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Abstract

Misconfiguration is a major cause of system failures. Prior so-
lutions focus on detecting invalid settings that are introduced
by user mistakes. But another type of misconfiguration that
continues to haunt production services is specious configu-
ration—settings that are valid but lead to unexpectedly poor
performance in production. Such misconfigurations are subtle,
so even careful administrators may fail to foresee them.

We propose a tool called Violet to detect specious configu-
ration. We realize the crux of specious configuration is that
it causes some slow code path to be executed, but the bad
performance effect cannot always be triggered. Violet thus
takes a novel approach that uses selective symbolic execu-
tion to systematically reason about the performance effect of
configuration parameters, their combination effect, and the
relationship with input. Violet outputs a performance impact
model for the automatic detection of poor configuration set-
tings. We applied Violet on four large systems. To evaluate
the effectiveness of Violet, we collect 17 real-world specious
configuration cases. Violet detects 15 of them. Violet also
identifies 11 unknown specious configurations.

1 Introduction

Software is increasingly customizable. A mature program
typically exposes hundreds of parameters for users to control
scheduling, caching, efc. With such high customizability, it
is difficult to properly configure a system today, even for
trained administrators. Indeed, numerous studies and real-
world failures have repeatedly shown that misconfiguration is
a major cause of production system failures [32,43,45,60].
The severity of the misconfiguration problem has motivated
solutions to detect [35,61,63], test [37,57], diagnose [19,21,
50,52,54] and fix [39,48, 53] misconfiguration. While these
efforts help reduce misconfiguration, the problem remains
vexing [1-3,5-10,17,18,31]. They focus on catching invalid
settings introduced due to user mistakes. But another type of
misconfiguration that haunts production systems, yet not well
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Figure 1: Value space of a configuration

addressed, is valid but poor configuration. For simplicity, we
call them specious configuration.

Specious configuration has a broad scope. In this paper,
we focus on—and use the term to refer to—valid settings
that lead to extremely poor performance, which is a common
manifestation in production incidents. This scope of focus is
different from suboptimal configuration (Figure 1). The latter
happens when a setting does not yield the best performance,
but the performance is still acceptable. This scope is also
complementary to efforts on automated configuration perfor-
mance tuning [33,51, 62, 64] to search for the best setting.

Take a real-world specious configuration that caused a ser-
vice outage as an example. An engineer changed the request
tracing code from a hard-coded policy (always tracing) to be
configurable with a tracing rate parameter. This rate parame-
ter was initially set to 0.0. To retain the same tracing behavior
as before, she decided to change the parameter to 1.0. Based
on her understanding, this change will turn on the tracing for
all message requests that come from infernal users. But unfor-
tunately, there was a subtle caveat in the code that caused the
actual effect to be turning on tracing for all requests from all
users, which quickly overloaded all web servers as well as the
backend databases, leading to a catastrophic service outage.
Interestingly, before rolling out this specious configuration to
production, the change in fact went through a canary phase
on a small-scale testing cluster, which unfortunately did not
manifest dramatic failure symptoms.

Empirical evidence suggests that specious configuration
like the above is prevalent. Yin et al. [60] shows that miscon-
figuration in the form of legal parameters has similar or higher
percentage than illegal parameters. Facebook reports [49] that
more than half of the misconfiguration in their high-impact in-
cidents during a three-month period are subtle, “valid” config-



urations. A recent study [51] on performance configurations
in distributed systems reports a similar finding.

To reduce specious-configuration-induced incidents, we
need to proactively detect it before production. However, what
makes specious configuration subtle to detect is that its value
is not a unconditionally poor choice. Rather, the setting is
only problematic under certain combination with some other
parameters, input, and/or environment. Currently, adminis-
trators either informally estimate the impact based on their
experience, or experimentally measure it by black-box test-
ing the program with configuration. However, neither of the
approaches is sufficient to reliably capture the pitfalls.

Through analyzing real-world cases (Section 2), we realize
that the crux of specious configuration lies in the fact that
some slow code path in the program or library gets executed;
but this effect can be only triggered with certain input, other
configurations, and environment. Therefore, we argue that
analytical approaches are needed to reason about the configu-
ration settings’ performance implications under a variety of
conditions. We propose a novel analytical tool called VIOLET
that uses symbolic execution [24,38] to analyze the perfor-
mance effect of configuration at the code level.

The basic idea of Violet is to systematically explore the
system code paths with symbolic configuration and input,
identify the constraints that decide whether a path gets ex-
ecuted or not, and analytically compare different execution
paths that are explored. Violet derives a configuration perfor-
mance impact model as its analysis output. A Violet checker
leverages this model to contiguously catch specious config-
uration in the field. Making this basic idea work for large
system software faces several challenges, including the intri-
cate dependency among different parameters, the efficiency
of symbolic execution for performance analysis, complex in-
put structure, and path explosion problems. Violet leverages
program analysis and selective symbolic execution [26] to
address these challenges.

We implement a prototype of the Violet toolchain, with
its core tracer built as plugins on the S?E platform [26], the
static analyzer built on LLVM [40], and the trace analyzer
and checker built as standalone tools. We successfully apply
Violet on four large systems, MySQL, PostgreSQL, Apache
and Squid. Violet derives performance impact models for 471
parameters. To evaluate the effectiveness of Violet, we collect
17 real-world specious configuration cases. Violet detects
15 cases. In addition, Violet exposes 11 unknown specious
configuration, 8 of which are confirmed by developers.

In summary, this paper makes the following contributions:
* An analytical approach to detect specious configuration

using symbolic execution and program analysis.

* Design and implementation of an end-to-end toolchain

Violet, and scaling it to work on large system software.

* Evaluation of Violet on real-world specious configuration.

The source code of Violet is publicly available at:

https://github.com/OrderLab/violet

2 Background and Motivation

In this Section, we show a few cases of real-world specious
configuration from MySQL to motivate the problem and make
the discussion concrete. We analyze how specious configura-
tion affects system performance at the source code level. We
choose MySQL because it is representative as a large system
with numerous (more than 300) parameters, many of which
can be misconfigured by users and lead to bad performance.

2.1 Definition

A program expects its configuration parameters to obey cer-
tain rules, e.g., the path exists, the min heap size does not
exceed the max size. Invalid configurations violate those rules
and usually trigger assertions or errors.

We define specious configuration to be settings that are
valid but cause the software to experience bad performance
when deployed to production. Admittedly, bad performance
is a qualitative criterion. Like prior work, we focus on those
issues that cause severe degradation and hurt usability. Ulti-
mately, only users can judge whether the performance slow-
down is sub-optimal but tolerable or it is intolerable.

Specious configuration has two classes. One is purely about
performance, e.g., buffer size, number of threads. Another
class is settings that change the software functionality but
the changes also have performance impact. Both classes are
important and occur in real-world systems. For the latter class,
users might want the enabled functionality and are willing
to pay for the performance cost. Thus, whether the setting is
specious or not depends on users’ preferences. Our solution
addresses both forms. Its focus is to analyze and explain the
quantitative performance impact of different settings, so that
users can make better functionality-performance trade-offs.

2.2 Case Studies

autocommit parameter controls the transaction commit behav-
ior in MySQL. If autocommit is enabled, each SQL statement
forms a single transaction, so MySQL will automatically per-
form a commit. If autocommit is disabled, transactions need
to be explicitly committed with COMMIT statements. While
autocommit offers convenience (no explicit commit required)
and durability benefits, it also has a performance penalty since
every single query will be run in a transaction. For some users,
this performance implication may not be immediately appar-
ent (especially since it is enabled by default). Even if users are
aware of the performance trade-off, they might not know the
degree of performance loss, only to realize the degradation is
too much after deploying it to production. Indeed, there have
been user-reported issues due to this setting [13, 15,60], and
the recommended fix is to disable autocommit, and manually
batch and commit multiple queries in one transaction.

To quantify the performance impact, we use sysbench [16]
to measure MySQL throughput with autocommit configura-
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Figure 2: MySQL throughput for autocommit under two workloads.
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int write_row() {
if (autocommit) {

1 ulint trx_commit_complete() {

2 if (flush_at trx commit==1) {

3 e log_group_write_buf();

4 trx_commit_complete(); £il flush(); costly operation
5 } else { } else if (flushiat trx commit--=2) {
6 trx _mark_sql_stat_end(); log_group_write_buf();
7 } } else {
8 } /* do nothing */
9 }
0 }

1
Figure 3: Simplified code snippet from MySQL related to
autocommit. The elements with orange-colored background represent
configuration variables, and the pink ones represent slow operations.

tion set to be ON and OFF. The size of the database is 10 tables
and 10K records per table. We run both a normal workload
that consists of 70% read, 20% write and 10% other opera-
tions, and an insert-intensive workload. Figure 2 shows the
result. We can see that in the normal workload (Figure 2a),
the performance difference between ON and OFF are small.
But in insertion-intensive workload (Figure 2b), enabling
autocommit causes dramatically worse (6x) performance.
Figure 3 shows the code relevant to autocommit. We can
see that the autocommit setting determines whether func-
tion trx_commit_complete() will be invoked. In this function,
another parameter flush_at_trx_commit! further determines
which path gets executed. When that parameter is set to 1,
compared to 2, an additional fil_flush operation will be in-
curred, which has a complex logic but essentially will flush the
table writes cached by the OS to disk through the fsync sys-
tem call. The cost of fsync is the major contributor to the bad
performance of autocommit mode; if flush_at_trx_commit is
2 or 0, the performance impact of autocommit mode will be
much smaller. In addition, the function in which autocommit
is used—write_row()—is called when handling write type
queries but not select type queries. Therefore, the perfor-
mance hit only affects insertion/update-intensive workloads.

query_cache_wlock_invalidate controls the validation of
the query cache in MySQL. Normally, when one client ac-
quires a WRITE lock on a MyISAM table, other clients are not
blocked from issuing statements that read from the table if
the query results are present in the query cache. The effect of
setting this parameter to 1 is that upon acquisition of a WRITE
lock for a table, MySQL invalidates the query cache that refers
to the locked table, which has a performance implication.
As Figure 4 shows, enabling this parameter leads to the
free_query operation (@). Different from the autocommit
case, this operation itself is not costly. But for other clients
that attempt to access the table, they cannot use the associated

'ts full name in MySQL is innodb_flush_log_at_trx_commit. We abbre-
viate it and some other parameter names in this paper for readability.

void mysql parse(THD *thd) {
if (send_result_to_client(thd) <= 0) {
mysgl_execute_command(thd); /a k
incoming queries not in query cactge

\
\

}
}
int| mysql_execute_command(THD *thd) {
cgse SQLCOM_SELECT:
e open_and_lock_tables(thd, all_tables);
break;
case SQLCOM_LOCK_TABLES:
lock_tables_open_and_lock_tables(thd) ;!
if (query cache wlock_invalidate) o,
invalidate_query block_list(); /
7

} ’

void invalidate_query block_list() { P
free_query(list_root->block()); _~

} free query cache

Figure 4: Code affected by query_cache_wlock_invalidate.

uint64_t log reserve_and_open(uint len) {
if (len >= log->buf_ size / 2) {
log_buffer extend((len + 1) * 2);
}
len_upper_limit = LOG_BUF_WRITE_MARGIN + (5 * len) / 4;
if (log->buf_free + len_upper_limit > log->buf size) {
mutex_ exit(&(log->mutex));
log_buffer flush to_disk();
goto loop;
}
}

Figure 5: Code affected by innodb_log_buffer_size.

query cache (@), forcing them to open the table and wait (©)
while the write lock is held. Therefore, the effect is additional
synchronization that decreases the system concurrency, which
in turn can severely hurt the overall system query throughput.
Similar to autocommit, the performance effect depends on
the parameters, execution environment and workloads. Specif-
ically, the bad performance is only manifestable with the
combination of MyISAM tables, LOCK TABLES statements and
other clients doing select type queries on the locked table.

innodb_log_buffer_size determines the size of the buffer
for uncommitted transactions. The default value (8M) is usu-
ally fine. However if MySQL has transactions with large
blob/text fields, the buffer can fill up very quickly and incur
performance hit. As shown in Figure 5, the parameter setting
has two possible performance impacts: (1) if the length of a
new log is larger than half of the buf_size, the system will
extend the buffer first by calling log_buffer_extend, which
in normal cases mainly involves memory allocation. But if
other threads are also extending the buffer, additional syn-
chronization overhead is incurred. If the buffer has pending
writes, they will be flushed to disk first; (2) if the buf_size is
smaller than the free size plus the length of new log, MySQL
will trigger a costly synchronous buffer flush operation.

2.3 Code Patterns

Based on the above and other cases we analyze, we summarize
four common patterns on how a specious configuration affects
the performance of a system at the source code level:
1. The parameter causes some expensive operation like the
fsync system call to be executed.
2. The parameter incurs additional synchronization that
itself is not expensive but decreases system concurrency.



3. The parameter directs the execution flow towards a slow

path, e.g., not using cached result.

4. The parameter triggers frequent crossings of some thresh-

old that leads to costly operations.

The general characteristic among them is that specious
configuration controls a system’s execution flows—different
values cause the program or its libraries to execute different
code paths. However, the performance impact is also context-
dependent—a specious configuration is bad only when its
value and other relevant factors together direct the system to
execute a path that is significantly slower than others.

2.4 Approaches to Detect Specious Config

To detect specious configuration, operators rely on experience
or manuals, which are neither reliable nor comprehensive. A
more rigorous practice is to test the system together with
configuration and quantitatively measure the end-to-end per-
formance like throughput. However, if the testing does not
have appropriate input or related parameters, the performance
issue will not be discovered. Also, because the testing is car-
ried out in a black-box fashion, the approach is experimental.
The results are tied to the testing environment, which may not
have the same hardware, dependencies or scale as the produc-
tion. For example, in the incident described in Section 1, that
specious configuration was tested, and the result showed a
slight increase of logging traffic to a dependent database. But
this increase was deemed small, so it passed the testing.

We argue that while the experimental approach is indispens-
able, it alone is insufficient to catch specious configuration.
We advocate developing analytical approaches for reasoning
about configurations’ performance effect from the system
code. The outcome from an analytical approach includes not
only a conclusion, but also answers to questions “how the
parameter affects what operations get executed?”, “what kind
of input will perform poorly/fine?”, “does the effect depend
on other parameters?”, efc. In addition, the analysis should
enable extrapolation to different contexts, so users can project
the outcome with respect to specific workload or environment.

A potential approach is static analysis. Indeed, we can
leverage the code patterns in Section 2.3 to detect potential
specious configuration. However, mapping them at concrete
code construct level requires substantial domain knowledge.
Also, the performance effect involves many complex factors
that are difficult to be deduced by pure static analysis.

The observations in Section 2.3 lead us to realize that the
crux is some slow path being conditionally executed. Thus, we
can transform the problem of detecting specious configuration
to the problem of finding slow execution flow plus deducing
the triggering conditions of the slow execution.

3 Overview of Violet

We propose an analytical approach for detecting specious
configuration, and design a tool called VIOLET. Violet aims

to comprehensively reason about the performance effect of
system configurations: (1) explore the system without being
limited by particular input; (2) analyze the performance effect
without being too tied to the execution environment.

Our insight is that the subtle performance effect of a
specious parameter is usually reflected in different code paths
getting executed, depending on conditions involving the pa-
rameter, input and other parameters, and these paths have
significant relative performance differences. Based on this in-
sight, Violet uses symbolic execution with assistance of static
analysis to thoroughly explore the influence of configuration
parameters on program execution paths, identify the condi-
tions leading to each execution, and compare the performance
costs along different paths. After these analyses, Violet de-
rives a configuration performance impact model that describes
the relationship between the performance effect and related
conditions. In this Section, we give an overview of Violet
(Figure 6). We describe the design of Violet in Section 4.

3.1 Symbolic Execution to Analyze Perfor-
mance Effect of Configurations

Background. Symbolic execution [24,38] is a popular tech-
nique that systematically explores a program. Different from
testing that exercises a single path of the program with con-
crete input, symbolic execution explores multiple paths of the
program with symbolic input and memorizes the path con-
straints during its exploration. When a path of interest (e.g.,
with abort()) is encountered, the execution engine generates
an input that satisfies the constraint, which can be used as a
test case. Compared to random testing, symbolic execution
systematically explores possible program paths while avoid-
ing redundancy. Consider this snippet:

void foo(int n) { if (n > 1000) bar(n); else bazz(n); }

Testing may blindly test the program many times with dif-
ferent n, e.g., 1, 10, 20, etc., but they all exercise the same
path without triggering the call to bar (). If we use symbolic
execution, we can explore the two paths of foo by deriving
only two concrete values of n to satisfy the path constraints.

Basic Idea. Configuration is essentially one type of input to a
program. The basic idea of Violet is simple—make the param-
eters symbolic, measure the cost along each execution path
explored, and comparatively analyze the costs. The path con-
straints that the symbolic execution engine memorizes char-
acterize the conditions about whether and when a parameter
setting is potentially poor. Take Figure 3 as an example. Violet
makes variable autocommit symbolic. Function write_row
will fork at line 2. The first path goes into the if branch, with
a constraint autocommit == 1. When trx_commit_complete
is called in the first path, it encounters another parameter
flush_at_trx_commit, which is also made symbolic. Two ad-
ditional paths are forked within that function. While exploring
these paths, Violet records a set of performance cost metrics.
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Figure 6: Overview of Violet.

Since the subtle performance effect of specious configu-
ration is often only triggered under specific input, besides
configuration parameters, Violet can also make the input sym-
bolic. For the example in Figure 3, the input will determine
whether the write_row function will be called or not. Only
insert type queries will invoke write_row. This input con-
straint will be recorded so the analysis later can identify what
class of input can trigger the specious configuration.

3.2 Violet Workflow

Figure 6 shows the workflow of Violet. The input to Violet is
system code and target configuration. We require source code
to identify the program variables corresponding to parame-
ters. In addition, as we discuss later (Section 4.3), Violet uses
static analysis to assist the discovery of dependent parame-
ters. To symbolically execute the target system, we leverage
a state-of-the-art symbolic execution platform S”E [26] and
insert hooks into the system code to make parameters and
input symbolic. We design the Violet execution tracer as S*E
plugins to record the performance results to a trace during
state exploration. The Violet trace analyzer conducts com-
parative cost analysis, differential critical path analysis, efc.
The output is a configuration performance impact model that
describes the relationship among configuration constraints,
cost, critical path, and input predicate.

Violet further provides a checker to deploy with the soft-
ware at user sites. The checker consumes the constructed
configuration impact model to continuously detect whether a
user-site configuration file or update can potentially lead to
poor performance. Upon the detection of potential specious
configuration, the Violet checker reports not only the absolute
performance result, but also the logical cost and critical path
to explain the danger. The checker also outputs a validation
test case based on the input predict that provides hints to users
about what input can expose the potential performance issue.

4 The Design of Violet

In this Section, we describe the Violet design (Figure 6). We
need to address several design challenges. First, configura-
tions have intricate dependencies among themselves and with
the input, but making all of them symbolic easily leads to state
space explosion. Second, conducting performance analysis
in symbolic execution is demanding due to lack of explicit

assertion point, mixed costs, overhead, etc. Third, deriving
performance model from code requires balance between being
generalizable (not too tailored to specific input or environ-
ment) and being realistic (reflects costs in real executions).

4.1 Make Config Variable Symbolic

The starting point for Violet is to make parameters symbolic.
A naive way is to make the entire configuration file a sym-
bolic blob. While this approach is transparent to the target
program, it easily leads to path explosion even at the program
initialization stage. An improvement could be only making
the configuration value string symbolic during parsing. e.g.,
make_symbolic(value, 2); buf_size=atoi(value); But the exe-
cution would still spend significant time in the parsing (atoi).
Also the parameter value range will be limited by the string
size, e.g., only explore buf_size from O to 99.

We should identify the program variables that store configu-
ration parameters and directly make these variables symbolic.
Prior works [56,57] observe that the mature software typically
uses uniform interfaces such as an array of struct to store
parameters. Thus they annotate these interfaces to extract
variable mappings in static analysis. For Violet, we need to
additionally identify the parameter type and value constraints
defined by the program (e.g., 1 to 10) to restrict the symbolic
value. This is because we are only interested in exploring the
performance effect of valid values.

Since typically all the config variables are readily acces-
sible after some point during initialization, we take a simple
but accurate approach: insert a hook function directly in the
source code right after the parsing function and programmat-
ically enumerates these variables and make them symbolic
using their type and other info. In this hook function, we read
an external environment variable VIO_SYM_CONFIGS to decide
which target parameter(s) to make symbolic.

Take MySQL as an example. Its configuration parame-
ters are represented by a number of Sys_var_x data structures
in the code, depending on the parameter’s type. We add a
make_symbolic API to these data structures, which uses the
type, name, value range information to call the Violet library
to make the backing store symbolic. Figure 7 shows an ex-
ample of the added hook API. Then after MySQL finishes
parsing its configurations, we iterate through all configuration
variables (Figure 8), which are stored in a global linked list
called all_sys_vars. If the parameter is in the target set, we
invoke its new make_symbolic APIL.



template <typename T>
class Sys_var_unsigned: public sys_var {
public:
Sys_var_unsigned(const char *name, T min_val, T max_val, ...) {
option.min_value= min_val;
option.max_value= max_val;

}

bool global_ update(THD *thd, set_var *var) {
global_var(T)= var->save_result.ulonglong_value;
return false;

}

+ bool make_symbolic() {

+ violet_make_symbolic(global_var_ptr(), sizeof(T), option.name);

+ violet_assume((unsigned) (*global_var ptr()) <= option.max_value);
+ violet_assume((unsigned) (*global _var ptr()) >= option.min_value);
+ return true;

+

}

}

Figure 7: Add API to one config. data structure in MySQL.

static int get_options(int *argc_ptr, char ***argv_ptr)
{
my_init_dynamic_array(&all_options, sizeof(my_option));
for (opt= my long options; opt < my options_end; opt++) {
insert_dynamic(&all_options, (uchar*) opt);

+ violet parse config targets();
+ violet_make_mysql_options_symbolic();
return 0;

}

+ void violet_make mysql options_symbolic()
{
for (sys_var *var=all sys_vars.first; var; var= var->next)
if (is_config_in_ targets(var->name.str))
var->make_symbolic();

+ 4+ + + +

}
Figure 8: Call symbolic hooks after config. parsing in MySQL.

4.2 Make Related Config Symbolic

The performance effect of a parameter usually depends on the
values of other parameters. Thus, if we only make one param-
eter symbolic while leaving other parameters concrete, we
will only explore incomplete execution paths and potentially
miss some problematic combination that leads to bad perfor-
mance. A straightforward solution is to make all parameters
symbolic. Since symbolic execution only forks if a symbolic
value is used branch conditions, this approach seems to be
feasible. However, the problem with this approach is that most
combinations of configuration parameters are unrelated but
will be explored during symbolic execution.

Figure 9 illustrates the problem. Suppose we are interested
in the performance effect of opty. If we simply make all
parameters (optx, opty, optz) symbolic in hope of exploring
the combination effect, there will be at least 6 execution paths
being explored. But opty is unrelated to optx and optz. The
performance impact of opty is only determined by the cost of
its branches. For large programs, the target parameter could
be used deep in the code. Including unrelated parameters in
the symbolic set can cause the symbolic execution to waste
significant time or get stuck before reaching the interesting
code place to explore the target parameter. The analysis result
can also cause confusions. For example, it might suggest only
when optx>100 && optz==FILE && opty is true will there be a
performance issue and miss detecting specious configuration
when opty is true but optx <= 100 or optz != FILE.

Therefore, instead of making all parameters symbolic, we
carefully choose the set of parameters to symbolically execute

void main() {
if (optx > 100)
init_x();

execution tree

if (opty) ‘@
taskl();
else
task2(); @ @
} | ‘ l | ‘ l path5 path6
void init_x() {
if (optz == FILE) Pathl
create_file();

path2 path3 path4

target param unrelated params

}
Figure 9: Making unrelated parameters symbolic results in excessive
state explorations and confusing conclusions.

symbolic config set

7 targetpar. @& influenced par.

autocommit: {binlog_format,
-+ enabler par. unrelated par.

flush_at_trx_commit}

int decide_logging_format(){ int write_row(){

if (binlog_format != I if (autocommit){ V77
BINLOG_FORMAT_ROW) { trx_commit_complete();
if (autocommit) 77 }
set_stmt_unsafe(); }
} ulint trx_commit_complete(){
} if (flush_at_trx commit==1){ ma

log_group_write buf();
fil_ flush();

int init_server_components(){
if (query_cache_type==0)
disable_query_cache(); }

} }
Figure 10: Symbolic config set based on control dependencies.

together. In particular, related parameters are usually control
dependent on each other. We discover the parameter control
dependency with methods described in the following Section.

4.3 Discover Control Dependent Configs

Violet statically analyzes the control dependency relationship
of parameters to determine a reduced symbolic parameter set.
The static analysis result can significantly help mitigate the
path exploration problem during symbolic execution phase.
For a target parameter C, Violet identifies two kinds of re-
lated parameters to put in its symbolic set. The enabler param-
eters are those that C is control dependent on. The influenced
parameters are those that are control dependent on C. Fig-
ure 10 shows an example. For target parameter autocommit, it
is used in decide_logging_format and write_row, it has an en-
abler parameter binlog_format, which decides if autocommit
will be activated. autocommit itself influences the perfor-
mance effect of parameter flush_at_trx_commit. Thus, for
autocommit, the set of related parameters to make symbolic
together is {binlog_format, flush_at_trx_commit}.
Informally, program element Y is control dependent on ele-
ment X if whether Y’s executed depends on a test at X. More
formally, control dependency is captured by postdominator
relationship in program Control Flow Graph (CFG). Node b
in the CFG postdominates node a if every path from a to the
exit node contains b. Y is control dependent on X if there is
apath X — 7y — ... - Z, — Y such that Y postdominates
all Z; and Y does not postdominate X. We use postdomina-
tor as a building block for our analysis. But our notion of
control dependency is broader than the classic definition. For
example, if (X) { if (z1) { if (z2) { if (Y) { foo(); } } }
} , the classic definition does not regard X and Y as being
control-dependent, because Y does not postdominate z1 or z2;



it regards z2 and Y as being control-dependent. But for us, all
the four parameters are control dependent.

Our analysis is divided into two steps. The first step com-
putes the enabler parameters. Violet builds a call graph of the
program. For target parameter p, it locates the usage points of
p and extracts the call chains starting from the entry function
to the function f that encloses a usage point. If any caller g
in the call chain uses some other parameter ¢, we check if the
callsite in g that eventually reaches f is control dependent on
the usage point of parameter ¢ in g. If so, g is added to the en-
abler parameter set of p. Violet identifies enabler parameters
within f through intra-procedural control dependency. Our
technical report [34] lists the algorithm.

In the second step, Violet calculates the influenced pa-
rameters from the computed enabler parameter sets of all
parameters. The related config set is a union of the in-
fluenced set and enabler set. We also capture control de-

pendency that involves simple data flow. For example,

bool is_disabled() {
return m _cache_is_disabled;

void query_cache_init() {
if (query cache type == 0)
m_cache_is_disabled = TRUE; }

}
any parameter that is control dependent on the regular variable
m_cache_is_disabled or return value of is_disabled() is also
considered to be related to parameter query_cache_type.
The static analysis result can be inaccurate due to impre-
cision in the alias analysis, call graph, infeasible path prob-
lem, etc. Our general principle is to be conservative and over-
approximate the set of related parameters for a target param-
eter. During symbolic execution, having a few false control
dependent parameters does not greatly affect the performance
or analysis conclusion and they can manifest through the
symbolic execution log if they do cause issues.

4.4 Execute Software Symbolically

After the target software is instrumented with the symbolic
execution hooks, Violet symbolically executes the software
with a concrete configuration file. The hook function reads
the VIO_SYM_CONFIGS environment variable and makes sym-
bolic the program variables corresponding to the specified
parameter. In addition, the function parses the control depen-
dency analysis (Section 4.3) result file and makes variables in
the related parameter set symbolic as well. Other parameters’
program variables get the concrete values from the configura-
tion file. Besides parameters, Violet can also make program
input symbolic to explore its influence on the configuration’s
performance impact. This is done through either symbolic
arguments (sym-args) or identifying the input program vari-
ables and inserting make_symbolic calls in the code.

4.5 Profile Execution Paths

To measure the symbolic parameters’ performance effect,
Violet implements a tracer on top of the symbolic execution
engine, specifically as a set of plugins on the S’E platform.

] AT T T T e -~
eip: 0xb7b0f8
ret: 0x5f738a
time: 10
cid: 1

void f1
0 {<"’ f1 EIP

cid: 9 CallList | "Y' <------ f2(); return addr

parentld: o parentld: 1
void £3() {
ret: Oxb7b211 et: 0x5738a -+ RetList . < REP
time: 45 time: 90 " £O f4(); return addr

Figure 11: Match call/return records.

Measure Function Call Latency. We measure function call
latency by capturing the call and return signals emitted by
S’E during symbolic execution. To calculate the latency, a
straightforward way is to maintain a stack of call record and
pops the top element upon receiving a return signal. This
algorithm assumes that the call/return signals are paired and
the callee’s return signal comes before the caller’s. But we
observe this assumption does not always hold under S*E. We
use a safer method based on return addresses to calculate
latency. In particular, the Violet tracer records the EIP register
value, return address, and timestamp on each call and return
signal. The records are stored in two lists. Later, the tracer
matches call record list with return record list based on return
address fields (Figure 11). The latency for a matched function
call is the return record’s timestamp minus the call record’s
timestamp. The total latency of each state (execution path)
can be obtained from the latency of the root function call.

For multi-threaded programs, function calls from different
threads can get mixed up. To address this issue, the Violet
tracer stores the current thread id in each profile record and
partitions the call and return lists by thread id.

Re-Construct Call Paths. The tracer records the function
call profile to break down total latency and to enable dif-
ferential critical path analysis (§4.6). To get the call chain
relationship, instead of costly stack frame walk, the tracer
uses a simple method with little overhead that just assigns
each call record a unique incrementing cid. Later, the tracer
reconstructs the call chain by iterating through all call records
in order. If (1) call record A’s cid is larger than call record
B’s cid, (2) the return address of A is larger than B’s EIP (the
start address of that function), and (3) the difference of the
two addresses is smallest among all other pairs (i.e., B’s start
address is closest to the return address in A), then we assign
A’s parentIdto be B’s cid and update the current distance.

Measure Logical Costs. Besides absolute latency, we also
measure a set of logical cost metrics by a similar method
of capturing low-level signals from S?E. In particular, for
each execution path, we measure the number of instructions,
the number of system calls, the number of file I/O calls, the
amount of I/O traffic, the number of synchronization opera-
tions, network calls, etc. These logical costs are useful to sur-
face performance issues other than just long latency. They are
also crucial for reducing the test environment’s biases and en-
abling extrapolation of the result to different settings. For ex-
ample, if the tracer finds one execution path has a much higher
number of write syscalls compared to other paths whereas



[ Configuration Constraint [ Cost

[ Workload Predicate

autocommit!=0 && flush_log_at_trx_commit==

2.6's, {log_write_buf—fil_flush}, 17K syscalls, 100 I/O insts, ...

sql_command==INSERT

autocommit!=0 && flush_log_at_trx_commit==2 | 1.7 s, {log_write_buf}, 16.9K syscalls

sql_command==INSERT

autocommit!=0 && flush_log_at_trx_commit!=1
&& flush_log_at_trx_commit!=2

1.2's, {3, 16.9K syscall

sql_command==INSERT

autocommit==0

0.6's, {trx_mark_sql_stat_end}, 16.8K syscalls

sql_command==SELECT]| |...

Table 1: Example raw cost table Violet generates for autocommit parameter from symbolic execution of MySQL code in Figure 3.

their latencies are similar. This could be an artifact of the test
server having a powerful hard disk or a large buffer cache.
But the software might perform poorly in a different envi-
ronment. The Violet tracer maintains a separate performance
profile for each execution path (state) so we can compare the
performance effect of different paths. We also need to record
the path constraints to identify the parameter combination
and the class of input that leads to the execution path. The
tracer records the final path constraint when an execution path
terminates or it exceeds some user-specified cost threshold.

4.6 Analyze State Traces

Once the symbolic execution finishes, the Violet trace ana-
lyzer parses the performance traces. It then builds a cost table.
Each row represents a state (path) that was explored in sym-
bolic execution. The analyzer does a pair-wise comparison of
performance in different rows. If the performance difference
ratio exceeds a threshold (default 100%), the analyzer marks
that state suspicious. The analyzer compares not only the ab-
solute latency metric but also the collected logical metrics.
Even if the latency difference does not exceed the threshold
but some logical metric does, the analyzer still marks the state.

Not all pair comparisons are equally meaningful when the
symbolic execution explored multiple symbolic variables. To
elaborate, assume our target parameter is autocommit, which
has a related parameter flush_log. Since both are made sym-
bolic, one state could represent constraint autocommit==0 &&
flush_log==1 and another state could represent constraint
autocommit==1 && flush_log==2. In this case, comparing the
costs of these two states is not very meaningful.

The analyzer tries to compare state pairs that are most
“similar” first. Determining the similarity of two paths can
be challenging. We use a simple approach: in one state’s
constraints formula, for each constraint involving a related
parameter, if it also appears in the other state’s formula, the
similarity count is incremented by one. This method is im-
precise as it merely checks the appearances, not constraint
equivalence. For our use cases, the inaccuracies are gener-
ally acceptable. Besides, the analyzer can compare all pairs
first, surface the bad state-pairs, and then we can decide the
meaningfulness of the suspicious pairs.

For each pair that has a significant performance differ-
ence, the analyzer computes the differential critical path. It
first finds the longest common subsequence of the call chain
records in the two states. Then it creates a diff trace that stores
the common records with performance metrics subtracted, as
well as the records that only appear in the slower state. The

analyzer finally locates the call record (excluding entry) with
the largest differential cost and constructs the critical call path
based on the cid and parentId of the call records.

When Violet makes the input symbolic, the path constraints
in each state will contain constraints about the input. The ana-
lyzer separates the input related constraints as input predicate.
This is useful to tell what class of input can expose the po-
tential performance issue for the combination of parameter
values that satisfies the configuration constraint in a state.
The final output from the Violet analyzer is the configuration
performance impact model that consists of the raw cost table
(Table 1) with configuration constraints, cost metrics, and in-
put predicate for each state, the state pairs that have significant
performance difference, and the differential critical paths.

4.7 Continuous Specious Config Checker

Violet provides a standalone checker tool to detect specious
configuration. It leverages the configuration performance im-
pact model from the analyzer and validates a concrete user
configuration file. The checker tool supports three modes:

1. Some config update introduces performance regression.

2. Some default parameter is poor for users’ specific setup.

3. Code upgrade or workload change make old setting poor.
For scenario 1, the checker references the cost table and lo-
cates the state(s) that have configuration constraints satisfying
the updated parameter’ old value and the parameter’s new
value. If the state pair has significant performance difference,
the checker alerts the operators and generates a test case
based on the input predicate for operators to confirm the per-
formance regression. For scenario 2, the checker validates if
the state that the default value lies in appears in some poor
state-pair. If so, it means this default value potentially per-
forms significantly worse than another value. For scenario
3, if the system code changes, Violet rebuilds the cost im-
pact table. The checker then identifies if some state in the
new table performs much worse compared to the old cost
table. If workload changes, the checker validates if cost table
rows that previously satisfy the input predicate perform worse
compared to rows that satisfy the input predicate now.

5 Scaling Violet to Large Software

In this section, we describe the challenges and our solutions
for scaling Violet to large software.

5.1 Choice of Symbolic Execution Engine

We initially build Violet on the KLEE [24] symbolic execu-
tion engine because it is widely used and convenient to exper-



iment with. However, while KLEE works well on moderate-
sized programs, it cannot handle large programs like MySQL.
KLEE models the environment (POSIX runtime and libc)
with simplified implementation. Large programs use many
libc or system calls that are unimplemented or implemented
partially/incorrectly, e.g., fcnt, pread, and socket. KLEE also
does not support symbolic execution of multi-threaded pro-
grams. We spent several months patching KLEE to fix the
environment model and add multi-threading support. When
we were finally able to run MySQL with KLEE, it took 40
minutes to just pass initialization even without symbolic data.

We thus decided to switch to the S?E platform [26]. S°E
uses real environment with complete OS and libraries. Execut-
ing large software would encounter almost no compatibility
issues. In addition, S?E uses QEMU and dynamic binary trans-
lation to execute a target program. For instructions that access
symbolic data, they are interpreted by the embedded KLEE
engine; but instructions that access concrete data are directly
executed on host CPU. Overall, while the choice of using real
environment in symbolic execution in general means slower
analysis compared to using simplified models like KLEE,
executing concrete instructions on host CPU offsets that slow-
ness and allows S’E to achieve significant speed-up. After
migrating Violet to S”E and with some minor adjustments,
we can start MySQL server within one minute.

5.2 Handle Complex Input Structure

Since specious configuration is often only triggered by certain
input, Violet makes input symbolic besides configuration. For
small programs, the input type is typically simple, e.g., an
integer, a string, which is easy to be made symbolic. However,
large programs’ input can have very complex structure. If we
make such complex input symbolic, the program may be stuck
in the input parsing code for a long time and the majority of
the input generated is invalid. For example, we make input
variable char xpacket (32 bytes) in MySQL symbolic and
execute it in S?E for 1 hour, which generates several hundred
test cases, but none of which is a legal SQL query. Even after
adding some additional constraints, the result is similar.

This challenge is not unique to our problem domain. Com-
piler testing [58] or fuzzing [11] also faces this challenge
of how to generate valid input to programs like C compiler
or DBMS. We address this problem through a similar prac-
tice by introducing workload templates. Instead of having the
parser figure out a valid structure, we pre-define a set of input
templates that have valid structures. Then we parameterize
the templates so that they are not fixed, e.g., the query type,
insertion value, the number of queries, etc. In this way, we
can make the workload template parameters symbolic.

5.3 Reduce Profiling Overhead

Profiling large programs can incur substantial overhead. We
build Violet tracer using low-level signals emitted by S*E
rather than intrusive instrumentation. Nevertheless, symbolic

execution is demanding for performance analysis as the pro-
gram runs much slower compared to native execution. Fortu-
nately, Violet cares about the relative performance between
different paths. We can still identify specious configuration if
the relative differences roughly match the native execution,
which we find is true for most cases. Violet conducts differen-
tial analyses to capture performance anomalies. We describe
three additional optimizations in Violet tracer.

First, the Violet tracer controls the start and end of its func-
tion profiler. This is because if we enable the function profiler
at the very beginning, it can be overwhelmed by lots of irrele-
vant function calls. We add APIs in the tracer and will start
the tracer when the target system finishes initialization and
stop the tracer when the system enters the shutdown phase.

Second, the tracer avoids guest memory accesses and on-
the-fly calculation. Accessing memory in an execution state
goes through the emulated MMU in QEMU. Violet tracer
only accesses and stores key information (most from registers)
about the call/return signals. It defers the record matching,
call chain and latency calculation to path termination.

Third, Violet will disable state switching during latency
tracking if necessary. Since the function profiler calculates
the execution time by subtracting the return signal timestamp
from call signal timestamp, if S’E switches to execute an-
other state in between, the recorded latency will include the
state switching cost. This in general does not cause serious
problems because the costs occur in all states and roughly
cancels out with our differential analysis. But in rare cases,
the switching costs can distort the results. When this happens,
Violet will force SZE to disable state switching.

5.4 Path Explosion and Complex Constraints

A common problem with symbolic execution is path explo-
sion, especially when the symbolic value is used in library or
system calls. In addition, some library calls with symbolic
data yield complex constraints that make the symbolic execu-
tion engine spend a long time in solving the constraints.
Violet leverages a core feature in S2E, selective symbolic
execution [26], to address this problem. Selective symbolic
execution allows transition between concrete and symbolic
execution when crossing some execution boundary, e.g., a
system call. Violet uses the Strictly-Consistent Unit-Level
Execution consistency model, which silently concretizes the
symbolic value before entering the boundary and adds the
concretized constraint to the symbolic value after exiting the
boundary. This consistency model sacrifices completeness
but it would not invalidate the analysis result. To improve
completeness, we add some relaxation rules in Violet without
causing functionality errors: 1) if the library call does not add
side effect, such as strlen/strcmp, we make the return value
symbolic and remove the concretized constraint; 2) if the
library call has side effect but does not hurt the functionality,
such as printf, we directly remove the concretized constraint.



Software Desc. Arch. Version SLOC Co‘\f\‘és“o&!\‘
MySQL  Database Multi-thd 5559 12M 330 197
Postgres  Database Multi-proc 11.0 843K 294 165
Apache  Webserver Multi-proc-thd 2.4.38 199K 172 158
Squid Proxy server Multi-thd 4.1 178K 327 96

Table 2: Evaluated software. Hook: SLOC of core Violet hooks.

One issue we encounter with the S?E silent concretiza-
tion is that its concretize API will only concretize the sym-
bolic variable. The symbolic variable can taint other variables
(make them symbolic) when it is assigned to these variables,
but these tainted variables are not concretized during silent
concretization. Having these tainted variables remain sym-
bolic can add substantial overhead. We thus add a new API in
S?E, concretizeAll, that concretizes not only the given sym-
bolic variable but also its tainted variables. We implement
this API by recording in each write operation a mapping from
the symbolic expression to the target address in the memory
object. Later when concretizeAll is called, we will look up
the memory objects to find addresses that contain the same
symbolic expression and also concretize them.

6 Implementation

We implement the major Violet components in C/C++. The
Violet checker is implemented in Python. The Violet tracer is
written as SZE plugins and leverages S°E’s existing plugin to
capture low-level signals. The Violet static analyzer is built
on top of LLVM framework [40]. The Violet trace analyzer
is implemented as a standalone tool.

In function profiling, for efficiency, the tracer captures the
addresses instead of names of invoked functions. This means
the analyzer needs to resolve the addresses to names. The
problem is that the virtual address of the target program can
change in each run. We address this issue by modifying the
ELF loader of the S°E Linux kernel to expose the load_bias.
Then the tracer will record the offset from the load_bias. The
analyzer can then use the offsets to resolve the names.

7 Evaluation

We evaluate Violet to answer several key questions:

* How effective is Violet in detecting specious configuration?
* Can Violet expose unknown specious configuration?

* How useful is Violet’s checker to the user?

* What is the performance of Violet?

The experiments are conducted on servers with Dual Pro-
cessor of Intel Xeon E5-2630 (2.20GHz, 10 cores), 64 GB
memory, 1 TB HDD running a Ubuntu 16.04. Since SE en-
gine runs in QEMU, we create a guest image of Debian 9.2.1
x86_64 with 4 GB memory for all the Violet tests.

7.1 Target Systems

We evaluate Violet on four popular and large (up to 1.2M
SLOC) open-source software (Table 2): MySQL, PostgreSQL,
Apache, and Squid. Violet can successfully analyze large
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multi-threaded programs (MySQL and Squid) as well as multi-
process (PostgreSQL, Apache) programs.

The manual effort to use Violet on a target system is small,
mainly required in two steps: (1) add configuration hooks
(Section 4.1); (2) supply input templates (Section 5.2). The
other steps in the workflow are automated.

Table 2 shows SLOC of the core hooks we add to the four
systems. The hook size varies across systems. MySQL hooks
are largest in size mainly because the system defines many
(22) configuration types (Sys_var_x) so we need to add hook
(about 7 SLOC) to each type. But the overall effort for differ-
ent systems is small. The changes are typically contained in a
few places with other codes untouched. In addition, most soft-
ware rarely modifies the configuration data structure design,
so the effort can carry through versions.

For (2), users typically already have some workload profiles.
The effort needed is to parameterize and organize them into
our format. In our experience with the four evaluated software,
this process is straightforward and can be done in a few hours.

7.2 Detecting Known Specious Config

To evaluate the effectiveness of Violet we collect 17 real-
world specious configuration cases from the four systems.
Table 3 lists the case descriptions. We collect them from
ServerFault [14], dba [4], blog posts [12], and prior work [19].
A case is marked as detected when Violet explores at least
one poor state in its trace and the poor states enclose the
problematic parameter value(s).

In total, Violet detects 15 of the 17 cases. Table 4 shows
the detailed result. For each case, Table 4 lists the total states
Violet explored, poor states, related configs, and maximum
cost metric differences. The explored states include forks
from related configurations and the symbolic workload pa-
rameters. In most cases, the specious configuration requires
specific related settings to expose the issue. The high suc-
cess rate of Violet comes from its in-vivo multi-path profiling,
dependency analysis, and differential performance analysis.

Another aspect to interpret the high success rate is that
the 17 cases we collect admittedly have a selection bias—all
cases cause severe performance impact. This is reflected in
the max diff column. If a misconfiguration only introduces
mild performance issue, Violet may miss it due to the noises
in symbolic execution. However, Violet’s goal is to exactly
target specious configuration that has severe performance
impact, rather than suboptimal configurations.

Violet misses two Apache cases, c14 and c15. Triggering
them requires enabling the HTTP KeepAlive feature in the
workload. In our Apache workload templates, this feature is
not part of the workload parameters and is disabled by default.

We describe two representative cases. MySQL cl1 is the
running example in the paper. Violet identifies four related
parameters for autocommit and explores 88 states in total, 4
of which are identified as poor. The configuration constraints



Id. Application Configuration Name Data Type Description
cl MySQL autocommit Boolean Determine whether all changes take effect immediately
c2  MySQL query_cache_wlock_invalidate Boolean Disable the query cache when after WRITE lock statement
c3  MySQL general_log Boolean Enable MySQL general log query
c4  MySQL query_cache_type Enumeration ~ Method used for controlling the query cache type
¢S MySQL sync_binlog Integer Controls how often the MySQL server synchronizes binary log to disk
c6  MySQL innodb_log_buffer_size Integer Set the size of the buffer for transactions that have not been committed yet
c¢7  PostgreSQL  wal_sync_method Enumeration  Method used for forcing WAL updates out to disk
c8  PostgreSQL  archive_mode Enumeration  Force the server to swtich to a new WAL periodically and archive old WAL segments
c9  PostgreSQL  max_wal_size Integer Maximum number of log file segments between automatic WAL checkpoints
cl0 PostgreSQL  checkpoint_completion_target Float Set a fraction of total time between checkpoints interval
cll PostgreSQL  bgwriter_lru_multiplier Float Set estimate of the number of buffers for the next background writing
cl2  Apache HostNamelookup Enumeration  Enables DNS lookups to log the host names of clients sending requests
cl3  Apache Deny/Domain Enum/String  Restrict access to the server based on hostname, IP address, or env variables
cl4  Apache MaxKeepAliveRequests Integer Limits the number of requests allowed per connection
cl5 Apache KeepAliveTimeOut Integer Seconds Apache will wait for a subsequent request before closing the connection
cl6  Squid cache String Requests denied by this directive will not be stored in the cache
cl7 Squid Buffered_logs Integer Whether to write access_log records ASAP or accumulate them in larger chunks
Table 3: Description of 17 known specious configuration cases we collect in the four evaluated software.
3 g é‘”n difficult to judge, we use configurations from the good states
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il performance difference ratio exceeds 100% (the same thresh-
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2 v/ 24 3 1 Lat.&Sync. 3ml3s 15.7% testing detects 10 ith dian ti £ 25 minut
3 J 224 88 5 0o 19mdls 2.0x esting actects cases, with a median time o minutes.
4 v 787 100 2 Latency 53m50s  11.7x Violet is not meant to replace configuration performance
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9 v 110 2 3 Lat&I/O  15m20s 3.5x exhaustive testing (Section 3.1). Even though in some cases,
cl0 v 231 13 7 Latency ~ 23m30s  2.4x as shown in Table 4, the Violet analysis time is relatively long,
cil v 6l o 2 Latency 13ml7s - 8.6x Violet is exploring the performance effects thoroughly, includ
cl2 v 34 4 2 Latency ~ 7mlSs  3.8x Vviolet1s exploring the p : ughly, mclud-
cl3 v 50 5 3 Latency 6mli0s  8.9x ing the combination effect with other parameters and input.
cl4 x 112 0 2 Latency 3md2s  0.6x Therefore, the performance impact models Violet derives are
cl5 X 23 0 3 Latency 6ml2s  0.2x complete. Once the exploration is done, the outcome can be
cle v 81 1 0 Latency 433m32s 4.3x d . hil . d be d dl
17 7 3 1 0 10 1m32s  2.0x reused many times while testing needs to be done repeatedly.

Table 4: Violet detection result. Poor states are what Violet considers
as suspicious. *: relative difference, o.x means B = (1 + o) *A.

of the four poor states describe the combination conditions
for the 5 parameters to incur significant cost.

In c6, innodb_log_buffer_size controls the size of the log
buffer. Interestingly, in this case, Violet determines the latency
metric difference is not significant, but the I/O logical cost
metric is. Specifically, Violet explores almost 100 different
queries, and finds that in states with queries involving large
row changes and a relatively small buffer size, the I/O metric—
pwrite operations—is much larger than other states.

7.3 Comparison with Testing

We evaluate the 17 cases with testing as well. We use popular
benchmark tools sysbench and ab. For each case, we set the
target parameter and related parameters with concrete values
from one of the poor states discovered. We enumerate the
standard workloads in the benchmark to test the software with
the configurations. Since the absolute performance result are
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Another challenge with testing is to find the baseline for
good performance. Our experiment above assumes the exis-
tence of good configuration, which users may not have. Violet,
in comparison, conducts in-vivo, multi-path analysis, so it nat-
urally has baselines to compare with. The analysis enables
Violet to collect deeper logical metrics, which can reveal per-
formance issues that end-to-end metrics may not find.

7.4 Exposing Unknown Specious Config

Besides detecting know specious configuration, we evaluate
whether Violet can expose unknown specious configuration.
We first apply Violet to derive performance models for all pa-
rameters if possible (Section 7.6). We then analyze the results
for parameters not in the known case dataset (Section 7.2).
We manually check (1) if some parameter’s default or sug-
gested value is in a poor state; (2) if a poor state of a parame-
ter contains related parameters that are undocumented. The
manual inspection involves checking the Violet output, the
descriptions in the official documentation and tuning guide,
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vacuum_cost Default value 20 ms is significantly worse
Postgres

_delay than low values for write workload.

Postgres archive_timeout Small values cause performance penalties.
Postgres random_page_cost Values larger than 1.2 (default 4.0) cause
bad perf on SSD for join queries.
Postgres log_statement Setting mod causes bad perf. for write work-
load when synchronous_commit is off.
Postgres parallel_setup_cost A higher value would avoid unnecessary
parallelism when executing join query
Postares parallel_leader Enabling it'can cause selectjoiq query
_participation to be slow if random_page_cost is high.
MySQL optimizer_search Deffiu_lt valu§ would cause bad performance
_depth for join queries
MySQL concurrent_insert  Enable concurrent_insert would cause bad
performance for read workload
Squid ipcache_size The default value is relatively small and
may cause performance reduction
Squid cache_log Enable cache_log with higher debug_option
would cause extra /O
Squid store_objects Higher objects per bucket would enlarge

per_bucket the search time

Table 5: Unknown perf. effect of 11 parameters Violet identifies.

and running tests to confirm, which takes significant time. We
only carefully inspect a subset of the results.

The four systems are very mature and maintain high-quality
documentations, so it is not easy to find many errors in them.
Indeed, a significant portion of the poor states we examined
turns out to be already documented. Still we have identified
11 parameters that have potential bad performance effect and
the documentation is incomplete or incorrect.

Table 5 lists the cases. For example, our analysis of
vacuum_cost_delay shows that a higher value can incur large
cost for write-intensive workloads, but the default value is
20 ms. Interestingly, we find PostgreSQL 12 (our experiments
use v11) changes the default to 2ms. For log_statement,
Violet discovers multiple poor states that are not mentioned
in the official document. Our analysis revels that setting
it to mod causes performance issues for write query when
synchronous_commit is off. Violet finds some unexpected
parameter combination that leads to bad performance, e.g.,
parallel_leader_participation and random_page_cost.

We reported our findings to the developers. Eight reports
are confirmed. Five lead to documentation or Wiki fixes. For
some confirmed cases, developers do not fix them because
they assume users should know the performance implications
or such performance description should not be put in the ref-
erence manual (e.g., “There are a lot of interactions between
settings, and mentioning all of them would be impossible”).
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Figure 13: Average decision time in the user
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Figure 14: Violet analysis times for the con-
figs in the four software.

7.5 User Study on Violet Checker

To understand whether Violet checker helps users catch
specious configuration, we conduct a controlled user study
with 20 programmers (no authors are included). Fourteen are
undergraduate students who have taken the database class.
Six are graduate students. They all have decent experience
with databases and Unix tools. We further give a tutorial of
MySQL and PostgreSQL, the descriptions of the common
configuration, and available benchmark tools they can use.

We use 6 target parameters from MySQL and PostgreSQL.
For each parameter, we prepare two versions of configuration
files. In one version (bad), the parameter is set with the poor
value and the related parameters are also set appropriately that
would cause bad performance impact under a workload. In
another version (good), we set the target parameter to a good
value, or we change the related parameter values, or we tell
users the production workloads are limited to certain types
(e.g., read-intensive). So in total, we have 12 cases.

Each participant is given 6 configuration files. They need
to make a judgment regarding whether the configuration file
would cause potential performance issue. Since a configura-
tion file contains many parameters, we explicitly tell users
the set of parameters they can focus on, which disadvantages
Violet because users in practice do not have this luxury.

The participants are randomly assigned into two groups:
group A (w/ Violet checker help) and group B (w/o checker
help). Users in group B can run any tools to help them make
the decision. We also tell group A users that they do not have
to trust the checker output and are free to run other tools.

Figure 12 shows the accuracy of user study result for
each group. Overall, programmers w/o Violet checker’s help
have 30% misjudgment rate while programmers with Violet
checker’s help only have 5% misjudging rate. Figure 13 shows
the time for making a judgment. On average, participants
took 20.7% less time (9.6 min. versus 12.1 min.) to make a
judgment when they were provided with Violet checker. The
reason that time saving is not very large is partly because
we explicitly tell users the set of parameters, which creates a
biased advantage to group B users; and some of our group A
users are extra cautious and spend time running other tools.

7.6 Coverage of Analyzed Configs

We conduct a coverage test of Violet by applying Violet on
the four software and try to derive performance models for as
many parameters as possible. We manually filter the parame-



MySQL PostgreSQL  Apache Squid Total

169 (51.2%) 210 (71.4%) 51 (29.6%) 176 (53.3%) | 606 (53.9%)
Table 6: Number of configs Violet derives performance models for.
The number in parentheses is the percentage of total configs.

parA parB parC parD

=0 =l =0 =l =0 =1 =2 =0 =1 =2
Violet 12.0 23.0 9.81 10.19 9.05 10.92 10.74 4.68 4.77 5.27
S’E 108 21.0 7.67 894 624 777 792 3.57 391 4.59
Native 0.7 1.2 055 077 045 0.63 0.67 0.07 0.07 0.08

Table 7: Absolute latency (ms) for four parameters’ different settings
w/ Violet, vanilla S?E and native execution. parA: autcommit, parB:
synchronous_commit, parC: archive_mode, parD: HostNameLookup.

ters that are not related to performance based on the parameter
description (e.g., listen_addresses). Table 6 shows the result.
Violet successfully derives models for a total of 606 parame-
ters. The average ratio of analyzed parameters over the total
number of parameters for software is 53.9%. The average
number of states explored in these generated models is 23.
Apache and Squid have a relatively small number of param-
eters analyzed. This is because the configuration program
variables in the two systems are set via complex function
pointers and spread in different modules, which make it chal-
lenging to write hooks to enumerate all of them (Section 4.1).
For parameters that Violet did not generate impact models,
one reason is that they are used in code for special environ-
ment. Another reason is that the data type of some parameter
is too complex (e.g., timezone) to make symbolic.

7.7 Accuracy of Violet Profiling

Since symbolic execution can introduce significant overhead,
it seems that the latency traced by the symbolic engine will
not be accurate. However, we observe that while the absolute
latency under symbolic execution is indeed much larger than
native execution, the comparative results between different
paths are usually similar. We add a micro-benchmark experi-
ment to test the latency measurement from Violet, vanilla S>E
and native mode. Table 7 shows the result from four repre-
sentative parameters. Take parA as an example. The latency
results from Violet and S?E are much later than native result.
But the ration of setting 1 to setting O is similar: 1.92x for
Violet, 1.94x for SE, and 1.71x for native execution.

7.8 False Positives

The Violet differential performance analysis in general can
absorb the performance noises in symbolic execution. But
we observe some false positives in the Violet performance
analysis output. For example, S?E somehow has a delay in
emitting the return signal of some system call functions like
gettimeofday, which causes Violet to record inaccurate la-
tency. These false positives are relatively easy to suppress by
discounting the cost of the noisy instructions.

We manually inspect the performance models of 10 random
parameters that Violet analyzes in the coverage experiment.
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We check the accuracy of the reported bad states by verifying
them with sysbench. The false positive rate is 6.4%.

7.9 Performance

We measure the Violet analysis time for the 471 parameters
in the coverage experiment (Section 7.6). Figure 14 shows
the result in boxplots. The median analysis times are 206 s
(MySQL), 117 s (PostgreSQL), 1171 s (Apache), and 554 s
(Squid). On average, the log analyzer time is 68s. As ex-
plained in Section 7.3, even though for some parameters the
analysis time is relatively long, the benefit is that Violet de-
rives a thorough performance model for different settings of
the target parameter and the combined effect with other param-
eters and input. The outcome can be re-used many times by
the Violet checker. With the performance models, the checker
time is fast. On average the checking only takes 15.7 seconds.

7.10 Sensitivity Analysis

Violet uses a differential threshold (default 100%) to detect
the suspicious state from the trace log (Section 4.6). We eval-
uate the sensitivity of this threshold by measuring how many
poor state pairs Violet reports when analyzing a parameter
under threshold ¢. For each poor state pair Violet reports, we
run benchmarks on the native machine to check whether it is
false positive (performance difference is > 1%).

Figure 15 shows the result for six representative param-
eters. We can see that if the threshold is set to a relatively
lower value, the number of detected specious configuration
can dramatically increase, but at cost of higher false positives.

8 Limitations

Violet has several limitations that we plan to address in future
work. First, Violet explores the configuration under normal
conditions. Some specious configuration may be only used in
error handling. Exploring their effect requires specific faults.
One solution is to combine symbolic execution with fault in-
jection. Another potential solution is to use under-constrained
symbolic execution [46]. Second, our handling of floating
point type parameters is imperfect due to limited support in
existing symbolic execution engines. We currently explores
float parameters by choosing from a set of concrete floating-
point values in the valid value range. Third, we use concrete
(the host) hardware in the symbolic execution, which may not



capture specious configuration that is only visible in specific
hardware. We rely on logical cost metrics to surface such
issues. Lastly, Violet does not work on distributed systems.

9 Related Work

Misconfiguration detection and diagnosis. A wide body
of work has been done to detect and troubleshoot miscon-
figuration [20-22, 27, 30, 30, 48, 50, 52, 54, 61, 63]. For ex-
ample, ConfAid [21] uses dynamic taint tracking to locate
configuration errors that lead to failures; Strider [52] and
PeerPressure [50] take statistical approaches to identify mis-
configuration; EnCore [63] enhances statistical learning with
environment information to detect misconfiguration.

These solutions mainly target illegal configuration and have
limited effects on specious configuration. X-ray [19] targets
performance-related misconfiguration. Our work is inspired
by X-ray and is complementary to it. X-ray is a diagnosis tool
and uses deterministic record and replay of a specific program
execution. Violet focuses on detecting specious configuration
beforehand. Violet uses symbolic execution to explore the
performance effect in multiple execution paths. Violet is more
suitable for performance tuning/bug finding, whereas X-ray
is better at diagnosing misconfiguration that has occurred.

LearnConf [41] is recently proposed to detect performance
misconfiguration using static analysis. LearnConf summa-
rizes common code patterns of performance configuration
and uses simple formulas to approximate the performance
effect, e.g., linear relationship. It uses static analysis to iden-
tify these patterns and derive parameters to the formulas. The
solution is simpler compared to Violet, but its completeness
is limited because obtaining comprehensive code patterns is
hard. Moreover, the performance effect is often quite com-
plex, which cannot be accurately captured by simple formulas.
Static analysis also suffers from well-known inaccuracies for
large software. Violet explores a configuration’s influence
in the code without requiring or being limited by common
patterns; it analyzes the performance effect by executing the
code. Additionally, Violet explores the performance impact
of input and a large set of related configurations together.

Performance tuning of configuration. There is a wealth of
literature on automatic performance tuning, e.g., [33,44,51,55,
59,62, 64]. They work basically by devising an approximate
function between configuration values and the performance
metrics measured through testing. While tunable parame-
ters are common specious configuration, performance tuning
and detecting specious configuration are two directions. The
former searches for settings that yield the best performance,
while the latter identifies settings that lead to extremely poor
performance. Violet takes an analytical approach to derive
configuration performance impact model from the code, in-
stead of exhaustive testing. The result from our in-vivo, multi-
path analysis is also less susceptible to noises and enables
extrapolation to different contexts.
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System resilience to misconfiguration. ConfErr [37] uses
a human error model to inject misconfiguration. SPEX [57]
uses static analysis to extract configuration constraints and
generates misconfiguration by violating these constraints. The
injected misconfigurations are illegal values that can trigger
explicit errors like crash. Specious configuration typically
does not cause explicit errors.

Configuration languages. Better configuration languages
can help avoid misconfiguration. Several works make such
efforts [23,25,28,29,35,42,47]. PRESTO [29] proposes a
template language to generate device-native configuration.
ConfValley [35], proposes a declarative validation language
for generic software configuration. These new designs do not
prevent specious configuration from being introduced.

Symbolic execution in performance analysis. Symbolic ex-
ecution [24,38] is typically used for finding functional bugs.
S?E [26] is the first to explore performance analysis in sym-
bolic execution as one use case to demonstrate the generality
of its platform. The Violet tracer leverages the advances made
by S?E, particularly its low-level signals, to build our custom
profiling methods (Section 4.5). Our tracer also addresses
several unique challenges to reduce the performance analy-
sis overhead (Section 5.3). Bolt [36] extracts performance
contracts of Network Function code with symbolic execu-
tion. Violet targets general-purpose software and analyzes
performance effect of system configuration.

10 Conclusion

Specious configuration is a common and challenging problem
for production systems. We propose an analytical approach
to tackle this problem and present a toolchain called Violet.
Violet uses symbolic execution and program analysis to sys-
tematically reason about the performance effect of config-
uration from code. The derived configuration performance
impact model is used for subsequent detections of specious
configuration. We successfully apply Violet on four large
system software and detect 15 out of 17 real-world specious
configuration cases. Violet exposes 11 unknown specious
configuration, 8 of which are confirmed by developers.
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