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HeapSafe: Securing Unprotected Heaps in RISC-V
Asmit De and Swaroop Ghosh, Senior Member, IEEE

Abstract—RISC-V is a promising open-source architecture
primarily targeted for embedded systems. Programs compiled
using the RISC-V toolchain can run bare-metal on the system,
and, as such, can be vulnerable to several memory corruption
vulnerabilities. In this work, we present HeapSafe, a lightweight
hardware assisted heap-buffer protection scheme to mitigate
heap overflow and use-after-free vulnerabilities in a RISC-V
SoC. The proposed scheme tags pointers associated with heap
buffers with metadata indices and enforces tag propagation for
commonly used pointer operations. The HeapSafe hardware is
decoupled from the core and is designed as a configurable
coprocessor and is responsible for validating the heap buffer
accesses. Benchmark results show a 1.5X performance overhead
and 1.59% area overhead, while being 22% faster than a
software protection. We further implemented a HeapSafe-nb, an
asynchronous validation design, which improves performance by
27% over the synchronous HeapSafe.

Index Terms—Buffer overflow, Use after free, Heap, RISC-V

I. INTRODUCTION

PROGRAMMING languages such as C, which are closer

to the hardware, allow direct access to memory and

IO to facilitate system and device level programming. Such

languages are weakly typed and While being flexible and

powerful, this also leads to a plethora of vulnerabilities, if not

used with proper practices. C allows memory access using

pointers, which are essentially memory addresses that can be

referenced and de-referenced for data access. Pointers are an

extremely valuable construct as they allow programmers to

dynamically allocate memory regions on-demand based on the

program’s requirement. This saves space and also allows effi-

cient allocation of resources in memory. However, this can also

lead to several memory vulnerabilities. Unfortunately, even

with decades of research, memory corruption vulnerabilities

are still prevalent in modern systems [1], [2].

A commonly exploited memory corruption vulnerability is

buffer overflow [3] which occurs when a data is written to

a buffer if the size of the data is more than the size of the

available buffer. Buffer overflows can occur in a process’s

stack, or in the heap. A buffer overflow in a process’s address

space can lead to several exploits such as Control-Flow

Integrity violations, Data-Flow Integrity violations, Return-

oriented-Programming attacks [4], [5], [6], [7], etc. Although

stack-based buffer overflows are more common, heap buffer

overflows can also occur [8], [9], [10], and it is more difficult

to protect against.

A heap buffer overflow occurs when a pointer used to

write data to the buffer goes beyond the allocated region of

the heap and overwrites the critical data, potentially allowing
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an adversary to launch attacks, such as, write-what-where,

malicious shellcode execution, etc. This is possible due to the

lack of bounds checking (a technique that allows validation

of a pointer’s access bounds) in pointers. Unlike a stack-

buffer overflow based attack, which occurs in tandem with the

rolling/unrolling of the process’s stack, heap-buffer overflows

are arbitrary and can happen anywhere at any point during the

program’s execution. Stack-buffer based overflows, and con-

sequently ROP attacks can be mitigated using techniques such

as stack canaries [11], shadow stacks [12], etc. However such

techniques are not applicable to heap-based buffer overflows,

since the allocated memory is dynamic and does not follow

the process’s stack frame, and as such, there are no return

addresses to protect. This makes heap-buffer overflows much

harder to detect and prevent.

Several techniques have been explored in literature to mit-

igate heap buffer overflows. Pointer protection is a common

technique that provides protection to pointers based on bounds

checking of allocated memory [13], [14]. Such techniques

associate additional metadata structures with the pointers and

provide software runtimes to perform access validation. A

similar metadata association approach has also been explored

for objects instead of pointers [15]. A better alternate approach

to pointer-based protection is low-fat pointers [16], where

instead of using additional metadata structures with pointers,

the authors have utilized the native pointer itself for storing the

metadata, thereby preserving backwards compatibility. A few

hardware based memory allocation and runtime monitoring

approaches have also been explored in [17], [18]. Recently,

there has been some developments on a secure and memory

safe processor [19], [20], which utilizes the fat-pointer scheme

implemented in the architecture pipeline. The primary differ-

ence between Shakti-T [19] and our work is that, Shakti-T

is a processor with memory safety built into the pipeline,

and hence is not scalable or customizable. The metadata

field width is also fixed. Our implementation is a decoupled

implementation which can be attached to any RISC-V core

interfacing with the RoCCIO. Since our implementation is

on a custom coprocessor, the design can be tuned and scaled

TABLE I
QUALITATIVE COMPARISON OF HEAP PROTECTION APPROACHES

Type Compatibility Completeness Performance Area
Fat-pointer ↓ ↑ ↓ ↓
Low-fat ↑ ↓ ↑ ↓
pointer
Object ↑ ↓ ↓ ↓
tagging
Hardware ↑ ↓ ↑ ↑
Allocators
HeapSafe ↑ ↑ ↑ ↑
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Fig. 1. (a) Dynamic memory allocation on a heap; (b) Buffer copy and resulting overflow; (c) Memory de-allocation; (d) New allocation in freed location;
(e) New data copy to buffer; (f) Data corruption using dangling pointer (use-after-free).

according to needs, without modification of the core pipeline

architecture. Table I provides a qualitative analysis of the

different heap protection approaches.

RISC-V is a promising open source instruction set architec-

ture (ISA) that can be adapted to SoC architectures targeting

a varied range of applications such as, IoT devices, machine

learning accelerators and even data-center microprocessors. It

allows programs and applications to run bare-metal on the

hardware for application specific scenarios. Such applications

has complete access to the range of memory available in the

hardware, and as such, can suffer from the same memory

corruption vulnerabilities.

We propose HeapSafe, a hardware assisted heap protection

engine built on the RocketChip SoC [21] running the RISC-V

ISA. We leverage the Rocket Custom Coprocessor (RoCC) to

design the HeapSafe module for protection from heap-buffer

overflows and use-after-free attacks. Over a traditional soft-

ware based approach, HeapSafe incurs no performance losses

due to context switching or cache replacement, no manual

secure memory management for bare-metal applications and

no compiler dependent pointer analysis. HeapSafe is able to

achieve high backwards compatibility and completeness, while

retaining good performance.

II. BACKGROUND

In this section, we explain two types of memory corruption

attacks on the heap, against witch HeapSafe can be applied.

We also describe the RISC-V RocketChip SoC platform and

the Rocket Custom Coprocessor, which is our target imple-

mentation platform.

A. Heap attacks

A heap buffer is a memory space dynamically allocated

on a process’s heap. In the userspace, a heap is created

using GNU C library (glibc) functions such as, malloc()
or calloc() as shown in Fig. 1. The function returns the

memory address of the first byte of the allocated space, and is

used as the pointer to the heap. Data is written to the heap’s

allocated bytes with the pointer using glibc functions such

as memset(), memcpy(), strcpy(). In the following

paragraphs, we explain the basics of heap-based attacks using

known vulnerabilities from the CWE database.

Buffer overflow (CWE-122): Fig. 2(a) shows a simple code

demonstrating a buffer overflow vulnerability on the heap.

Here, a heap buffer is allocated on the process’s memory and a

string from the command-line is copied to the buffer. However,

it is easy to overflow the buffer if the size of the string is more

than SIZE. This can potentially overwrite process data on

the heap in other allocated buffers and may lead to memory

exploits. The scope of such attacks is quite large, since, in

real applications, a lot of complex constructs such as objects,

structs, function pointers, etc. are allocated on the heap.

Use after free (CWE-416): This vulnerability occurs when,

heap memory is reallocated after the data on a heap is freed.

A previously leftover reference (dangling pointer) to that

memory can potentially access newly created data from that

heap location. Fig. 2(b) shows an example of this vulnerability.

In this case, location pointed by p1 gets freed if an error

occurs. It is possible that when memory referred by p2 is

created, it is at the same freed location as p1. In such a

situation, referring to p1 later in the code can inadvertently

leak or even corrupt data at that location.

B. RocketChip System and RoCC

The HeapSafe architecture is based on Rocket Chip (written

in CHISEL), an open source parameterized system-on-chip

(SoC) design generator. We use the RocketChip generator

to generate synthesizable RTL for the standard Rocket Core

SoC, a six-stage single-issue in-order pipeline processor that

#define SIZE 32

int main(int argc, char **argv)
{

char *buffer;

buf = (char*)malloc(SIZE);
strcpy(buffer, argv[1]);

}

char* p1 = (char*)malloc(SIZE); 
if (err) {

abrt = 1;
free(p1);

}
char* p2 = (char*)malloc(SIZE/2);
...
if (abrt) {

logError("Aborted", p1);
}

(a) (b)

Fig. 2. Vulnerable code showing (a) heap buffer overflow weakness; (b) use-
after-free weakness.
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Fig. 3. (a) RocketChip SoC architecture with HeapSafe implemented RoCC;
(b) RoCC instruction encoding.

executes the 64-bit scalar RISC-V ISA (Fig. 3(a)). The Rocket

Tile consists of the scalar core, the L1 caches, and the Rocket

Custom Coprocessor (RoCC). The RoCC is a user-defined

accelerator for the core which communicates with core over

the RoCCIO interface using a set of custom instructions.
RoCC Instructions: The 32-bit RoCC instructions extend

the RISC-V ISA and are encoded as shown in Fig. 3(b).

The four custom instructions supported by Rocket Chip are

custom0-3, each having a different opcode. The xs1, xs2, and

xd bits control read/write of the core registers by the RoCC

instruction. If xs1 is 1, the 64-bit value in the register specified

by rs1 is passed to the RoCC. Similarly, xs2 bit controls the

read of register specified by rs2. If xd bit is 1 and rd is not 0,

the core will wait for a value to be returned by the coprocessor

over RoCCIO after issuing the instruction to the coprocessor.

The value is then written to the register specified by rd. If the

xd is 0 or rd is 0, the core will not wait for a value from

RoCC. The opcode field specifies the custom instruction for

the RoCC, and the funct7 field further specifies a user-defined

function implemented in the RoCC. The RoCC is responsible

for signaling illegal instructions to the core.
RoCCIO Interface: The RoCC interacts with the Rocket

core and the shared memory system via the RoCCIO interface.

The core initiates a RoCC command by passing the RoCC

instruction to the coprocessor via inst, as well as the relevant

register values via rs1 and rs2. If the RoCC instruction has the

xd bit set, then the RoCC must eventually supply a response

value over the RoCC response interface via data.

III. HEAPSAFE IMPLEMENTATION FOR RISC-V

In this section we describe the implementation of the

HeapSafe engine, the associated HeapSafe library and scope of

protection. We also explain the usage of HeapSafe in standard

C programs for heap buffer protection.

A. HeapSafe protection scope
In this work, we aim to protect dynamically allocated

buffers on the heap that are accessed using pointers derived

TABLE II
HEAPSAFE TAG PROPAGATION

Case Code
Memory allocation safe_ptr = safe_malloc(size);

Assignment safe_ptr2 = safe_ptr1;
Pointer safe_ptr2 = safe_ptr1 + offset;

Arithmetic safe_ptr2 = safe_ptr1 - offset;
Type cast safe_ptr2 = (type*) safe_ptr1;

from the allocation pointer. We enforce metadata propagation

between pointers, and the system is able to trace the correct

metadata for all pointer arithmetic operations. HeapSafe is able

to protect against buffer overflow on heap, and also prevent

inadvertent use-after-free accesses. Any program targeted for

the RISC-V system can be updated to use the safe heap

functions from the HeapSafe library. Each pointer used to

allocate a heap buffer will be converted to a safe pointer
by the HeapSafe library. Any other pointers derived from the

safe pointer is also tagged as a safe pointer. The tag is an

identifier for the pointer that is encoded in the higher order bits

of the pointer. We enforce tag propagation between pointers for

all pointer assignments and pointer arithmetic operations. This

allows us to propagate pointer metadata information across

pointers. The program is compiled by including the HeapSafe

library and while running on the core, the HeapSafe hardware

is responsible for storing and validating heap metadata.

Since we are reusing the same pointer to store the tag,

referencing pointers is trivial, without having to process the

pointer information. This also allows us to easily enforce tag

propagation in the following scenarios (Table II):

(a) Memory allocation: When allocating a heap buffer, a

new tag is generated. The safe pointer is created using the

tag and the base pointer (raw pointer).

(b) Pointer assignment: During a pointer assignment, the

tag from the original safe pointer is propagated to the new

safe pointer alongside the raw pointer value.

(c) Pointer arithmetic: During a pointer arithmetic operation

such as array access at a specific index, the new safe pointer
created by adding/subtracting the offset receives the same tag
as the original safe pointer.

(d) Pointer type conversion: When a safe pointer is cast to

a new type, the tag is propagated to the safe pointer of the

new type.

Aside from these four cases, storing and retrieving

safe pointers from memory are trivial and same as storing

and retrieving normal pointers from memory. The tag in

the safe pointer is retained throughout the store and retrieve

operations. Passing safe pointers as function arguments and

returning safe pointers from functions are also same as with

normal pointers, and thetag is retained in the process. Two

other cases that need special mention are the null pointer and

manual pointer creation from integer values. In both cases, the

tag is set to 0. The tag 0 is also indicates that the pointer is

not protected and any safe heap operations using the HeapSafe

library with the pointer will result in an error.
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B. HeapSafe library

The HeapSafe protection engine is accompanied by a

library containing safe implementations of critical heap

buffer functions such as safe_malloc(), safe_copy(),

safe_free() and safe_read() / safe_write(), that

utilize the HeapSafe hardware. We describe the operation of

these helper functions below.

1) safe_malloc(): This function allocates a buffer in

the process’s heap similar to malloc() in the GNU C

library. The allocated memory is referred to by the address

of the first byte of the heap called the raw pointer. We

create a safe pointer from the raw pointer by using the top

most significant byte as a tag reference. The bit allocation

is shown in Fig. 4. We assign the tag from a static list of

available tags, which are local to the process. Since we are

using 1 byte to represent the tag, we can use HeapSafe for a

maximum of 255 simultaneous heap allocations in the process.

We exclude 0 as a tag to maintain compatibility with pointers

that are not using the HeapSafe engine. Furthermore, this also

excludes the higher order 256 byte memory region in the

address space, however, this allocation scheme is sufficient

for standard RISC-V applications running bare-metal. For

RISC-V systems with user-space and kernel-space separation

in memory, HeapSafe is able to protect user-space processes

only. It is to be noted that, even though we have used 1 byte

for representing the tag, this bit allocation is customizable

in the library. While compiling the HeapSafe library, the bit

allocation for the tag can be set as required to match with the

HeapSafe hardware (details in Section V-E).

After allocating the tag, we send a custom RoCC instruction

HS_STORE to the HeapSafe hardware to write the pointer

metadata. We send the safe pointer and the size of the

allocated buffer encoded in the RoCC instruction.

The HS_STORE instruction is crafted as follows: The

opcode is set to custom0 (b’0001011), rs1 is set to the register

containing the safe pointer, rs2 is set to the register containing

the size of the heap buffer, xs1 and xs2 fields are set to 1,

and funct7 is set to hs store (b’0000000). The instruction is

non-blocking, and the program proceeds without waiting for

a response from the HeapSafe engine.

2) safe_copy(): This function enables a safe copy

operation from a source buffer to the destination buffer which

guarantees that the buffer will not be overflowed. To perform

the copy operation, we check the pointer being used to refer

to the destination heap buffer. We send the pointer with the

HS_VALIDATE instruction to the HeapSafe engine to perform

an out-of-bounds validation.

The HS_VALIDATE instruction is crafted as follows: The

opcode is set to custom0 (b’0001011), rs1 is set to the register

containing the pointer, rd is set to a register to receive the

validation outcome, xs1 and xd fields are set to 1, and funct7
is set to hs validate (b’0000001).

After performing the out-of-bounds validation, the Heap-

Safe engine returns a 0 or 1 indicating in-bounds or out-of-

bounds respectively. The safe_copy() function can then

proceed or halt based on the validation outcome.

3) safe_free(): This function is complementary to

safe_malloc() which allows a clean de-allocation of the

memory space and metadata removal from the HeapSafe en-

gine. We first parse the safe pointer to extract the raw pointer.

We then send the safe pointer to the HeapSafe engine with

HS_FREE instruction to perform the metadata removal.

The HS_FREE instruction is crafted as follows: The opcode
is set to custom0 (b’0001011), rs1 is set to the register

containing the safe pointer, xs1 is set to 1 and the funct7
field is set to hs free (b’0000011). The instruction is non-

blocking, so the program continues to execute on the core

without waiting for a response from the HeapSafe engine.

After sending the HS_FREE instruction, the memory de-

allocation is performed normally, similar to free() in glibc.

4) safe_read() / safe_write(): By re-purposing

the MSB bits of the original pointer to store the tag, we

get the benefit of enforcing easy tag propagation. However,

it precludes us from performing pointer de-referencing to

read/write data in the standard way. This is because, the

safe pointer by itself is not a valid memory address due

to the inclusion of the tag bits, and de-referencing in the

usual way, e.g., data = *safe_ptr; will raise a memory

access exception. To circumvent this issue, we have also

provided safe_read() and safe_write() functions,

that can safely extract the raw pointer from the safe pointer.

It then sends a HS_VALIDATE instruction to HeapSafe en-

gine to validate the read/write access, and then performs the

de-referencing to read/write data in memory based on the

raw pointer:

addr = extractRawPointer(safe_ptr);
data = *addr; // For read

*addr = data; // For write

C. HeapSafe hardware

The HeapSafe engine is a custom designed accelerator that

is decoupled from the processor core and connected over the

RoCCIO interface. The engine consists of a metadata parser,

a metadata table, and a validation engine as shown in Fig. 5.

The HeapSafe engine receives commands over the RoCCIO

request interface. The Cmd Decoder decodes the RoCC in-

struction to read the opcode, the rs1 an rs2 data fields, and the

funct7 function field, and asserts the required control signals.

In our implementation the opcode field is always decoded to

custom0. The rs1 and rs2 data fields contains pointer metadata

as requires for a specific function. The funct7 field is decoded

to functions such as, hs store, hs validate and hs free.

hs store: This function indicates a heap buffer creation

and instructs the HeapSafe engine to store the associated

metadata which is received in the form of the safe pointer
on the rs1 field and the size on the rs2 field. The metadata

parser processes the safe pointer and extracts the tag and the

raw pointer values based on the specified bit encoding.
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The metadata table is implemented as a hardware content-

addressable memory for parallel search and fast lookup. The

table consists of three fields for storing the metadata - (i) Tag,

(ii) Base, and (iii) Bound. Each row in the table is designed

as a vector of the three 64-bit wide fields. In addition to the

metadata, each row in the table also contains a valid bit to

indicate the validity of the metadata. The size of the table

is customizable as part of the design and can be set while

instantiating the hardware. In our implementation for testing,

we have used a table consisting of 256 rows, allowing metadata

storage for a maximum of 256 heap buffers.

A write signal is automatically issued on decoding the

hs store as the function, which writes the pointer metadata

at an available location in the metadata table. These locations

are indicated by the valid bit set to 0. The parsed tag is stored

in the Tag field and the raw pointer is stored in the Base field.

Instead of storing the size of the heap buffer, we pre-compute

the bound address value as:

Bound[Tag] = raw pointer + size (1)

Since the metadata store instruction is non-blocking, we im-

prove performance by saving the calculated bound address

value in the Bound field. Finally, the valid bit is set to 1 to

mark the row as active.

hs validate: This function indicates a heap buffer write

operation on the core and instructs the HeafSafe engine to

validate the pointer’s access bounds. The pointer being used

to access the heap is received on the rs1 field. The metadata

parser processes the pointer on the rs1 field and extracts the

current tag and the raw pointer (memory address) values.

A read signal is issued on decoding the hs validate as the

function, which performs a parallel search of the current tag
on the Tag field of the metadata table. Once a tag match is

found, the Base and Bound fields are read. The access bounds

for the current pointer (ptr) is validated as:

isOOB = (ptr < Base) ‖ (ptr ≥ Bound) (2)

The out-of-bound signal (isOOB) is asserted when the current

pointer (memory address) is either less than the lower bound

(base), or is greater than or equal to the upper bound of

the heap buffer. The value of the isOOB signal is held at 0

if the current pointer is within bounds. Since the validation

is a blocking operation by default, having the upper bound

address of the heap buffer in the metadata table speeds up the

validation time. The value of isOOB signal is placed on the

rd field of the response interface and is sent back to HeapSafe

library to take the required action - (i) proceed or (ii) terminate.

hs free: This function indicates a heap buffer de-allocation

on the core, and instructs the HeapSafe engine to clear its

corresponding metadata. However, instead of removing or

zero-izing the metadata from the table, we set the valid bit

for the row to 0 to invalidate the metadata entry and mark

it as available for future use. The hs free operation is non-

blocking and the program on the core continues to run without

waiting for a response from the HeapSafe engine. Invalidating

metadata entries allow us to mitigate inadvertent use-after-free

vulnerabilities, since the tag for the dangling pointer will be

invalidated after free.

D. HeapSafe usage in C programs

We demonstrate a basic use of HeapSafe in a simple C

program (Fig. 6a). Let us consider a function that receives

a lowercase string data, converts each character to uppercase

and stores to a buffer allocated on the heap. The function then

returns the pointer to the heap buffer storing the uppercase

string.

In this program, the upper buffer is vulnerable to overflow,

and hence, let us modify the code to use HeapSafe to protect

the buffer. We assume that lower buffer doesn’t need to be

protected. We perform the modification as follows:

We first replace the malloc() function call with

safe_malloc(), that returns a tagged safe_pointer to

upper. When iterating over the characters from the source

buffer, after converting to lowercase, we need to de-reference

the upper pointer to store the uppercase character. We modify

the de-referencing code with the safe_write() function

that performs the correct write to memory operation. Towards
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char* convert_case(char *lower) 
{

char *upper;
upper = malloc(SIZE);
while (*lower != '\0') {

char u = *lower - 32;
*upper = u;
upper++;
lower++;

}
return upper;

}

char* convert_case(char *lower) 
{

char *upper;
upper = safe_malloc(SIZE);
while (*lower != '\0') {

char u = *lower - 32;
safe_write(upper, u);
upper++;
lower++;

}
return upper;

}

(a) (b)

Fig. 6. (a) Source code with heap buffer overflow vulnerability; (b) HeapSafe
protected code to prevent overflow.

the end of the loop, we update the destination heap pointer

(upper) by increasing the pointer by 1. The pointer arithmetic

propagates the original tag for upper to the new upper. The

HeapSafe protected code is listed in Fig. 6b.

IV. EVALUATION

We evaluated HeapSafe by generating a RocketChip SoC

design config with the HeapSafe module. We tested the Heap-

Safe security architecture in the C++ cycle accurate emulator

built from the config. The hardware architecture of HeapSafe

is coded in CHISEL and synthesizable verilog is generated

using the RocketChip generator. To evaluate performance, we

created sample workloads that perform multiple buffer copy

operations on the process’s stack and heap. We compiled

three versions of the code: (i) baseline with no protection,

(ii) softbc with in-process software-based bounds checking,

and (iii) HeapSafe with our HeapSafe library and protections.

We swept the workload balance between the stack and the

heap and evaluated the trend as shown in Fig. 7. We note

that HeapSafe’s execution time overhead is low and similar

to softbc when there are more stack workloads; however, as

the heap workload increases compared to the stack workload,

HeapSafe tends to perform better. At around 75% heap work-

load, HeapSafe performs 20% faster than softbc. However,

instructions-per-cycle (IPC) suffers in HeapSafe compared to

softbc, since HeapSafe runs less instructions in total. We have

also implemented a fully non-blocking version of HeapSafe

(details in Section V-A) which outperforms softbc in both

execution time and IPC at the cost of delayed heap corruption

detection. At high heap workloads, HeapSafe-nb is 38% faster

than softbc. We estimated the area of HeapSafe by generating

a E300 Arty FPGA bitstream and found it to have a nominal

1.59% overhead (number of cells) over the default configura-

tion. We further updated the RISC-V ISA test benchmarks

with HeapSafe and softbc and evaluated their performance

(Fig. 8). HeapSafe incurs a 1.5X overhead over baseline on

average, while being 22.4% faster than softbc. Average IPC is

slightly low at 0.59 compared to 0.62/0.65 (baseline/softbc).

A qualitative evaluation of HeapSafe has been shown in Table

I as well.

(a) (b)
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0.5

0.6

0.7
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Fig. 7. (a) Execution time trend normalized to baseline; (b) IPC trend. X-axis
represents the percentage of buffer copy operations occurring on the heap.
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Fig. 8. (a) Execution time trend normalized to baseline; (b) IPC trend. X-axis
represents the percentage of buffer copy operations occurring on the heap.

V. DISCUSSIONS

A. HeapSafe design improvements

HeapSafe implements fine-grained approach for instant de-

tection of heap overflow at the cost of some performance

penalties. However, such high security guarantees are not

needed in less critical systems. We propose the following

alternate flavors of HeapSafe system design:

1) Non-blocking validation: The validation mechanism

with the HS_VALIDATE instruction can be made non-

blocking to avoid wait by the core for a response from

HeapSafe. In this design, HeapSafe will asynchronously raise

an exception on the core when it detects an out-of-bounds

error (instead of sending the value of the isOOB signal on

the response interface). An exception handler is implemented

in the HeapSafe library will terminate the application in such

cases. This approach will improve performance by 27.6% (Fig.

7(a)) at the cost of slight delay in attack detection.

2) Compiler support: HeapSafe hardware is currently com-

plemented by the HeapSafe library to replace unsafe heap

operations with safe variants. Replacement of unsafe heap

operations with safe variants using library can be automated

by adding compiler support. In this design, we compile the

source program to be protected using LLVM/Clang for RISC-

V. The LLVM generates an intermediate representation (IR) of

the source code. An LLVM compiler pass is written to parse

the IR to scan for heap pointers and replace them with the

tagged safe pointers. The custom HeapSafe instructions are

also inserted for the required operations to communicate with

the HeapSafe engine. The IR is then compiled to generate the

ELF binary to run on the system. This improvement is more

design friendly to the source code programmer since the code

does not need to be explicitly updated to use the HeapSafe

engine.

3) Top byte ignore: Pointer de-referencing requires addi-

tional library functions to perform the correct pointer extrac-
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tion in HeapSafe. This can be avoided if the core is set to

ignore the top byte for any memory address in the user-space.

This can be achieved by conditionally masking the top byte of

the address in the address decoder in the core pipeline. This

will guarantee that any tagged safe pointer is seen as a normal

raw pointer in the pipeline, and all load/store operations will

automatically be performed using the raw pointer.
4) Multi-process support: Our current HeapSafe implemen-

tation is targeted to protect a single process, or a process

running bare-metal on the system. However, due to the de-

coupled coprocessor based design, HeapSafe can be scaled

up to support protection of multiple processes simultaneously.

RISC-V cores view each running process as a hardware thread

(hart). In the scaled up implementation, multiple instances of

the HeapSafe coprocessor is instantiated in the same tile along

with the core. Each instance of HeapSafe engine is associated

with a hartId. When a process using the HeapSafe library is

running on the core, the system hardware selects the specific

HeapSafe engine to use with the hart for that process.

B. Security of HeapSafe hardware
In order for HeapSafe to guarantee protection, it needs

to ensure that the HeapSafe hardware is not compromised.

Hence, we need to ensure the integrity of the RoCC HeapSafe

engine, so that no malicious code can overwrite metadata

entries in the metadata table. This is guaranteed to some extent

by appropriately setting the RocketChip configuration to run

RoCC operations in machine (M) mode only, while rest of

the code runs in user (S) mode. This prevents any malicious

code to run the RoCC instructions while in user mode. The

security of the hardware can be further improved by running

the HeapSafe library functions in machine mode only. This

requires some additional mediation logic in the application

code utilizing traps that requires a switch to machine mode

from user mode when calling a HeapSafe function, and then

exit to user mode after returning from the function. This can

mitigate code-reuse attacks that might try to run the HeapSafe

library functions maliciously.

C. PMP vs. HeapSafe
The RISC-V architecture provides some basic memory

protection as part of the ISA. There are 16 Physical Memory

Protection (PMP) registers in the base architecture, which can

be utilized to perform access control on different memory re-

gions. The PMP registers allow machine (M) mode to specify

which memory regions are available during user (U) mode

operations. This is an easy and low-cost way to implement

memory protection in user mode for simple systems. However,

due to the limited number of registers available, it imposes a

restriction on the number of regions it can protect. Hence this

is not scalable to more complex applications. Furthermore,

PMP protected regions need to be contiguous in physical

memory, it can lead to memory fragmentation.
In contrast, HeapSafe can be applied in a more granular

manner to individual pointers pointing to memory locations.

The number of regions to be protected is not restricted by the

core architecture, but set by the configurable HeapSafe engine.

Thus HeapSafe is more scalable and versatile than PMP.

class WithNHeapSafe(n: Int) extends Config((site, here, up) => {
case BuildRoCC => List.tabulate(n)( i => 

(p: Parameters) => {
val heapsafe = LazyModule(new HeapSafe(OpcodeSet.custom0,

mtSize = 256, 
hartId = i)(p)) 

heapsafe
})})

Fig. 9. RocketChip config class for configurable HeapSafe module generation.

D. Backwards compatibility

Our HeapSafe implementation is fully backwards compati-

ble with standard unprotected pointers. This allows the source

code programmer to use a mix of protected and unprotected

pointers. The programmer can opt to use HeapSafe protected

pointers only for security critical heap regions. Although this

is less secure, it improves the performance since the program

is not being slowed down due to unnecessary validations.

We achieve backwards compatibility by assuming a tag
value of 0, since pointers in user-level code has the MSB bits

as 0. Since this is inherent to the design, we simply exclude

0 as a tag for HeapSafe pointers. If we encounter a pointer

with its tag bits as 0, we treat the pointer as a non-protected

pointer and exclude it from validation.

E. HeapSafe system generation

Due to the flexibility in HeapSafe’s design configuration, we

can customize the size of the metadata table to be generated

on the hardware. We can also create multiple instances of

the HeapSafe coprocessor to support simultaneous multi-

process protection. The code in Fig. 9 demonstrates the easy

configurability of HeapSafe design.

When generating a system configuration with HeapSafe, we

can set the parameter n to specify the number of HeapSafe

modules to instantiate. We associate a hartId to each

HeapSafe module. The size of the metadata table can be set

through the mtSize parameter. In this config, it is set to

256. In the HeapSafe module implementation, we calculate

the bit allocation scheme for the tag in the safe pointer as

log2 mtSize, e.g., if mtSize = 256, we set the tag bit

allocation to the MSB 8 bits in the safe pointer.

During the SoC generation, the HeapSafe configuration

changes are independent from the core configurations and the

rest of the SoC configuration. This provides an advantage that

the HeapSafe module can be hooked up to any RISC-V core

configuration implementing the RoCCIO interface. As long as

the application running on the core is compiled including the

HeapSafe library, protection can be provided by the HeapSafe

hardware.

VI. CONCLUSION

We presented HeapSafe, a customizable and lightweight

heap protection hardware engine for the RISC-V ISA. We en-

sured heap integrity using tagged pointers and enforced meta-

data propagation for common pointer operations. HeapSafe

improved performance over traditional software approaches.

The design allows easy configuration and scalability of the

security architecture implementation.
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