
Sequential Data Imputation with Evolving
Generative Adversarial Networks

Haripriya Chakraborty
Ph.D. Program in Computer Science

City University of New York
The Graduate Center

New York, United States
Haripriya.Chakraborty@csi.cuny.edu

Priyanka Samanta
Ph.D. Program in Computer Science

City University of New York,
The Graduate Center

New York, United States
psamanta@gradcenter.cuny.edu

Liang Zhao
Computer Science Department

City University of New York
Lehman College

Bronx, United States
Liang.Zhao1@lehman.cuny.edu

Abstract—Data imputation is an important and widely re-
searched problem in data analysis with applications to a variety of
problem domains. Existing literature explores different methods
to estimate missing values in a dataset. In this paper, we analyze
the task of imputing multiple incomplete numerical datasets that
arrive sequentially, each with an overlapping yet distinguishable
set of features. We propose a novel procedure based on the Gener-
ative Adversarial Network (GAN) architecture, called EvoGAN,
which uses transfer learning to build a unified model to perform
imputation for all datasets in the sequence. Our methods exploit
overlap between datasets and utilize the knowledge gathered from
previous rounds. We validate our model on several sequences of
datasets and find compelling results for compression rate and
acceleration which outperform the state-of-the-art imputation
models that are based on an input of a single dataset.

Index Terms—Data Imputation, Missing Values, Generative
Adversarial Network, Machine Learning, Deep Learning, Neural
Network

I. INTRODUCTION

The explosive growth in the volume of big data in recent
years has fueled machine learning and statistical analysis
in many scientific disciplines including astronomy, medicine,
genomics, and information sciences [1]. Due to various factors
such as incomplete measurements, entry mistakes, loss of
records, or privacy concerns, the problem of missing data
arises in many occasions, creating a very serious issue when
it is not an option to simply discard the incomplete data. To
adjust for the missing values, it has become generally accepted
practice to use statistical methods for data imputation. For
example, all three of the largest federally funded health surveys
in the US - the Behavioral Risk Factor Surveillance System,
the National Health and Nutrition Examination Survey, and
the National Health Interview Survey - have employed item-
specific formulas to estimate missing information on health
risks and health behaviors [2], [3]. However, not all imputation
methods are created equal. Therefore, it is crucial to develop
imputation methods that can accurately grasp the relationships
among variables across different datasets, since improper
imputations may introduce systematic biases to the analysis,
potentially causing immense harm to society.

This work was supported by NSF Grants CCF–1733834 and PSC CUNY
Award 62413-00 50. All authors contributed equally.

Recently, researchers have studied the missing data imputa-
tion problem using Generative Adversarial Networks (GANs)
[4]. A GAN model not only trains a generator network that
predicts the missing values but also trains a discriminator
network to provide good measurements on the imputation
accuracy. This approach does not depend on any assumptions
about the distribution of the data, and therefore it is favorable
in many applications where the distribution of the data is
unknown. Due to the immense flexibility of deep neural
networks, GAN has shown impressive imputation results on
images [5], numerical data [6], categorical data [7], and time-
series data [8].

Transfer learning is a process by which a model can use
information gathered from a previous task and utilize it to
improve its performance a new but related task. The motivation
for this is that, in real life, people constantly reuse knowledge
already gathered from past experiences to find better solutions
for new problems. For instance, someone who already pos-
sesses the ability to play the mandolin might have an easier
time learning how to play the banjo than someone who has no
prior experience playing an instrument. Transfer learning has
been successfully applied to a variety of problems including
image classification [9], text classification [10], biomedical
imaging [11], and speech processing [12]. We explore the use
of transfer learning in data imputation when there is a task
involving multiple datasets that have some shared features.

In this work, we tackle the imputation task where the
imputation model needs to be trained on a sequence of
related yet unique datasets. This situation happens when the
set of relevant variables evolves dynamically. For example,
streaming services regularly add and remove TV shows and
movies, which results in user rating datasets that are generated
during different time periods having different sets of features.
Similar issues occur in survey data [13] and observational
data [14], where the set of survey questions or observable
features change over time. While a portion of each dataset
arriving at a given time may have significant overlap with
datasets that have appeared before it, the features unique to
each dataset prevent traditional models from fully exploring
the relationships between different datasets. A naı̈ve way to
tackle this problem would be to train a new GAN from scratch

for each new dataset. However, it is rather inefficient in terms
of storage and computational cost. Also, each model is only
trained on one specific dataset, which does not make use
of any information contained in other related datasets. It is
also often infeasible to simply merge all these datasets. Our
work is motivated by the fact that it is worthwhile to have a
framework that does not require all the data to be available
for conclusions to be derived. Sometimes, there might be a
need to get some intermediate results rather than waiting for
all the data to be seen. Also the merged data may get too
large for storage and computationally expensive to process
in one instance. Moreover, as we mentioned before, in real-
life situations, data can be generated continuously which leads
to new features being added and deleted periodically. For all
these reasons, it is vital to find a smarter solution. In this
paper we propose EvoGAN, a novel procedure that produces
efficient models that learn at each instance and aggregate
information learned at each step with previous steps to evolve
over time. EvoGAN also employs model compression tech-
niques to tackle redundancy, reduce network complexity, and
improve generalization. To our knowledge, EvoGAN is the
first imputation method that exploits the overlap of these
datasets while also accommodating features unique to each
dataset.

We test our procedure on different datasets and different
settings and find that our best models are consistently efficient
and achieve drastic compression rates with high imputation ac-
curacy. We find that our model works for sequences of datasets
that vary in length and for various degrees of missingness. We
use data from Walmart and S&P 500 to show the value of our
model in some real-world scenarios.

II. RELATED LITERATURE

The problem of missing data has been considered for
many years [15]. Substantial work has been done on various
approaches to tackle the problem of missing data. Some ap-
proaches involve statistical methods like regression techniques
or mean imputation [16], [17]. Some other approaches propose
imputation techniques based on neural networks that learn
the distribution of the training dataset to impute data [18]–
[20]. There also exist state-of-the-art discriminative imputation
methods [21]. In recent years, some work has been done on
using generative adversarial networks (GAN) to perform data
imputation [5]–[8]. Our work expands on this very idea.

Some of the work on data imputation is specific to problem
domains. For instance, some are directed towards imputation
algorithms with applications to medical research, while others
are directed towards text data [22]–[25]. Some works approach
imputation problems as an instance of the classical matrix
completion problems. Therefore, matrix factorization based
techniques can be used for imputation [26], [27]. Results in
this area require explicitly defined completion objectives using
matrix-related properties such as eigenvalues or norms, and
therefore these methods are only useful in instances where
the optimal imputation corresponds to nice linear algebraic
properties.

The idea of networks that change dynamically with time
has also been explored [28], [29]. These results aim to handle
the changes in data distributions over a fixed set of variables.
Our work considers a fundamentally different problem where
the set of variables also changes dynamically. Some other
solutions aim to improve the model performance rather than
adapting to new data formats and do not take advantage of
information common to all datasets while we look to exploit
these commonalities using transfer learning [30].

The problem of catastrophic forgetting deals with sequential
learning tasks and some work has been done in this regard
[31]. However, this work does not extend to imputation tasks
and scenarios where the features of the input varies over
time. Some work has been done on using transfer learning
for handling missing data. However, these approaches are
substantially different from ours. For instance, some work
focuses on using evolutionary algorithms to produce a good
configuration of the neural network model and using transfer
learning to update their model while only imputing a single
dataset [32]. Some other methods are more suited for data
with a small number of features where imputation is not the
main goal [33]. Moreover, their model cannot be applied to
a situation with sequential data since their model uses all the
features while our model does not require all the features.

III. NOTATIONS AND PROBLEM FORMULATION

In our work, we analyze the task of imputing missing data
that arrive sequentially using generative adversarial networks
(GAN). We assume that the data is missing under the MCAR
assumption. Consider a (possibly infinite) set of variables
S = {X1, X2, ...}, where Xi takes values from space Xi for
i = 1, 2, We suppose that datasets (D1,D2, ...) arrive se-
quentially, so Di is the dataset that appears in round i. Suppose
Di contains a finite subset Si of S. For any two consecutive
datasets Di and Di+1, we assume that Si∩Si+1 6= ∅, otherwise
the knowledge in Di won’t be useful on Di+1.

For each i, a data instance of dataset Di is the concatenation
of two vectors x and m, where x ∈

∏
Xj∈S Xj is the data

vector with values for each variable in Si, and m ∈ {0, 1}‖Si‖

is the mask vector representing the incompleteness of the data.
The mask vector m is defined so that a value in m is 1 if
and only if the value of its corresponding variable in x is
missing. We use xm (resp. xum) to represent the sub-vector of
x consisting of missing variables (resp. observable variables).

The goal of the data imputation task is to predict
the unobserved values in each data vector x. Since in
practice it is impossible to know those exact values that are
missing, the best approach one can realistically expect is to
learn the conditional distribution P (Xm|Xum = xum). The
main challenge of this problem is that each x has its own
set of masked variables and unmasked variables, resulting in
possibly infinite combinations. Moreover, we would like to
build a unified imputation model that handles the imputation
of all datasets in the sequence. Moreover, since none of the
datasets provides data vectors that covers the entire variable

set S, the imputation model must be able to combine the
knowledge learned from each individual dataset.

IV. EVOGAN: A PROGRESSIVELY TRAINED IMPUTATION
MODEL

In this section, we present the procedure of constructing
EvoGAN, an imputation model progressively trained on a list
of datasets arriving sequentially. Here we assume that dataset
Dk arrives in round k, and shares some overlapping variables
with the previous dataset Dk−1, but each set may have other
variables that are unique to it. We moved the description
of EvoGAN1 to the supplementary material, since it simply
requires adopting an existing imputation GAN network. Here
we focus on how the EvoGAN model at round k evolves to
adapt to the the next dataset Dk+1 at round k + 1.

Here EvoGAN is being called a model that imputes pro-
gressively, but EvoGANk is also being called a model that
imputes on one part of the dataset. Perhaps, EvoGANk can be
defined as the version of the model in round k.

A. Constructing EvoGANk+1 from EvoGANk

Due to the existence of overlapping variables between Dk

and Dk+1, EvoGANk+1 is constructed upon EvoGANk. This
approach ensures that the model can transfer the knowl-
edge learned by EvoGANk on those overlapping variables to
EvoGANk+1. The challenges that we consider are two-fold:

1) How to make the model in round k preserve features
learned in round k − 1, while having enough flexibility
to fit the new dataset?

2) How to modify its input / output structure to handle the
newly included variables and removed variables?

To the best of our knowledge, EvoGAN is the first ma-
chine learning procedure that tackles the challenges mentioned
above.

Next, we will describe how EvoGAN is modified in each
round in terms of generator and discriminator, weight freezing
schemes, model compression, and objective function. The
overall architecture is illustrated in Figure 1

Expanded Generator: We build the generator Gk+1 of
EvoGANk+1 by first recreating the neural network structure
of generator Gk from EvoGANk. All weights and biases are
preserved. Then we expand each hidden layer by adding a
reasonable amount of nodes that are fully connected to the
previous layer. At this stage, if all the newly-added weights
are initialized to zero, then Gk and Gk+1 represent the same
function. Similar to practices in transfer learning, we will
freeze all or some of the weights inherited from Gk during
training. The reader may refer to the Experiments section for
the performance of different freezing schemes.

Next, we modify its input layer and output layer to fit the
new sets of inputs and outputs. Let Srm, Ssh, Snew represent
Sk−Sk+1, Sk ∩Sk+1, Sk+1−Sk, namely the set of removed
variables, shared variables, and new variables respectively.
Since the input of Gk+1 is a vector (x,m) only containing
information of Ssh and Snew, we append an i.i.d. random noise
vector zaug ∈ R‖Srm‖ to x, and a ”completely masked” vector

Fig. 1: The overall structure for EvoGAN for sequential data
imputation. The input vector of the generator is augmented
to contain random seed for the input nodes corresponding to
features removed from the previous dataset.

maug = (1, ..., 1) of length ‖Srm‖ to m. Now the augmented
input vector (zaug,x,maug,m) has length 2(‖Srm‖+‖Ssh‖+
‖Snew‖) = 2‖Sk‖ + 2‖Snew‖. We then add 2‖Snew‖ nodes
to the input layer of Gk+1. Similarly, we remove the nodes
corresponding to the removed variables in the output layer,
and append ‖Snew‖ new nodes to it, so that the output vector
is a vector of length ‖Ssh‖+ ‖Snew‖ = ‖Sk+1‖.

Fig. 2: Illustration of the network structure for the genera-
tor/discriminator network of EvoGANk for k ≥ 2.

Expanded Discriminator: Similar to Gk+1, the discrimi-

nator Dk+1 is also generated by expanding the structure of
Dk with additional nodes to the input layer, hidden layers,
and the output layer. Note that the reason for adding new
nodes to hidden layers is to grant additional learning potential
since most of the inherited weights won’t be updated during
training. The input and output layer should be modified
according to the change of variables in order to maintain the
correspondence between nodes and variables. The construction
of the generator/discriminator network is illustrated in Figure
2.

Weight Freezing: Weight freezing and pruning redundant
weights have been shown to be effective methods of model
compression. These are valuable methods of reducing network
complexity and overfitting without affecting the performance
of the network [34], [35]. We propose to ”freeze” the inherited
weights to preserve the knowledge learned from the previous
round, so that those weights are not updated during the
back-propagation of the current training round [36]. If all
inherited weights are frozen, however, one may need to add
a considerable amount of new nodes to add enough flexibility
to adapt to the new dataset. Our experiments suggest that, in
some instances, an acceptable trade-off is to freeze the lower
layers and let the higher layers be completely trainable.

Model Compression: Deep neural networks contain a large
number of parameters, making them prone to model overfitting
with limited training data. This results not only in unnecessary
computational costs but also limits the generalizability of the
model which can be detrimental to sequential learning. This
is an important motivation for the use of pruning techniques.
Many methods have been proposed to address this issue of
overfitting, such as pruning and soft weight-sharing [37]. In
particular, pruning tend to significantly increase the sparsity of
the model by setting many parameters to zero. This approach
has a multiplicative effect on EvoGAN since a sparser network
will not only reduce the model size in one round but will also
improve the model sparsity of all subsequent rounds. We refer
to the experiments section for evidence of this accumulated
effect of pruning.

Objective Function: The objective of EvoGAN is straight-
forward: the generator generates values for the masked vari-
ables in a data vector, aiming at preventing the discriminator
from correctly distinguishing between real values and fake
values while the discriminator tries not to be fooled by the fake
values filled by the generator. Although detailed settings may
vary, the objective function for the generator should penalize
the model depending on how much the generated values are
different from the masked values, and the objective function
for the discriminator should punish the model depending on
the predictions on the mask vector.

V. EXPERIMENTS ON UCI DATASETS

A. Benchmarks, Datasets, Evaluation Criteria

We test the following six variations of EvoGAN in our
experiments.
• EvoGAN-Complete: This refers to the model under com-

plete freezing scheme without L1 regularization.

• EvoGAN-Partial: This refers to the model under partial
freezing scheme without L1 regularization.

• EvoGAN-Complete-L1: This refers to the model under
complete freezing scheme with L1 regularization.

• EvoGAN-Partial-L1: This refers to the model under par-
tial freezing scheme with L1 regularization.

• EvoGAN-Complete-L1+Prune: This refers to the model
under complete freezing scheme with L1 regularization
along with an additional pruning mechanism.

• EvoGAN-Partial-L1+Prune: This refers to the model un-
der partial freezing scheme with L1 regularization along
with pruning.

For our baseline, we consider the case when one of the
state-of-the-art models for data imputation is trained from
scratch on each dataset in the sequence. For this purpose, we
chose the GAIN network [6] and the MisGAN network [38]
as the baseline model. To compare with EvoGANk, on the k-
th dataset Dk is used to train the baseline models, since they
cannot make use of earlier datasets. We replicated the network
structure used in the original papers with only necessary
changes to adapt to the new datasets. Detailed implementation
information can be found in the supplementary material.

We first validated different versions of EvoGAN on three
datasets retrieved from UCI Machine Learning Repository
[39]: letter, credit, spam.

To create a sequence of datasets, we picked each one of
these three sets and subdivided them into subsets making sure
that there was not only overlap between consecutive datasets
in the sequence but that there also was addition and deletion of
features from one set to another. In this manner, we subdivided
each of the three original datasets to generate a sequence of
smaller datasets.

For each of the datasets, we created n subsets with the
following characteristics. Each subset has m1 overlapping
features with the previous subset and m2 new features. If
m1 = m2, then there is a 50% overlap between the previous
subset and the new subset. For example, if Letter dataset is
divided into n = 4 subset, then each subset will have 5000
rows and the columns from the original dataset that appear
in each of the 4 subsets will be 1-6, 4-9, 7-12, and 10-15,
respectively. Here m1 = m2 = 3.

Since we needed to start with a complete dataset to validate
our methods, it was necessary for us to artificially determine
the features included in each dataset. It must be emphasized
that we did not choose them based on their significance or
importance, but simply by position. Our initial tests were on
sequences of four datasets, but we subsequently validated our
model on longer sequences.

To evaluate the performance of our models, we use RMSE
as a performance metric. In addition, we also use compression
rate (CR) and speed-up to measure the quality of compression
and acceleration respectively:

CR =
number of parameters in baseline model
number of parameters in EvoGAN model

(1)

Model Letters Spam Credit card
Speed-up CR RMSE Speed-up CR RMSE Speed-up CR RMSE

EvoGAN-Complete 1.412 3.27 0.163 1.278 3.77 0.072 1.201 3.48 0.153
EvoGAN-Partial 1.068 4.92 0.164 0.97 4.25 0.069 1.045 4.59 0.130

EvoGAN-Complete-L1 1.568 6.37 0.162 1.405 7.49 0.069 1.271 6.86 0.142
EvoGAN-Partial-L1 1.077 5.72 0.164 0.963 4.88 0.063 1.101 5.34 0.127

EvoGAN-Complete-L1+Prune 1.465 21.24 0.148 1.523 19.96 0.068 1.315 23.17 0.127
EvoGAN-Partial-L1+Prune 1.214 11.26 0.152 1.247 13.22 0.068 1.207 11.97 0.129

Baseline 1.000 1.00 0.156 1.000 1.00 0.075 1.000 1.00 0.135

TABLE I: Overall performance of EvoGAN with respect to baseline model on Letters, Spam and Credit Card datasets.

Speed-up =
running time of baseline model
running time of EvoGAN model

(2)

We use the masked values from the data records to evaluate
the performance of the models. These records are split evenly
between the validation set and test set. The validation RMSE
are used for model selection, and the test RMSE are reported
in the tables and figures of this paper.

It is worth noting that our focus was not on fine-tuning
the hyper-parameters to improve the performance; we simply
chose some intuitive values and empirical results to pick the
best settings.

B. Network Construction

For EvoGAN1, we use the GAIN architecture for both the
generator and discriminator. It has three fully connected layers;
the first two use ReLU as activation functions and the last
layer uses sigmoid activation function. L1 regularization was
added to the loss function. For the generator, the input is the
concatenation of mask, actual data, and random seed; for the
discriminator, the input is the concatenation of the hint matrix
and the imputed data. In the subsequent rounds, EvoGAN
freezes most or all of the weights and biases from the previous
round and introduces N new nodes at each stage to deal
with the new dataset with some previously seen features. This
process is the same for both the generator and the discriminator
of EvoGAN. The newly added parameters are initialized to
zero. This is repeated over many rounds.

C. Weight freezing, Regularization, and Pruning

Under the complete freezing scheme, all the weights post-
training for the version of the model in the previous round
are preserved and inherited by the model in the current round.
Then, N extra nodes are added to each layer and only the
weights corresponding to these new nodes are retrained and
updated.

Under the Partial freezing scheme, all the weights post-
training for the version of the model in the previous round
are preserved and inherited by the model in the current round.
Then, N extra nodes are added to each layer, but in this case,
all the weights corresponding to the last layer are retrained
and updated.

In addition to these weight freezing mechanisms, we con-
sider L1-regularization and a pruning mechanism in which all
edges corresponding to the smallest m % of weights in terms
of magnitude are removed. This process is repeated in every
round to ensure a lean model. Pruning methods are well-known

for providing benefits of model compression while avoiding
the problem of over-fitting.

VI. RESULTS FOR GAIN-BASED EVOGAN
A. Overall Performance

Our results for the performance of models in initial tests
are outlined in Table I. For our initial tests, we randomly
removed 20% of all data points. It is clear that models
constructed according to the EvoGAN-Complete-L1+Prune
scheme consistently improve upon the RMSE of baseline
while also achieving impressive rate of compression as well
as speed-up. In addition, models constructed according to the
EvoGAN-Partial-L1+Prune scheme also achieve improve-
ments in RMSE as well as substantial compression rates and
speed-up.

We ran additional tests with longer sequences of datasets,
various missing rates, and datasets with less overlap. Our
models continued to outperform the baseline in all these cases.
These results are discussed in more detail in the following
subsections.

B. Effects of Regularization and Pruning
We ran our models under both weight freezing schemes

with and without L1 regularization and pruning. The results
are detailed in Table I.

The models under the complete freezing scheme see a
substantial difference with the addition of L1 regularization.
They consistently achieve higher compression rates than their
counterparts without regularization. In addition, these models
also see some improvement in RMSE as well as some accel-
eration in running time. With the addition of pruning, these
models achieve further improvements in RMSE and dramatic
changes in compression rate.

The models under the partial freezing scheme also see
improvements in RMSE, compression rates, and speed-up
with the addition of L1 regularization and pruning. Most of
these gains appear as improved compression rates and lower
running-times.

We varied the values of the hyperparameters for L1 reg-
ularization and the degree of pruning to experimentally pick
the most suitable values for our models for each sequence of
datasets.

C. Longer Sequences of Datasets
We divided the datasets into longer sequences of sub-

sets and found that while various models of EvoGAN con-
tinue to achieve reasonable improvements in speed-up and

Model Letters Spam Credit card
Speed-up CR RMSE Speed-up CR RMSE Speed-up CR RMSE

EvoGAN-Complete-L1 1.28 4.25 0.174 1.405 3.39 0.068 1.271 4.28 0.071
EvoGAN-Partial-L1 1.05 3.11 0.171 0.891 3.64 0.056 0.920 3.25 0.059

EvoGAN-Complete-L1+Prune 1.568 14.0 0.145 1.781 19.04 0.055 1.762 13.08 0.064
EvoGAN-Partial-L1+Prune 1.215 8.45 0.151 1.623 11.27 0.058 1.244 8.29 0.064

Baseline 1.000 1.00 0.178 1.000 1.00 0.076 1.000 1.00 0.069

TABLE II: Overall performance of EvoGAN with respect to baseline model on Letters, Spam and Credit Card datasets that
have less overlap.

Fig. 3: RMSE for EvoGAN-complete-L1+prune and baseline
model for datasets with different missing rates.

very high compression rates when compared to the base-
line model, EvoGAN-Complete-L1+Prune and EvoGAN-
Partial-L1 models outperformed the baseline in every respect.
We found that for longer sequences, as long as there was at
least 50% overlap between consecutive datasets, the models
still performed well.

For instance, when we divided the Letters dataset into a se-
quence of 6 smaller datasets with 50% overlap, we found that
both EvoGAN-Complete-L1+Prune and EvoGAN-Partial-
L1+Prune showed substantial reductions on the RMSE of
the baseline while maintaining better running times and
achieving significant compression rates. In this case, the best
performer was EvoGAN-Complete-L1+Prune with a reduc-
tion in RMSE of over 18% while achieving a remarkable
compression rate of almost 24. The results are detailed in
Table III.

Model Letters
Speed-up CR RMSE

EvoGAN-Complete-L1 1.39 9.56 0.176
EvoGAN-Partial-L1 1.06 9.93 0.174
EvoGAN-Complete-L1+Prune 1.42 23.83 0.141
EvoGAN-Partial-L1+Prune 1.36 11.72 0.143
Baseline 1.00 1.00 0.173

TABLE III: Overall performance of EvoGAN on sequence of
6 datasets.

Overall, we found that for longer sequences our models con-
tinued to show significant advantages in model compression
and speed-up while maintaining low prediction error.

D. Missingness
Our initial results used a missing rate of 20%. We carried

out more extensive experiments to examine the affect of miss-
ing rate and found that EvoGAN consistently outperformed

the baseline. For instance, Figure 3 illustrates the effect of
the missing rate on the performance of the best performing
EvoGAN model on SPAM dataset. Our experiments showed
that EvoGAN-Complete-L1+Prune performed better than the
baseline and the other models in terms of RMSE while
preserving the improvements in compression rate and speed-
up. As is evident from the figure, this model is consistently
better than the baseline for values of missing rate ranging from
20% to 90%.

E. Sequences of datasets with less overlap

We varied the degree of overlap of features between two
consecutive datasets and found interesting results. Table II
details the results for the case when the overlap of features
between two consecutive datasets is around 50%. We find
that EvoGAN-Complete-L1+Prune and EvoGAN-Partial-
L1+Prune models consistently outperformed the baseline in
every metric. Overall, it is clear that these EvoGAN models are
successful at exploiting the knowledge gathered over multiple
rounds while also being more efficient than the baseline
models.

VII. RESULTS FOR MISGAN-BASED EVOGAN

We also adapted the EvoGAN technique to MisGAN, so that
EvoGAN1 is now replaced with MisGAN structure introduced
in [38]. We conducted tests on the MNIST dataset. We found
that our EvoGAN provided image imputation comparable to
the original EvoGAN while requiring much less parameters.

A. Experiment Design

We create two subsets from the original MNIST dataset.
The first subset contains 6000 images, where each image is
cropped so that only the upper-left 20× 20 block is kept. The
second subset contains the lower-right 20×20 of another 6000
images. EvoGAN1 is trained only on the first dataset, while
EvoGAN2 is trained only on the second subset.

B. Network Structure

For EvoGAN1, we use the basic MisGAN architecture
for the generators, discriminators and imputer. Essentially,
MisGAN has 3 network structures named ConvGenerator ,
ConvCritic and Imputer. ConvGenerator generates fake data
and fake mask. ConvCritic is used for all three discriminators
(imputer discriminator, mask discriminator and data discrim-
inator). Imputer network contains generator for the imputed
data. In EvoGAN2 we used the same layers structure for all the
generators, discriminators and imputer network, which consists

Fig. 4: Image Imputation Results for an EvoGAN model

Fig. 5: EvoGAN performance in real-world situations. Top row: Walmart sales data; Bottom row: S&P 500 data.

of three convolutional layers and a fully-connected layer. First
3 layers use ReLU as activation functions. For the last layer
of the Imputer network, sigmoid activation function was used.
In the subsequent rounds, EvoGAN freezes all of the weights
and biases from the previous round and introduces 10% new
nodes at each stage to adapt to the the new dataset with some
previously seen features.

C. Results

Figure 4 displays a few randomly selected imputation re-
sults. The pixels outside each red box are considered missing
from the original image, and the imputation model recreated
this area based on their knowledge of the dataset. The impu-
tation results on the second subset was shown for EvoGAN2

and a MisGAN model trained from scratch. As showned in the
figure, EvoGAN2 was able to achieve comparable imputation
performance on these masked images by largely re-using
EvoGAN1.

VIII. SIMULATING REAL-WORLD SITUATIONS

We simulated two real-world scenarios: sales revenue im-
putation and stock price imputation.

A. Imputation Results on Walmart Sales Data

We evaluated various EvoGAN models on each subset of
Walmart data and compared them with baseline. We observed
all the EvoGAN models performed well in terms of speed-
up and compression rate while all but one of the models
achieved lower RMSE than the baseline. Here we assumed
50% overlap between each subsets. Both EvoGAN-Partial-
L1 and EvoGAN-Partial-L1+Prune models achieve lower
RMSE than the baseline. TheEvoGAN-Complete-L1+Prune
model is the best performer in terms of speed-up and compres-
sion rate. Figure 5 provides a comparison of the performances
of the EvoGAN-Partial-L1 model and baseline in terms of
RMSE, speed-up and compression rate. As shown in the figure,
EvoGAN consistently outperforms the baseline model in terms
of RMSE, training time, and the number of parameters, with
Subset 4 being the only instance in which the RMSE of the
baseline is marginally lower than that of our model.

B. Imputation Results on S&P 500 Data

Figure 5 displays the comparison between EvoGAN and
the baseline approach for each subset of the sequence. While

we achieved good results with different variants exhibiting
different strengths, we focused on EvoGAN-Partial-L1 as
it was the best performer in terms of all three metrics.
Overall, EvoGAN achieves faster training time, with far fewer
parameters while maintaining good imputation accuracy when
compared to the baseline.

IX. CONCLUSION

In this paper, we have proposed a novel technique called
EvoGAN that is useful for data imputation on multiple datasets
that arrive sequentially. Our procedure leads to adaptable
models that use transfer learning to take advantage of the
overlap between datasets and evolve over many rounds to
maintain the quality of imputation while preserving substan-
tially lower network complexity when compared to various
baseline models.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information sci-
ences, vol. 275, pp. 314–347, 2014.

[2] J. T. Massey, T. F. Moore, W. Tadros, and V. Parsons, “Design and
estimation for the national health interview survey 1985-94.” VITAL
AND HEALTH STATISTICS. SERIES 2: DATA EVALUATION AND
METHODS RESEARCH, vol. 110, pp. 1–33, 1989.

[3] CDC, “Behavioral risk factor surveillance system operational and user’s
guide,” Atlanta, GA: US Department of Health and Human Services,
Centers for Disease Control and Prevention, 2006.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[5] D. Lee, J. Kim, W.-J. Moon, and J. C. Ye, “Collagan: Collaborative
gan for missing image data imputation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2487–2496.

[6] J. Yoon, J. Jordon, and M. Schaar, “Gain: Missing data imputation using
generative adversarial nets,” in International Conference on Machine
Learning, 2018, pp. 5675–5684.

[7] R. D. Camino, C. Hammerschmidt et al., “Generating multi-categorical
samples with generative adversarial networks,” ICML Workshp, 2018.

[8] Y. Luo, X. Cai, Y. Zhang, J. Xu et al., “Multivariate time series
imputation with generative adversarial networks,” in Advances in Neural
Information Processing Systems, 2018, pp. 1596–1607.

[9] L. Duan, D. Xu, and I. Tsang, “Learning with augmented features
for heterogeneous domain adaptation,” arXiv preprint arXiv:1206.4660,
2012.

[10] C. B. Do and A. Y. Ng, “Transfer learning for text classification,” in
Advances in Neural Information Processing Systems, 2006, pp. 299–306.

[11] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

[12] D. Wang and T. F. Zheng, “Transfer learning for speech and language
processing,” in 2015 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA). IEEE, 2015,
pp. 1225–1237.

[13] P. P. Reddy and M. M. Veloso, “Negotiated learning for smart grid
agents: entity selection based on dynamic partially observable features,”
in Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[14] A. Gelman, G. King, and C. Liu, “Not asked and not answered: Multiple
imputation for multiple surveys,” Journal of the American Statistical
Association, vol. 93, no. 443, pp. 846–857, 1998.

[15] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3,
pp. 581–592, 1976.

[16] R. J. Little, “Regression with missing x’s: a review,” Journal of the
American Statistical Association, vol. 87, no. 420, pp. 1227–1237, 1992.

[17] P. T. Von Hippel, “4. regression with missing ys: An improved strategy
for analyzing multiply imputed data,” Sociological Methodology, vol. 37,
no. 1, pp. 83–117, 2007.

[18] I. A. Gheyas and L. S. Smith, “A neural network-based framework for
the reconstruction of incomplete data sets,” Neurocomputing, vol. 73,
no. 16-18, pp. 3039–3065, 2010.

[19] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” Emerging artificial
intelligence applications in computer engineering, vol. 160, pp. 3–24,
2007.

[20] W. Ren, X. Lian, and K. Ghazinour, “Efficient join processing over
incomplete data streams,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp. 209–
218.

[21] S. v. Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputa-
tion by chained equations in r,” Journal of statistical software, pp. 1–68,
2010.

[22] J. Barnard and X.-L. Meng, “Applications of multiple imputation in
medical studies: from aids to nhanes,” Statistical methods in medical
research, vol. 8, no. 1, pp. 17–36, 1999.

[23] A. Mackinnon, “The use and reporting of multiple imputation in medical
research–a review,” Journal of internal medicine, vol. 268, no. 6, pp.
586–593, 2010.

[24] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, vol. 8, no. 1, p. 6085, 2018.

[25] W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: better text gener-
ation via filling in the ,” arXiv preprint arXiv:1801.07736, 2018.

[26] T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, “Matrix completion
and low-rank svd via fast alternating least squares,” The Journal of
Machine Learning Research, vol. 16, no. 1, pp. 3367–3402, 2015.

[27] H. Tan, G. Feng, J. Feng, W. Wang, Y.-J. Zhang, and F. Li, “A
tensor-based method for missing traffic data completion,” Transportation
Research Part C: Emerging Technologies, vol. 28, pp. 15–27, 2013.

[28] J. Yoon, J. Lee, E. Yang, and S. J. Hwang, “Lifelong learning
with dynamically expandable network,” in International Conference
on Learning Representations. International Conference on Learning
Representations, 2018.

[29] T. Ash, “Dynamic node creation in backpropagation networks,” Con-
nection science, vol. 1, no. 4, pp. 365–375, 1989.

[30] C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary generative adversar-
ial networks,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 6, pp. 921–934, 2019.

[31] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[32] J. Gupta, S. Paul, and A. Ghosh, “A novel transfer learning-based
missing value imputation on discipline diverse real test datasets—a com-
parative study with different machine learning algorithms,” in Emerging
Technologies in Data Mining and Information Security. Springer, 2019,
pp. 815–826.

[33] D. Chen, S. Yang, and F. Zhou, “Transfer learning based fault diagnosis
with missing data due to multi-rate sampling,” Sensors, vol. 19, no. 8,
p. 1826, 2019.

[34] S. Hosseini and C. Jutten, “Weight freezing in constructive neural
networks: a novel approach,” in International Work-Conference on
Artificial Neural Networks. Springer, 1999, pp. 11–20.

[35] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[36] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International Conference on Artificial Neural
Networks. Springer, 2018, pp. 270–279.

[37] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft
weight-sharing,” Neural computation, vol. 4, no. 4, pp. 473–493, 1992.

[38] S. C.-X. Li, B. Jiang, and B. Marlin, “Misgan: Learning from in-
complete data with generative adversarial networks,” arXiv preprint
arXiv:1902.09599, 2019.

[39] M. Lichman et al., “Uci machine learning repository,” 2013.

	Introduction
	Related Literature
	Notations and Problem Formulation
	EvoGAN: A Progressively Trained Imputation Model
	Constructing EvoGAN(k+1) from EvoGAN(k)

	Experiments on UCI Datasets
	Benchmarks, Datasets, Evaluation Criteria
	Network Construction
	Weight freezing, Regularization, and Pruning

	Results for GAIN-Based EvoGAN
	Overall Performance
	Effects of Regularization and Pruning
	Longer Sequences of Datasets
	Missingness
	Sequences of datasets with less overlap

	Results for MisGAN-Based EvoGAN
	Experiment Design
	Network Structure
	Results

	Simulating Real-World Situations
	Imputation Results on Walmart Sales Data
	Imputation Results on S&P 500 Data

	Conclusion
	References

