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Abstract

High performance distributed storage systems face the chal-

lenge of load imbalance caused by skewed and dynamic work-

loads. This paper introduces Pegasus, a new storage system

that leverages new-generation programmable switch ASICs

to balance load across storage servers. Pegasus uses selective

replication of the most popular objects in the data store to

distribute load. Using a novel in-network coherence directory,

the Pegasus switch tracks and manages the location of repli-

cated objects. This allows it to achieve load-aware forwarding

and dynamic rebalancing for replicated keys, while still guar-

anteeing data coherence and consistency. The Pegasus design

is practical to implement as it stores only forwarding meta-

data in the switch data plane. The resulting system improves

the throughput of a distributed in-memory key-value store by

more than 10× under a latency SLO – results which hold

across a large set of workloads with varying degrees of skew,

read/write ratio, object sizes, and dynamism.

1 Introduction

Distributed storage systems are tasked with providing fast,

predictable performance in spite of immense and unpre-

dictable load. Systems like Facebook’s memcached deploy-

ment [50] store trillions of objects and are accessed thousands

of times on each user interaction. To achieve scale, these sys-

tems are distributed over many nodes; to achieve performance

predictability, they store data primarily or entirely in memory.

A key challenge for these systems is balancing load in the

presence of highly skewed workloads. Just as a celebrity may

have many millions more followers than the average user, so

too do some stored objects receive millions of requests per

day while others see almost none [3, 67]. Moreover, the set of

popular objects changes rapidly as new trends rise and fall [5].

While classic algorithms like consistent hashing [30] are effec-

tive at distributing load when all objects are of roughly equal

popularity, here they fall short: requests for a single popular

object commonly exceed the capacity of any individual server.

Replication makes it possible to handle objects whose re-

quest load exceeds one server’s capacity. Replicating every

object, while effective at load balancing [13, 49], introduces

a high storage overhead. Selective replication of only a set of

hot objects avoids this overhead. Leveraging prior analysis of

caching [17], we show that surprisingly few objects need to

be replicated in order to achieve strong load-balancing prop-

erties. However, keeping track of which objects are hot and

where they are stored is not straightforward, especially when

the storage system may have hundreds of thousands of clients,

and keeping multiple copies consistent is even harder [50].

We address these challenges with Pegasus, a distributed

storage system that uses a new architecture for selective repli-

cation and load balancing. Pegasus uses a programmable data-

plane switch to route requests to servers. Drawing inspiration

from CPU cache coherency protocols [4, 19, 22, 31, 34, 36,

37, 40], the Pegasus switch acts as an in-network coherence

directory that tracks which objects are replicated and where.

Leveraging the switch’s central view of request traffic, it can

forward requests to replicas in a load-aware manner. Unlike

prior approaches, Pegasus’s coherence directory also allows

it to dynamically rebalance the replica set on each write oper-

ation, accelerating both read- and write-intensive workloads –

while still maintaining strong consistency.

Pegasus introduces several new techniques, beyond the

concept of the in-network coherence directory itself. It uses

a lightweight version-based coherence protocol to ensure

consistency. Load-aware scheduling is implemented using a

combination of reverse in-network telemetry and in-switch

weighted round-robin policy. Finally, to provide fault toler-

ance, Pegasus uses a simple chain replication [66] protocol

to create multiple copies of data in different racks, each load-

balanced with its own switch.

Pegasus is a practical approach. We show that it can be

implemented using a Barefoot Tofino switch, and provides ef-

fective load balancing with minimal switch resource overhead.

In particular, unlike prior systems [29, 45], Pegasus stores no

application data in the switch, only metadata. This reduces

switch memory usage to less than 3.5% of the total switch

SRAM, permitting it to co-exist with existing switch function-

ality and thus reducing a major barrier to adoption [56].

Using 28 servers and a Pegasus switch, we show:

• Pegasus can increase the throughput by up to 10× – or re-

duce by 90% the number of servers required – of a system

subject to a 99%-latency SLO.

• Pegasus can react quickly to dynamic workloads where the

set of hot keys changes rapidly, and can recover quickly

from server or rack failures.
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• Pegasus can provide strong load balancing properties by

only replicating a small number of objects.

• Pegasus is able to achieve these benefits for many classes

of workloads, both read-heavy and write-heavy, with dif-

ferent object sizes and levels of skew.

2 Motivation

Real-world workloads for storage systems commonly ex-

hibit highly skewed object access patterns [3, 6, 26, 50, 51].

Here, a small fraction of popular objects receive dispropor-

tionately more requests than the remaining objects. Many

such workloads can be modeled using Zipfian access distri-

butions [3, 5, 6, 67]; recent work has shown that some real

workloads exhibit unprecedented skew levels (e.g., Zipf distri-

butions with α > 1) [10, 67]. Additionally, the set of popular

objects changes dynamically: in some cases, the average hot

object loses its popularity within 10 minutes [5].

Storage systems typically partition objects among multi-

ple storage servers for scalability and load distribution. The

implication of high skew in workloads is that load across stor-

age servers is also uneven: the few servers that store the most

popular objects will receive disproportionately more traffic

than the others. The access skew is often high enough that the

load for an object can exceed the processing capacity of a sin-

gle server, leading to server overload. To reduce performance

penalties, the system needs to be over-provisioned, which sig-

nificantly increases overall cost.

Skewed workloads are diverse. Read-heavy workloads have

been the focus of many recent studies, and many systems op-

timize heavily for them (e.g., assuming > 95% of requests

are reads) [21, 29, 41, 45]. While many workloads do fall

into this category, mixed or write-heavy workloads are also

common [67]. Object sizes also vary widely, even within

one provider. Systems may store small values (a few bytes),

larger values (kilobytes to megabytes), or a combination of

the two [1,3,5,67]. An ideal solution to workload skew should

be able to handle all of these cases.

2.1 Existing Approaches

How should a storage system handle skewed workloads,

where the request load for a particularly popular object might

exceed the processing capability of an individual server? Two

existing approaches have proven effective here: caching pop-

ular objects in a faster tier, and replicating objects to increase

aggregate load capacity.

Caching Caching has long served as the standard approach

for accelerating database-backed web applications. Recent

work has demonstrated, both theoretically and practically, the

effectiveness of a caching approach: only a small number

of keys need to be cached in order to achieve provable load

balancing guarantees [17, 29, 41].

There are, however, two limitations with the caching ap-

proach. First, the effectiveness of caching hinges on the abil-

ity to build a cache that can handle orders of magnitude more

requests than the storage servers. Once an easily met goal,

this has become a formidable challenge as storage systems

themselves employ in-memory storage [50, 53, 58], clever

data structures [42, 46], new NVM technologies [25, 68], and

faster network stacks [38,42,48]. Recent efforts to build faster

caches out of programmable switches [29, 45] address this,

but hardware constraints impose significant limitations, e.g.,

an inability to support values greater than 128 bytes. Sec-

ondly, caching solutions only benefit read-heavy workloads,

as cached copies must be invalidated until writes are pro-

cessed by the storage servers.

Selective Replication Replication is another common so-

lution to load imbalance caused by skewed workloads. By

selectively replicating popular objects [2, 9, 13, 50], requests

to these objects can be sent to any of the replicas, effectively

distributing load across servers.

Existing selective replication approaches, however, face

two challenges. First, clients must be able to identify the

replicated objects and their locations – which may change

as object popularity changes. This could be done using a cen-

tralized directory service, or by replicating the directory to

the clients. Both pose scalability limitations: a centralized di-

rectory service can easily become a bottleneck, and keeping

a directory synchronized among potentially hundreds of thou-

sands of clients is not easy.

Providing consistency for replicated objects is the second

major challenge – a sufficiently complex one that existing sys-

tems do not attempt to address it. They either replicate only

read-only objects, or require users to explicitly manage in-

consistencies resulting from replication [2, 9]. The solutions

required to achieve strongly consistent replication (e.g., con-

sensus protocols [35]) are notoriously complex, and incur sig-

nificant coordination overhead [39], particularly when objects

are modified frequently.

2.2 Pegasus Goals

The goal of our work is to provide an effective load balanc-

ing solution for the aforementioned classes of challenging

workloads. Concretely, we require our system to 1) provide

good load balancing for dynamic workloads with high skew,

2) work with fast in-memory storage systems, 3) handle arbi-

trary object sizes, 4) guarantee linearizability [24], and 5) be

equally effective for read-heavy, write-heavy, and mixed read-

/write workloads. As listed in Table 1, existing systems make

explicit trade-offs and none of them simultaneously satisfy

all five properties. In this paper, we will introduce a new

distributed storage load balancing approach that makes no

compromises, using an in-network coherence directory.

3 System Model

Pegasus is a design for rack-scale storage systems consisting

of a number of storage servers connected via a single top-of-

rack (ToR) switch, as shown in Figure 1. Pegasus combines

in-switch load balancing logic with a new storage system. The

388    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Highly Skewed

Workload

Fast In-Memory

Store

All Object

Sizes

Strong

Consistency

Any Read-Write

Ratio

Consistent Hashing [30] ✗ ✓ ✓ ✗ –

Slicer [2] ✓ ✗ ✓ ✗ –

Orleans [9] ✓ ✗ ✓ ✗ –

EC-Cache [57] ✓ ✗ ✗ ✓ ✓

Scale-Out ccNUMA [21] ✓ ✓ ✓ ✓ ✗

SwitchKV [41] ✓ ✗ ✓ ✓ ✗

NetCache [29] ✓ ✓ ✗ ✓ ✗

Pegasus ✓ ✓ ✓ ✓ ✓

Table 1: A comparison of existing load balancing systems vs. Pegasus. In the "Any Read-Write Ratio" column, we only consider systems that

provide strong consistency.

ToR Switch

Clients

L2/L3
Routing

In-Network 
Directory

Controller

Storage 
Server

Storage 
Server

Storage 
Server

Figure 1: Pegasus system model. Pegasus is a rack-scale storage

system. It augments the top-of-rack switch with an in-network co-

herence directory to balance load across storage servers in the rack.

Servers store data in memory for fast and predictable performance.

Pegasus system provides a key-value store with a read/write

interface. It does not support read-modify-write or atomic

cross-key operations. Pegasus ensures strong data consistency

(specifically, linearizability [24]). It uses in-memory storage

to offer fast and predictable performance.

The Pegasus architecture is a co-design of in-switch pro-

cessing and an application-level protocol. This is made possi-

ble by leveraging the capabilities of newly available switches

with programmable dataplanes, such as the Barefoot Tofino,

Cavium XPliant, or Broadcom Trident3 families. Broadly

speaking, these chips offer reconfigurability in three relevant

areas: (1) programmable parsing of application-specific head-

ers; (2) flexible packet processing pipelines, usually consist-

ing of 10–20 pipeline stages each capable of a match lookup

and one or more ALU operations; and (3) general-purpose

memory, on the order of 10 MB. Importantly, all of these

features are on the switch dataplane, meaning that they can

be used while processing packets at full line rate – a total

capacity today measured in terabits per second.

Pegasus provides load balancing at the rack level, i.e., 32–

256 servers connected by a single switch. It does not provide

fault tolerance guarantees within the rack. Larger-scale, re-

silient systems can be built out of multiple Pegasus racks. For

these systems, Pegasus ensures availability using a chain repli-

cation protocol to replicate objects across multiple racks for

fault tolerance.

4 A Case for In-Network Directories

As we have discussed in §2, selectively replicating popular

objects can offer good load balancing for highly skewed work-

loads, and it avoids certain drawbacks of a caching approach.

Existing selective replication solutions, however, fall short in

providing efficient directory services and strong consistency

for the dynamic set of replicated objects. Our key observation

is that in a rack-scale storage system (§3), the ToR switch

serves as a central point of the system and is on the path of

every client request and server reply. This enables us to imple-

ment a coherence directory abstraction in the ToR switch that

addresses both challenges at the same time. It can track the lo-

cation of every replicated object in the system and forward re-

quests to servers with available capacity, and even change the

number or location of replicas by determining where to send

WRITE requests. Leveraging this in-network coherence direc-

tory, we co-design a version-based coherence protocol which

guarantees linearizability and is highly efficient at processing

object updates, enabling us to provide good load balancing

even for write-intensive workloads.

4.1 Coherence Directory for Replicated Data

How do we design an efficient selective replication scheme

that provides strong consistency? At a high level, the sys-

tem needs to address the following challenges: first, it needs

to track the replicated items and their locations with the lat-

est value (i.e., the replica set). Second, read requests for a

replicated object must be forwarded to a server in the cur-

rent replica set. Third, after a write request is completed, all

subsequent read requests must return the updated value.

The standard distributed systems approaches to this prob-

lem do not work well in this environment. One might try to

have clients contact any server in the system, which then for-

wards the query to an appropriate replica for the data, as in

distributed hash tables [14, 59, 60]. However, for in-memory

storage systems, receiving and forwarding a request imposes
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nearly as much load as executing it entirely. Nor is it feasible

for clients to directly track the location of each object (e.g., us-

ing a configuration service [8, 27]), as there may be hundreds

of thousands or millions of clients throughout the datacenter,

and it is a costly proposition to update each of them as new

objects become popular or an object’s replica set is updated.

In Pegasus, we take a different approach. We note that these

are the same set of challenges faced by CPU cache coherence

and distributed shared memory systems. To address the above

issues, these systems commonly run a cache coherence proto-

col using a coherence directory [4, 19, 22, 31, 34, 36, 37, 40].

For each data block, the coherence directory stores an entry

that contains the set of processors that have a shared or exclu-

sive copy. The directory is kept up to date as processors read

and write blocks – invalidating old copies as necessary – and

can always point a processor to the latest version.

A coherence directory can be applied to selective replica-

tion. It can track the set of replicated objects and forward read

requests to the right servers, and it can ensure data consistency

by removing stale replicas from the replica set. However, to

use a coherence directory for a distributed storage system re-

quires the directory to handle all client requests. Implemented

on a conventional server, it will quickly become a source of

latency and a throughput bottleneck.

4.2 Implementing Coherence Directory in the Network

Where should we implement a coherence directory that pro-

cesses all client requests while not becoming a performance

bottleneck? The ToR switch, as shown in Figure 1, provides

a viable option for our targeted rack-scale storage systems.

Switch ASICs are optimized for packet I/O: current gener-

ation switches can support packet processing at more than

10 Tb/s aggregate bandwidth and several billion packets per

second [64, 65]. The programmable switches we target have

a fixed-length reconfigurable pipeline, so any logic that fits

within the pipeline can run at the switch’s full line rate. Thus,

implementing the coherence directory in the ToR switch for

a rack-scale storage system will not become the bottleneck

nor add significant latency, as it already processes all network

traffic for the rack.

But can we implement a coherence directory efficiently in

the ToR switch? To do so, two challenges have to be addressed.

First, we need to implement all data structures and functional

logic of a coherence directory in the switch data plane. We

show that this is indeed possible with recent programmable

switches: we store the replicated keys and their replica sets

in the switch’s memory, match and forward based on custom

packet header fields (e.g. keys and operation types), and apply

directory updating rules for the coherence protocol. We give

a detailed description of our switch implementation in §8.

Second, the switch data plane has limited resources and

many are already consumed by bread-and-butter switch func-

tionality [56]. As the coherence directory tracks the replica

set for each replicated object, the switch can only support a

limited number of objects to be replicated. Our design meets

this challenge. Interestingly, it is possible to achieve provable

load balancing guarantees if we only replicate the most popu-

lar O(n logn) objects to all servers, where n is the number of

servers (not keys) in the system (we give a more detailed anal-

ysis of this result in §4.5). Moreover, the coherence directory

only stores small metadata such as key hashes and server IDs.

For a rack-scale system with 32–256 servers, the size of the

coherence directory is a small fraction of the available switch

resources.

4.3 A Coherence Protocol for the Network

Designing a coherence protocol using an in-network coher-

ence directory raises several new challenges. Traditional CPU

cache coherence protocols can rely on an ordered and reliable

interconnection network, and they commonly block proces-

sor requests during a coherence update. Switch ASICs have

limited buffer space and therefore cannot hold packets in-

definitely. Network links between ToR switches and servers

are also unreliable: packets can be arbitrarily dropped, re-

ordered, or duplicated. Many protocols for implementing or-

dered and reliable communication require complex logic and

large buffering space that are unavailable on a switch.

We design a new version-based, non-blocking coherence

protocol to address these challenges. The switch assigns a

monotonically increasing version number to each write re-

quest and inserts it in the packet header. Servers store these

version numbers alongside each object, and attach the version

number in each read and write reply. The switch additionally

stores a completed version number for each replicated ob-

ject in the coherence directory. When receiving read or write

replies (for replicated objects), the switch compares the ver-

sion in the reply with the completed version in the directory.

If the version number in the reply is higher, the switch up-

dates the completed version number and resets the replica set

to include only the source server. Subsequent read requests

are then forwarded to the server with the new value. When

more than one server has the latest value of the object, the

version number in the reply can be equal to the completed

version. In that case, we add the source server (if not already

present) to the replica set so that subsequent read requests can

be distributed among up-to-date replicas.

This protocol – which we detail in §6 – guarantees lineariz-

ability [24]. It leverages two key insights. First, all storage

system requests and replies have to traverse the ToR switch.

We therefore only need to update the in-network coherence di-

rectory to guarantee data consistency. This allows us to avoid

expensive invalidation traffic or inter-server coordination over-

head. Second, we use version numbers, applied by the switch

to packet headers, to handle network asynchrony.

4.4 Load-Aware Scheduling

When forwarding read requests, the switch can pick any of the

servers currently in the replica set. The simplest policy is to
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select a random server from the set and rely on statistical load

balancing among the servers. However, this approach falls

short when the processing capacity is uneven on the storage

servers (e.g. due to background tasks or different hardware

specifications). To handle this issue, we also implement a

weighted round-robin policy: storage servers periodically re-

port their system load to the controller. The controller assigns

weights for each server based on these load information and

installs them on the switch. The switch then forwards requests

to servers in the replica set proportional to their weights. Note

that our in-network directory approach provides the mecha-

nism for performing server selection. A full discussion of all

scheduling policies is beyond the scope of this paper.

Surprisingly, these mechanisms can also be used for write

requests. At first glance, it appears necessary to broadcast new

writes to all servers in the replica set – potentially creating sig-

nificant load and overloading some of the servers. However,

the switch can choose a new replica set for the object on each

write. It can forward write requests to one or more of the

servers, and the coherence directory ensures data consistency,

no matter which server the switch selects. The ability to move

data frequently allows a switch to use load-aware scheduling

for both read and write requests. This is key to Pegasus’s abil-

ity to improve performance for both read- and write-intensive

workloads.

4.5 Feasibility of An In-Network Coherence Directory

Pegasus makes efficient use of switch resources because it

only tracks object metadata (vs. full object contents [29]), and

only for a small number of objects. We claimed in §4.2 that

Pegasus only needs to replicate the most popular O(n logn)
objects (where n is the number of servers) to achieve strong

load balancing guarantees. This result is an extension of previ-

ous work [17] which showed that caching the O(n logn) most

frequently accessed objects is sufficient to achieve provable

load balancing. That is, if we exclude these objects, the re-

maining load on each server exceeds the average load by at

most a slack factor α , which depends on the constant factors

but is generally quite small; see §9.5. Intuitively, most of the

load in a highly-skewed workload is (by definition) concen-

trated in a few keys, so eliminating that load rebalances the

system.

Our approach, rather than absorbing that load with a cache,

is to redistribute it among the storage servers. A consequence

of the previous result is that if the total request handling ca-

pacity of the system exceeds the request load by a factor of

α , then there exists a way to redistribute the requests of the

top O(n logn) keys such that no server exceeds its capacity.

For read-only workloads, a simple way to achieve this is to

replicate these keys to all servers, then route request to any

server with excess capacity, e.g., by routing a request for a

replicated key to the least-loaded server in the system.

Writes complicate the situation because they must be pro-

cessed by all servers storing the object. As described in §4.4,

SERVERIDIP KEYHASHUDP OP VERETH

Figure 2: Pegasus packet format. The Pegasus application-layer

header is embedded in the UDP payload. OP is the request or reply

type. KEYHASH contains the hash value of the key. VER is an object

version number. SERVERID contains a unique server identifier.

Pegasus can pick a new replica set, and a new replication fac-

tor, for an object on each write. Pegasus accomodates write-

intensive workloads by tracking the write fraction for each

object and setting the replication factor proportional to the ex-

pected number of reads per write, yielding constant overhead.

Strictly speaking, our initial analysis (for read-only work-

loads) may not apply in this case, as it is no longer possible

to send a read to any server. However, since Pegasus can re-

balance the replica set on every write and dynamically adjusts

the replication factor, it remains effective at load balancing

for any read-write ratio. Intuitively, a read-mostly workload

has many replicas, so Pegasus has a high degree of freedom

for choosing a server for each read, whereas a write-mostly

workload has fewer replicas but constantly rebalances them

to be on the least-loaded servers.

5 Pegasus Overview

We implement an in-network coherence directory in a new

rack-scale storage system, Pegasus. Figure 1 shows the

high level architecture of a Pegasus deployment. All storage

servers reside within a single rack. The top-of-rack (ToR)

switch that connects all servers implements Pegasus’s coher-

ence directory for replicated objects.

Switch. The ToR switch maintains the coherence directory:

it stores the set of replicated keys, and for each key, a list

of servers with a valid copy of the data. To reduce switch

resource overhead and to support arbitrary key sizes, the di-

rectory identifies keys by a small fixed-sized hash.

Pegasus defines an application-layer packet header embed-

ded in the L4 payload, as shown in Figure 2. Pegasus re-

serves a special UDP port for the switch to match Pegasus

packets. The application-layer header contains an OP field,

either READ, WRITE, READ-REPLY, or WRITE-REPLY. KEY-

HASH is an application-generated, fixed-size hash value of the

key. VER is an object version number assigned by the switch.

SERVERID contains a unique identification of the server and

is filled by servers on replies. If at-most-once semantics is

required (§6.4), the header will additionally contain REQID, a

globally unique ID for the request (assigned by the client).

Non-Pegasus packets are forwarded using standard L2/L3

routing, keeping the switch fully compatible with existing

network protocols.

To keep space usage low, the Pegasus switch keeps direc-

tory entries only for the small set of replicated objects. Read

and write requests for replicated keys are forwarded accord-

ing to the Pegasus load balancing and coherence protocol. The
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Switch States:

• ver_next: next version number

• rkeys: set of replicated keys

• rset: map of replicated keys→ set of servers with a valid copy

• ver_completed: map of replicated keys→ version number of the

latest completed WRITE

Figure 3: Switch states

other keys are mapped to a home server using a fixed algo-

rithm, e.g., consistent hashing [30]. Although this algorithm

could be implemented in the switch, we avoid the need to do

so by having clients address their packets to the appropriate

server; for non-replicated keys, the Pegasus switch simply for-

wards them according to standard L2/L3 forwarding policies.

Controller. The Pegasus control plane decides which keys

should be replicated. It is responsible for updating the co-

herence directory with the most popular O(n logn) keys. To

do so, the switch implements a request statistics engine that

tracks the access rate of each key using both the data plane

and the switch CPU. The controller – which can be run on the

switch CPU, or a remote server – reads access statistics from

the engine to find the most popular keys. The controller keeps

only soft state, and can be immediately replaced if it fails.

6 Pegasus Protocol

To simplify exposition, we begin by describing the core Pe-

gasus protocol (§6.2), under the assumption that the set of

popular keys is fixed, and show that it provides linearizability.

We then show how to handle changes in which keys are popu-

lar (§6.3), and how to provide exactly-once semantics (§6.4).

Finally, we discuss server selection policies (§6.5) and other

protocol details (§6.6).

Additionally, a TLA+ specification of the protocol which

we have model checked for safety is available in our public

repository [55].

6.1 Switch State

To implement an in-network coherence directory, Pegasus

maintains a small amount of metadata in the switch data-

plane, as listed in Figure 3. A counter ver_next keeps the

next version number to be assigned. A lookup table rkeys

stores the O(n logn) replicated hot keys, using KEYHASH in

the packet header as the lookup key. For each replicated key,

the switch maintains the set of servers with a valid copy in

rset, and the version number of the latest completed WRITE

in ver_completed. In §8, we elaborate how we store this state

and implement this functionality in the switch dataplane.

6.2 Core Protocol: Request and Reply Processing

The core Pegasus protocol balances load by tracking the

replica set of popular objects. It can load balance READ oper-

ations by choosing an existing replica to handle the request,

and can change the replica set for an object by choosing which

replicas process WRITE operations. Providing this load balanc-

ing while ensuring linearizability requires making sure that

Algorithm 1 HandleRequestPacket(pkt)

1: if pkt.op = WRITE then

2: pkt.ver← ver_next++

3: end if

4: if rkeys.contains(pkt.keyhash) then

5: if pkt.op = READ then

6: pkt.dst← select replica from rset[pkt.keyhash]
7: else if pkt.op = WRITE then

8: pkt.dst← select from all servers

9: end if

10: end if

11: Forward packet

Algorithm 2 HandleReplyPacket(pkt)

1: if rkeys.contains(pkt.keyhash) then

2: if pkt.ver > ver_completed[pkt.keyhash] then

3: ver_completed[pkt.keyhash]← pkt.ver

4: rset[pkt.keyhash]← set(pkt.serverid)
5: else if pkt.ver = ver_completed[pkt.keyhash] then

6: rset[pkt.keyhash].add(pkt.serverid)
7: end if

8: end if

9: Forward packet

the in-network directory tracks the location of the latest suc-

cessfully written value for each replicated key. Pegasus does

this by assigning version numbers to incoming requests and

monitoring outgoing replies to detect when a new version has

been written.

6.2.1 Handling Client Requests

The Pegasus switch assigns a version number to every WRITE

request, by writing ver_next into its header and increment-

ing ver_next (Algorithm 1 line 1-3). It determines how to

forward a request by matching the request’s key hash with the

rkeys table. If the key is not replicated, the switch simply for-

wards the request to the original destination – the home server

of the key. For replicated keys, it forwards READ requests

by choosing one server from the key’s rset. For replicated

WRITEs, it chooses one or more destinations from the set of

all servers. In both cases, this choice is made according to the

server selection policy (§6.5).

Storage servers maintain a version number for each key

alongside its value. When processing a WRITE request, the

server compares VER in the header with the version in the

store, and updates both the value and the version number only

if the packet has a higher VER. It also includes the version

number read or written in the header of READ-REPLY and

WRITE-REPLY messages.

6.2.2 Handling Server Replies

When the switch receives a READ-REPLY or a WRITE-REPLY,

it looks up the reply’s key hash in the switch rkeys table.
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If the key is replicated, the switch compares VER in the

packet header with the latest completed version of the key in

ver_completed. If the reply has a higher version number, the

switch updates ver_completed and resets the key’s replica

set to include only the source server (Algorithm 2 line 1-4). If

the two version numbers are equal, the switch adds the source

server to the key’s replica set (Algorithm 2 line 5-7).

The effect of this algorithm is that write requests are sent

to a new replica set which may or may not overlap with the

previous one. As soon as one server completes and acknowl-

edges the write, the switch directs all future read requests to it

– which is sufficient to ensure linearizability. As other replicas

also acknowledge the same version of the write, they begin to

receive a share of the read request load.

6.2.3 Correctness

Pegasus provides linearizability [24]. The intuition behind this

is that the Pegasus directory monitors all traffic, and tracks

where the latest observed version of a key is located. As soon

as any client sees a new version of the object – as indicated by

a READ-REPLY or WRITE-REPLY containing a higher version

number – the switch updates the directory to send future read

requests to the server holding that version.

The critical invariant is that the Pegasus directory contains

at least one address of a replica storing a copy of the latest

write to be externalized, as well as a version number of that

write. A write is externalized when its value can be observed

outside the Pegasus system, which can happen in two ways.

The way a write is usually externalized is when a WRITE-

REPLY is sent, indicating that the write has been completed.

It is also possible, if the previous and current replica set over-

lap, that a server will respond to a concurrent READ with

the new version before the WRITE-REPLY is delivered. Pega-

sus detects both cases by monitoring both WRITE-REPLY and

READ-REPLY messages, and updating the directory if VER

exceeds the latest known compatible version number.

This invariant, combined with Pegasus’s policy of forward-

ing reads to a server from the directory’s replica set, is suffi-

cient to ensure linearizability:

• WRITE operations can be ordered by their version numbers.

• If a READ operation r is submitted after a WRITE operation

w completes, then r comes after w in the apparent order of

operations because it is either forwarded to a replica with

the version written by w or a replica with a higher version

number.

• If a READ operation r2 is submitted after another READ r1

completes, then it comes after r1 in the apparent order of

operations, because it will either be forwarded to a replica

with the version r1 saw or a replica with a newer version.

6.3 Adding and Removing Replicated Keys

Key popularities change constantly. The Pegasus controller

continually monitors access frequencies and updates the co-

herence directory with the most popular O(n logn) keys. We

elaborate how access statistics are maintained in §8.

When a new key becomes popular, Pegasus must create a di-

rectory entry for it. The Pegasus controller does this by adding

the key’s home server to rset. It also adds a mapping for the

key in ver_completed, associating it with ver_next−1, the

largest version number that could have been assigned to a

write to that key at the key’s home server. Finally, the con-

troller adds the key to rkeys. This process does not imme-

diately move or replicate the object. However, later WRITE

requests will be sent to a new (and potentially larger) replica

set, with a version number necessarily larger than the one

added to the directly. Once these newly written values are

externalized, they will added to the directory as normal.

Transitioning a key from the replicated to unreplicated state

is similarly straight-forward. The controller simply marks the

switch’s directory entry for transition. The next WRITE for

that key is sent to its home server; once the matching WRITE-

REPLY is received, the key is removed from the directory.

Read-only objects and virtual writes. The protocol above

only moves an object to a new replica set (or back to its home

node) on the next write. While this simplifies design, it poses

a problem for objects that are read-only or modified infre-

quently. Conceptually, Pegasus addresses this by performing

a write that does not change the object’s value when an object

needs to be moved. More precisely, the controller can force

replication by issuing a virtual write to the key’s home server,

instructing it to increment its stored version number to the one

in ver_completed and to forward that value to other replicas

so that they can be added to rset and assist in serving reads.

6.4 Avoiding Duplicate Requests

At-most-once semantics, where duplicated or retried write re-

quests are not reexecuted, are desirable. There is some debate

about whether these semantics are required by linearizability

or an orthogonal property [18,28], and many key-value stores

do not have this property. Pegasus accommodates both camps

by optionally supporting at-most-once semantics.

Pegasus uses the classic mechanism of maintaining a table

of the most recent request from each client [43] to detect du-

plicate requests. This requires that the same server process the

original and the retried request, a requirement akin to “sticki-

ness” in classic load balancers. A simple way to achieve this

would be to send each write request initially to the object’s

home server. However, this sacrifices load balancing of writes.

We instead provide duplicate detection without sacrificing

load balancing by noticing that it is not necessary for one

server to see all requests for an object – only that a retried

request goes to the same server that previously processed it.

Thus, Pegasus forwards a request initially to a single detec-

tor node – a server deterministically chosen by the request’s

unique REQID, rather than the key’s hash. It also writes into a

packet header the other replicas, if any, that the request should

be sent to. The detector node determines if the request is a du-

plicate; if not, it processes it and forwards the request to the
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other selected servers.

Some additional care is required to migrate client table

state when a key transitions from being unpopular to popular

and vice versa. We can achieve this by pausing WRITEs to the

key during transitions. When a new key becomes popular, the

controller retrieves existing client table entries from the home

server and propagates them to all servers. When a popular key

becomes unpopular, it queries all servers to obtain their client

tables, and sends their aggregation (taking the latest entry for

each client) to the home server. Once this is complete, the

system can resume processing WRITEs for that key.

6.5 Server Selection Policy

Which replica should be chosen for a request? This is a policy

question whose answer does not impact correctness (i.e., lin-

earizability) but determines how effective Pegasus is at load

balancing. As described in §4.4, we currently implement two

such policies. The first policy is to simply pick a random

replica and rely on statistical load balancing. A more sophisti-

cated policy is to use weighted round-robin: the controller as-

signs weights to each server based on load statistics it collects

from the servers, and instructs the switch to select replicas

with frequency proportional to the weights.

Write replication policy. Read operations are sent to ex-

actly one replica. Write requests can be sent to one or more

servers, whether they are in the current replica set or not.

Larger replica set sizes improve load balancing by offering

more options for future read requests, but increase the cost of

write operations. For write-heavy workloads, increasing the

write cost can easily negate any load balancing benefit.

As discussed in §4.5, the switch tracks the average READs

per WRITE for each replicated object. By choosing a replica-

tion factor to be proportional to this ratio, Pegasus can bound

the overhead regardless of the write fraction.

6.6 Additional Protocol Details

Hash collisions. The Pegasus coherence directory acts on

small key hashes, rather than full keys. Should there be a

hash collision involving a replicated key and a non-replicated

key, requests for the non-replicated key may be incorrectly for-

warded to a server that is not its home server. To deal with this

issue, each server tracks the set of all currently replicated keys

(kept up to date by the controller per §6.3). Armed with this

information, a server can forward the improperly forwarded

request to the correct home server. This request chaining ap-

proach has little performance impact: it only affects hash colli-

sions involving the small set of replicated keys. Moreover, we

only forward requests for the unreplicated keys which have

low access rate. In the extremely rare case of a hash collision

involving two of the O(n logn) most popular keys, Pegasus

only replicates one of them to guarantee correctness.

Version number overflow. Version numbers must increase

monotonically. Pegasus uses 64-bit version numbers, which

makes overflow unlikely: it would require processing trans-

actions at the full line rate of our switch for over 100 years.

Extremely long-lived systems, or ones that prefer shorter ver-

sion numbers, can use standard techniques for version number

wraparound.

Garbage collection. When handling WRITEs for replicated

keys, Pegasus does not explicitly invalidate or remove the old

version. Although this does not impact correctness – the co-

herence directory forwards all requests to the latest version

– retaining obsolete copies forever wastes storage space on

servers. We handle this issue through garbage collection. The

Pegasus controller already notifies servers about which keys

are replicated, and periodically reports the last-completed ver-

sion number. Each server, then, can detect and safely remove

a key if it has an obsolete version, or if the key is no longer

replicated (and the server is not the home node for that key).

7 Beyond a Single Rack

Thus far, we have discussed single-rack, single-switch Pe-

gasus deployments. Of course, larger systems need to scale

beyond a single rack. Moreover, the single-rack architecture

provides no availability guarantees when servers or racks fail:

while Pegasus replicates popular objects, the majority of ob-

jects still have just one copy. This choice is intentional, as

entire-rack failures are common enough to make replicating

objects within a rack insufficient for real fault tolerance.

We address both issues with a multi-rack deployment

model where each rack of storage servers and its ToR switch

runs a separate Pegasus instance. The workload is partitioned

across different racks, and chain replication [66] is used to

replicate objects to multiple racks. Object placement is done

using two layers of consistent hashing. A global configuration

service [8, 27] maps each range of the keyspace to a chain of

Pegasus racks. Within each rack, these keys are mapped to

servers as in §5. In effect, each key is mapped to a chain of

servers, each server residing in a different rack.

We advocate this deployment model because it uses in-

switch processing only in the ToR switches in each rack. The

remainder of the datacenter network remains unmodified, and

in particular it does not require any further changes to packet

routing, which has been identified as a barrier to adoption for

network operators [56]. A consequence is that it cannot load

balance popular keys across different racks. Our simulations,

however, indicate that this effect is negligible at all but the

highest workload skew levels: individual servers are easily

overloaded, but rack-level overload is less common.

Replication Protocol. As in the original chain replication,

clients send WRITEs to the head server in the chain. Each

server forwards the request to the next in the chain, until reach-

ing the tail server, which then replies to the client. Clients send

READs to the tail of the chain; that server responds directly to

the client. In each case, if the object is a popular one in that

rack, the Pegasus switch can redirect or replicate it.
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Figure 7: Maximum throughput achievable subject to a 99% latency

SLO of 50 us. Pegasus successfully rebalances request load, main-

taining similar performance levels for uniform and skewed work-

loads.

tent hashing scheme assigns 16 virtual nodes to each storage

server to improve load balancing. We additionally evaluated

a version of Pegasus that supports at-most-once semantics

(Pegasus-AMO, as described in §6.4). To allow a compari-

son with NetCache, we generally limit ourselves to 64-byte

keys and 128-byte values, as this is the largest object value

size it can support. NetCache reserves space for up to 10,000

128-byte values in the switch data plane, consuming a sig-

nificant portion of the switch memory. In contrast, Pegasus

consumes less than 3.5% of the total switch SRAM. At larger

key and value sizes, Pegasus maintains similar performance

and memory usage, whereas NetCache cannot run at all.

9.1 Impact of Skew

To test and compare the performance of Pegasus under a

skewed workload, we measured the maximum throughput of

all four systems subject to a 99%-latency SLO. We some-

what arbitrarily set the SLO to 5× of the median unloaded

latency (we have seen similar results with different SLOs).

Figure 7 shows system throughput under increasing workload

skew with read-only requests. Pegasus maintains the same

throughput level even as the workload varies from uniform

to high to extreme skew (Zipf α = 0.9–1.2),1 demonstrating

its effectiveness in balancing load under highly skewed ac-

cess patterns. Since the workload is read-only, Pegasus with

at-most-once support (Pegasus-AMO) has the exact same per-

formance. In contrast, throughput of the consistent hashing

system drops to as low as 10% under more skewed work-

loads. At α = 1.2, Pegasus achieves a 10× throughput im-

provement over consistent hashing. NetCache provides sim-

ilar load balancing benefits. In fact, its throughput increases

with skew, outperforming Pegasus. This is because requests

for the cached keys are processed directly by the switch, not

the storage servers, albeit at the cost of significantly higher

switch resource overhead.

1 Although α = 1.2 is a very high skew level, some major storage systems

reach or exceed this level of skew. For example, more than half of Twit-

ter’s in-memory cache workloads can be modeled as Zipf distributions with

α > 1.2 [67], as can Alibaba’s key-value store workload during peak usage

periods [10].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.2  0.4  0.6  0.8  1

T
h
ro

u
g
h
p
u
t 

(M
o
p
s/

s)

Write Ratio

Consistent Hashing
NetCache

Pegasus
Pegasus-AMO

Figure 8: Throughput vs. write ratio. Pegasus maintains its load

balancing advantage across the spectrum of write ratios, whereas

NetCache suffers a significant penalty with even 10% writes.

9.2 Read/Write Ratio

Pegasus targets not only read-intensive workloads, but also

write-intensive and read-write mixed workloads. Figure 8

shows the maximum throughput subject to a 99%-latency

SLO of 50 µs when running a highly skewed workload (Zipf-

1.2), with varying write ratio. The Pegasus coherence protocol

allows write requests to be processed by any storage server

while providing strong consistency, so Pegasus can load bal-

ance both read and write requests. As a result, Pegasus is able

to maintain a high throughput level, regardless of the write

ratio. Even with at-most-once semantics enforced, Pegasus-

AMO performs equally well for all write ratios, by leveraging

the randomness in requests’ REQID (§6.4) to distribute write

requests to all servers. This is in contrast to NetCache, which

can only balance read-intensive workloads; it requires stor-

age servers to handle writes. As a result, NetCache’s through-

put drops rapidly as the write ratio increases, approaching

the same level as static consistent hashing. Even when only

10% of requests are writes, its throughput drops by more than

80%. Its ability to balance load is eliminated entirely for write-

intensive workloads. In contrast, Pegasus maintains its high

throughput even for write-intensive workloads, achieving as

much as 11.8× the throughput as NetCache. Note that Pega-

sus’s throughput does drop with higher write ratio. This is due

to the increasing write contention and cache invalidation on

the storage servers.

9.3 Scalability

To evaluate the scalability of Pegasus, we measured the max-

imum throughput subject to a 99%-latency SLO under a

skewed workload (Zipf 1.2) with increasing number of storage

servers, and compared it against the consistent hashing system.

As shown in Figure 9, Pegasus scales nearly perfectly as the

number of servers increases. On the other hand, throughput of

consistent hashing stops scaling after two servers: due to se-

vere load imbalance, the overloaded server quickly becomes

the bottleneck of the entire system. Adding more servers thus

does not further increase the overall throughput.

We also evaluate the performance of an end-host coher-

ence directory implementation, using Pegasus’s protocol with
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a server in place of the switch. Because the directory needs to

process twice as many packets as the storage servers for each

client request (both requests and replies), this implementation

is unable to keep up with even a single server – highlighting

the importance of using an accelerated platform like a switch-

ing ASIC as the coherence directory.

9.4 Object Sizes

To test if Pegasus can handle different object sizes, we varied

the value size from 64 bytes to 1 KB and measured the max-

imum throughput of Pegasus subject to a 99%-latency SLO

under the same skewed workload. We additionally plot the

throughput of the consistent hashing system under a uniform

workload. Figure 10 shows that Pegasus is equally efficient in

load balancing for both small and large objects. Its through-

put under a highly skewed workload is virtually equivalent

to that of consistent hashing under a zero-skewed workload.

Note that the throughput in the figure uses number of opera-

tions per second (which should naturally decrease with larger

object size), not bits per second.

9.5 Impact of Number of Replicated Keys

Keeping the size of coherence directory small is crucial as

switches are highly resource constrained. Our analysis (§4.5)

shows that Pegasus only needs to replicate the O(n logn) most

popular keys to balance load under arbitrary access patterns.
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Figure 11: Throughput vs. number of replicated keys. For these work-

loads, only 8–16 replicated keys are needed to achieve most of Pega-

sus’s load balancing benefit.

What constant factors are hidden here? For adversarial work-

loads, they are not high (e.g, 8n logn) [17]. We show in Fig-

ure 11 that they are even lower for our non-adversarial Zipf

workload. Specifically, Pegasus only needs to replicate 8–16

keys to achieve its throughput benefit – significantly less than

n logn. While these numbers would be expected to increase

with more servers, they easily remain within the capacity of

the switch’s register memory.

9.6 Server Selection Policies

We have implemented two policies for selecting servers for

replicated objects: random and weighted round-robin. We

evaluated both policies: Figure 12 shows their maximum

throughput under different workloads.

Both policies are quite effective at distributing load for uni-

form and highly skewed workloads when we use a set of

dedicated, homogeneous servers with the same load capacity.

The random policy begins to fall short, however, when some

servers are more capable than others, or background process

sap their available capacity. We evaluated this by reducing the

processing capacity of half of the servers by 50%. As shown

in Figure 12, throughput with the random policy drops 50% as

the slower servers become the performance bottleneck, even

though the faster servers still have spare processing capacity.

By collecting load information from the servers and setting

the weights accordingly, the weighted round-robin policy al-

lows both the slower and faster servers to fully utilize their

processing capacity.

9.7 Handling Dynamic Workloads

Finally, we evaluated Pegasus under dynamic workloads with

changing key popularity, similar to SwitchKV [41] and Net-

Cache [29]. Specifically, we selected 100 keys every 10 sec-

onds and changed their popularity rankings in the Zipf distri-

bution. Here we consider two dynamic patterns:

• Hot-in. The 100 coldest keys in the popularity ranking are

promoted to the top of the list, immediately turning them

into the hottest objects. This workload represents extreme

fluctuations in object popularities, which we hypothesize

is rare in real world workloads.
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good statistical load balancing when server capacity is uniform;

Pegasus’s load-aware policy outperforms it otherwise.
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Figure 13: Dynamic workloads. Pegasus reacts quickly to changes

in object popularity.

• Random. We randomly select 100 keys from the 10,000

hottest keys, and swap their popularities with another set

of randomly chosen keys. As the most popular keys are

less likely to be changed, this dynamism represents a more

moderate change to object popularity.

We evaluate Pegasus for these workloads with a Zipf-1.2

workload and 80% utilization.

Hot-in. Sudden changes to the popularity of all hottest keys

cause the tail latency to increase. Pegasus, however, is able

to immediately detect the popularity changes and updates the

in-switch coherence directory. A workload change this drastic

is unlikely, but Pegasus nevertheless reacts quickly. Within

100 ms, tail latency observed by clients returns to normal.

Random. Under a random dynamic pattern, only a moder-

ate number of the most popular keys are changed. Pegasus

thus can continue balancing load for the unaffected keys, and

leveraging load-aware scheduling to avoid overloading the

servers. No change in 99% end-to-end latency is observed.
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Figure 14: Throughput of single-rack vs. multi-rack configuration

during a rack failure. After the failure (t = 0), the multi-rack config-

uration continues processing requests but loses some capacity.

9.8 Multi-Rack

To test a multi-rack configuration, we use a larger (but slower)

cluster with 72 servers with dual 1.8 GHz Intel Xeon E5-2450

processors. These are organized into two racks, each with 24

storage servers and one Pegasus switch, plus a third rack of

client machines. Per-node performance is significantly lower,

largely because these servers use 10 Gbit NICs that do not

support DPDK.

The two 24-server racks are configured into a 2-replica con-

figuration: each rack acts as the head of the chain for half of

the keys and the tail for the other half. Because both repli-

cas need to handle WRITEs but only the tail processes READs,

adding a second rack not only provides fault tolerance, it dou-

bles read throughput; write throughput remains unchanged.

Figure 14 demonstrates this by comparing a single-rack

and two-rack configurations, running a read-only workload

with Zipf α = 1.2; the two-rack configuration has 1.7× the

throughput. At t = 0, one rack fails. The two-rack deploy-

ment is able to continue processing at half of its speed using

the remaining rack. The single-rack deployment, of course,

becomes entirely unavailable.

10 Related Work

Load Balancing. Load imbalance in large-scale key-value

stores has been addressed by past systems in three ways. Con-

sistent hashing [30] and virtual nodes [12] are widely used,

but do not perform well with changing workloads. Solutions

based on migration [11, 32, 61] and randomness [49] can be

used to balance dynamic workloads, but these techniques in-

troduce additional overheads and have limited ability to han-

dle high skew. EC-Cache [57] balances load using erasure

coding to split and replicate values, but works best for large

keys in data-intensive clusters. SwitchKV [41] balances load

across a flash-based storage layer using switches to route to an

in-memory caching layer; it cannot react fast enough to chang-

ing load when the storage layer is in memory. NetCache [29]

caches values directly in programmable dataplane switches;

while this provides excellent throughput and latency, value

sizes are limited by switch hardware constraints.

Another class of load balancers are designed to balance
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layer 4 traffic, such as HTTP, across a dynamic set of backend

servers. These systems may be implemented as clusters of

servers, as in Ananta [54], Beamer [52], and Maglev [16]; or

using switches, as in SilkRoad [47] or Duet [20]. These sys-

tems are designed to balance long-lived flows across servers,

whereas Pegasus balances load of individual request packets.

Prism [23] provides a way to perform request-level load bal-

ancing by migrating TCP and TLS connections, an approach

that could be useful for Pegasus as an alternative to its UDP-

based protocol.

Several new systems use programmable switches for

application-specific load balancing protocols. R2P2 [33] load

balances RPCs for stateless services where any request can

be handled by any server. Harmonia [69] allows optimized

forwarding for read requests in replicated systems by tracking

when concurrent writes are in progress.

Directory-Based Coherence. Directory-based coherence

protocols have been used in a variety of shared-memory mul-

tiprocessors and distributed shared memory systems [4, 19,

22, 31, 34, 36, 37, 40]. These systems can be thought of as

key-value stores with fixed-size keys (addresses) and values

(cache lines or pages). Directory protocols have been used in

general key-value stores as well; IncBricks [44] implements

an in-network key-value store using a distributed directory

to cache values in network processors attached to datacenter

switches. Keys have a designated home node that is involved

in writes and coherence operations, limiting load-balancing

opportunities for write-intensive workloads. Pegasus stores

keys and values only in servers, and its coherence protocol

allows any storage server to handle write requests, so Pegasus

can load-balance both read- and write-intensive workloads.

Both systems can scale beyond a rack and tolerate failures:

IncBricks does so at the individual server level; Pegasus does

so at the rack level.

11 Conclusion

With Pegasus, we have demonstrated that programmable

switches can improve the load balancing of a storage appli-

cation. Using our in-network coherence directory protocol,

the switch takes over responsibility for placement of the most

popular keys. This makes possible new data placement poli-

cies that cannot be achieved using traditional methods, such

as reassigning the set of replicas on each write or selecting

read replicas based on fine-grained load measurements. The

end result is that Pegasus increases by 10× the throughput

level achievable subject to a latency SLO, compared to a con-

sistent hashing workload. This permits a major reduction in

the size of a cluster needed to support a particular workload.

More broadly, we believe that Pegasus provides an exam-

ple of the class of applications that programmable dataplane

switches are well suited for. It takes a classic use case for

network devices – load balancing – and extends it to the next

level by integrating it with an application-level protocol.
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A Artifact Appendix

Abstract

Our artifact includes the following components: 1) P4 source

code of the Pegasus switch data plane, 2) Python source

code of the Pegasus switch controller, 3) C++ implemen-

tation of an in-memory key-value store with Intel DPDK,

4) configuration files and Python/shell scripts for running Pe-

gasus experiments in a cluster, and 5) a TLA+ specification

of the Pegasus protocol. The artifact is publicly available at:

https://github.com/NUS-Systems-Lab/pegasus.

A.1 Artifact check-list

• Algorithm: Coherence protocol.

• Program: Key-value store, P4 packet processing program.

• Compilation: GCC 7.5.0 (Ubuntu 7.5.0-3ubuntu11̃8.04), Bare-

foot SDE 9.1.1

• Binary: Generated from GCC compiler and Barefoot SDE.

• Run-time environment: Ubuntu 18.04 LTS (Linux 4.15), Bare-

foot SDE 9.1.1

• Hardware: Dual socket 2.2 GHz Intel Xeon Silver 4114 pro-

cessors with 20 cores and 48 GB RAM per socket. Mellanox

ConnectX-4 25 Gbit NICs. Arista 7170-64S (barefoot Tofino-

based) programmable switch.

• Execution: Bash and Python scripts.

• Output: Throughput. Average, median, 90%, 99% latencies.

• Experiments: Experiments as specified in the main paper (§9).

Customizable experiment parameters: number of clients and

servers, client request rate, read/write ratio, Zipfian coefficient,

value size, number of keys, maximum number of replicated ob-

jects, and experiment duration.

• Expected experiment run time: 10-60 seconds per experiment.

• Public link: https://github.com/NUS-Systems-Lab/pegasus

• Code licenses: MIT license.

A.2 Description

A.2.1 How to access

All source code, configuration files, and scripts are publicly available

at: https://github.com/NUS-Systems-Lab/pegasus.

A.2.2 Hardware dependencies

The artifact requires a P4 programmable switch (e.g., Barefoot

Tofino programmable switch ASIC). The network interface cards

on the client and server machines need to support Intel DPDK.

A.2.3 Software dependencies

The artifact has been tested on Ubuntu 18.04 LTS (Linux kernel 4.15).

Compiling and running the Pegasus P4 data plane program require

the Barefoot SDE (tested with version 9.1.1). Additional software

package dependencies:

• libevent

• Intel TBB

• libnuma

• zlib

• DPDK (tested with version 19.11)

• Python Sorted Containers

• Python PyREM

A.2.4 Data sets

Experiments in this artifact expect a text file that contains ASCII

keys (one key per line) for the key-value store. We provide a sample

keys file, artifact_eval/keys, that has one million 64B-keys.

A.3 Installation

First, download or clone the repository. Throughout this document,

we will use the following macros:

• $REPO: path to the root of the repository

• $SDE: path to Barefoot SDE

• $SDE_INSTALL: path to Barefoot SDE installation directory

A.3.1 Compiling Client and Server Code

Run make in $REPO.

A.3.2 Compiling P4 Code

On the target P4 switch:

cd $SDE/pkgsrc/p4-build

./configure P4_PATH=$REPO/p4/p4_tofino/pegasus.p4 \

P4_NAME=pegasus P4_PREFIX=pegasus \

P4_VERSION=p4-14 P4_FLAGS="--verbose 2" \

--with-tofino --prefix=$SDE_INSTALL \

--enable-thrift

make && make install

./configure P4_PATH=$REPO/p4/netcache/one.p4 \

P4_NAME=netcache P4_PREFIX=netcache \

P4_VERSION=p4-14 P4_FLAGS="--verbose 2" \

--with-tofino --prefix=$SDE_INSTALL \

--enable-thrift

make && make install

Note that the location of p4-build may depend on the Barefoot

SDE version.

A.4 Experiment workflow

A.4.1 P4 Switch

First, start the Pegasus switch daemon on the P4 switch:

cd $SDE

./run_switchd.sh -p pegasus

Or if running NetCache, run the following:

cd $SDE

./run_switchd.sh -p netcache

In the switch shell, add and enable all switch ports used by the

experiments.

Secondly, modify $REPO/artifact_eval/pegasus.json and

$REPO/artifact_eval/netcache.json with the testbed cluster con-

figuration (refer to artifact_eval/README.md for configuration file

format).
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Thirdly, start the Pegasus switch controller:

cd $REPO

./artifact_eval/run_pegasus_controller.sh

Or if running NetCache, run the following:

cd $REPO

./artifact_eval/run_netcache_controller.sh

A.4.2 End-Hosts

First, modify $REPO/artifact_eval/testbed.config with the

cluster configuration. Refer to artifact_eval/README.md for the

format of the file.

Secondly, modify the experiment python script

$REPO/artifact_eval/run_experiments.py. Update clients

and servers with actual host names of the client and server

machines.

Lastly, on a machine that has ssh connectivity to all clients and

servers, run the following:

python2 $REPO/artifact_eval/run_experiments.py

A.5 Evaluation and expected result

The experiment python script outputs the following statistics:

• Total throughput

• Average latency

• Median latency

• 90% latency

• 99% latency

Modify n_client_threads and interval in the experiment

script to control the client load. Tune them until getting the max-

imum throughput with some 99% latency SLO, as reported in the

paper.

To evaluate the different workloads and system configurations

as specified in §9, vary the following parameters in the experiment

script:

• n_servers: number of servers used in the experiment

• node_config: one of pegasus, netcache, or static (consistent

hashing). Note that pegasus and netcache require running the

corresponding P4 switch daemon and controller.

• alpha: Zipfian coefficient

• get_ratio: percentage of read requests in the workload (0.0 -

1.0)

• key_type: key access distribution. Either unif (uniform) or zipf

(Zipfian)

• value_len: value size (in bytes)

• n_keys: total number of keys

A.6 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/

call-for-artifacts
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