
Addressing Resiliency of In-Memory Floating Point
Computation

Sina Sayyah Ensan, Swaroop Ghosh, Seyedhamidreza Motaman, and Derek Weast
School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA 16802 USA

(sxs2541, szg212, sxm884, dqw5347)@psu.edu

Abstract—In-memory computing (IMC) can eliminate the data
movement between processor and memory which is a bar-
rier to the energy-efficiency and performance in Von-Neumann
computing. Resistive RAM (RRAM) is one of the promising
devices for IMC applications (e.g. integer and Floating Point (FP)
operations and random logic implementation) due to low power
consumption, fast operation and small footprint in crossbar
architecture. In this paper, we propose FAME, a pipelined
FP arithmetic (adder/subtractor) using RRAM crossbar based
IMC. A novel shift circuitry is proposed to lower the shift
overhead during FP operations. Since 96% of the RRAMs used
in our architecture are in High Resistance State (HRS), we
propose two approaches namely Shift-At-The-Output (SATO)
and Force To VDD (FTV) (ground (FTG)) to mitigate Stuck-
at-1 (SA1) failures. In both techniques, the fault-free RRAMs
are exploited to perform the computation by using an extra
clock cycle. Although performance degrades by 50%, SATO can
handle 50% of the faults whereas FTV can handle 99% of the
faults in the RRAM-based compute array at low power and
area overhead. Simulation results show that the proposed single
precision FP adder consumes 335 pJ and 322 pJ for NAND-
NAND and NOR-NOR based implementations, respectively.
The area overheads of SATO and FTV are 28.5% and 9.5%,
respectively.

Index Terms—In-Memory Computing, Floating Point, RRAM,
Crossbar, Resiliency.

I. INTRODUCTION

In the big data era, conventional CMOS-based Von-

Neumann architecture platforms are unable to face real-time

data processing requirements [1]. Memory and computing

elements are decoupled from each other in Von-Neumann

architecture [2] which apply frequent communication between

memory and computing cores [3]. The compute energy has

been scaled asymmetrically compared to data transport energy

with transistor scaling. Data movement in modern computing

systems dominates energy-efficiency and performance [4].

In Memory Computing (IMC) is one of the promising com-

pute models to fully or partially eliminate the need to transport

data between processors and memory. The main concept of

IMC is to infuse compute capability into the memory cells [5].

IMC is achievable by using emerging Non-Volatile Memories

(NVM) e.g., RRAM, Spin Transfer Torque (STT) RAM and

Phase Change Memory (PCM) [5], [6], [7], [8]. Near memory

processing [9] and logic-in-memory, which employ NVMs in

the logic space [10], [11] to preserve states between powering

sequence have been proposed in the literature. However, they

cannot solve the problem of separation between logic and

memory.

IMC modifies memory cells and/or peripheral cir-

cuits/access mechanisms to infuse compute capability into

memory cells. IMC can solve specific tasks such as, dot-

products for recognition [8], search [12] and classification [6].

It also supports a wide range of logic and arithmetic operations

[10], [13], [14], [15]. NVM-based IMC using STTRAM [16],

RRAM [17], Ferroelectric FET (FeFET) and Phase-Change

Memory [18] are becoming popular.

Due to immature fabrication technology limitations, man-

ufacturing yield is still a serious concern for NVMs such

as, RRAM crossbar. Faults in RRAM crossbar arrays are

categorized into hard and soft faults [1]. Previous studies

have been predominantly focused on soft faults [19] whereas

few attempts are made to recover crossbar arrays from hard

faults. The soft faults (e.g., read disturb) can be recovered

by calibrating the resistance [19] [20]. However, hard faults

are recovered through mapping algorithms (i.e., by assigning

inputs of faulty RRAMs to the redundant rows or columns)

[1], [21], [22].

Stuck-at fault is defined as a situation when the RRAM is

permanently stuck at High Resistance State (HRS) or Low

Resistance State (LRS). It has been reported [23] that only

63% of HfO2− based RRAM devices for 4Mb crossbar array

are fault-free and about 10% of RRAM devices contain stuck-

at faults. Retention failure which is similar to the resistive

switching due to the generation or recovery of oxygen vacancy

is another type of hard faults in RRAMs. In the proposed

IMC architecture, only 4% of the RRAMs are in LRS and the

other 96% are in HRS. Therefore in this paper, we focused on

the HRS retention failure and stuck-at-1 (i.e., stuck-at HRS)

faults. If the yield of a single RRAM device is 99%, there is

only 10−9 probability for a column of 64*32 array to be fault

free. The stuck-at failures and HRS to LRS switching [24]

can be fixed by employing few redundant rows/columns when

RRAM array is considered working as a memory. However,

the whole array is needed for IMC application. Consequently,

computations will fail due to errors in the absence of fault

tolerance schemes.

We have considered Floating Point (FP) operations to eval-

uate the proposed resilience techniques. This is motivated

by the fact that emerging applications e.g., mission-critical

systems like autonomous cars require huge amount of data

processing in real-time at low-power (to make timely deci-

sions). The autonomous cars make complex decisions in a

tight deadline using algorithms e.g., Kalman filters for data

ar
X

iv
:2

01
1.

00
64

8v
1

 [c
s.A

R
]

1
N

ov
 2

02
0

fusion, ray tracing for path planning and, edge detection

and deep neural networks for classification. Most of these

algorithms require FP vector operations involving transpose,

inverse, addition/multiplication. Therefore, the capability to

perform these tasks, quickly and accurately can be of utmost

importance to enable the safe and energy-efficient autonomous

systems. Conventionally, FP architectures are implemented

as full custom VLSI or in FPGA. Although fast and power

efficient, these custom designs impose cost and complexity.

In this paper, we propose FAME (Single Precision Floating

Point Arithmetic using In-Memory Computing) implemented

on crossbar RRAM. We employ a modified version (Section

??) of Dynamic Computing In Memory (DCIM) [7] based

architecture as our baseline compute substrate for FAME.

Additionally, two approaches namely, Shift-At-The-Output

(SATO) and Force To VDD(GND) (FTV(G)) are proposed

to enable in-memory computing in presence of HRS to LRS

retention failures. We focus on this failure mechanism due to

two reasons: (i) HRS to LRS switching is more common in

RRAM [25]; (ii) majority of the RRAMs (96%) are in HRS for

both NAND-NAND and NOR-NOR arrays. Carry Select

Adder (CSA) based on DCIM implementation is used for the

demonstration. We add extra peripheral circuits on each array

to implement the proposed techniques.

In particular, we make the following contributions in this

paper:

1) Alternative low-overhead realization of DCIM for FP

computation;

2) In-memory shift circuit embedded in the peripherals e.g.,

sense amplifier (SA);

3) Enabling pipeline architecture using the latch embedded

in the SA;

4) Propose fault mitigation approaches such as, SATO and

FTV/FTG for DCIM architecture;

5) Conduct PV analysis of the RRAM array to check the

integrity of SATO and FTV/FTG.

Rest of the paper is organized as follows. Section II intro-

duces related work on IMC. Section ?? explains the proposed

FAME circuit and architecture. Section III presents the simu-

lation results of FAME and comparison with other IMC logic

implementation. Section IV explains proposed approaches to

overcome SA1 faults in IMC architecture. Section V presents

the proposed fault tolerance approaches and simulation results.

Section VI draws the conclusion.

II. RELATED WORK AND BACKGROUND

A. Memristor Aided Logic (MAGIC)

MAGIC [26] (shown in Fig. 1) is an IMC architecture in

which logic state of the gates are represented by the memristor

(RRAM in this paper) resistance where high (low) resistance is

considered as logic ‘1’ (‘0’). The inputs to a MAGIC gate are

the logic states stored in the input memristors and the output

is the final state of the output memristor. MAGIC executes

operations in two steps: 1) setting the output memristor to

a known logic state (e.g., for NOR operation the output

OutGateway

In-2

In-1

Step # Opertaion Application of Voltage

2
1 Write LRS at Out

Execute NOR OP.

Fig. 1: MAGIC NOR

is in LRS); 2) applying a known voltage (V0) to the input

memristors which causes current flow through the input and

output memristors. The output memristor’s state changes if the

current passing through it is higher than the set/reset current.

MAGIC is capable of implementing Boolean functions such

as, NAND, NOR, AND, OR and NOT .

B. Dynamic Computing In Memory (DCIM)

DCIM [7] is an RRAM crossbar based architecture, which

each memory cell is composed of an RRAM device connected

in series with a selector diode (Fig. 2a. In-memory computa-

tion is accomplished by implementing the functions in the

form of Sum-of-Product (SoP). Thus, both AND and OR
operations are required to implement the logical functions.

In DCIM, wordlines (WL) serve as the inputs and the

bitlines (BL) serve as the outputs of the arrays. Separate pre-

programmed AND and OR arrays are dedicated to implement

the desired function. For instance, in order to implement

in0.in1, the bitcells connected to in0 and in1 are programmed

to LRS while the bitcells connected to in0 and in1 are

programmed to HRS (Fig. 2a. All bitcells which are not part

of AND gate inputs are programmed to HRS (e.g., the bitcells

connected to input inn and inn).

Fig. 2 shows the implementation of XOR function using

DCIM. Initially, Pre signal is activated to pre-charge BLs of

the AND array. Next, inputs (in0 and in1) are applied by

asserting ENAND. As shown in Fig. 2b, both BL0 and BL1

drop below the reference voltage (VRef−AND) when in0 =
in1 = 1. As a result, SA output which determines the results

of in0.in1 and in0.in1 functions are pulled down to ‘0’ at the

edge of SEAND. Next, AND array SA outputs are provided

as inputs to the OR array. Since inputs of the OR array are ‘0’,

the BL (BL0OR) remains discharged which results in in0 ⊕
in1 = 0. If in0 = 0, in1 = 1 (in0.in1 = 0 and in0.in1 = 1),

BL0 discharges while BL1 remains pre-charged. Therefore,

BL0OR starts charging at the edge of ENOR. Finally, the

voltage of BL0OR is compared against VRef−OR at the edge

of SEOR which produces ‘1’ at the output of SA.

C. FP Addition/Subtraction

In IEEE 754 standard, a single precision FP number is

represented by 1 Sign bit, 8 Exponent bits, and 23 Fraction

bits. A negative (positive) number is represented with a sign bit

(a) (b)

Fig. 2: (a) XOR implementation using DCIM architecture in RRAM crossbar array; and, (b) timing diagram of logical XOR

operation.

Add The Fractions

Subtracting FP Numbers’ Mantissas to Find Their Difference. Shift Smaller Number to the Right.

Normalize the Sum, Either Shift to the right and Increment the Mantissa or Shift to the Left and
Decrement the Mantissa

Overflow or
Underflow Exception

Round the Fraction to the Appropriate Number of Bits

Done

Yes

Yes

No Still
Normalized

Fig. 3: IEEE 754 Standard FP addition/subtraction Flowchart

[27]

equal to ‘1’(‘0’). In order to demonstrate negative exponents,

IEEE 754 uses a bias of 127 for single precision (e.g., -1 is

represented by -1+127=126). The general representation of a

FP number is given by:

(−1)Sign ∗ (1 + Fraction) ∗ 2(Exponent−Bias) (1)

The flowchart for FP addition/subtraction as per IEEE 754

standard is shown in Fig. 3.

III. FAME SIMULATION RESULTS

The simulations are carried out in 65nm PTM [28] technol-

ogy by employing ASU RRAM model [29] and bi-directional

selector diode model [30]. Worst-case Sense Margin (SM),

BL-delay, average delay, average power, and energy consump-

tion (Table III) are calculated to evaluate FAME architecture.

Key parameters of devices for simulations are listed in Table

TABLE I: Simulation parameters

Parameter Value
MOSFET Gate Length 65 nm

NMOS/PMOS Threshold Voltage 423/-365 mV
BL Capacitance 30 fF

RRAM Gap Min/Max/Oxide Thickness 0.1/1.7/5 nm
Atomic Energy for Vacancy Generation/Recombination 1.501/1.5 eV

RRAM Write Latency 25 ns
RRAM HRS/LRS at 1.2V 6.68 M/58.9 K Ω

TABLE II: Monte Carlo simulation parameters

Parameter Real Value Variation STD. Deviation
RRAM LRS Gap 0.1 nm 7% 3σ
RRAM HRS Gap 1.7 nm 7% 3σ

MOS Oxide Thickness 1.2 nm 10% 3σ
MOS Gate Length 65nm 10% 3σ

I. SM is obtained by performing 1000 point Monte Carlo

simulations at various temperatures with parameters listed in

Table II to mimic process variations.

The worst-case SM is obtained under process variation

@25oC for worst case compute array (i.e., fraction addition

array). The BL-delay is the time when 100 mV SM is

achieved. The proposed FP adder/subtractor implementation

with both NAND-NAND and NOR-NOR architecture are

compared against MAGIC and ASIC design.

The write latency is obtained by performing 1000 points

MC simulation. The worst-case write latency for low-to-high

and high-to-low switching under process variation is 20ns.

FAME achieves 828X, 3.2X and 3.7X improvement in latency,

power and energy, respectively compared to MAGIC. The

higher energy associated with MAGIC is attributed to the

need to write into the RRAMs when an operation is done.

Furthermore, compared to the power, energy consumption, and

TABLE III: Simulation results

Characteristics NAND NOR MAGIC CPU [32]
BL Delay (ns) 1.42 1.23 N/A N/A

SA Sense Delay (ps) 24.52 69.1 N/A N/A
Average Delay 25ns 23ns 20us 84ns

Exp. Subt. Pow. (uW) 443.31 448 2808.92 N/A
Fr. Add. Pow. (uW) 1068.52 1123.19 2142.84 N/A

Shift Pow. (uW) 443.24 452.93 982.31 N/A
Avg. Power (mW) 0.7 0.71 2.3 61

Energy (nJ) 0.33 0.32 1.2 5.1

TABLE IV: SM in different temperatures

SM (mv) / Temp −10° 25° 90°
NAND 94.5499 91.30245 79.26
NOR 105.6009 104.3965 99.7171

delay imposed by transferring data between main memory and

processing units (e.g. CPU, GPU, and FPGA), FAME reduces

power and energy consumption and delay by 98.8%, 93.7%,

and 70.2%, respectively.

A 1000 point MC simulations are performed at −10°C,

25°C, and 90°C at 1.2V supply voltage to obtain mean of SM

(Table III). VNAND0 (NAND array BL voltage when input is

‘0’), VNAND1, VNOR0, and VNOR1 distributions at worst-case

temperature are shown in Fig. 4. In order to achieve the read

access pass yield (RAPY) [31] [7] we have performed SA

offset voltage analysis. The SA offset voltage can be modeled

by a Gaussian distribution with σ = 16mV and μ = 8mV . To

obtain RAPY we assume that VRef is produced by a voltage

regulator with negligible variation (5mV). We assigned VRef

in such a way to maximize RAPY . Based on the Monte-Carlo

simulation, the RAPY of NAND and NOR operations are

found to be 4.6σ and 4.5σ respectively.

IV. RESILIENCE TO STUCK-AT FAULT

In this section, we describe SATO and FTV, two fault

mitigation techniques proposed for DCIM architecture. In the

following we use, (i) faulty BL to denote each BL with an

TABLE V: FAME area

Block Array Size # of Arrays
Exponent Subtraction 1st NAND 32*32 1
Exponent Subtraction 2nd NAND 32*64 1

Right Shift 8*16 1
Fraction Addition 1st NAND 64*64 2
Fraction Addition 2nd NAND 64*64 2

Left Shift 32*64 1
Exponent Inc/Dec 1st NAND 32*32 1
Exponent Inc/Dec 1st NAND 32*64 1

σ=1.33 σ=3.69 σ=3.57 σ=2.10

Fig. 4: SM distribution.

undesired stuck-at-1 (SA1) RRAM; (ii) faulty WL (BL) to

denote each WL (BL) with an undesired SA1 RRAM.

Computations are performed in two cycles when the pro-

posed fault mitigation techniques are applied (Fig. 5). The

computations of fault-free BLs (BL1, BL2 and BL3 in Fig.

5 (a)) are performed in the first cycle and the computations of

the faulty BLs (BL0 in Fig. 5 (a)) are performed in the second

cycle. In FTV, the WLs corresponding to faulty RRAMs

(In2 in Fig. 5 (a)) for NAND (AND) array are forced to

VDD to mask faulty bits. In a dual Force-to-Ground (FTG)

technique, the faulty BLs are forced to 0V for NOR (OR)

arrays. FTV/FTG tolerates 99% of stuck-at faults (SAF) while

reducing power consumption of the array. In SATO approach,

operations of fault-free BLs are executed in the first cycle and

then the outputs are shifted in the SAs. Then, the operations

of faulty BLs are computed using fault-free BLs (operation of

BL0 is done in BL1). SATO covers 50% of SAFs without

affecting power consumption. The high level timings of FTV

and SATO are illustrated in Fig. 5 (b) and (c), respectively.

A. Shifting-At-The-Output (SATO)

As described before, in this technique the normal opera-

tion for fault-free BLs are performed in the first cycle and

computation of faulty BLs are performed in the second cycle.

SATO does not use faulty BLs for performing an operation

and executes all the operations on the fault-free BLs. SATO

shifts the data stored in SAs’ latch of fault-free BLs to prevent

overwriting. When computation of first cycle is completed,

the data are shifted in SAs (three shifts are needed if an

adder/subtractor is implemented). As shown in Fig. 6, inputs of

the WLs should get shifted too, so computation is performed

using fault-free BLs. Peripherals of SATO incurs 29.5% area

overhead.

1) Non-fixable Faults: SATO cannot handle faults that

appear on two consecutive sets of BLs (each three consecutive

BLs are a set if an adder/subtractor is implemented). More

multiplexers are needed for each WL to handle faults on

consecutive sets of BLs. The number of multiplexers per WL

increases linearly with the number of consecutive faulty sets

of BLs to be handled by SATO. For example, if faults occur

on two consecutive sets of BLs (e.g., if BL3 in Fig. 6 also

contains a fault) SATO cannot handle it unless two or more

multiplexers are dedicated to each WL. The probability of two

faults occurring on two consecutive BL is less than 3% for a

64*32 crossbar array. However, SATO is able to handle less

than 50% of the faults if a yield of 99.5% is considered on a

crossbar array.

2) Handling multiple faults: SATO’s efficiency degrades

for increasing number of faults. In this paper, we considered

a yield of 99.5% in a 64*32 crossbar array for SATO sim-

ulations. This corresponds to 11 randomly distributed faults

throughout the array. SATO is able to mitigate around 50%

of the faults in the array. Faults have been distributed on

the memory cells using rand function provided by C + +
programming language.

TG

...

TGTG

..
.

..
.

..
.

..
.

..
.

..
.

...

..
.

..
.

..
.

..
.

..
.

..
.

(a)

SA Activation SA Activation

SE
CLK

(b)

Fig. 7: FTV: (a) fault mitigation in undesired LRS RRAMs; (b) timing diagram.

(a)

Clock 1st Cycle 2nd Cycle

FTV

Shift SATO

LRS RRAM
HRS RRAM

Selector Diode
Faulty RRAM

(b)

Fig. 5: (a) 4*4 RRAM crossbar array, (b) FTV and SATO

timing.

..
.

..
.

..
.

..
.

..
.

..
. ...

...

..
.

..
.

Fig. 6: SATO fault mitigation technique.

B. Forcing to VDD (FTV)

FTV performs operations of fault-free and faulty BLs in the

first and second cycle, respectively. Inputs of faulty RRAMs

are forced to VDD in the second cycle. To apply FTV to

NAND arrays, we follow a simple NAND logic where for

example A · B · C is replaced with A · B · 1, where C is the

input of the SA1 RRAM. Therefore, NAND−2 is performed

in NAND−3 form with an extra ‘1’ which do not affect the

logic. However, increased number of RRAMs in a BL reduces

the SM. If the faults are located on different BLs, they do not

affect the SM.

FTV uses a multiplexer for the enable signal of SAs to

ensure that the array is capable of working in two cycles.

F · CS and F · CS are inputs of the multiplexer, where F is

‘0’ if the BL is fault-free and is ‘1’ if the BL is faulty. CS is

the clock sequence initialized to ‘0’ in the first cycle and ‘1’ in

the second cycle. Enable signal of SAs connected to fault-free

BLs are asserted in the first cycle while the enable signal of

SAs connected to faulty BLs is asserted in the second cycle to

save power and maintain the correct logic. Furthermore, FTV

uses 4 additional transistors compared to DCIM at the WL

input to enable the test procedure (explained in Section IV-C)

to find faulty RRAMs.

As shown in Fig. 7a, FTV uses two transmission gates to

connect input and input to WLs. Also, one PMOS transistor

is added to each WL to force the WL to VDD when is needed

in the second cycle. In the second cycle, SC signal of faulty

WLs gets activated to force faulty WLs to VDD. FTV employs

a fault signal (FW) for each WL to track the faulty WLs and

set them to VDD in the second cycle. FTV also defines a

fault signal (FB) for each BL to keep track of faulty BLs.

Additional circuitry and peripherals needed to apply FTV to

the DCIM increase the area by 9.5%.

1) Forcing-to-Ground (FTG): The basic concept of FTG

is similar to FTV but it applies to NOR (OR) arrays. FTG

follows simple logic that number of ‘0’s is not important in

NOR (OR) operation. Therefore, FTG forces inputs of faulty

... ...

TGTGTGTG

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

... ...

... ...

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 8: Faults that cannot be handled by FTV.

TABLE VI: Comparison between SATO and FTV

Characteristics SATO FTV
Coverage 50% 90%

SM (w/ diode) Not Affected Not Affected
SM (w/o diode) Not Affected Lower

Test circuitry Needed Included
Area overhead 28.5% 9.5%

Power Not affected Lower
Energy Higher Slightly Lower

Performance 50% 50%

RRAMs to the ground. Peripherals and the rest of the FTG’s

operation are the same as FTV.

2) Non-fixable Faults : Although FTV can fix most of

the faults in a crossbar array, it is unable to handle some

rare situations. For example, if there are two faulty BLs and

the faulty RRAM on one of the BLs is the operand of the

other BL. As shown in Fig. 8, BL0 and BLm are faulty

and their operation must be done in the second cycle. In this

case, the logic of BLm gets lost if FTV forces input of the

faulty RRAM (RRAM1) on BL0 to VDD since one of its

inputs is set to VDD. The NAND operation for BLm is

incorrectly performed between inn and ‘1’ instead of between

inn and inm. The probability of occurrence of such a fault

for fabrication yields of more than 99% is less than 1%. We

randomly distributed the faults for 100 times using C + +
language rand function in order to achieve the percentage of

faults occurring in an array.

3) Handling multiple faults: As long as faulty RRAMs in

the crossbar array are independent of each other, FTV can

handle as many as possible faults. For our simulations we

inserted 30 faults in a 64*32 crossbar array and FTV was able

to solve more than 99% of fault distribution over the array.

C. Finding Faults using FTV Peripherals

It is required to find the faulty RRAMs to set fault signals

of the BLs and WLs. Faults can be found by the peripherals

that are included in the FTV. However, the BLs must be tested

one at a time. To find the faults in a NAND array, input of

each RRAM, which is set to LRS in a BL is forced to VDD

and the rest are forced to ‘0’. The output of the SA indicates

whether a BL is faulty (‘1’) or fault-free (‘0’). If the BL is

(a) (b)

Fig. 9: Process variation analysis of SM for various number

of failures on a single BL with selector diode in the bitcell

i.e., selector diode-RRAM crossbar at, (a) −10°C; (b) 90°C.

(a) (b)

Fig. 10: Process variation analysis of SM for different number

of failures on a single BL while bitcell consists of RRAM

only at, (a) −10°C; (b) 90°C.

faulty, we need to find out which RRAM is faulty on that

BL. A divide-and-conquer approach cannot be used in this

architecture since there might be more than one faulty RRAM

per BL, so we use brute force algorithm to find faulty RRAM.

The input of the RRAM-under-test is set to ‘0’ while inputs

of all other RRAMs are set to VDD. If SA output is ‘0’, the

RRAM-under-test is deemed faulty and its flag is set to ‘1’.

All faulty RRAMs can be found by repeating this operation

for each RRAM in each BL sequentially.

D. Usage and Limitations of SATO/FTV/FTG

SATO/FTV/FTG should be enabled only when a fault has

been detected in the test process. Therefore, the fault-free

array will only incur area overhead but no performance loss.

The faulty array will be salvaged at the cost of performance

overhead. Note that SATO/FTV/FTG are only applicable to

DCIM-based IMC. They cannot be applied to MAGIC or

RRAM-based static IMC in the current form.

V. SIMULATION RESULTS

To evaluate SATO and FTV, we compute performance

metrics that include worst-case SM, BL-delay, average delay,

average power, and energy consumption of a 64*32 DCIM

RRAM crossbar array (VI). Based on the simulation results,

FTV is more efficient than SATO.

A. SATO Simulation Results

Applying SATO to DCIM increases power and energy

consumption by 12% and 127%, respectively (the worst case)

and also performance is reduced by more than 50%. However,

TABLE VII: SATO power and energy consumption

of Faults 0 1 3 5 10 15 20 30
Power (uW) 215.4 231.4 233 234 238 239 240 241.5
Energy (pJ) 4.3 9.4 9.4 9.5 9.6 9.7 9.7 9.8

SATO is able to handle ∼50% of the SA1 faults. SAs are

very costly and occupy large area, which using SAs to shift

data, increases power consumption and leads to higher energy

consumption. Power and Energy consumption of SATO with

different number of SA1 faults is reported in Table VII.

B. FTV/FTG Simulation Results

SM is the most important parameter when FTV is applied to

DCIM. Increased number of LRS RRAMs connected to VDD

(ground) on a BL worsens the SM when ‘0’ (‘1’) is the output.

Considering NAND− 2, the worst case ‘0’ occurs when one

of the operands is ‘0’ and the other operand is ‘1’. In this

case, there is a voltage division is between one LRS RRAM

connected to ‘0’ and one LRS RRAM which is connected to

VDD. When there is a faulty LRS RRAM on the BL and it is

forced to VDD, the worst case ‘0’ is when two LRS RRAMs

are connected to VDD and one LRS RRAM is connected to

‘0’ which lead to increased output ‘0’ voltage on the BL.

Increased BL voltage for the worst case ‘0’ degrades the SM

as shown in Fig. 11 (a).

The degradation in worst case SM happens when the bitcell

is made of only a RRAM (i.e., no selector diode). However,

DCIM employs a bidirectional diode in series with the RRAM.

This series-connected bidirectional diode is included to reduce

power consumption by dropping 0.5V across the 2 terminals.

When the voltage difference between a BL and a WL is less

then the selector diode threshold voltage there is no current

between the BL and the WL. So, increased number of LRS

inputs connected to VDD (ground) does not affect the SM of

DCIM (Fig. 11 (b)). The current of HRS RRAMs increases

with temperature which results in higher sneak path currents.

In an AND (OR) array, the higher sneak path currents pull up

(down) BL voltage to degrade the SM. However, when number

of faults increases, sneak paths currents become negligible

compared LRS RRAMs which are connected to VDD (ground).

Simulation results (Fig. 11 (a)) show that the SMs in different

temperatures become equal when the number of faults is more

than 20.

Compared to the fault-free situation, FTV reduces power

and energy consumption by >54% and >7% respectively

(since, SAs consume a lot of power and in the case of FTV,

SAs connected to faulty BLs are deactivate in the first cycle

and SAs connected to fault-free BLs are deactivated in the

second cycle). This is due to inactive BLs and SAs and a

longer time of operation. However, the performance reduces by

50% due to two cycle operations. Average power and energy

for the four consecutive AND operations in the 64*64 array

are reported in Table VIII.

(a) (b)

Fig. 11: SM for different number of faults in one BL at various

temperatures, (a) diode+RRAM in the bitcell; (b) pure RRAM

in the bitcell).

TABLE VIII: FTV power and energy consumption

of Faults 0 1 3 5 10 15 20 30
Power (uW) 215.4 90 91.7 92.6 96.7 97.8 99 100.1
Energy (pJ) 4.3 3.6 3.7 3.7 3.9 3.9 4.0 4.0

C. Process Variation Simulations

The most important parameter to consider in a crossbar

array under process variation is SM. We ran 1000-point MC

simulations at −10°C, and 90°C on DCIM by considering the

bitcell consisting of only a RRAM and RRAM and a selector

diode with different number of SA1 faults. Simulation results

for RRAM bitcell and RRAM and selector diode bitcell are

shown in Fig. 9 and 10, respectively.

As shown in Fig. 9, variations do not affect SM significantly

due to the presence of selector diode which stabilizes BL

voltage. However, as demonstrated in Fig. 10, variations affect

the SM when only RRAM is used in the crossbar. This is due

to large changes in the RRAM resistance for a small change

in RRAM gap when 1.2V is applied across it. Worst case SM

with the number of failures for both w/ and w/o selector diode

is reported in Table. IX.

VI. CONCLUSIONS

We proposed FAME for in-memory FP arithmetic computa-

tion. FAME implements single precision FP adder/subtractor

using RRAM crossbar and evaluated two flavors with

NAND − NAND and NOR − NOR compute arrays. We

also proposed a novel SA based shift circuit for frequent

shifting needed in FP operation. Compared to MAGIC-based

implementation, FAME achieves 828X and 3.7X latency and

energy improvement over MAGIC and compared to processing

units (e.g. CPU, FPGA, GPU) it also reduces energy con-

sumption and delay by 93% and 70%, respectively. FAME

achieves lower power and energy consumption compared to

MAGIC and processing units at low area overhead to the

TABLE IX: SM for different number of failures

Failures SM (Selector diode) SM (Without Selector Diode)
0 91.3 mV 118 mV
1 91.2 mV 95 mV
10 91.3 mV 44 mV
30 91.4 mV 19 mV

memory arrays. FAME uses 3KB memory to implement single

precision FP operations (V). Furthermore, two approaches

to mitigate HRS to LRS retention and stuck-at-1 failures in

RRAM-based compute memories are proposed along with

a test approach to identify faulty RRAMs. Forcing-to-VDD

(FTV) can mitigate 99% of the faults while reducing the power

consumption by >50% and energy consumption by >7%.

Shifting-at-the-Output (SATO) technique increases power con-

sumption slightly but increases energy consumption by >50%.

Acknowledgement: This work is supported by SRC

(2847.001), and NSF (CNS- 1722557, CCF-1718474, CNS-

1814710, DGE-1723687 and DGE-1821766).

REFERENCES

[1] Huangfu, W., Xia, L., Cheng, M., Yin, X., Tang, T., Li, B., Chakrabarty,
K., Xie, Y., Wang, Y. and Yang, H., “Computation-oriented fault-
tolerance schemes for rram computing systems,” 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), JAN 2017.

[2] Haj-Ali, A., Ben-Hur, R., Wald, N., Ronen, R. and Kvatinsky, S.,
“Imaging–in-memory algorithms for image processing,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers (TCAS1), JUN 2018.

[3] Linn, E., Rosezin, R., Tappertzhofen, S., Böttger, U. and Waser, R.,
“Beyond von neumann—logic operations in passive crossbar arrays
alongside memory operations,” Nanotechnology, JUL 2012.

[4] Agrawal, A., Jaiswal, A., Lee, C. and Roy, K., “X-sram: Enabling in-
memory boolean computations in cmos static random access memories,”
IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS1),
JUL 2018.

[5] Imani, M., Gupta, S. and Rosing, T., “Ultra-efficient processing in-
memory for data intensive applications,” Proceedings of the 54th Annual
Design Automation Conference 2017 (DAC 2017), JUN 2017.

[6] Zhang, J., Wang, Z. and Verma, N., “In-memory computation of a
machine-learning classifier in a standard 6t sram array,” IEEE Journal
of Solid-State Circuits (JSC), APR 2017.

[7] Motaman, S. and Ghosh, S., “Dynamic computing in memory (dcim) in
resistive crossbar arrays,” ICCD, OCT 2019.

[8] Kang, M., Keel, M.S., Shanbhag, N.R., Eilert, S. and Curewitz, K.,
“An energy-efficient vlsi architecture for pattern recognition via deep
embedding of computation in sram,” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8326–8330,
MAY 2014.

[9] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K.,
Kozyrakis, C., Thomas, R. and Yelick, K., “Intelligent ram (iram): Chips
that remember and compute,” IEEE International Solids-State Circuits
Conference. Digest of Technical Papers, FEB 1997.

[10] Yin, X., Aziz, A., Nahas, J., Datta, S., Gupta, S., Niemier, M. and Hu,
X.S., “Exploiting ferroelectric fets for low-power non-volatile logic-in-
memory circuits,” IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), NOV 2016.

[11] Iyengar, A.S., Ghosh, S. and Jang, J.W., “Mtj-based state retentive flip-
flop with enhanced-scan capability to sustain sudden power failure,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62,
no. 8, pp. 2062–2068, AUG 2015.

[12] Yin, X., Niemier, M. and Hu, X.S., “Design and benchmarking of
ferroelectric fet based tcam,” Design, Automation & Test in Europe
Conference & Exhibition (DATE), MAR 2017.

[13] Imani, M., Kim, Y. and Rosing, T, “Mpim: Multi-purpose in-memory
processing using configurable resistive memory,” Asia and South Pacific
Design Automation Conference (ASP-DAC), JAN 2017.

[14] Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J.,
Kozuch, M.A., Mutlu, O., Gibbons, P.B. and Mowry, T.C., “Buddy-ram:
Improving the performance and efficiency of bulk bitwise operations
using dram,” arXiv preprint arXiv:1611.09988, 2016.

[15] Sayyah Ensan, S. and Ghosh, S., “Fpcas: In-memory floating point com-
putations for autonomous systems,” The International Joint Conference
on Neural Networks (IJCNN), JUL 2019.

[16] Kang, W., Wang, H., Wang, Z., Zhang, Y. and Zhao, W., “In-memory
processing paradigm for bitwise logic operations in stt–mram,” IEEE
Transactions on Magnetics, vol. 53, no. 11, MAY 2017.

[17] Talati, N., Gupta, S., Mane, P. and Kvatinsky, S., “Logic design
within memristive memories using memristor-aided logic (magic),”
IEEE Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650,
MAY 2016.

[18] Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y. and Xie, Y., “Pinatubo:
A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” ACM/EDAC/IEEE Design Automation
Conference (DAC), JUN 2016.

[19] Li, B., Wang, Y., Chen, Y., Li, H.H. and Yang, H., “Ice: Inline calibration
for memristor crossbar-based computing engine,” Design, Automation &
Test in Europe Conference & Exhibition (DATE), MAR 2014.

[20] Xia, L., Gu, P., Li, B., Tang, T., Yin, X., Huangfu, W., Yu, S., Cao,
Y., Wang, Y. and Yang, H, “Technological exploration of rram crossbar
array for matrix-vector multiplication,” Journal of Computer Science
and Technology, JAN 2016.

[21] Xia, L., Huangfu, W., Tang, T., Yin, X., Chakrabarty, K., Xie, Y., Wang,
Y. and Yang, H., “Stuck-at fault tolerance in rram computing systems,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
MAR 2018.

[22] Zhang, B., Uysal, N., Fan, D. and Ewetz, R., “Handling stuck-at-faults
in memristor crossbar arrays using matrix transformations,” Proceedings
of the 24th Asia and South Pacific Design Automation Conference
(ASPDAC), JAN 2019.

[23] Chen, C.Y., Shih, H.C., Wu, C.W., Lin, C.H., Chiu, P.F., Sheu, S.S.
and Chen, F.T, “Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on
Computers, JAN 2015.

[24] Kannan, S., Karimi, N., Karri, R. and Sinanoglu, O., “Detection,
diagnosis, and repair of faults in memristor-based memories,” IEEE 32nd
VLSI Test Symposium (VTS), APR 2014.

[25] B. Gao, H. Zhang, B. Chen, L. Liu, X. Liu, R. Han, J. Kang, Z. Fang,
H. Yu, B. Yu et al., “Modeling of retention failure behavior in bipolar
oxide-based resistive switching memory,” IEEE Electron Device Letters,
vol. 32, no. 3, 2011.

[26] Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman,
E.G., Kolodny, A. and Weiser, U.C., “Magic—memristor-aided logic,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61,
no. 11, pp. 895–899, SEP 2014.

[27] Patterson, D.A. and Hennessy, J.L., Computer organization and design.
Morgan Kaufmann, 2007.

[28] Predictive technology model. [Online]. Available: http://ptm.asu.edu/
[29] Arizona state university rram model. [Online]. Available: http:

//nimo.asu.edu/memory/
[30] Huang, Jiun-Jia, Yi-Ming Tseng, Wun-Cheng Luo, Chung-Wei Hsu, and

Tuo-Hung Hou., “One selector-one resistor (1s1r) crossbar array for
high-density flexible memory applications,” Electron Devices Meeting
(IEDM), 2011.

[31] Nho, H., Yoon, S.S., Wong, S.S. and Jung, S.O., “Numerical estimation
of yield in sub-100-nm sram design using monte carlo simulation,” IEEE
Transactions on Circuits and Systems II: Express Briefs, 2008.

[32] Malladi et al, “Towards energy-proportional datacenter memory with
mobile dram,” Annual International Symposium on Computer Architec-
ture (ISCA), JUN 2012.

