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Abstract

In recent years, federated learning has been em-
braced as an approach for bringing about collabo-
ration across large populations of learning agents.
However, little is known about how collaboration
protocols should take agents’ incentives into ac-
count when allocating individual resources for
communal learning in order to maintain such col-
laborations. Inspired by game theoretic notions,
this paper introduces a framework for incentive-
aware learning and data sharing in federated learn-
ing. Our stable and envy-free equilibria capture
notions of collaboration in the presence of agents
interested in meeting their learning objectives
while keeping their own sample collection burden
low. For example, in an envy-free equilibrium, no
agent would wish to swap their sampling burden
with any other agent and in a stable equilibrium,
no agent would wish to unilaterally reduce their
sampling burden.

In addition to formalizing this framework, our
contributions include characterizing the structural
properties of such equilibria, proving when they
exist, and showing how they can be computed.
Furthermore, we compare the sample complex-
ity of incentive-aware collaboration with that of
optimal collaboration when one ignores agents’
incentives.

1. Introduction
In recent years, federated learning has been embraced as
an approach for enabling large numbers of learning agents
to collaboratively accomplish their goals using collectively
fewer resources, such as smaller data sets. Indeed, collabora-
tive protocols are starting to be used across networks of hos-
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pitals (Wen et al., 2019; Powell, 2019) and devices (McMa-
han & Ramage, 2017) and are behind important break-
throughs such as understanding the biological mechanisms
underlying schizophrenia in a large scale collaboration of
more than 100 agencies (Bergen & Petryshen, 2012).

This promise of creating large scale impact from mass par-
ticipation has led to federated learning receiving substantial
interest in the machine learning research community, and
has resulted in faster and more communication-efficient col-
laborative systems. But, what will ultimately decide the
success and impact of collaborative federated learning is the
ability to recruit and retain large numbers of learning agents
— a feat that requires collaborative algorithms to

help agents accomplish their learning objectives
while “equitably” spreading the data contribution
responsibilities among agents who want a lower
sample collection burden.

This is to avoid the following inequitable circumstances that
may otherwise arise in collaborative learning. First, when
part of an agent’s data is exclusively used to accomplish
another agent’s learning goals; for example, if an agent’s
learning task can be accomplished even when she (unilater-
ally) lowers her data contribution. Second, when an agent
envies another agent; for example, if an agent’s learning goal
can be accomplished even when she swaps her contribution
burden with another agent who has a lower burden.

In this paper, we introduce the first comprehensive game the-
oretic framework for collaborative federated learning in the
presence of agents who are interested in accomplishing their
learning objectives while keeping their individual sample
collection burden low. Our framework introduces two no-
tions of equilibria that avoid the aforementioned inequities.
First, analogous to the concept of Nash equilibrium (Nash,
1951), our stable equilibrium requires that no agent could
unilaterally reduce her data contribution responsibility and
still accomplish her learning objective. Second, inspired by
the concept of envy-free allocations (Foley, 1967; Varian,
1974), our envy-free equilibrium requires that no agent could
swap her data contribution with an agent with lower con-
tribution level and still accomplish her learning objective.
In addition to capturing what is deemed as an “equitable”
collaboration to agents, using stable and envy-free equilibria
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is essential for keeping learning participants fully engaged
in ongoing collaborations.

Our framework is especially useful for analyzing how the
sample complexity of federated learning may be affected by
the agents’ desire to keep their individual sample complex-
ities low. To demonstrate this, we work with three classes
as running examples of agent learning objectives: random
discovery (aka linear) utilities, random coverage utilities,
and general PAC learning utilities. Our results answer the
following qualitative and quantitative questions:

Existence of Equilibria. In Section 3, we show that the
existence of a stable equilibrium depends on whether agents’
learning objectives are “well-behaved”. In particular, we see
that in the PAC learning setting, there may not exist a stable
equilibrium, but under mild assumptions, a stable equilib-
rium exists in the random discovery and random coverage
settings. On the other hand, an envy-free equilibrium with
equal agent contribution trivially exists.

Sample Complexity of Equilibria. In Section 4, we
show that even for well-behaved learning objectives, such as
random discovery and random coverage examples, there is
a large gap between the socially optimal sample complexity
and the optimal sample complexity achieved by any equi-
librium. In particular, we show that there is a factor Ω(

√
k)

gap between the socially optimal sample complexity and
that of optimal stable or envy-free equilibria for k agents.

Algorithmic and Structural Properties. The main result
of Section 5 shows that in the random discovery setting,
in every optimal stable equilibrium there is a core-set of
agents for whom the equilibrium happens to also be socially
optimal, and agents who do not belong to this set make 0
contribution in the equilibrium. This result allows us to
characterize classes of problems where the optimal stable
equilibria are also socially optimal. We further show that
in some cases, linear or convex programs can be used to
compute socially optimal or optimal stable equilibria.

Empirical Analysis. We show that some commonly used
federated algorithms produce solutions that are very far
from being an equilibrium. We show that the Federated-
Averaging (FedAvg) algorithm of McMahan et al. (2017)
lead to solutions where a large number of agents would
rather reduce their contribution to as little as 25% to 1%.
We also work with the Multiplicative Weight Update style
algorithm (MW-FED) of Blum et al. (2017) and show that
this algorithm produces allocations that are closer to be-
ing an equilibrium, but more work is needed for designing
algorithms that further close this gap.

1.1. Related Work.

Federated learning and the model aggregation algorithm
FedAvg were proposed by McMahan et al. (2017). The

collaborative learning framework of Blum et al. (2017) stud-
ied heterogeneous learning objectives in federated learning
and quantified how sample complexity improves with more
collaboration. However, except for a few recent works dis-
cussed below, agents’ incentives have not been addressed in
these frameworks.

Lyu et al. (2020); Yu et al. (2020); Zhang et al. (2020) pro-
posed several fairness metrics for federated learning that
reward high-contributing agents with higher payoffs, how-
ever, they do not consider strategicness of agents and the
need for equilibrium. Li et al. (2019) empirically studied a
different fairness notion of uniform accuracy across devices
without discussing data contribution, while our work al-
lows for different accuracy levels so long as every learner’s
objective is accomplished and focuses data contribution.
Sim et al. (2020) proposed a reward scheme based on the
Shapley value to provide incentive for collaboration when
each agent’s sampling burden is fixed. Recently, Donahue
& Kleinberg (2021) studied individual rationality in feder-
ated learning when global models may be worse than an
agent’s local model and used concepts from hedonic game
theory to discuss coalition formation. Other works have dis-
cussed issues of free-riders and reputation (Lin et al., 2019;
Kang et al., 2019) as well as markets and credit sharing in
machine learning (Ghorbani & Zou, 2019; Agarwal et al.,
2019; Balkanski et al., 2017; Jia et al., 2019).

2. Problem Formulation
Let us start this section with a motivating example before
introducing our general model in Section 2.1.

Consider the collaborative learning problem with k agents
with distributions D1, . . . ,Dk. For each agent i ∈ [k], her
goal is to satisfy the constraint of low expected error, i.e.,

E{Sj∼Dmjj }j∈[k] [errDi(hS)] ≤ ε , (1)

for some ε > 0, where each agent j takes mj ≥ 0 random
samples Sj ∼ D

mj
j and hS is a prediction rule based on S =

∪j∈[k]Sj . Then the sample complexity of federated learning
is the optimal allocation (m1, . . . ,mk) that minimizes the
total number of samples conditioned on satisfying every
agent’s accuracy constraint, that is,

min
k∑
i=1

mi

s. t. E{Sj∼Dmjj }j∈[k] [errDi(hS)] ≤ ε,∀i ∈ [k] .
(2)

It is not surprising that optimizing Equation (2) requires
collectively fewer samples than the total number of samples
agents need to individually solve Equation (1)1, but the
optimal solution to Equation (2) may unfairly require one

1Blum et al. (2017) upper and lower bound this improvement.
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or more agents to contribute larger sample sets than could
reasonably be expected from them. Our notion of a stable
equilibrium requires that no agent j, conditioned on keeping
her constraint satisfied, can unilaterally reduce mj . On the
other hand, our envy-free equilibrium requires that no agent
j, conditioned on keeping her constraint satisfied, can swap
mj with another agent’s contribution mi < mj . Taking
stability and envy-freeness as constraints, we ask whether
such notions of equilibria always exist and whether stable
and envy-free sample complexities are significantly worse
than the optimal solution to Equation (2).

2.1. The General Framework

In this paper, we study this problem in a more general setting
where there are k agents and all agents collaboratively select
a strategy θ = (θ1, . . . , θk) from a strategy space Θ ⊆ Rk+.
Each agent i selects a number θi as her contribution level,
e.g., the number of samples. We define ui : Θ 7→ R as the
utility function for each agent i and her goal is to achieve

ui(θ) ≥ µi

for some µi. This utility function is a generalization of the
expected accuracy in our motivating example and µi = 1−ε
is the minimum accuracy required by the agent.

For any θ ∈ Rk, x ∈ R, let (x,θ−i) ∈ Rk denote the
vector with the i-th entry being x and the j-th entry being
θj for j 6= i. Without loss of generality, we assume that
every agent can satisfy her constraint individually, i.e., ∀i ∈
[k],∃ϑi ∈ Rk+ such that ui(ϑi,0−i) ≥ µi and ui is non-
decreasing with θj for any j.

We say that θ is feasible if ui(θ) ≥ µi for all i ∈ [k]. We
define the socially optimal solution analogously to Equa-
tion (2) as the optimal feasible solution that does not con-
sider agents’ incentives.

Definition 1 (Optimal solution (OPT)). θopt is a socially
optimal solution in Θ if it is the optimal solution to the
following program

minθ∈Θ 1>θ
s. t. ui(θ) ≥ µi,∀i ∈ [k] .

(3)

A stable equilibrium is a feasible solution where no player
has incentive to unilaterally decrease her strategy.

Definition 2 (Stable equilibrium (EQ)). A feasible solution
θeq is a stable equilibrium over Θ if for any i ∈ [k], there is
no (θ′i,θ

eq
−i) ∈ Θ such that θ′i < θeq

i and ui(θ′i,θ
eq
−i) ≥ µi.

An envy-free equilibrium is a feasible solution where no
agent has an incentive to swap their sampling load with
another agent. For any θ, let θ(i,j) denote the θ when
the i-th and the j-th entries are swapped, i.e., θ(i,j)

i = θj ,
θ

(i,j)
j = θi and θ(i,j)

l = θl for l 6= i, j.

Definition 3 (Envy-free equilibrium (EF)). A feasible so-
lution θef is envy-free if for any i ∈ [k], there is no
θef(i,j) ∈ Θ such that θef

j < θef
i and ui(θef(i,j)) ≥ µi.

We call an equilibrium θ optimal if it is an equilibrium with
minimal resources, i.e., minimizes 1>θ.

We use the game theoretic quantities known as the Price of
Stability (Anshelevich et al., 2008) and the Price of Fair-
ness (Caragiannis et al., 2012) to quantify the impact of
equilibria on the efficiency of collaboration.

Definition 4 (Price of Stability). Price of Stability (PoS)
is defined as the ratio of the value of the optimal stable
equilibrium to that of the socially optimal solution. That is,
letting Θeq ⊆ Θ be the set of all stable equilibria, PoS =
minθ∈Θeq 1>θ/1>θopt.

Definition 5 (Price of Fairness). Price of Fairness (PoF)
is defined as the ratio of the value of the optimal envy-free
equilibrium to that of the socially optimal solution. That
is, letting Θef ⊆ Θ be the set of all envy-free equilibria,
PoF = minθ∈Θef 1>θ/1>θopt.

2.2. Canonical Examples and Settings

We use the following three canonical settings as running
examples throughout the paper.

Random Discovery aka Linear Utilities. We start with
a setting where any agent’s utility is a linear combina-
tion of the efforts other agents put into solving the prob-
lem. As a general setting, we let u(θ) = Wθ for matrix
W ∈ [0, 1]k×k, where Wij denotes how the effort of agent
j affects the utility of agent i. We commonly assume that
W is a symmetric PSD matrix with an all one diagonal.

As an example, consider a setting where each agent i has
a distribution qi over the instance space X with |X | = n,
and where the agent i receives a reward proportional to
the density of qix every time an instance x is realized (or
discovered) by any agent’s sampling effort. Formally, the
utility of agent i in strategy θ is her expected reward:

ui(θ) = qiQ
>θ,

where Q = [qix] ∈ Rk×n+ denote the matrix with the (i, x)-
th entry being qix, we have that u(θ) = QQ>θ is a linear
function. Note that in this case, W = QQ> is indeed a
symmetric PSD matrix.

Random Coverage. While in our previous example an
agent draws utility everytime an instance x is discovered,
in many classification settings, the utility of an agent is
determined by whether x has been observed at all (and not
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the number of its observations).2 This gives rise to the
non-linear utilities we define below.

Consider a simple binary classification setting where the
label of each point is uniformly labeled positive or negative
independently of all others. More specifically, assume that
the domain X is labeled according to a target function f∗

that is chosen uniformly at random from {±1}X . Each
agent i has a distribution qi over the instance space X . Note
that given any set of observed points S = {x1, . . . , xm} ⊆
X and their corresponding revealed labels f∗(x) for x ∈ S.
The optimal classifier hS classifies each x ∈ S correctly as
f∗(x) and misclassifies each x /∈ S with probability 1/2.
Let ui(θ) be the expected accuracy of the optimal classifier
where agent i took an integral value θi number of samples,
i.e.,

ui(θ) = 1− 1

2

∑
x∈X

qix

k∏
j=1

(1− qjx)
θj .

Throughout the paper, we consider the general random cov-
erage setting introduced here and its simpler variants where
all agents’ distributions are uniform over equally-sized sets.

As opposed to the linear utilities, non-integral values of θi
(as mean of a distribution over integers) are not as easily
interpretable. Indeed, the same θi may refer to distributions
with different expected utilities. Here we consider one natu-
ral interpretation of a real-valued θi: randomized rounding
over bθic and dθie with mean of θi. See Appendix A for
more information.

General PAC Learning. Now we consider a general
learning setting, where the labels of points are not nec-
essarily independent. In this case, the optimal classifier can
improve its accuracy on unobserved points based on those
points’ dependence on observed points. For example, con-
sider a scenario where an input space X where |X | = 2 and
a hypothesis class that always labels points in X either both
positive or negative. Then, if only one point is observed, the
classifier will classify the unobserved point the same as the
label of the observed one.

Generally, given input space X and agent i’s distribution
Di over X , we let utility function ui(θ) be the expected
accuracy of an optimal predictor hS given training data
set S = ∪j∈[k]Sj when agent i takes an integral value θi
number of samples,

ui(θ) = 1− E
{Sj∼D

θj
j }j∈[k]

[errDi(hS)] .

Similar to the random coverage settings, we interpret real
values θi as the appropriate distribution over bθic and dθie
whose mean is θi.

2Note that the two cases approximate one another if the number
of samples to be taken is much smaller than the size of the domain
i.e., (1− pi)

m ≈ 1−mpi.

3. Existence of Equilibria
In this section, we discuss the existence of stable and envy-
free equilibria in collaborative federated learning. Clearly,
any solution with equal allocation among all agents is an
envy-free allocation. That is, any feasible allocation θ can
be converted to an envy-free allocation θef by letting ∀i ∈
[k], θef

i = maxj θj .

Theorem 1. An envy-free solution always exists in a feasi-
ble collaborative learning problem.

In the aforementioned envy-free solution θef , however, all
agents (except for those with the maximum allocation) could
unilaterally reduce their allocations while meeting their con-
straints, so θef is not an equilibrium. Indeed, in the remain-
der of this section we show that existence of an equilibrium
in collaborative learning depends on the precise setting of
the problem. In particular, we show that an equilibrium
solution exists when unilateral deviations in an agent’s con-
tribution has a bounded impact on the utility of any agent.
On the other hand, an equilibrium solution may not exist if
infinitesimally small changes to an agent’s contribution has
an outsized effect on other agents’ utilities (or if an agent’s
strategy space is not even continuous).

We will formalize this in the next definition. Broadly, this
definition states that an agent’s utility increases at a positive
(and bounded away from zero) rate when the agent unilater-
ally increases her contribution. Moreover, an agent’s utility
does not increase at an infinite rate. In other words, it is
bounded above by a constant when other agents unilaterally
increase their contributions.

Definition 6 (Well-behaved Utility Functions). We say that
a set of utility functions {ui : Θ → R | i ∈ [k]} is well-
behaved over×k

i=1
[0, Ci] ⊆ Θ for some Cis, if and for

each agent i ∈ [k] there are constants ci1 ≥ 0 and ci2 > 0

such that for any θ ∈×k

i=1
[0, Ci],

1. ∂ui(θ)/∂θi ≥ ci2; and

2. for all j ∈ [k] and j 6= i, 0 ≤ ∂ui(θ)/∂θj ≤ ci1.

We emphasize that the utility functions that correspond to
many natural learning settings and domains, such as in the
linear case and random coverage, are well-behaved. That
being said, it is also not hard to construct natural learning
settings where the utility functions are not well-behaved,
e.g., when an agent is restricted to taking an integral number
of samples and therefore its utility is not continuous. In the
remainder of this section, we prove that, when agent utilities
are well-behaved, an equilibrium exists.

Theorem 2. For any collaborative learning problem with
utility functions uis and µis, let ϑi represent the individually
satisfying strategy such that ui(ϑi,0−i) ≥ µi. If uis are
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well-behaved over×k

i=1
[0, ϑi], then there exists an equilib-

rium.

We complement this positive result by constructing a nat-
ural learning setting that corresponds to ill-behaved utility
functions and show that this problem has no equilibrium.

Theorem 3. There is a feasible collaborative learning prob-
lem in the general PAC learning setting that does not have
an equilibrium.

3.1. Are Canonical Examples Well-behaved?

Recalling the three canonical examples introduced in Sec-
tion 2.2, here we discuss whether they are well-behaved or
not. It is not hard to see that linear utilities are well-behaved
as ui increases at a constant rateWij when agent j increases
her strategy unilaterally, Wii = 1, and Wij ≤ 1.

In the random coverage case, the utilities are well-behaved
over×k

i=1
[0, ϑi] as long as ui(ϑi + 1,ϑ−i) − ui(ϑ) is

bounded away from 0. For example, this is the case when
µ ∈ [ 1

2 , C]k for C < 1 that is bounded away from 1.

At a high level, the smallest impact that an additional sam-
ple by agent i has on ui is when θ → ϑ. This impact
is at least ui(ϑi + 1,ϑ−i) − ui(ϑ) > 0. On the other
hand, ∂ui(θ)/∂θj is bounded above, because the marginal
impact of any one sample on ui is largest when no agent
has yet taken a sample. Therefore, this impact is at least
ui(1,0−j) − ui(0) = 1/2

∑
x∈X qixqjx ≤ 1/2. This

shows that under mild assumption the random coverage
utilities are well-behaved.

We note that the range of×k

i=1
[0, Ci] and the continuity of

Θ plays an important role in determining the behavior. For
example, none of these utility functions are well-behaved
over the set of integers, since ∂ui(θ)/∂θj is undefined.
More detail can be found in Appendix B.

3.2. Proof of Theorem 2

In this section, we prove Theorem 2 and show that an equi-
librium exists when utility functions are well-behaved. Our
main technical tool is to show that the best-response dy-
namic has a fixed point. We define a best-response func-
tion f :×k

i=1
[0, ϑi] 7→ ×k

i=1
[0, ϑi] that maps any θ to

θ′, where θ′i is the minimum contribution agent i has to
make so that ui(θ′i,θ−i) ≥ µi. This is formally defined by
f(θ) := (fi(θ))i∈[k], where

fi(θ) = arg min
x≥0

ui(x,θ−i) ≥ µi .

Due to the monotonicity of uis and the definition of ϑis, it
is easy to show that fi(θ) ≤ ϑi.

Fixed points of function f , i.e., those θ for which f(θ) = θ,
refer to the equilibria of the collaborative learning game.

This is because, by definition, fi(θ) is the smallest con-
tribution from agent i that can satisfy agent i’s constraint
in response to other agents’ contributions θ−i. Therefore,
when θi = fi(θ) for all i ∈ [k], no agent can unilaterally re-
duce their contribution and still satisfy their constraint. That
is, such θ is an equilibrium. Therefore, to prove Theorem 2,
it suffices to show that the best-response function f has a
fixed point.

Lemma 1. If utilities are well-behaved over×k

i=1
[0, ϑi],

the best-response function f has a fixed point, i.e., ∃θ ∈
×k

i=1
[0, ϑi], f(θ) = θ.

We defer the proof of Lemma 1 to Appendix C. At a high
level, we show that f is continuous because, for well-
behaved utility functions, a small change in other agents’
contributions affects the utility of agent i only by a small
amount. Thus, a small adjustment to agent i’s contribution
will be sufficient to re-establish her constraint when other
agents make infinitesimally small adjustments to their strate-
gies. Then, combining this with the celebrated Brouwer
fixed-point theorem proves this lemma.

3.3. Proof of Theorem 3

In this section, we prove Theorem 3 and show that an equi-
librium might not exist if the utility functions are not well-
behaved. We demonstrate this using a simple example where
the utility function corresponds to the accuracy of classifiers
in a general PAC learning setting with integral value strate-
gies. We give a more general construction in Appendix D.

We consider the problem in the binary classification setting
where one agent’s marginal distribution reveals information
about the optimal classifier for another agent.

Consider the domain X = {0, . . . , 5} and the label space
Y = {0, 1}. We consider agents {0, 1, 2} with distributions
D0,D1,D2 over X × Y . Let ⊕ and 	 denote addition and
subtraction modulo 3.

We give a probabilistic construction for D0,D1,D2. Take
independent random variables Z0, Z1, Z2 that are each uni-
form over {0, 1}. For each i ∈ {0, 1, 2}, distribution
Di is a point distribution over a single instance-label pair
(2i + zi, zi	1). In other words, the marginal distribution
of Di is equally likely to be the point distribution on 2i or
2i+ 1. Moreover, the labels of points in distribution Di⊕1

are decided according to the marginal distribution of Di: If
the marginal distribution of Di is a point distribution sup-
ported on 2i then any point in Di⊕1 is labeled 0, and if the
marginal distribution of Di is a point distribution on 2i+ 1
then any point in Di⊕1 is labeled 1.

Consider the optimal classifier conditioned on the event
where agent i takes a sample (2i + zi, zi	1) from Di and
no other agents takes any samples. This reveals zi and zi	1.



Equilibria and Optimality of Collaboration in Federated Learning

Therefore, the optimal classifier conditioned on this event
achieves an accuracy of 1 for agent i (by classifying 2i and
2i + 1 as zi	1) and agent i ⊕ 1 (by classifying 2(i ⊕ 1)
and 2(i ⊕ 1) + 1 as zi). On the other hand, the optimal
label for instances owned by agent i 	 1, is Zi⊕1. By the
independence of random variables Z0, Z1, and Z2, we have
that Zi⊕1 is uniformly random over {0, 1} even conditioned
on zi and zi	1. Therefore, the optimal classifier has an
expected error of 1/2 for agent i 	 1. Using a similar
analysis, if any two agents each take a single sample from
their distributions, the accuracy of the optimal classifier for
all agents is 1.

We now formally define the strategy space and utility func-
tions that correspond to this setting. Let Θ = {0, 1}3 to be
the set of strategies in which each agent takes zero or one
sample. Let µ = 1. Let ui(θ) be the expected accuracy
of the optimal classifier given the samples taken at random
under θ. As a consequence of the above analysis,

ui(θ) =

{
1 θi = 1 or θi	1 = 1
1
2 otherwise

Note that any θ ∈ Θ for which ‖θ‖1 ≥ 2 is a feasible
solution, while no ‖θ‖1 ≤ 1 is a feasible solution. Now
consider any θ for which ‖θ‖1 ≥ 2. Without loss of general-
ity, there must be an agent i such that θi = θi	1 = 1. Since
θi	1 = 1, we also have that ui(0,θ−i) = 1. That is agent i
can deviate from the strategy and still meet her constraint.
Therefore, no feasible solution is a stable equilibrium. This
proves Theorem 3.

4. Quantitative Bounds on Price of Stability
and Price of Fairness

As shown in Section 3, while an envy-free solution always
exists, the existence of stable equilibria depends on the
properties of the utility function. In this section, we go
beyond existence and give quantitative bounds on the sub-
optimality of these equilibria notions even when they exist
in the presence of (very) well-behaved functions.

Theorem 4. There is a collaborative learning setting with
well-behaved utility functions such that the Price of Stability
and Price of Fairness are at least Ω(

√
k). Moreover, these

utilities correspond to two settings: a) a random domain
coverage example with uniform distributions over equally
sized subsets and b) a linear utility setting with Wii = 1
and Wij ∈ O(1/

√
k) for j 6= i.

We provide an overview of the proof of Theorem 4 here
and defer the details of this proof to Appendix E. Our con-
struction for the random coverage and linear utility settings
are very similar, here we only discuss the random coverage
setting. The crux of our approach is to build a set structure

where one agent, called the core, overlaps with all other
agents and no two agent sets intersect outside of the core.
We use a relatively small µis so that every agent only needs
to observe one of the points in her set. In our construction,
the core is the most “efficient” agent in reducing the error of
all other agents and optimal collaboration puts a heavy sam-
pling load (of about

√
k) on the core. Moreover, because

the core includes all the points on which two other agents
intersect, the core’s constraint is also easily satisfied when
any other agent’s constraint is satisfied. This means that in
no stable or envy-free equilibrium can the core take more
samples than another agent. Therefore, most of the work
has to be done by other agents in any equilibrium allocation,
which requires a total of k samples. This tradeoff between
being both the most “efficient” at sampling to reduce error
and having an “easy-to-satisfy constraint” leads to a large
Price of Stability and Price of Fairness.

5. Structural and Algorithmic Perspectives
In this section, we take a closer look at the stable equilibria
of the two canonical example where they are guaranteed to
exist, i.e., the linear utilities and the coverage utilities, and
study their structural and computational aspects.

5.1. Algorithms for Linear Utility

Recall that linear utility functions are functions u(θ) = Wθ
where W ∈ [0, 1]k×k, where Wij denotes how the efforts
of agent j affects the utility of agent i. In this section, we
assume that W is a symmetric PSD matrix 3 with an all 1
diagonal.

An immediate consequence of linear utilities is that the
optimal collaborative solution can be computed using the
following linear program efficiently

min
k∑
i=1

θi

s. t. Wθ ≥ µ
θ ≥ 0.

(LP 1)

Interestingly, the set of stable equilibria of linear utilities
are also convex and the optimal stable equilibrium can be
computed using a convex program. To see this, note that
any solution to LP 1 satisfies the constraints θi(W>i θ −
µi) ≥ 0,∀i ∈ [k], where Wi denotes the i-th column of
W . Hence, adding the constraints θi(W>i θ−µi) ≤ 0,∀i ∈
[k] to LP 1 will further restrict the solution to be a stable
equilibrium where θi = 0 or W>i θ = µi. Given that any
stable equilibrium meets both of these constraints with tight
equality of 0, they can be equivalently represented by the
following convex program.

Theorem 5. The following convex program computes an

3This matches our motivating use-case defined in Section 2
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optimal stable equilibrium of collaborative learning with
linear utility functions

min
k∑
i=1

θi

s. t. Wθ ≥ µ
θ ≥ 0
θ>Wθ − µ>θ ≤ 0,

(CP 1)

where the last inequality is convex when W is PSD.

5.2. Structure of Equilibria for Linear Utility

In this section, we take a closer look at the structural proper-
ties of stable and envy-free equilibria and provide a quali-
tative comparison between them and the optimal solutions.
The main result of this section is that in any optimal stable
equilibrium, there is a core subset of k agents for which the
equilibrium is also a socially optimal collaboration, while
all other agents’ contributions are fixed at 0.

Theorem 6. Let θeq be an optimal stable equilibrium for
linear utilities ui(θ) = W>i θ and µi = µ for i ∈ [k], where
W is a symmetric PSD matrix. Let Iθeq = {i | θeq

i = 0}
be the set of non-contributing agents and let W and θ

eq
be

the restriction of W and θeq to [k] \ Iθeq . Then θ
eq

is a
socially optimal solution for the set of agents i ∈ [k] \ Iθeq ,
i.e., agents with utilities ui(θ) = W

>
i θ for i ∈ [k] \ Iθeq .

Furthermore, let θ̃ represent the extension of θ by padding
0s at Iθeq , i.e., θ̃i = 0 for i ∈ Iθeq and θ̃i = θi for i ∈
[k] \ Iθeq . For any θ that is a socially optimal solution
for agents [k] \ Iθeq , θ̃ is an optimal stable equilibrium for
agents [k].

This theorem implies that any equilibrium in which all
agents have non-zero contribution has to be socially op-
timal.

Corollary 1. Consider an optimal equilibrium θeq. If
θeq > 0, then θeq is socially optimal.

An advantage of Corollary 1 is that in many settings it
is much simpler to verify that every agent has to con-
tribute a non-zero amount at an equilibrium without com-
puting the equilibrium directly. One such class of examples
is when matrix W is a diagonally dominant matrix, i.e.,∑
j 6=iWij < Wii for all i ∈ [k], in addition to satisfying

the requirements of Theorem 2. In this case, every agent
can satisfy their own constraint in isolation using ϑi = 1/µ
contribution. Therefore, in any stable equilibrium the total
utility an agent will receive from all others (even at their
maximum contribution of 1/µ) is not sufficient to meet her
constraint. Therefore, every agent has a non-zero contribu-
tion in an equilibrium. This shows that the Price of Stability
corresponding to diagonally dominant matrices is 1.

We defer the proofs of Theorem 6 and Corollary 1 to
Appendix F. At a high level, our proofs use the duality
framework and the linear program (LP 1) and convex pro-
gram (CP 1).

Lastly, in the linear utilities case, it is not hard to show that
any stable equilibrium is also envy-free.

Theorem 7. When Wij < Wii for all i, j ∈ [k], any stable
equilibrium is also envy-free.

We defer the proof of Theorem 7 to Appendix G. Theorem 7
and Corollary 1 together highlight an advantage of opti-
mal stable equilibria. Not only are these equilibria socially
optimal for a subset of agents (and in some cases for all
agents) but also they satisfy the additional property of being
envy-free.

5.3. Coverage Utilities

We complement the algorithmic and structural perspective
of equilibria in the linear utility case with those for the
random coverage utilities. Unlike the linear utility case,
both the stable feasible set and the envy-free feasible set
for the random coverage utilities are non-convex, which
indicates that either optimal stable equilibrium or optimal
envy-free equilibrium is intractable.

Theorem 8. There exists a random coverage example with
strategy space Θ = Rk+ such that Θeq is non-convex, where
Θeq ⊆ Θ is the set of all stable equilibria.

We defer the proof to Appendix H and provide an overview
of the proof of Theorem 8 here. Consider an example where
there are 2 agents and both are with a uniform distribution
over the instance space X = {0, 1} and µi = 3/4 for all
i ∈ [2]. Note that both e1 and e2 are stable equilibria, since
both agents receive 3/4 utility if either of them observe any
one of the instances. Now consider a convex combination of
these two strategies (e1 + e2)/2, i.e, each agent takes one
sample with probability 1/2. In this case, there is a small
probability that when both agents sample they both uncover
the same point. Thus, they do not receive any marginal
utility from the second sample. This means that the utility
that both agents receive from (e1 + e2)/2 is strictly less
than 3/4, that is, (e1 + e2)/2 is not even a feasible solution
let alone a stable equilibrium. For more details refer to
Appendix H.

Theorem 9. There exists a random coverage example with
strategy space Θ = Rk+ such that Θef is non-convex, where
Θef ⊆ Θ is the set of all envy-free equilibria.

We defer the proof to Appendix H. At a high level, con-
sidering a complete graph on 4 vertices, we let each edge
correspond to one agent and put one point in the middle of
every edge and one point on every vertex. Then we let each
agent’s distribution be a uniform distribution over Xi, which
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is the 3 points on agent i’s edge. In this example, we can
obtain a envy-free equilibrium θef by picking any perfect
matching on this complete graph and then letting θef

i = 1 if
edge i is in this matching and θef

i = 0 otherwise. However,
we can show that there exists a convex combination of two
envy-free equilibria corresponding to two different perfect
matchings such that it is not envy-free.

6. Experimental Evaluation
To demonstrate potential issues with not considering incen-
tives in federated learning, we compare two federated learn-
ing algorithms that account for these incentives to different
extents. We consider both federated averaging (McMahan
et al., 2017) and a collaborative PAC-inspired algorithm
based on (Blum et al., 2017; Nguyen & Zakynthinou, 2018;
Chen et al., 2018) called MW-FED. Federated averaging
is envy-free as agents take the same number of samples
in expectation. Unfortunately, FedAvg may find solutions
that are far from any stable equilibrium. MW-FED does
not explicitly guarantee envy-freeness or stability, however,
we demonstrate that it produces solutions that are closer to
being a stable equilibrium. This is due to the fact that it
implicitly reduces the sample burden of those agents who
are close to having satisfied their constraints.

Federating Algorithms At a high level, FedAvg involves
sending a global model to a set of clients and requesting an
updated model (from some number of updates performed
by the client) based on the clients data. The server then cal-
culates a weighted average of these updates and sets this as
the new set of parameters for the model. MW-FED uses the
Multiplicative Weight Update meta-algorithm and adjusts
the number of samples that each agent has to contribute
over multiple rounds. MW-FED takes a fixed number of
samples at each round, but distributes the load across agents
proportional to weights wti . In the first iteration, the load
is distributed uniformly between the agents, i.e., w1

i = 1.
At every new iteration, the current global model is tested
on each agent’s holdout set. Distributions that do not meet
their accuracy objective increase their wti according to the
Multiplicative Weight Update. A more detailed statement
of the algorithm can be found in Appendix I.

EMNIST Dataset We study the balanced split of the EM-
NIST (Cohen et al., 2017), a character recognition dataset
of 131,600 handwritten letters. EMNIST provides a vari-
ety of heterogenous data while still remaining accessible
enough to run a sufficient number of trials. We encourage
further heterogeneity via a sampling technique that identi-
fies difficult and easy points. Each agent is assigned 2000
points from some mixture of these two sets. Implicitly, this
creates agents who have varying degrees of difficulty in
achieving their learning objectives. From these 2000 points,
1600 are selected as the training and 400 as a validation set.
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Figure 1. Each line here represents the average of 100 non-
federated runs of a distribution used in this experiment. Note that
the less difficult distributions reach the threshold quickly, whereas
the more difficult distributions take nearly three times as long.

During the course of training, we say that a distribution’s
contribution is the fraction of its 1600 points that it will use
during learning. That is, if an agent’s contribution level is
0.01, it will take a sample of 16 points at the beginning of
the optimization procedure and only uses those data when
creating mini-batches.

For clarity of presentation, in these experiments we use
four agents, two that have harder distributions and two that
have easier distributions. Figure 1 shows the average per-
formances of the four distributions without federation. Our
observations and trends hold across larger sample sizes and
with additional agents as shown in Appendix I. For training,
we use a four-layer neural network with two convolutional
layers and two fully-connected layers. For efficiency and to
mirror real-world federated learning applications, we pre-
train this model on an initial training set for 40 epochs to
achieve 55% accuracy and then use federated training to
achieve a 70% accuracy level for all agents. More details on
the dataset and model used can be found in Appendix I.

Results. To compare the two algorithms, we consider the
resulting likelihood of any agent’s constraint remaining sat-
isfied when they unilaterally reduce their contribution level.
Specifically, each agent wants to attain an accuracy of 70%
on their individual validation set. We chose this threshold as
the easy distributions readily, individually converge above
this level whereas, in our time horizon, the difficult distribu-
tions took, on average, nearly three times as long. See Fig-
ure 1 for the averaged individual performance trajectories.
If an agent can drop their contribution level significantly and
still attain this accuracy consistently during the optimization
process, then either (a) other agents are oversampling and
this agent is able to benefit from their over-allocation or (b)
the agent was sampling too much to begin with relative to
their requirements.
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Figure 2. Comparing the likelihood that a single defector will reach
their accuracy threshold at various contributions for federated
averaging and MW-FED after 10 epochs. The result shows that
MW-FED results in allocations that are closer to an equilibrium
compared to Fedvg.

FedAvg makes no distinction between these cases. All
agents contribute at an equal rate to convergence. On the
other hand, MW-FED quickly reduces an agent’s contribu-
tion level when she has met her constraints, reducing her
ability to oversample.

Figure 2 shows the results of FedAvg and MW-FED run
on the dataset 100 times. When everyone fully contributes,
100% of these FedAvg runs satisfy the requirements of all
agents by the tenth epoch. This figure compares the prob-
ability that, if a random single agent defected to a given
contribution level, they would expect to have met their accu-
racy threshold at this point. For instance, if a single random
agent only contributed 25% of their data in FedAvg, they
still have a 94% chance of being satisfied by the tenth epoch.
By comparison, only 45% of agents at the same contribution
level would succeed in MW-FED. This is striking as is dis-
cussed further in Appendix I where, even with pre-training,
none of the agents in the individual (non-federated) setting
reaches 70% accuracy with 50% or less of their data. In
Appendix I, we give one possible explanation for the perfor-
mance of MW-FED by drawing parallels to algorithms in
Section 5 that work in the linear setting.

7. Conclusion
Our paper introduced a comprehensive game theoretic
framework for collaborative federated learning that con-
siders agent incentives. Our general model extends to a
wide variety of loss functions under the modest assumptions
of feasibility and monotonicity. Our theoretical results and
empirical observations form the first steps in what we hope
will be a collective push towards designing equitable col-
laboration protocols that will be essential for recruiting and
retaining large numbers of participating agents.
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