
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

RackSched: A Microsecond-Scale Scheduler
for Rack-Scale Computers

Hang Zhu, Johns Hopkins University; Kostis Kaffes, Stanford University;
Zixu Chen, Johns Hopkins University; Zhenming Liu, College of William and Mary;

Christos Kozyrakis, Stanford University; Ion Stoica, UC Berkeley; Xin Jin,
Johns Hopkins University

https://www.usenix.org/conference/osdi20/presentation/zhu

RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers

Hang Zhu

Johns Hopkins University

Kostis Kaffes

Stanford University

Zixu Chen

Johns Hopkins University

Zhenming Liu

College of William and Mary

Christos Kozyrakis

Stanford University

Ion Stoica

UC Berkeley

Xin Jin

Johns Hopkins University

Abstract

Low-latency online services have strict Service Level Ob-

jectives (SLOs) that require datacenter systems to support

high throughput at microsecond-scale tail latency. Dataplane

operating systems have been designed to scale up multi-core

servers with minimal overhead for such SLOs. However, as

application demands continue to increase, scaling up is not

enough, and serving larger demands requires these systems

to scale out to multiple servers in a rack.

We present RackSched, the first rack-level microsecond-

scale scheduler that provides the abstraction of a rack-scale

computer (i.e., a huge server with hundreds to thousands of

cores) to an external service with network-system co-design.

The core of RackSched is a two-layer scheduling frame-

work that integrates inter-server scheduling in the top-of-rack

(ToR) switch with intra-server scheduling in each server. We

use a combination of analytical results and simulations to

show that it provides near-optimal performance as centralized

scheduling policies, and is robust for both low-dispersion and

high-dispersion workloads. We design a custom switch data

plane for the inter-server scheduler, which realizes power-of-

k-choices, ensures request affinity, and tracks server loads

accurately and efficiently. We implement a RackSched pro-

totype on a cluster of commodity servers connected by a

Barefoot Tofino switch. End-to-end experiments on a twelve-

server testbed show that RackSched improves the throughput

by up to 1.44×, and scales out the throughput near linearly,

while maintaining the same tail latency as one server until the

system is saturated.

1 Introduction

Online services such as search, social networking and e-

commerce have strict end-to-end user-facing Service Level

Objectives (SLOs) [12, 22]. To meet such SLOs, datacen-

ter systems behind these services are expected to provide

high throughput with low tail latency in the range of tens

to hundreds of microseconds [12]. Example systems include

key-value stores [6, 7, 60], transactional databases [9, 64],

search ranking and sorting [13], microservices and function-

as-a-service frameworks [17], and graph stores [43, 67].

With the end of Moore’s law and Dennard’s scaling, ap-

plications can no longer rely on single-threaded code to ex-

ecute faster on newer processors with increased clock rates

and instruction-level parallelism [31]. This leads to the rise

of multi-core machines to scale up computation. Meeting

microsecond-scale tail latency is challenging given that the

request processing times with single-threaded code on bare

metal hardware are already in the same time scale. This means

that the operating system (OS) should impose minimal over-

head when it manages resources and scales up these applica-

tions on multi-core machines.

This calls for new software architectures to efficiently

utilize the resources of multi-core machines. One criti-

cal component of such architectures is scheduling. Data-

plane operating systems have been designed to support low-

latency applications with minimal overhead to meet strict

SLOs [14, 39, 54, 58, 59]. For example, Shinjuku [39] uses

efficient mechanisms to implement preemption and context

switching, in order to realize centralized scheduling policies

to avoid head-of-line blocking and address temporal load

imbalance between multiple cores.

However, as application demands continue to increase, scal-

ing up a single server is not enough. Serving larger demands

requires these systems to scale out to multiple servers in a

rack, which is termed as rack-scale computers, such as Berke-

ley Firebox [1], Intel Rack Scale Architecture [5], and HP

“The Machine” [2]. Though previous efforts have not fully

paned out yet, we believe it is inevitable, as evidenced by

the emerging TPU Pods that pack high-density specialized

hardware into a rack [8]. Even a traditional rack contains

tens of servers and hundreds to thousands of cores, posing a

challenge for scheduling microsecond-scale requests.

While dataplane operating systems address intra-server

scheduling between multiple cores, head-of-line blocking and

temporal load imbalance between multiple servers arise when

the systems scale out. Using a single core for centralized

scheduling and queue management is amenable for one server

with a few to tens of cores [39]. But the core would quickly

become the bottleneck if it were used to queue and schedule

requests for a rack with hundreds to thousands of cores.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1225

In this paper, we present RackSched, the first rack-level

microsecond-scale scheduler that provides the abstraction

of a rack-scale computer (i.e., a huge server with hundreds

to thousands of cores) to an external service with network-

system co-design. Serving microsecond-scale workloads is

particularly challenging because the scheduler needs to simul-

taneously provide high scheduling speed (i.e., high through-

put and low latency of the scheduler) and high scheduling

quality (i.e., low tail latency to complete requests). Given the

scheduling latency of modern OSes on a single server being a

few microseconds [19, 39], our goal is to design a rack-level

scheduler with comparable scheduling latency that can scale

out to hundreds to thousands of cores in a rack. While there

has been a long line of work on scheduling and load balanc-

ing, existing solutions are not designed for microsecond-scale

workloads: software-based solutions [24, 27, 55, 56] suffer

from low scheduling throughput and high scheduling latency

(at least millisecond-scale); hardware-based ones [25, 51] are

coarse-grained (based on five tuple) and server-agnostic, and

thus suffer from long tail latency.

The core contribution of RackSched is a novel network-

system co-design that simultaneously achieves high schedul-

ing speed and high scheduling quality (§2). We propose a

two-layer scheduling framework that integrates inter-server

scheduling in the top-of-rack (ToR) switch with intra-server

scheduling in each server to approximate centralized schedul-

ing policies. This two-layer design, and the line-rate, on-path

inter-server scheduling in the ToR switch, are critical for the

scheduler to achieve high speed.

To provide high quality scheduling decisions, our key in-

sight is that the two sources of long tail latency—load im-

balance and head-of-line blocking—can be decoupled and

handled by separate mechanisms. The ToR switch tracks

real-time server loads, and schedules requests at per-request

granularity to realize inter-server load balancing (LB). Each

server keeps its own queue, and uses intra-server scheduling

to preempt long requests that block pending short ones. It is

known that centralized first-come-first-serve (cFCFS) is near-

optimal for low-dispersion workloads, and processor sharing

(PS) is near-optimal for heavy-tailed workloads or light-tailed

workloads with high dispersion [39, 59, 69]. We use a com-

bination of analytical results and simulations to show that

our two-layer scheduling framework provides near-optimal

performance as centralized policies, and is robust to different

workloads (Figure 1).

Realizing the inter-server scheduler in the ToR switch re-

quires the switch to schedule requests based on server loads

on per-request granularity (§3). Today’s stateful network load

balancers map connections to servers based the hash of the

five tuple [24, 25, 51, 53, 56], which is static, and cannot dy-

namically adapt the server selection under microsecond-scale

load imbalance. There are three aspects of our approach to

address this challenge. (i) We leverage the switch on-chip

memory to store server loads, and use the multi-stage process-

cFCFS for
low-dispersion workloads

PS for
heavy-tailed or

high-dispersion workloads

ZygOS [59]
cFCFS

Shinjuku [39]
PS

multi-core
server

(scale-up)

RackSched
LB (across-server)

+
cFCFS (per-server)

rack
(scale-out)

RackSched
LB (across-server)

+
PS (per-server)

Figure 1: Key idea of RackSched.

ing pipeline to implement power-of-k-choices and to support

a variety of practical scheduling requirements, such as multi-

queue policies. (ii) We design a request state table for request

affinity, which guarantees the packets of the same request are

sent to the same server. To maintain the dynamic mapping

between requests and servers, the request state table supports

insert (after scheduling the first packet), read (for sending fol-

lowing packets), and remove (when the request is completed)

all in the data plane. (iii) We leverage in-network telemetry

(INT) to monitor server loads with minimal overhead. Servers

piggyback their load information in their normal traffic, and

the switch tracks the latest reported load for each server.

Recent switch-based solution R2P2 [42] relies on expen-

sive recirculation which does not scale for high request

rate, and its scheduling policy has long tail latency under

heavy-tailed or high-dispersion workloads due to head-of-

line blocking (§4.5). In addition, R2P2 needs an extra round

trip for multi-packet requests to ensure request affinity, while

RackSched can finish in one round trip. RackSched is also

more general in supporting many practical policies (§3.6).

In summary, we make the following contributions.

• We propose RackSched, the first rack-level microsecond-

scale scheduler that provides the abstraction of a rack-scale

computer to an external service.

• We design a two-layer scheduling framework that inte-

grates inter-server scheduling in the ToR switch and intra-

server scheduling in each server. We use a combination of

analytical results and simulations to show that it provides

near-optimal performance as centralized policies.

• We design a custom switch data plane for the inter-server

scheduler, which realizes power-of-k-choices for near-

optimal load balancing, ensures request affinity, and tracks

server loads accurately and efficiently.

• We implement a RackSched prototype on a cluster of

twelve commodity servers with a Barefoot Tofino switch.

End-to-end experiments show that RackSched improves

the throughput by up to 1.44×, and scales out the through-

put near linearly, while maintaining the same tail latency

as one server until the system is saturated.

The code of RackSched is open-source and available at

https://github.com/netx-repo/RackSched.

1226 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and JSQ-PS can deliver nearly the same performance as the

centralized policies (global-cFCFS and global-PS).

Theoretically, the two-layer scheduling framework imple-

ments the A/S/K/JSQ/P models in queueing theory, where A

is the inter-arrival distribution, S is the service time distribu-

tion, K is the number of servers, JSQ is the join-the-shortest-

queue policy implemented by the inter-server scheduler, and

P is the intra-server scheduling policy which is either cFCFS

or PS in this case. In particular, it is known that JSQ pro-

vides near-optimal load balancing, and importantly, is robust

against request service time distributions. An expanded dis-

cussion is in the technical report [74].

Approximating JSQ. While conceptually simple, JSQ can-

not be implemented in its definite form in practice, because

it requires the switch to know the exact queue length of each

server when scheduling a request. It takes a round trip time

for the switch to ask each server, during which the queue

lengths may have changed for microsecond-scale workloads.

Furthermore, imperfect JSQ based on delayed server status is

prone to herding, where several consecutive requests are sent

to the same server before the server load is updated, and this

can generate micro bursts and degrade system performance.

Note that herding here is not caused by multiple asynchronous

load balancers as there is only one load balancer (the inter-

server scheduler), but from stale server load information in

the load balancer. In addition, the switch can only do a limited

number of operations for each request, and finding the short-

est queue cannot be implemented for many tens of servers.

Thus, we use power-of-k-choices to approximate JSQ, which

samples k servers for each request and chooses the one with

the minimum load. This approximation provides comparable

performance as JSQ in theory [18] (see [74]), and handles

these practical limitations well.

Why not a distributed, client-based solution? An alterna-

tive solution is to implement distributed scheduling at each

client. The clients can use JSQ, power-of-k-choices or more

complicated solutions like C3 [63] to pick workers for their re-

quests. Such a client-based solution has two drawbacks. First,

it needs client modification and increases system complexity.

The clients need to probe server loads and make scheduling

decisions. More importantly, the clients need to be notified

for every system reconfiguration (e.g., adding or removing

servers), because they have to know which set of servers a

request can be sent to. Notifying a large number of clients of

the latest system configuration imposes both a consistency

challenge and high system overhead. Putting these functional-

ities in a scheduler, on the other hand, simplifies the clients

and avoids these system complexities.

Second, a distributed, client-based solution provides a

worse trade-off between performance and probing overhead

than a centralized scheduler for microsecond-scale work-

loads. This is because microsecond-scale workloads are IO-

intensive, and a probing request incurs comparable processing

cost as a normal request at the servers. Thus, probing needs to

be minimized to improve the throughput of processing the ac-

tual requests. No matter whether probing is done proactively

or piggybacked in reply packets, given n clients with the same

sending rate, a centralized scheduler can utilize n times as

much probing data as that of one client in a client-based solu-

tion, resulting in better scheduling quality. Figure 2 confirms

the benefit of the centralized scheduler over a client-based

solution with a piggyback-based probing mechanism (client-

cFCFS and client-PS). The simulation does not model the

client software delay and the network delay to get the server

loads, which favors the client-based solution. The client-based

solution performs worse in real experiments (§4.5). In a multi-

pipeline switch, though states are not shared across pipelines,

RackSched can approximate JSQ within each pipeline. It

works better than the client-based solution because the num-

ber of pipelines (e.g., 4) is far smaller than the number of

clients (e.g., 1000 or more).

Putting it all together. We propose a two-layer scheduling

framework that integrates inter-server scheduling in the ToR

switch and intra-server scheduling in each server. The ToR

switch uses power-of-k-choices to achieve inter-server load

balancing, and each server uses cFCFS or PS to minimize

head-of-line blocking. This solution approximates centralized

scheduling for the entire rack, and provides the abstraction

of a rack-scale computer: the capacity (throughput) of the

rack-scale computer is the sum of that of its servers, and the

tail latency is maintained as that of one server.

Challenges. Translating the two-layer scheduling framework

to a working system implementation presents several techni-

cal challenges:

• What is the system architecture to realize this two-layer

scheduling framework?

• How does the switch schedule requests based on the server

loads, and handle practical scheduling requirements?

• How does the system ensure request affinity (i.e., the pack-

ets of the same request are sent to the same server), when

the switch processes each packet independently?

• How do servers expose their states to the switch so that

the switch can track the real-time loads on the servers

efficiently and accurately?

3 RackSched Design

In this section, we present the design of RackSched to ad-

dress the challenges. We first give an overview of the system

architecture, and then describe each component in detail.

3.1 System Architecture

The core of RackSched is a two-layer scheduling frame-

work that combines inter-server scheduling and intra-server

scheduling. Figure 4(a) shows the RackSched architecture.

Inter-server scheduling. The ToR switch performs inter-

server scheduling at per-request granularity via three modules:

1228 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 Request affinity

– ReqTable[n][m]: register arrays to store request state, which spans n

stages and has m slots in each stage

1: function INSERT(req id,server ip)

2: for stage i in all stages do

3: if ReqTable[i][h(req id)] == None then

4: ReqTable[i][h(req id)]← (req id,server ip)
5: return

6: function READ(req id)

7: for stage i in all stages do

8: if ReqTable[i][h(req id)].req id == req id then

9: return ReqTable[i][h(req id)].server ip

10: function REMOVE(req id)

11: for stage i in all stages do

12: if ReqTable[i][h(req id)].req id == req id then

13: ReqTable[i][h(req id)]← None

14: return

Handling system reconfiguration. Unlike switch failures,

there is no fate sharing between each server and the rack,

and RackSched does maintain request affinity across system

reconfigurations such as adding or removing servers for an

application. Because RackSched uses ReqTable to store the

mapping, ongoing requests simply check ReqTable to go

to the correct servers. Only the request scheduling module

(§ 3.3) needs to be updated to have the right set of servers to

choose from for new requests. We pre-allocate a large number

of registers for LoadTable at compilation time, and use an-

other register to indicate the number of active servers, which

is dynamically updated for system reconfigurations. For an

unplanned server removal (e.g., a server failure), RackSched

uses the switch control plane to update the ReqTable and

delete the stale entries related to the removed server.

3.5 Server Tracking

The server tracking module updates the server loads (i.e.,

LoadTable in Algorithm 1) for the switch to make schedul-

ing decisions. The challenge is to accurately track the server

loads at real-time with low overhead. A straightforward so-

lution is to let the switch control plane periodically poll the

queue lengths at each server and update the data plane. How-

ever, due to the millisecond-scale delay and the limited rate

of control plane updates [37, 52], this solution does not apply

to the microsecond-scale workloads targeted by RackSched.

To do this in the data plane, a possible solution is to let the

switch proactively track the server loads, i.e., incrementing

and decrementing the counters for queue lengths when pro-

cessing request and reply packets. This solution suffers from

estimation errors due to packet loss and retransmissions, and

fixes like decreasing the counters based on the server pro-

cessing rate [47] cannot handle temporal load imbalance in

high-dispersion microsecond-scale workloads.

RackSched leverages in-network telemetry to accurately

track server loads with minimal overhead. In-network teleme-

try is widely used in network monitoring and diagnosis where

switches put relevant measurement data into packet headers

in the data plane. RackSched applies this mechanism to track

server loads. Then the servers piggyback their loads in the

reply packets to update the counters in the switch, which

does not introduce new packets and thus minimizes system

overhead. A potential problem is the feedback loop delay as

stale information can cause herding, which can degrade the

scheduling performance and make the system unstable (i.e.,

swing between overloading different servers). In RackSched,

the switch and the servers are directly connected in the same

rack, and the server-side data plane implementation bypasses

traditional TCP/IP stack to report its queue length to the

switch quickly, making the feedback loop delay minimal. And

together with power-of-k-choices scheduling, RackSched can

effectively avoid herding. An alternative solution that only

keeps the server with the minimum load in the switch and

updates it based on in-network telemetry cannot leverage

power-of-k-choices to avoid herding. We show the impact of

different ways to track and represent server loads in §4.6.

3.6 Handling Scheduling Requirements

Multi-queue support. By default, RackSched uses a single-

queue policy, i.e., the system does not differentiate a priori

between request types and aims to meet a single SLO for

tail latency (e.g., a photo caching workload with only get re-

quests). RackSched also supports multiple queues if the work-

load has multiple request types that have distinct service time

distributions (e.g., a key-value store workload with both get

and range requests). Applications indicate the request type in

the TYPE field of the packet header. Each server maintains a

separate queue for each type for intra-server scheduling. The

switch maintains the counters for each type in LoadTable,

and schedules requests based on the queue lengths of the

request type. We remark that there is no fundamental limit

on the number of queues on each server, since the queues are

implemented in software and the switch only needs to keep a

counter for each queue on each server.

Locality and placement constraints. RackSched handles

two types of common locality and placement constraints,

which are data locality and request dependency. (i) Data lo-

cality requires a request to be processed on a subset of servers

that hold the input data. To support data locality, applications

set different LOCALITY values to represent different locality

requirements (i.e., different sets of servers that can process

this request), and the switch maintains different mappings,

which map a server ID to a server for different LOCALITY

values. (ii) Request dependency requires multiple requests

to be scheduled to the same server, e.g., a task consists of

multiple requests and the input of one request is the output of

one or more other tasks. Request dependency is supported us-

ing request affinity: relevant requests carry the same REQ ID

in their headers, so that they will be sent to the same server.

Additional information is included in the RackSched header

for the number of subsequent requests to expect. The server

can send replies to each request separately and independently.

1232 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

RackSched only requires the server to set TYPE to be reply

in replies after it has received all requests in the set in order

to safely delete the state in the switch. Note that applications

can still use different request IDs for different requests and

receive replies as soon as some requests are completed, by

adding application-specific metadata in the payload.

Resource allocation policies. The scheduler is responsible

for allocating resources when the demand exceeds the capac-

ity of the rack-scale computer. RackSched supports two types

of common resource allocation policies, which are strict pri-

ority and weighted fair sharing. (i) To support strict priority,

each server maintains a separate queue for each priority. Sim-

ilar to the multi-queue support, the switch tracks the queue

lengths, and balances the server loads for each priority. Each

server uses intra-server scheduling to preempt low-priority re-

quests when high-priority requests arrive, which can be done

in 5 µs in our implementation based on Shinjuku [39]. (ii)
Supporting weighted fair sharing is similar. Each server main-

tains a separate queue for each client, and performs weighted

fair queueing [23] for intra-server scheduling on the granu-

larity of slice in PS. The switch tracks the queue lengths and

balances the server loads for each client.

4 Evaluation

In this section, we evaluate RackSched with a variety of syn-

thetic and real application workloads. We provide additional

experiment results, including locality constraints, priority poli-

cies and multiple applications, in the technical report [74].

4.1 Methodology

Testbed. The experiments are conducted on a testbed of

twelve server machines connected by a 6.5Tbps Barefoot

Tofino switch. Each server has an 8-core CPU (Intel Xeon

E5-2620 @ 2.1GHz), 64GB memory, and one 40G NIC (Intel

XL710). Eight servers are used as workers to process requests,

and they run Shinjuku [39] with our extension. Four servers

are used as clients to generate requests. The bottleneck of the

system is at the workers.

Implementation. We have implemented a RackSched pro-

totype and integrated it with Shinjuku [39]. (i) The switch

data plane is written in P4 [16] and compiled to Barefoot

Tofino ASIC [11] with P4 Studio [10]. The request state table

contains a hash table with 64K slots. The default implementa-

tion uses power-of-2-choices. (ii) The worker server is based

on Shinjuku [39]. We have extended Shinjuku to support the

RackSched packet header, maintain a counter and update the

counter upon request arrival and reply departure to track the

queue length and append the queue length in reply packets.

Both RackSched and Shinjuku preempt requests that exceed

250 µs in our experiments. (iii) The client is open-loop and

implemented in C using Intel DPDK 16.11.1 [4]. It can gener-

ate requests at high request rate based on synthetic workloads

and the RocksDB application, and measure the throughput

and latency of RackSched.

Resource consumption. Our prototype uses 13.12% SRAM,

9.96% Match Input Crossbar, 12.5% Hash Unit and 25%

Stateful ALUs of the Tofino ASIC resources. We provide an

analysis and a back-of-the-envelop calculation to show that

RackSched consumes little switch memory. RackSched has

two sets of state on the switch, i.e., LoadTable and ReqTable.

(i) LoadTable maintains a counter for each queue of each

server. Let the counter be 4 bytes, the number of queues in

each server be 3 and the number of servers be 32. It only con-

sumes 384 bytes. (ii) ReqTable maintains the selected server

IPs for the ongoing requests, not all requests the system have

received and processed. Each slot can be reused by many

times each second because the requests are microsecond-

scale. Given an average request processing latency of 50 µs,

a slot can support 20 KRPS throughput, and a table with 64K

slots can support 1.28 BRPS throughput. Let the request ID

and server IP both be 4 bytes. A table with 64K slots (our im-

plementation) consumes 256 KB, which is only a few percent

of the on-chip memory (tens of MB). Overflowed requests can

fall back to hash-based random dispatching which preserves

request affinity.

Workloads. We use a combination of synthetic and applica-

tion workloads. They include the following workloads. By

default, the workloads use one-packet requests.

• Exp(50) is an exponential distribution with mean = 50 µs,

which represents common query and storage workloads,

such as get requests in photo caching.

• Bimodal(90%-50, 10%-500) is a bimodal distribution with

90% of requests taking 50 µs and 10% taking 500 µs,

which represents workloads with a mix of simple requests

and complex requests, such as get and range requests in

key-value stores.

• Bimodal(50%-50, 50%-500) is a bimodal distribution with

50% of requests taking 50 µs and 50% taking 500 µs,

which represents workloads with half simple requests and

half complex requests.

• Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) is a trimodal

distribution with a third of requests taking 50 µs, 500 µs

and 5000 µs, respectively, which represents workloads

with more diverse request types, such as point, range and

complex join requests in databases.

We also use RocksDB 5.13 [60], an open-source production-

quality key-value store, as a real application workload to

evaluate RackSched. RocksDB is configured to store data in

DRAM to avoid blocking behavior and achieve low latency.

4.2 Synthetic Workloads

We evaluate the system on synthetic workloads that cover

large application space. We compare RackSched with that

directly runs Shinjuku in the cluster, i.e., the requests are

randomly sent to the servers.

Figure 10(a) and Figure 10(b) compare RackSched and

Shinjuku under Exp(50) and Bimodal(90%-50, 10%-500)

workloads, respectively. In these two figures, both RackSched

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1233

time 28 s, we set the request sending rate back to 500 KRPS.

And the 99% latency drops to 280 µs further. At time 39 s,

we remove a server from the rack. Since seven servers are

enough for such workload, the 99% latency remains the same.

As discussed in § 3.4, the request affinity is maintained by the

ReqTable in the above process.

5 Discussion

Target workloads. RackSched supports both stateless and

replicated stateful services. Examples include microservices,

function-as-a-service, stream processing, replicated caches

and storage, and replicated machine learning models for high-

throughput inference. It is unlikely for a stateful service to be

replicated to all servers in a rack. We expect a more practi-

cal scenario is that a rack would run multiple such services,

where each service is provided by a subset of (overlapping)

servers, i.e., locality constraints. The evaluation shows that

RackSched can provide significant improvements for a ser-

vice hosted on just 8 servers (§4). And we provide additional

results to show the benefits for multiple services with locality

constraints in the technical report [74]. These results demon-

strate that RackSched provides significant benefits even when

the service is replicated on just a couple of servers.

Going beyond a rack. We focus on a single rack in this paper.

A modern rack can already pack hundreds of cores, and a

future rack is expected to pack thousands of cores [1, 2, 5],

which is sufficient for many services. For planetary-scale

services, a single microservice may span multiple racks. In

this scenario, there is no central place like the ToR switch in

a rack that can see and process all traffic. Yet, the abstraction

of a rack-scale computer provided by RackSched provides

a useful building block for distributed inter-rack scheduling.

This would be an interesting direction for future work.

6 Related Work

Dataplane designs for low latency. Conventional network-

ing stacks and operating systems usually sacrifice low latency

for generality. To address the need for low latency, various

dataplane designs have been proposed, including optimized

networking stacks [4, 21, 34] and dataplane operating sys-

tems [14, 20, 32, 39, 54, 58, 59]. RackSched leverages such

dataplane designs and enhances them with an inter-server

scheduler, realizing low latency in a rack-scale computer.

Scheduling and resource management. There is a long line

of research on job scheduling and resource management [26,

28, 29, 32, 38, 40, 42, 55, 57, 65, 66, 71]. Many systems focus

on large jobs that can run from seconds to hours, and they can

afford running sophisticated scheduling algorithms to make

effective decisions. RackSched works at microsecond scale

and optimizes the tail latency with network-system co-design.

Programmable switches. Programmable switches bring new

opportunities to improve datacenter networks and systems,

such as key-value stores [36, 48, 49, 50], coordination and

consensus [35, 45, 46, 70, 73], network telemetry [3, 33],

machine learning acceleration [61, 62] and query processing

offload [44]. There are also proposals for managing systems

built with programmable switches [30, 68, 72]. RackSched

is a new solution that leverages the programmable switch as

an inter-rack scheduler to optimize microsecond-scale tail

latency for rack-scale computers.

7 Conclusion

We present RackSched, a rack-level microsecond-scale sched-

uler that provides the abstraction of a rack-scale computer to

an external service. RackSched leverages a two-layer schedul-

ing framework to achieve scalability and low tail latency. We

hope that with the end of Moore’s law and Dennard’s scal-

ing, RackSched will inspire a new generation of datacenter

systems enabled by domain-specific hardware and hardware-

software co-design.

Acknowledgments We thank our shepherd Ryan Stutsman

and the anonymous reviewers for their valuable feedback.

We thank Jack Humphries for helping debug Shinjuku issues.

This work is supported in part by NSF grants CNS-1813487,

CCF-1918757 and CNS-1955487, a Facebook Communica-

tions & Networking Research Award, and a Google Faculty

Research Award.

References

[1] FireBox: A Hardware Building Block for

2020 Warehouse-Scale Computers. https:

//www.usenix.org/node/179918.

[2] HP The Machine. https://www.labs.hpe.

com/the-machine.

[3] In-band Network Telemetry (INT) Dataplane Specifica-

tion. https://p4.org/specs/.

[4] Intel Data Plane Development Kit (DPDK). http:

//dpdk.org/.

[5] Intel Rack Scale Design. https://

www.intel.com/content/www/us/

en/architecture-and-technology/

rack-scale-design-overview.html.

[6] Memcached key-value store. https://memcached.

org/.

[7] Redis data structure store. https://redis.io/.

[8] TPU Pods. https://cloud.google.com/

tpu/.

[9] Voltdb in-memory database. https://www.

voltdb.com.

[10] Barefoot P4 Studio. https://www.

barefootnetworks.com/products/

brief-p4-studio/.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1237

[11] Barefoot Tofino. https://www.

barefootnetworks.com/technology/.

[12] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.

Attack of the killer microseconds. Communications of

the ACM, 2017.

[13] L. A. Barroso, J. Dean, and U. Hölzle. Web search for

a planet: The Google cluster architecture. IEEE Micro,

2003.

[14] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. IX: A protected dat-

aplane operating system for high throughput and low

latency. In USENIX OSDI, 2014.

[15] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-

Balter. Robinhood: Tail latency aware caching–dynamic

reallocation from cache-rich to cache-poor. In USENIX

OSDI, 2018.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming protocol-

independent packet processors. SIGCOMM CCR, July

2014.

[17] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky.

Putting the “micro” back in microservice. In USENIX

ATC, 2018.

[18] M. Bramson, Y. Lu, and B. Prabhakar. Randomized

load balancing with general service time distributions.

ACM SIGMETRICS performance evaluation review,

38(1):275–286, 2010.

[19] F. Cerqueira and B. Brandenburg. A comparison of

scheduling latency in linux, preempt-rt, and litmus rt. In

Annual Workshop on Operating Systems Platforms for

Embedded Real-Time Applications, 2013.

[20] A. Daglis, M. Sutherland, and B. Falsafi. RPCValet:

NI-driven tail-aware balancing of µs-scale RPCs. In

ACM ASPLOS, 2019.

[21] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,

B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow,

J. A. Docauer, J. Alpert, J. Ai, J. Olson, K. DeCa-

booter, M. de Kruijf, N. Hua, N. Lewis, N. Kasinad-

huni, R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter,

U. Naik, and A. Vahdat. Andromeda: Performance,

isolation, and velocity at scale in cloud network virtual-

ization. In USENIX NSDI, 2018.

[22] J. Dean and L. A. Barroso. The tail at scale. Communi-

cations of the ACM, February 2013.

[23] A. Demers, S. Keshav, and S. Shenker. Analysis and

simulation of a fair queueing algorithm. In ACM SIG-

COMM, 1989.

[24] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,

R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,

B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A fast

and reliable software network load balancer. In USENIX

NSDI, 2016.

[25] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,

L. Yuan, and M. Zhang. Duet: Cloud scale load balanc-

ing with hardware and software. In ACM SIGCOMM,

August 2015.

[26] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness:

Fair allocation of multiple resource types. In USENIX

NSDI, 2011.

[27] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and

S. Hand. Firmament: Fast, centralized cluster scheduling

at scale. In USENIX OSDI, 2016.

[28] R. Grandl, M. Chowdhury, A. Akella, and G. Anan-

thanarayanan. Altruistic scheduling in multi-resource

clusters. In USENIX OSDI, 2016.

[29] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulka-

rni. Graphene: Packing and dependency-aware schedul-

ing for data-parallel clusters. In USENIX OSDI, 2016.

[30] D. Hancock and J. Van der Merwe. Hyper4: Using p4

to virtualize the programmable data plane. In ACM

CoNEXT, 2016.

[31] J. L. Hennessy and D. A. Patterson. A new golden age

for computer architecture. Communications of the ACM,

2019.

[32] J. T. Humphries, K. Kaffes, D. Mazières, and

C. Kozyrakis. Mind the gap: A case for informed re-

quest scheduling at the nic. In ACM SIGCOMM HotNets

Workshop, 2019.

[33] N. Ivkin, Z. Yu, V. Braverman, and X. Jin. QPipe: Quan-

tiles sketch fully in the data plane. In ACM CoNEXT,

December 2019.

[34] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,

D. Han, and K. Park. mTCP: a highly scalable user-

level TCP stack for multicore systems. In USENIX

NSDI, 2014.

[35] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT

coordination. In USENIX NSDI, 2018.

1238 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[36] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. NetCache: Balancing key-value

stores with fast in-network caching. In ACM SOSP,

2017.

[37] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,

M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic

scheduling of network updates. In ACM SIGCOMM,

2014.

[38] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-

murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, Í. Goiri,

S. Krishnan, J. Kulkarni, et al. Morpheus: Towards au-

tomated slos for enterprise clusters. In USENIX OSDI,

2016.

[39] K. Kaffes, T. Chong, J. T. Humphries, A. Belay,

D. Mazières, and C. Kozyrakis. Shinjuku: Preemptive

scheduling for µsecond-scale tail latency. In USENIX

NSDI, 2019.

[40] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis. Central-

ized core-granular scheduling for serverless functions.

In ACM Symposium on Cloud Computing, 2019.

[41] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter

rpcs can be general and fast. In USENIX NSDI, 2019.

[42] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and

E. Bugnion. R2P2: Making RPCs first-class datacenter

citizens. In USENIX ATC, 2019.

[43] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci,

and R. Stutsman. Splinter: Bare-metal extensions for

multi-tenant low-latency storage. In USENIX OSDI,

2018.

[44] A. Lerner, R. Hussein, P. Cudre-Mauroux, and U. eX-

ascale Infolab. The case for network accelerated query

processing. In CIDR, 2019.

[45] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-

free consistent transactions using in-network concur-

rency control. In ACM SOSP, October 2017.

[46] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.

Ports. Just say NO to Paxos overhead: Replacing consen-

sus with network ordering. In USENIX OSDI, November

2016.

[47] J. Li, J. Nelson, X. Jin, and D. R. Ports. Pegasus: Load-

aware selective replication with an in-network coher-

ence directory. Technical Report UW-CSE-18-12-01,

2018.

[48] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J.

Freedman. Be fast, cheap and in control with SwitchKV.

In USENIX NSDI, March 2016.

[49] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: Toward in-network computa-

tion with an in-network cache. In ACM ASPLOS, April

2017.

[50] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica. Distcache: Provable load balancing

for large-scale storage systems with distributed caching.

In USENIX FAST, 2019.

[51] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching asics. In ACM SIGCOMM, 2017.

[52] NoviSwitch. http://noviflow.com/

products/noviswitch/.

[53] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu.

Stateless datacenter load-balancing with Beamer. In

USENIX NSDI, 2018.

[54] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan. Shenango: Achieving high CPU efficiency

for latency-sensitive datacenter workloads. In USENIX

NSDI, 2019.

[55] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.

Sparrow: Distributed, low latency scheduling. In ACM

SOSP, 2013.

[56] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,

D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, et al.

Ananta: Cloud scale load balancing. In SIGCOMM

CCR, 2013.

[57] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Opti-

mus: An efficient dynamic resource scheduler for deep

learning clusters. In EuroSys, 2018.

[58] S. Peter, J. Li, I. Zhang, D. R. Ports, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating

system is the control plane. In USENIX OSDI, 2013.

[59] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achiev-

ing low tail latency for microsecond-scale networked

tasks. In ACM SOSP, 2017.

[60] RocksDB. RocksDB. https://rocksdb.org/.

[61] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and

P. Kalnis. In-network computation is a dumb idea whose

time has come. In ACM SIGCOMM HotNets Workshop,

November 2017.

[62] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,

C. Kim, A. Krishnamurthy, M. Moshref, D. R. Ports,

and P. Richtárik. Scaling distributed machine learning

with in-network aggregation. arXiv, 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1239

[63] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3:

Cutting tail latency in cloud data stores via adaptive

replica selection. In USENIX NSDI, 2015.

[64] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In ACM SOSP, 2013.

[65] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,

M. Harchol-Balter, and G. R. Ganger. Tetrisched: global

rescheduling with adaptive plan-ahead in dynamic het-

erogeneous clusters. In EuroSys, 2016.

[66] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-

wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,

S. Seth, et al. Apache Hadoop YARN: Yet another

resource negotiator. In ACM Symposium on Cloud Com-

puting, 2013.

[67] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabr-

era III, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, J. Hoon, S. Kulkarni, N. Lawrence,

M. Marchukov, D. Petrov, and L. Puzar. TAO: How

Facebook serves the social graph. In ACM SIGMOD,

May 2012.

[68] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R.

Ports, and A. Panda. Multitenancy for fast and pro-

grammable networks in the cloud. In USENIX HotCloud

Workshop, July 2020.

[69] A. Wierman and B. Zwart. Is tail-optimal scheduling

possible? Operations research, 60(5):1249–1257, 2012.

[70] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and

X. Jin. Netlock: Fast, centralized lock management

using programmable switches. In ACM SIGCOMM,

2020.

[71] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,

and I. Stoica. Improving mapreduce performance in

heterogeneous environments. In USENIX OSDI, 2008.

[72] P. Zheng, T. Benson, and C. Hu. P4Visor: Lightweight

virtualization and composition primitives for building

and testing modular programs. In ACM CoNEXT, 2018.

[73] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. Ports, I. Sto-

ica, and X. Jin. Harmonia: Near-linear scalability for

replicated storage with in-network conflict detection.

Proceedings of the VLDB Endowment, 2019.

[74] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Sto-

ica, and X. Jin. RackSched: A microsecond-scale sched-

uler for rack-scale computers (technical report). In

arXiv, 2020.

1240 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Design Decisions
	RackSched Design
	System Architecture
	Request Processing
	Request Scheduling
	Request Affinity
	Server Tracking
	Handling Scheduling Requirements

	Evaluation
	Methodology
	Synthetic Workloads
	Scalability
	Application: RocksDB
	Comparison with Other Solutions
	Analysis of RackSched
	Request Affinity

	Discussion
	Related Work
	Conclusion

