study the
fine features of the wrinkle pattern, following the pre-
scription laid out in Sect. 2.1.3. Aiming to examine the
validity of the CM scaling law, Eq. (1), we start by
comparing our numerical observation with the ansatz
(16), and then proceed to address the wavelength .
As we will argue below, our SE simulations enable us
to analyze how A varies with bendability and tensile
load (i.e., e and T), but not the manner in which the
wrinkle pattern varies with L, a task that requires sub-
stantial computational power that is beyond the scope
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Fig. 5 A The confinement function ®*(x) for T = 0.01,
extracted by computing the excess length [RHS of Eq. (12)]
in the SE simulations. The red curve is extracted from the
TFT solution (i.e., a sheet with no bending resistance),
and the other curves are extracted from the simulations
described in Sect. 3 for several values of 0 < € < ¢.. B
The transverse contraction of the planar projection, A(z),
extracted by evaluating the RHS of Eq. (13), from the same
simulations as in panel A. We subtract vT from the com-
puted A(z), in order to allow easy comparison with the
computed confinement function ®2(x) in A, and thereby
examining the compression-free constraint, Eq. (14), in the

of the current paper. A consequence of this shortcoming
is that we cannot address directly the scaling relation
A ~ L'/2, predicted in the CM model (1a). We explain
the rationale of this prediction from the perspective of
the FT framework and discuss how future simulations
of sheets with L > 1 may support or revoke this pre-
dicted scaling.

5.1 Wrinkling ansatz and the amplitude—wavelength
slaving condition

Figure 6A shows the transverse profile of the deformed
sheet at the center, ((x = 0,y), for a given value of
T = 0.01 and several values of € < ¢e.. (Note that ampli-
tudes are not up-to-scale, in order to make the profiles
fit into a single figure). Two noteworthy features are:
(i) the characteristic wavelength increases with ¢; (ii)
the wrinkle amplitude is modulated across the width of
the sheet, reaching a maximal value at the centerline
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TFT limit (red curves, ¢ = 0), and how this condition is
approached as ¢ — 0. C The computed value of the confine-
ment function at the center of the sheet, ®*(z = 0), plot-
ted versus €, exhibits convergence to the value 77 TZ(m =
0) of TFT solution (red dot). Inset: the convergence to
@TFTQ(JS = 0) is characterized by a residual, ~ ¢'/2. D The
transverse contraction of the planar projection at the cen-
ter of the sheet in the TFT solution, ATF7 (2 = 0), plotted
versus T, exhibits a nonlinear dependence on T. For refer-
ence, we show also the analogous quantity extracted from
the planar state [5], which (for sufficiently large T') is given
by the Poisson value vT

(y = 0). The transverse modulation of the amplitude
is further highlighted in Fig. 6B, where we re-plot the
wrinkle profiles, normalizing each of them by its maxi-
mal amplitude, ¢(z =0,y = 0).

The numerical finding shown in Fig. 6B supports the
wrinkle ansatz (16), suggesting that: (i) the transversely
confined zone in the sheet does not extend throughout
the whole width, but is instead limited to the central
half of the width; (ii) the transverse undulations of the
wrinkle amplitude reflect a slow convergence to an e-
independent envelope. More precisely:

() = 8777 (@) - gy) cos( 32 - (1-+ O(e))

wheres )~ (Is] - ). (24)

Here, O(y) is the Heaviside function, and £ is some pos-
itive constant, whose actual value is beyond the scope
of this paper. Notwithstanding its asymptotic conver-
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Fig. 6 A Transverse profile of the wrinkles, measured at
the center of the sheet, ((z = 0,y) for T = 0.01 and sev-
eral values of €. The profiles are made discernible by shift-
ing them vertically, and multiplying their amplitude by an
arbitrary factor. B Normalizing each profile by the maximal
amplitude, ¢(0,0), the wrinkly profiles appear to be confined
to the central half of the sheet width, and be enveloped by
a slowly varying function g(y/W') that becomes constant at
ly| < %W as € — 0. C Plotting the amplitude—wavelength
ratio (extracted from their respective values at the center)
versus €, for a given value of T = 0.01, we find that the
ratio is not affected by €, in accordance with the FT frame-
work. D Dividing the amplitude-wavelength ratio by the
TFT confinement function, CI>TFT2(x = 0) (Fig. 5), we find
a weak dependence on T. Here the amplitude A = ¢(0,0)
and corresponding wavelength A are determined at the cen-
ter of the sheet. This discrepancy with the FT framework
may be attributed to the modulations of the amplitude.
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gence to a Heaviside function, the spatial variation of
the envelope function g(y) at any finite € is smooth
in comparison to superimposed wrinkles. For infinites-
imal €, the envelope Eq. (24) describes an amplitude
that does not vary along the transverse direction, and
its discontinuity at y = £W/2 suggests that only the
central portion of the sheet, |y| < W/2, is subject to
residual compression.

In Fig. 6C we plot the amplitude-wavelength ratio
(which we determine for each profile through the largest
amplitude, ¢(0,0)), for the various profiles in Fig. 6A).
In accordance with the basic paradigm of the FT frame-
work (Sect. 2.1.2), we find that this ratio is essentially
independent on the bending modulus of the sheet (i.e.,
€). Furthermore, dividing the amplitude-wavelength
ratio at a given T by <I>TFT2(:E = 07T), and plotting
the result versus T (Fig. 6D), we find a good agree-
ment with the amplitude-wavelength slaving condition
(17) that we obtained in Sect. 2.1.2. (The slight devia-
tion from constancy, ~ 7006 may be attributed to the
modulation of the amplitude across the width, and to
the fact that we determine the amplitude—wavelength
ratio only through the central wrinkle). Notably, the
nonlinear dependence of (A/A\)? on T even though
T < 1 and the simulated sheets are Hookean is in
clear contradiction to Eq. (1b) of the CM model. Thus,
Fig. 6D highlights the two intimately related drawbacks
in Eq. (1b), which we mentioned already in our discus-
sion in Sect. 2.1.2:

(i) The amplitude-wavelength ratio is determined by
the collapse of transverse compressive stress, hence
by the TFT solution, and not by a vanishing trans-
verse strain.

(ii) The amplitude-wavelength ratio is nonlinear func-
tion of the exerted strain T even for T' < 1, thereby
reflecting the geometrically nonlinear nature of
TFT.

5.2 How do bending rigidity and tension affect the
wavelength ?

In order to analyze the wrinkle wavelength A, it is useful
to express the prediction (1a) of the CM model using

the three dimensionless groups, €, T, and L:

A B
CM prediction (dimensionless) : — ~ /4. [1/2

(25)

Notably, the CM model predicts that A\ depends on the
ratio between the bending modulus and exerted ten-
sile load (through €), as well as the rectangular shape
(through L), but is indifferent to the exerted tensile
strain 7. Recalling our discussion in Sect. 2.1.3, we
note that the dependence of A on e follows directly
from Eq. (23), since the integral expression for Kiens
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Fig. 7 A The wavelength A (measured at the center of the
sheet) for a fixed value of T = 0.01 and a few values of €
(log-log plot) exhibits the scaling A ~ ¢'/* predicted by the
CM model (Eq. 25). B Plotting e /%X versus 7', we find
a nearly constant value, indicating that the exerted tensile
strain T does not affect the wavelength

is fully determined by the TFT confinement func-
tion, ®7F Tz(a:), which—being a product of TFT—can
depend only on 7" and L. However, the dependence
of A on T and L may be more complicated, since—
as we have seen already in analyzing the amplitude—
wavelength ratio—the geometrical nonlinearity under-
lying TFT may impart a nonlinear dependence of
®TFT (z) on these parameters. Being limited to a single
value of L = 8, our SE simulations enable us to address
the dependencies of A on € and T', but not on L (on
which we will comment in the following subsection).
Figure 7 shows the wavelength A, extracted from our
SE simulations. For consistency, we determine \ in each
wrinkled sheet as |y —y~|, where y™,y~ are the clos-
est points to the center at which the deflection van-
ishes, i.e., ((z = 0,y*) = 0. In Fig. 7a we focus on a
single value of T = 0.01 and plot A versus e, finding
an excellent agreement with the CM prediction (25). In
Fig 7B we plot - e~'/4 versus T and find no apparent
dependence on T, again in excellent agreement with the
prediction of the CM model. This finding indicates that
although the magnitude of the TFT confinement func-

tion ®TF T2(:c) is a nonlinear function of the exerted
tensile strain, 7', its spatial variation along the sheet is
barely affected by T

Attempting to obtain a quantitative test for the pre-
diction (23), one may naturally seek to employ the con-
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finement function ®7F Tz(x) found in our numerical
solution of the TFT in Sect. 4 (Fig. 5C, D) for sev-
eral values of T', and evaluate the corresponding inte-
grals that define Ki.,s. However, as we indicated in
Sect. 2.1.3 this scheme is readily stymied due to the log-
arithmic divergence of the integral in the numerator of

Kiens. (Note that, as is evident in Fig. 5A, <I>TFT2(JC) o
T — (:I:%L — %), at the vicinity of the boundary of
the transversely confined zone, yielding &7 T/(a:)2 o
[v — (£5L — z*)]~!). This divergence indicates that
another physical effect, which is not accounted for in the
balance of bending and stretching energies underlying
Eq. (23), becomes significant at |z| < 2L —2*. A simi-
lar phenomenon has been found in tensional wrinkling
of an annular sheet (the Lamé problem) [38], where
numerical simulations showed that divergence is inhib-
ited through the formation of a partially compressed
boundary layer (whose width decreases slowly with ¢)
[17], although another regularization mechanism that
involves wrinkle cascades has also been proposed [25].
While a suitably regularized calculation of the integral
in Eq. (23) is beyond the scope of our paper, we note
that the solution of the Lamé setup suggests that suffi-
ciently far from threshold the wavelength retains the
scaling A ~ €/* as if the integral in Eq. (23) was
convergent (albeit with a numerical prefactor whose
evaluation requires regularization). Consequently, since
our numerical results support the scaling A ~ e!/4
(Fig. TA), we conclude that both integrals in Eq. (23)
are dominated by the bulk of the wrinkled region rather
than by the vicinity of its boundaries.

5.3 How does the sheet’s length affect the
wavelength?

We have seen above that the dependence of the wrinkle
wavelength on the elastic moduli (B and Y') and the
exerted tensile load (T'), expressed through the dimen-
sionless parameters € and T', agrees very well with the
prediction of the CM model (Egs. 1b, 25). While our
simulations do not allow us to test directly the depen-
dence of A\ on L, we elaborate here on the rationale of
the CM prediction A ~ L2, from the perspective of the
FT analysis, and discuss the asymptotic limit L. — oo
in the Hookean FT regime (assuming fixed values of
T < 1and e < e.).

Recalling that the tensional stiffness Kiens in Eq. (23)
is a product of TFT and thus independent on €, and
assuming that both integrals in the denominator and
the numerator are dominated by the bulk of the trans-
versely confined zone, we consider the “asymptotically
long” limit, L > 1. We may envision (at least) two dif-
ferent scenarios for the outcome of TF'T in this limit:

e A spatially uniform confinement:

(I)TFT(:E)Q ~ ia

cI)TFT/(I‘)Q ~ ia—Z (26)



Eur. Phys. J. E (2021)44:94

with an exponent o > 0.
e A spatially non-uniform confinement:

Scenario B :
(PTFT({E)Q -~ Co(T) B f~j/W)2 <C-W
ClT)  E>C.W
(I)TFT’(x)z - Ly T)f/(f/W) r<C-W
0 r>C-W

Scenario A
(27)

where & = [z + (3L — 2*)| is the distance from the
end of the transversely confined zone, C is some
constant, Co(T) and C,(T) vanish as T — 0, and
f(€) is some function such that f’(£)? is integrable
as & — 0.

The rationale underlying scenario A, which echoes
an assumption made in the CM model, is that the
stretched sheet “feels” the clamping at the short edges
everywhere in the wrinkled zone, even though the sheet
is arbitrarily long. The rationale underlying scenario B
is that for L > 1, the confinement varies spatially only
in a region close to the clamped edges, whose extent
is indifferent to the length of the sheet (and hence
must scale with the width W). While inspection of our
numerical TFT solution (Fig. 5A) seems to support sce-
nario A, we emphasize that we cannot rule out scenario
B, or even more complicated scenarios, since our simula-
tions do not explore sufficiently broad interval of values
of L.

Assuming scenario A, one readily note that Eq. (23)
yields Kiens ~ T/L?, whereas model B yields Kieps ~
T /LW . Consequently, we find that:

Scenario A : \/W ~ L/?
Scenario B: A/W ~ L'/4 (28)

Once again we find that the nature of the confinement

function ®7F Tz(a:), which is derived from the geomet-
rically nonlinear TFT and is strictly distinct from the
planar state, may affect a noticeable departure from the
prediction of the CM model. Numerical simulations of
sufficiently long sheets will help to elucidate the length
dependence of the wrinkle wavelength.

While the confinement function is derived from TFT,
which totally ignores the bending rigidity of the sheet,
the wrinkling of physical, highly bendable sheet (i.e.,
0 < € < €.), cannot be described by any of the scenarios
in Eq. (28) for arbitrarily long sheets. To see this, note
that A is trivially bounded by the sheet width W. Thus,
for any € > 0 there exists a maximal length:

Scenario A : Ly —1/2

Scenario B: L,az

(€) ~€
() ~e ! (29)
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(A)
Near-threshold
A — const & buckling
N
Planar
Far-from-threshold
A = 0 & wrinkling
(0] o1
E_l
(B)
Far-from-threshold
A — 0 & wrinkling
N
Near-threshold
A — const & buckling
Planar
=
o W/t

Fig. 8 A A “phase diagram” (for a fixed, sufficiently long
I~/), spanned by the bendability e ' and exerted tensile
strain 7. The threshold occurs at a vertical line, ¢ = €.
(Eq. 6). Close to the threshold line, ¢ < e. (NT regime),
the sheet exhibits a buckling pattern with a wavelength
A = W/3, localized in the compressed zones of the pla-
nar stress (see Ref. [5]). For e < e. (FT regime), the pat-
tern consists of wrinkles (wavelength A ~ We'/?), which
expand throughout the whole sheet. B Re-plotting the
above phase diagram where the axes are now the inverse
normalized thickness W/t and T', the threshold occurs at a
curve T, ~ (t/W)?

such that for a sheet longer than L., (€) - W, the ener-
getically favorable deformation is no longer a parallel
array of wrinkles that occupy most of the sheet. The
nature of the deformation in such highly bendable but
“superlong” sheets (¢ < €., L > L(¢€)) is an interesting
question for future studies, even though it may not be
easily accessible for experiments.

6 Discussion

6.1 Phase diagram
Figure 8 delineates a schematic “phase diagram” of

the stretched Hookean sheet, combining primary lessons
from our analysis in Ref. [5] and the current paper. Con-

@ Springer



94 Page 14 of 16

sidering a given, large value of L, the diagram we plot
in Fig. 8A is spanned by the two dimensionless param-
eters, ¢! and T, Eq. (5). Below the vertical thresh-
old line, € > €., Eq. (6), the planar state is stable. (In
Fig. 8B we re-plot the same diagram using as two inde-
pendent parameters T' and W/t, in which the threshold
is a curve T, ~ (t/W)?). For € < €, our analysis in Ref.
[5] revealed that the deformation is characterized by a
buckling mode, whose wavelength is independent on €
(A = W/3), and whose spatial extent is limited to the
transversely compressed zone of the planar state. Such
a deformation is properly described by standard NT
approach—Ilinear stability analysis and post-buckling
methods. When € < €., the deformation becomes a
wrinkle pattern which expands throughout most of the
sheet, with a wavelength that vanishes as A ~ e'/%.
Although we try to keep the phase diagram, Fig. 8,
simple, we note that our discussion in Sect. 5.3 suggests
that yet another curve should be added at e ! ~ L or

e~ VI (see Eq. 29). In Fig. 8A such a curve is a ver-
tical line, to the right of which the deformation pattern
is no longer described as parallel wrinkle that extend
uniformly between the clamped edges of the sheet.

While studies of other model systems revealed a pro-
nounced variation of the deformation between distinct
wrinkle patterns in the respective NT and FT regimes,
the stretched rectangular sheet is exceptional, exhibit-
ing a transition from a regular buckling mode to fully
developed wrinkle pattern. Notably, this dramatic mor-
phological transition is driven by a minute energetic
gain. This has been hinted already in Ref. [5], where
we showed that the maximal transverse compression
in the planar state is barely a half percentile of the
exerted longitudinal tensile load. Figure 4 shows that
the energetic gain of the TFT limit (which provides a
lower bound for the energy of the fully wrinkled state)
may be a tiny fraction of the elastic energy of the cor-
responding (unstable) planar state.

6.2 Summary and open questions

The main accomplishment of the current paper is a
numerical demonstration that the fully developed wrin-
kle pattern observed upon stretching a thin rectangular
sheet is described by the FT framework (Sect. 2)—a sin-
gular expansion of the Hookean elastic energy around
the TFT solution where the small parameter is the
inverse bendability e—similarly to other problems in
which such a description is amenable for analytic cal-
culations. In addition to elucidating that the formation
of wrinkles is governed by the collapse of transverse
compressive stress, rather than transverse strain, our
SE simulations further elucidate the geometrically non-
linear nature of the fully developed wrinkle pattern. In
Eq. (1b) of the CM model, the geometrical nonlinearity
has been incorporated by invoking that the amplitude—
wavelength ratio is independent on the bending modu-
lus (i.e., the dimensionless parameter ¢). However, our
analysis shows that this e-independent ratio, given by
the confinement function derived from the compression-
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free TFT solution, is itself a nonlinear function of the
exerted tensile strain T even for arbitrarily small 7.
This observation illuminates yet another subtle mani-
festation of the geometrical nonlinearity (Eq. 4) under-
lying F'T analysis.

The analysis we presented here is based on numeri-
cal simulations, yielding numerous observations on the
TFT solution (¢ = 0) and on the wrinkle pattern
(0 < € < €¢). One may wish to explain these observa-
tions by developing and analyzing a simplified, analyt-
ically tractable model. For the benefit of a motivated
reader, we close by highlighting some of these unex-
plained observations.

6.2.1 TFT solution

e We found that TFT yields a nonlinear dependence
of macroscale features on the exerted tensile strain,
most notably the transverse contraction of the pla-
nar projection, ATET  T4/5 We interpreted this
finding as a signature of the geometrically nonlin-
ear nature of TFT, even though—similarly to the
planar state (which predicts linear dependence on

T)—it depends explicitly only on the in-plane dis-
placement field.
Is it possible to obtain the exponent % analytically ¢

e Our numerical solution of TFT is limited to a sin-
gle length (L = 8), hence hampering our ability to
make predictions for L > 1 even at a qualitative
level (e.g., discerning between scenarios A and B in
Sect. 5.3).

It is possible to predict the qualitative nature of the
TFT solution for L > 1 without simulating long
sheets ?

e In our analysis we employed a semi-one-dimensional
(1D) approach, whereby we extracted from simula-
tions central features, such as the confinement func-
tion ®%(z) and the planar transverse contraction
A(z), by integrating over the width of the sheet.
However, the observed wrinkle patterns (Fig. 6) hint
at a nontrivial spatial structure of the TF'T solution,
whereby transverse confinement is restricted to the
central half of the sheet.

What gives rise to an apparent half-width rule ?

6.2.2 Wrinkle pattern

e In our SE simulations we found various power laws
that characterize the convergence of the residual
(transverse compressive) stress, as well as various
macroscale features of the wrinkle pattern in physi-
cal, highly bendable sheets (0 <e<le,), to the respec-
tive TFT values.

Is it possible to obtain analytic expressions for the
exponents in the power laws in Figs. 2B, C, 3, 4 and
5C?

e Our semi-1D analysis falls short of accounting for
the slowly varying envelope that modulates the
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Fig. 9 Various macroscale properties indicate convergence
of our TFT simulations (of a Hookean sheet with no bend-
ing rigidity) upon increasing the mesh density p, beyond
the standard value pﬁf) = 6.95 x 10° used in most of the
simulation: (A) the transverse contraction AT"7 (z), B the
energy UTTT C the distance z* of the transversely con-
tracted zone from the clamped edges. In both B and C, the
differences (|z* (pn) —2* (p” | and [UTFT (pn) —UTFT (o)),
respectively) are much smaller than the corresponding dif-
ferences from the values of the respective observables for
sheets with finite bending rigidity (0 < e < 1)

wrinkle amplitude along the transverse axis (Fig. 6).
Although amplitude modulations induced by geo-
metrical frustration have been observed in more
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symmetric setups [36], our problem appears to be
different, since clamping the pulled edges violates
transnational symmetry and may thus cause a non-
periodic pattern.

Is it possible to predict how non-symmetric boundary

conditions affect non-periodicity of wrinkle patterns
?
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Appendix: TFT simulations

In simulating a sheet with no bending rigidity, any compres-
sion gives rise to an infinitely corrugated shape, limited only
by the mesh size. In order to check that these simulations
provide the TF'T solution reliably, we performed simulations
with a sequence of mesh densities, starting with the “base”
density pﬁf’) = 6.95 x 10°, used in most of our simulations,
then increasing the density to 4p5?) and to 16p§10). Figure 9
shows the numerical values of several macroscale features,
which are predictable by TFT, for these mesh densities val-
ues. The variation among these different meshes is a tiny
fraction (< 107%) of the characteristic differences between
the TFT value and the finite-e simulations, from which we
extract the scaling laws in Figs. 3 and 4.
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