
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Ship Compute or Ship Data? Why Not Both?
Jie You, University of Michigan; Jingfeng Wu, Johns Hopkins University;

Xin Jin, Peking University; Mosharaf Chowdhury, University of Michigan
https://www.usenix.org/conference/nsdi21/presentation/you

The Request Handler executes the application logic locally

on the application server and keeps track of the states of the

request. Whenever it needs to access data stored in the storage

server, 3a the KV API of the storage server is subsequently

called. In contrast, if the request is to be executed on the

storage side using the RPC scheme, then the request is simply

forwarded to 2b the RPC Endpoint on the application server.

The RPC Endpoint issues an RPC request 3b to the storage

server for processing the request.

Storage server. The storage server includes an additional

Request Handler to handle RPC requests in addition to a

KV interface. Similar to allocating CPU cores in the appli-

cation server to run application code, in Kayak, computation

resources in the storage server are also allocated to specific

tenants at the CPU core granularity.

Each tenant has a dedicated request queue, from which its

core(s) polls KV and RPC requests. Handling an incoming

KV request in Kayak is the same as what happens in a tradi-

tional KV store: the request is simply forwarded to the KV

store. Upon receiving an RPC request, the Request Handler

is triggered and executes the application logic on the storage

server. The Request Handler calls 4 the local KV API when-

ever data access is needed, interacting with the stored data

without crossing the network.

This static pin-request-to-core allocation scheme of Kayak

makes it easier to enforce fair computation resource sharing

between tenants. However, static allocation of CPU cores

cannot guarantee work conservation of the CPU cores on the

storage server. Kayak uses work stealing to mitigate this issue:

whenever a tenant’s dedicated queue is empty, the correspond-

ing CPU core steals requests from other queues.

4 Kayak Design

Our primary objective is to maximize the total through-

put without violating the tail latency SLO. However, higher

throughput inevitably leads to higher latency in a finite sys-

tem [27], and there exists a fundamental tradeoff between

throughput and latency. Unfortunately, the precise relation-

ship between latency and throughput of a real system, how-

ever, is notoriously difficult to be captured by a closed-form

expression. In this paper, we use an analytical model to high-

light our insights and take a tail latency measurement-driven

approach to design a pragmatic solution.

At the same time, as illustrated in Section 2, a reactive

approach to achieve this can lead to CPU wastage. Hence,

Kayak proactively decides what fraction of the requests to

offload vs. which ones to run in the application server, while

maximizing the total throughput within the SLO constraint.

The need for optimizing both raises a natural question: which

one to optimize first? In this section, we analyze both op-

timization orders and design a dual loop control algorithm

with provable convergence guarantees. Detailed proofs can

be found in the appendix.

Sym. Description

R Total request rate

X Proportion of requests processed using RPC

τ Random variable of request latency

to Latency SLO target

T (X ,R) Latency SLO as a function of X , R

R(X) Function implicitly defined by T (X ,R(X)) = t0
k Index of iterations

Table 1: Key notations in problem formulation.

4.1 Problem Formulation

We denote the proportion of requests to be executed using

RPC by X , the total incoming request rate by R, and we define

τ as the random variable of request latency, thus we have:

τ∼ P(R,X),

where R and X are the parameters of distribution P. Table 1

includes the key notations used in this paper.

We denote T (X ,R) as our SLO statistics metric, which

takes a specific statistical interpretation for the particular SLO

metric. For instance, if the SLO is defined as the 99%-tile

latency then T is the 99%-tile for τ. We denote t0 as the SLO

target under the same statistic metric. Thus the problem can

be formulated as:

max
X

R (1)

s. t. T (X ,R)≤ t0 (2)

R > 0, (3)

X ∈ [0,1]. (4)

Here constraint (2) captures the latency SLO constraint, and

constraints (3) and (4) represents the boundary of R and X ,

respectively.

We make the following observation when solving this opti-

mization problem:

Observation 1. Fixing X, FX (R) := T (X ,R) is monotonic

increasing.

Observation 1 captures the relationship of throughput and

latency from queueing theory [27] for finite systems like

Kayak.

4.2 Strawman: X-R Dual Loop Control

Optimization (1) cannot be directly solved with a closed-form

solution of R and X due to the intractability of the function

T (X ,R). Therefore, we use a numeric optimization method

and try to optimize R and X independently and iteratively. To

put it into our context, we need to design an iterative algorithm

such that in each iteration, we first optimize either R or X ,

and then optimize the other. We also have to prove that this

algorithm would actually converge to ensure optimality and

stability of the system.

Now we are facing a question: which one to optimize first?

In our problem, there is an asymmetry for X and R: X is the

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 637

Input: Current throughput R, latency t, SLO target t0
Output: Updated throughput R

/* Initialize global variables. */

1 T← 0; R← 0 ⊲ Last involved latency and throughput.

/* Update R for each round. */

2 Procedure UpdateR()
/* Calculate ∆R according to Newton’s method. */

3 ∆R← (R−R)(t0−T)
T−T

/* Bounds checking, throughput should be positive. */

4 if R+∆R < 0 then ⊲ Unlikely. Violates (3).

5 R← R
M

⊲ Discard ∆R and divide R by half.

6 else

7 R← ∆R +R

Pseudocode. 1: Dynamic search of optimal R.

Let R(X) be a function implicitly determined by the bound-

ary constraint Eq. (2), i.e.,

T (X ,R(X)) = t0.

The implicit function R(X) is indeed well defined, since for

any X , T (X ,R) is monotonically increasing,2 implying there

exists an unique request throughput R(X) that satisfies the

boundary constraint, i.e., the maximum throughput is achieved

when the latency is equal to the SLO target.

Essentially, we have to design a dynamic algorithm that

actuates R(X) in real-time (via Rk(X) in step 1). This problem

can be solved with a root-finding algorithm such as the classic

Newton’s method. However, if we apply this method directly,

we may encounter situations where the updated throughput

R is negative, which violates constraint (3). This happens

when the throughput is too high and needs to be significantly

reduced. In this case, we divide R by M instead of updating

it using Newton’s method. This ensures that (i) the updated

throughput is positive; and (ii) the updated throughput is

still significantly lower than before. We note that this out-of-

bound scenario does not happen frequently. For simplicity,

we choose M = 2. Our algorithm of searching for the optimal

R is shown in Pseudocode 1.

X loop: RPC fraction control. For any given RPC fraction,

the rate control of Kayak essentially maximizes throughput

within the allowance of SLO requirement. With rate control,

we effectively get the throughput as a function of the given

RPC fraction (R(X)). In this part, we focus on the comple-

mentary and optimize the RPC fraction to maximize R(X).
We use a gradient ascent algorithm to achieve that. When the

updated RPC fraction falls out of the range of [0,1], we apply

2We assume that T (X ,R) is continuous, and for any X , there exist R1 and

R2 such that T (X ,R1)≤ t0 ≤ T (X ,R2). This assumption pluses monotonicity

yields the existence and uniqueness of the implicit function R(X).

Input: Current throughput R, RPC propotion X ,

Output: Updated RPC propotion X

/* Initialize global variables. */

1 R← 0; X← 0 ⊲ Last involved throughput and RPC fraction.

/* Update X for each round. */

2 Procedure UpdateX()
/* Calculate ∆X according to Gradient Ascent. */

3 ∆X ←−η R−R
X−X

/* Bounds checking, X should be within constraints. */

4 if X +∆X /∈ [0,1] then ⊲ Unlikely. Violates (4).

5 X ←max{min{X +∆X ,1},0}
6 else

7 X ← ∆X +X

Pseudocode. 2: Dynamic search of optimal X .

(,)+= 0 − += −0

Latency Feedback

Fast loop Slow loop

Figure 8: Nested control loops of Kayak.

rounding to ensure it is within the boundary. Our algorithm

of searching the RPC fraction is shown in Pseudocode 2.

Putting them together. Combing the rate control and the

RPC fraction control, our algorithm (Algorithm II) naturally

forms a bi-level (nested) control loops [15], with two actuators

X and R and only one feedback signal t. We adopt a single

control loop (the inner/fast loop), called R loop, to implement

the rate control, i.e., finding the maximum throughput R while

not violating the SLO t0. The input of this control loop is the

measured latency SLO metric T̂ and the output is request rate

R which is the input for our request arbiter. We then adopt

another control loop (the outer/slow loop), called X loop, to

implement our request arbiter, i.e., choosing the best X that

maximizes R0.

Although this dual loop control design decouples the two

actuators X and R, the resulting two feedback loops may be

coupled. The coupling between two feedback loops may cause

oscillation, which can be mitigated by choosing different sam-

pling frequencies [15]. The exact two values can be tuned

by the operator according to different workloads and system

configurations. However, because the functioning of the sec-

ond loop is dependent on the output of the first loop (R) to

have converged to a stable point, it is best practice to choose a

lower frequency for the second loop. Theoretically, we show

that this dual loop control algorithm is guaranteed to converge

in Section 4.4. Empirically, in our experiments, we let the

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 639

sampling rates of the first and second loops to be 200Hz and

20Hz respectively, and we show that the system converges

fast to near optimal throughput in Section 6. We evaluate the

impact of frequency selection in detail in Section 6.5.

4.4 Perfomance Guarantee

From the R loop, we obtain an estimation Rk(x) at each itera-

tion k, which approximately satisfies T (X ,Rk(X))≈ t0. In the

X loop, we optimize X for our request arbiter such that R0 is

maximized. This is done by stochastic gradient ascent (SGA,

or online gradient ascent) on X . There is a rich literature in

online learning theory for SGA when Rk(x) is concave, e.g.,

see [36]. Applying related theoretical results to our problem,

we have the following performance guarantee for our system.

The proof of Theorem 2 is deferred to Appendix B.3.

Theorem 2. Suppose for all k = 1, . . . ,K, Rk(X) is concave,

and ‖∇Rk(X)‖2 ≤ L. Consider the iterates of SGA, i.e.,

Xk+1 = Xk +η∇Rk(Xk).

Then we have the following regret bound

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤C ·
√

K, (5)

where C := L‖X1−X∗‖2 is a constant depends on initializa-

tion and gradient bound, and X∗ can be any fixed number.

Note that the regret bound holds even Rk(X) is chosen adver-

sarially based on the algorithm history.

Inteperation of Theorem 2. The sublinear regret bound

implies SAG behaviors nearly optimal on average: we see

this by setting X∗ = argmaxX ∑K
k=1 Rk(X), and noticing that

1

K

K

∑
k=1

Rk(X∗)−
1

K

K

∑
k=1

Rk(Xk)≤ O

(
1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}K
k=1 corresponds

to a sequence of inaccurate estimations to the true implicit

function R(X) — even so the theorem guarantees a sublin-

ear regret bound, which implies that our algorithm behaviors

nearly as good as one can ever expect under the estimations,

no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estima-

tor to the true concave function R(X), i.e., ERk(X) = R(X),
then X̄ = 1

K ∑K
k=1 Xk converges to the maximal of R(X) in ex-

pectation: we see this by choosing X∗ = argminX R(X) and

noticing that

E [R(X∗)−R(X̄)]≤ 1

K

K

∑
k=1

E [R(X∗)−R(Xk)]

=
1

K

K

∑
k=1

E [Rk(X∗)−Rk(Xk)]

≤C · 1√
K
→ 0.

The above convergence result does not require any assump-

tions on the randomness of Rk, as long as Rk(X) is an unbi-

ased estimator of R(X). This means our algorithm can tolerate

variance in the measured latency which causes variance in

estimated Rk. The convergence is empirically validated by

our experiments in Section 6.1.

4.5 Scalability and Fault Tolerance

Scalability. Kayak is fully decentralized, and its control

logic (e.g., rate and RPC fraction determination) is decoupled

from the request execution in the dataplane. Throughput of a

tenant is limited by its total available resources in application

and storage servers; one can increase throughput by adding

more application servers or by ensuring more resource share

in the storage servers.

Fault tolerance. Kayak does not introduce additional sys-

tems components beyond what traditional KV- or RPC-based

or hybrid systems do. As such, it does not introduce novel

fault tolerance challenges. The consistency and fault tolerance

of the KV store is orthogonal to our problem and out of the

scope of this paper.

5 Implementation

We build a prototype of Kayak with about 1500 lines of code

and integrate it with the in-memory kernel-bypassing key-

value store Splinter [29]. The code is available at: https:

//github.com/SymbioticLab/Kayak

Kayak interface. Users of Kayak provide their custom de-

fined storage functions (App Logic in Figure 6), which are

compiled with Kayak and deployed onto both the application

server and storage server. At runtime, users connect to Kayak

and set the desired SLO target. Users then submit request in

the format of storage function invocations to Kayak.

Application server. The core control logic of Kayak is im-

plemented in the application server. One challenge we face

during implementation is to optimize the code to reduce

overhead, which is especially important because of the high

throughput low latency requirement. For instance, the inner

control loop constantly measures request latency and calcu-

late the 99%-tile. One naive way is to measure the quantile is

using selection algorithm to calculate the k-th order statistics

of n samples, with has at least O(n) complexity. Instead, we

apply DDSketch [32] to estimate the quantile in real time

with bounded error.

Storage server. The main challenge of implementing the

storage server is supporting multi-tenancy and ensuring fair-

ness and work conservation. We pin requests from different

tenants to different CPU cores to ensure fairness. And we

adopt work stealing to ensure work conservation: CPU cores

with no requests to process steal requests from the queues of

other cores. Specifically, similar to ZygOS [38], each CPU

core of Kayak steals from all other CPU cores, which is dif-

ferent from Splinter’s work stealing from only neighboring

640 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU Intel E5-2640v4 2.4 GHz

RAM 64GB ECC Memory DDR4 2400MHz

NIC Mellanox ConnectX-4 25 GB NIC

OS Ubuntu 16.04, Linux 4.4.0-142

Table 2: Server configurations for our testbed in CloudLab.

cores. This further improves overall CPU utilization.

6 Evaluation

In this section we empirically evaluate Kayak with a focus on:

(i) verification of convergence; (ii) performance improvement

against state of the art [12]; and (iii) fairness and scalability

with multiple tenants. Our key results are as follows.

• Kayak achieves sub-second convergence to optimal

throughput and RPC fraction regardless of workloads.

It can proactively adjust to dynamic workload change as

well (§6.1).

• Kayak improves overall throughput by 32.5%-63.4% for

compute-intensive workloads and up to 12.2% for non-

compute-intensive and transactional workloads (§6.2).

• In a multi-tenant setup, Kayak approximates max-min fair

sharing, with a Jain’s Fairness Index [22] of 0.9996 (§6.3)

and scales without sacrificing fairness (§6.4).

• We also evaluate Kayak’s sensitivity to its different pa-

rameters (§6.5).

Methodology. We run our experiments on CloudLab [3]

HPE ProLiant XL170r machines (Table 2). Unless specified

otherwise, we configure Kayak to use 8 CPU cores across all

servers. The fast control loop algorithm is configured to run

every 5ms and the slow control loop runs every 50ms. The

initial RPC fraction is set at 100%, and we define SLO as the

99%-tile latency.

Workloads. We use the workload described in Section 2.

Unless otherwise specified, we configure the workload with

a traversal depth of two so that each request issues two data

accesses to the storage. We vary the amount of computation

that takes place after each access and refer to them as Light

(100ns computation time per access), Medium (1µs per ac-

cess) and Heavy (10µs per access). This workload emulates a

variety of workloads with different computational load in a

non-transactional environment.

We extend this workload and create a Bimodal workload.

We denote by Bimodal(1us, 100ns, 50%, 5s), a work-

load that consists of 50% Medium (1µs/RTT) and 50% Light

(100ns/RTT) with an interval of 5 seconds.

We also run YCSB-T [14] as a transactional workload. This

workload is not computationally intensive.

Unless otherwise specified, for all workloads, we set our

latency SLO target as: 99%-tile request latency lower than or

equal to 200µs.

Baseline. Our primary baseline is ASFP [12], which is

available at https://github.com/utah-scs/splinter/

releases/tag/ATC’20 and also built on top of Splinter [29].

6.1 Convergence

In this section, we validate that Kayak’s fast loop can converge

to a stable throughput R while satisfying SLO constraint and

when running together with fast loop, the slow loop can also

converge to the optimal RPC fraction.

Fast loop only. We first disable the slow loop and run

Kayak with a fixed RPC fraction (100%), to show that the fast

loop (rate control) can converge to optimal throughput with

different workloads.

We run Light, Medium and Heavy workloads with one

application server and one storage server, and measure how

the throughput and 99%-tile latency changes with time. As

shown in Figure 9, Kayak ramps up the throughput quickly

when the measured 99%-tile request latency is below the SLO

threshold of 200µs. Along with the increase of throughput, the

latency also increases, as observed from the rise of red line.

The entire converging process happens within 0.2 seconds.

After approaching the SLO limit, both the throughput and

latency remains stable with minor fluctuations, confirming

the convergence of our fast loop. We note that the converged

throughput are the same as the measurements of the RPC-

only configuration in Figure 4. This means that our fast loop

indeed converges to the optimal throughput.

Dual loop control. Now we move on to verifying the con-

vergence of both loops combined. We repeat the previous

experiments, but with both control loops enabled. Figure 10

shows the dynamics of throughput and RPC fraction and how

they change with time. We highlight three observations.

• Similar to Figure 9, throughput increases rapidly within

the first 0.2 seconds; this is due to the fast loop.

• With the Medium and Heavy workloads, the throughput in-

crease slows down after 0.2 seconds. This increase comes

from the slow loop, as we can see a change in RPC frac-

tion. Note that the Light workload does not show this

trend, because in this setup the initial RPC fraction (100%)

is already the optimal for it.

• After 1 second since the start, the throughput converges

to a stable value with only minor fluctuations.

Comparing the RPC fraction in Figure 10 against Figure 5,

we observe that our algorithm converges to the optimal RPC

fraction. Comparing the throughput in Figure 10 against the

Optimal configuration in Figure 4, we observe that the con-

verged throughput is the optimal throughput.

Convergence under dynamic workloads. One advantage

of Kayak is that it can proactively adjust to changing work-

load. To verify this, we run Kayak with the Bimodal(1us,

100ns, 50%, 5s) workload. Figure 11 shows the dynamics

of throughput and RPC fraction. As we can see, Kayak adapts

to the changing workload, and adjusts both the throughput

and RPC fraction accordingly in a timely fashion.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 641

extension to storage server to allow RPC-like operations in ad-

dition to traditional key-value operations. These works breaks

the assumption of dissagregated storage and necessitates the

need for proactive arbitration provided by Kayak.

Adaptive compute placement. An emerging line of re-

search aims at adaptively balancing between client-side pro-

cessing and server-side processing. ASFP [12] extends Splin-

ter by reactively pushing back requests to the client side if

the server gets overloaded, but at the cost of wasting CPU

and network resource.Instead, Kayak proactively balances the

load exerted on both application and storage server. Cell [34]

implements a B-tree store on RDMA supporting both client-

side (RDMA-based) and server-side (RPC-based) search. Cell

determines between these two schemes by tracking RDMA

operation latency. This requires instrumentation into the ap-

plication, which Kayak avoids by measuring end-to-end re-

quest latency instead. A recent work called Storm [35] uses a

reactive-adaptive approach similar to that of ASFP [12] but

with a different policy, where for each request it will try the

traditional KV API first, and switch to RPC API if it detects

that the application is trying to chase the pointers.

9 Conclusion

In this paper, we show that by proactively and adaptively com-

bining RPC and KV together, overall throughput and CPU

utilization can be improved. We propose an algorithm that

dynamically adjusts the rate of requests and the RPC fraction

to improve overall request throughput while meeting latency

SLO requirements. We then prove that our algorithm can

converge to the optimal parameters. We design and imple-

ment a system called Kayak. Our system implementation en-

sures work conservation and fairness across multiple tenants.

Our evaluations show that Kayak achieves sub-second con-

vergence and improves overall throughput by 32.5%-63.4%

for compute-intensive workloads and up to 12.2% for non-

compute-intensive and transactional workloads.

Acknowledgements

Special thanks go to the entire CloudLab team for making

Kayak experiments possible. We would also like to thank

the anonymous reviewers, our shepherd, Ryan Stutsman, and

SymbioticLab members for their insightful feedback. This

work is in part supported by NSF grants CNS-1813487, CNS-

1845853, CNS-1900665, CNS-1909067, and CCF-1918757.

References

[1] Apache Hadoop. https://hadoop.apache.org/.

[2] Ceph. https://ceph.io/.

[3] CloudLab. https://cloudlab.us/.

[4] Intel Rack Scale Design. https:

//www.intel.com/content/www/us/

en/architecture-and-technology/

rack-scale-design-overview.html.

[5] Microsoft SQL Server Stored Procedures.

https://docs.microsoft.com/en-us/sql/

relational-databases/stored-procedures/

stored-procedures-database-engine.

[6] Microsoft SQL Server User-Defined Func-

tions. https://docs.microsoft.com/

en-us/sql/relational-databases/

user-defined-functions/

user-defined-functions.

[7] MySQL Stored Procedures Tutorial.

https://www.mysqltutorial.org/

mysql-stored-procedure-tutorial.aspx/.

[8] Oracle PL/SQL. https://www.

oracle.com/database/technologies/

application-development-PL/SQL.html.

[9] Redis. https://redis.io/.

[10] Atul Adya, Daniel Myers, Henry Qin, and Robert Grandl.

Fast key-value stores: An idea whose time has come and

gone. In HotOS, 2019.

[11] Luiz Barroso, Mike Marty, David Patterson, and

Parthasarathy Ranganathan. Attack of the killer mi-

croseconds. Communications of the ACM, 60(4):48–54,

2017.

[12] Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman.

Adaptive placement for in-memory storage functions.

In ATC, 2020.

[13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad

Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony

Giardullo, Sachin Kulkarni, Harry Li, et al. Tao: Face-

book’s distributed data store for the social graph. In

ATC, 2013.

[14] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe

Röhm. Ycsb+ t: Benchmarking web-scale transactional

databases. In 2014 IEEE 30th International Conference

on Data Engineering Workshops, pages 223–230. IEEE,

2014.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 645

[15] John C Doyle, Bruce A Francis, and Allen R Tannen-

baum. Feedback Control Theory. Courier Corporation,

2013.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Miguel

Castro, and Orion Hodson. Farm: Fast remote memory.

In NSDI, 2014.

[17] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao

Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-

nasamy, and Scott Shenker. Network requirements for

resource disaggregation. In OSDI, 2016.

[18] Roxana Geambasu, Amit A Levy, Tadayoshi Kohno,

Arvind Krishnamurthy, and Henry M Levy. Comet: An

active distributed key-value store. In OSDI, 2010.

[19] Monia Ghobadi, Amin Vahdat, Yaogong Wang, David

Wetherall, and David Zats. Timely: Rtt-based congestion

control for the datacenter. In SIGCOMM, 2015.

[20] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,

Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma

over commodity ethernet at scale. In SIGCOMM, 2016.

[21] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-

wal. Tcp≈rdma: Cpu-efficient remote storage access

with i10. In NSDI, 2020.

[22] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe,

et al. A quantitative measure of fairness and discrimina-

tion. Eastern Research Laboratory, Digital Equipment

Corporation, Hudson, MA, 1984.

[23] Anuj Kalia, Michael Kaminsky, and David Andersen.

Datacenter rpcs can be general and fast. In NSDI, 2019.

[24] Anuj Kalia, Michael Kaminsky, and David G Ander-

sen. Using rdma efficiently for key-value services. In

SIGCOMM, 2014.

[25] Anuj Kalia, Michael Kaminsky, and David G Andersen.

Fasst: Fast, scalable and simple distributed transactions

with two-sided rdma datagram rpcs. In OSDI, 2016.

[26] Robert Kallman, Hideaki Kimura, Jonathan Natkins, An-

drew Pavlo, Alexander Rasin, Stanley Zdonik, Evan PC

Jones, Samuel Madden, Michael Stonebraker, Yang

Zhang, et al. H-store: a high-performance, distributed

main memory transaction processing system. Proceed-

ings of the VLDB Endowment, 1(2):1496–1499, 2008.

[27] Leonard Kleinrock. Queueing systems. volume i: theory.

1975.

[28] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu

John, and Sanjeev Kumar. Flash storage disaggregation.

In EuroSys, 2016.

[29] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian

Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-

metal extensions for multi-tenant low-latency storage.

In NSDI, 2018.

[30] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-

san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong

Wang, Kevin Springborn, Christopher Alfeld, Michael

Ryan, et al. Swift: Delay is simple and effective for

congestion control in the datacenter. In SIGCOMM,

2020.

[31] Hyeontaek Lim, Dongsu Han, David G Andersen, and

Michael Kaminsky. Mica: A holistic approach to fast

in-memory key-value storage. In NSDI, 2014.

[32] Charles Masson, Jee E Rim, and Homin K Lee. Dds-

ketch: A fast and fully-mergeable quantile sketch with

relative-error guarantees. Proceedings of the VLDB En-

dowment, 12(12).

[33] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-

ing one-sided rdma reads to build a fast, cpu-efficient

key-value store. In ATC, 2013.

[34] Christopher Mitchell, Kate Montgomery, Lamont Nel-

son, Siddhartha Sen, and Jinyang Li. Balancing cpu

and network in the cell distributed b-tree store. In ATC,

2016.

[35] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,

Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-

menny, Liran Liss, Michael Wei, Dan Tsafrir, et al.

Storm: a fast transactional dataplane for remote data

structures. In SYSTOR, 2019.

[36] Francesco Orabona. A modern introduction to online

learning. arXiv preprint arXiv:1912.13213, 2019.

[37] Dongchul Park, Jianguo Wang, and Yang-Suk Kee. In-

storage computing for hadoop mapreduce framework:

Challenges and possibilities. IEEE Transactions on

Computers, 2016.

[38] George Prekas, Marios Kogias, and Edouard Bugnion.

Zygos: Achieving low tail latency for microsecond-scale

networked tasks. In Proceedings of the 26th Symposium

on Operating Systems Principles, pages 325–341, 2017.

[39] Michael A Sevilla, Noah Watkins, Ivo Jimenez, Pe-

ter Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos

Maltzahn. Malacology: A programmable storage sys-

tem. In EuroSys, 2017.

[40] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,

Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,

and Hakim Weatherspoon. Shoal: A network architec-

ture for disaggregated racks. In NSDI, 2019.

646 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] Michael Stonebraker and Greg Kemnitz. The postgres

next generation database management system. Commu-

nications of the ACM, 34(10):78–92, 1991.

[42] Michael Stonebraker and Ariel Weisberg. The voltdb

main memory dbms. IEEE Data Eng. Bull., 36(2):21–

27, 2013.

[43] Patrick Stuedi, Animesh Trivedi, and Bernard Metzler.

Wimpy nodes with 10gbe: Leveraging one-sided opera-

tions in soft-rdma to boost memcached. In ATC, 2012.

[44] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan

Truong, Ashish Motivala, and Thierry Cruanes. Building

an elastic query engine on disaggregated storage. In

NSDI, 2020.

[45] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauly, Michael J

Franklin, Scott Shenker, and Ion Stoica. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In NSDI, 2012.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 647

B Analysis of Algorithms

B.1 Problem Formulation

We aim to solve the following optimization problem

max
X

R

s. t. T (X ,R)≤ t0

(P)

where we assume:

Assumption 1. Fix X, FX (R) := T (X ,R) is monotonic in-

creasing and twice differentiable.

Assumption 2. For any X, there exist R1 and R2 such that

minX T (X ,R1)≤ t0 ≤minX T (X ,R2).

B.2 Algorithm I: X-R Dual Loop Control

We adopt the following iterative algorithm to solve the prob-

lem:

Algorithm I (X-R Dual Loop Control) For k = 1, . . . ,K,

we alternatively update Xk and Rk by

• Xk = argminX T (X ,Rk);

• Rk+1 = Rk +η(t0−T (Xk,Rk)).

We have the following theorem to characterize the conver-

gence of the above algorithm.

Theorem 1. Suppose in addition we have,

1. T (X ,R) is twice differentiable and lower bounded.

2. Fix R, FR(X) := T (X ,R) is µ-strongly convex3, L-

smooth4 and coercive.5

3. For all X, we have 0 < α≤ ∂T (X ,R)
∂R

≤ β.

If we set 0 < η < 1
β

, then

|RK−R∗| ≤ (1−ηα)K · |R0−R∗| .

In the following we elaborate the proof for Theorem 1. We

begin with introducing a series of lemmas. Let us denote

H(R) = min
X

T (X ,R).

Lemma 1. For all R 6= S,

0 < α≤ H(R)−H(S)

R−S
≤ β.

Moreover, the above inequality implies H(R) is monotonic

increasing and continuous.

3 f (x) is µ-strongly convex, if for all x and y, it holds that f (x)≥ f (y)+

〈∇ f (y),x− y〉+ µ
2
‖y− x‖2

2.
4 f (x) is L-smooth, if for all x and y, it holds that f (x) ≤ f (y) +

〈∇ f (y),x− y〉+ L
2
‖y− x‖2

2. In general, if f (x) is twice-differentiable and x

is restricted in a bounded domain, then f (x) is L-smooth in that domain, for

some finite L.
5 f (x) is coercive if f (x)→ +∞ as ‖x‖ → +∞. A strongly convex and

coercive function admits an unique and finite minimum point.

Proof. Without loss of generality let R > S. Let X =
argminX T (X ,R) and Y = argminX T (X ,S). Then

H(R)−H(S)

R−S
=

T (X ,R)−T (Y,S)

R−S{
≤ T (Y,R)−T (Y,S)

R−S
= ∂T (Y,P)

∂R
≤ β,

≥ T (X ,R)−T (X ,S)
R−S

= ∂T (X ,Q)
∂R

≥ α > 0.

Here P,Q ∈ (S,R) are given by mean-value theorem.

Lemma 2. There exists an unique R∗ such that H(R∗) = t0.

Moreover, this R∗ gives the maximum of the original optimiza-

tion problem.

Proof. We have already shown that H(R) is monotonic and

continuous. Recall that there exists R1 and R2 such that

H(R1) ≤ t0 ≤ H(R2), thus there exists an unique R∗ such

that H(R∗) = t0.

For any R so that R > R∗, we have H(R)> H(R∗) = t0 by

monotonicity, thus R does not meet the constraint. Therefore

R∗ is the maximum of the optimization problem.

Proof of Theorem 1. With H(R) := minX T (X ,R), we can

rephrase Algorithm I as

Rk+1 = Rk +η(H(R∗)−H(Rk)) .

Let R0 be the initialization. We next show the convergence of

this iteration.

Case I: R0 < R∗. If Rk < R∗, then

R∗−Rk+1 = R∗−Rk−η(H(R∗)−H(Rk)){
≤ R∗−Rk−ηα(R∗−Rk) = (1−ηα)(R∗−Rk)

≥ R∗−Rk−ηβ(R∗−Rk) = (1−ηβ)(R∗−Rk)

that is 0≤ (1−ηβ)(R∗−Rk)≤ R∗−Rk+1 ≤ (1−ηα)(R∗−
Rk). Using this recursion, if R0 < R∗, we have

0≤ (1−ηβ)K (R∗−R0)≤ R∗−RK ≤ (1−ηα)K (R∗−R0).

Case II: R0 > R∗. If Rk > R∗, then

Rk+1−R∗
= Rk +η(H(R∗)−H(Rk))−R∗
= Rk−R∗−η(H(Rk)−H(R∗)){
≤ Rk−R∗−ηα(Rk−R∗) = (1−ηα)(Rk−R∗)

≥ Rk−R∗−ηβ(Rk−R∗) = (1−ηβ)(Rk−R∗)

that is 0≤ (1−ηβ)(Rk−R∗)≤ Rk+1−R∗ ≤ (1−ηα)(Rk−
R∗). Using this recursion, if R0 > R∗, we have

0≤ (1−ηβ)K (R0−R∗)≤ RK−R∗ ≤ (1−ηα)K (R0−R∗).

To sum up, when η < 1
β

(hence smaller than 1
α), we have

|RK−R∗| ≤ O
(
(1−ηα)K

)
.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 649

B.3 Algorithm II: R-X Dual Loop Control

Let us take a closer look at the optimization problem (P)

under Assumption 1 and Assumption 2. First we observe the

maximal must be attended at the boundary

T (X ,R) = t0. (6)

Second the boundary constraint Eq. (6) implicitly defines a

function R(X), where

T (X ,R(X)) = t0.

We highlight that R(X) is indeed well defined, since under

Assumption 1 and Assumption 2, for any X , there exists an

unique R(X) that satisfies the boundary constraint.

With the above observations, we may rephrase the opti-

mization problem (P) as

max
X

R(X) (P’)

where R(X) is implicitly defined by the boundary constraint.

In the following we discussion algorithms that solve prob-

lem (P’).

Our challenge it that we do not have direct access to R(X);
instead at each fast loop step, we have an estimation to R(X),
denoted as Rk(x), which approximately satisfies

T (X ,Rk(X))≈ t0.

In this set up we can perform stochastic gradient ascent (SGA,

or online gradient ascent) for Rk(X). We summarize the algo-

rithm in the following.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . ,K,

we respectively update Xk and Rk by

1. Apply rate control so that the latency approximates SLO,

i.e.,

Rk be such that T (Xk,Rk)≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e.,

Xk+1 = Xk +η dRk
dX

, where T (X ,Rk) = t0, and η is a posi-

tive stepsize.

There is a rich literature for the theory of online learning

when Rk(X) is concave, e.g., see [36]. For completeness, we

introduce the following theorem to characterize the behavior

of the above algorithm.

Theorem 2. Suppose Rk(X) is concave. Consider the iterates

of SGA, i.e.,

Xk+1 = Xk +η∇Rk(Xk).

Then we have the following bound for the regret

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
‖X1−X∗‖2

2

2η
+

η

2

K

∑
k=1

‖∇Rk(Xk)‖2
2 .

If in addition we assume ‖∇Rk(X)‖2 ≤ L, and set

η =
‖X1−X∗‖2

L
√

K
,

then

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤C ·
√

K, (7)

where C := L‖X1−X∗‖2 is a constant depends on initializa-

tion and gradient bound.

Remark. The sublinear regret bound implies SAG behav-

iors nearly optimal on average: we see this by setting X∗ =
argmaxX ∑K

k=1 Rk(X), and noticing that

1

K

K

∑
k=1

Rk(X∗)−
1

K

K

∑
k=1

Rk(Xk)≤ O

(
1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}K
k=1 corresponds

to a sequence of inaccurate estimations to the true implicit

function R(X) — even so the theorem guarantees a sublin-

ear regret bound, which implies that our algorithm behaviors

nearly as good as one can ever expect under the estimations,

no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estima-

tor to the true concave function R(X), i.e., ERk(X) = R(X),
then X̄ = 1

K ∑K
k=1 Xk converges to the maximal of R(X) in ex-

pectation: we see this by choosing X∗ = argminX R(X) and

noticing that

E [R(X∗)−R(X̄)]≤ 1

K

K

∑
k=1

E [R(X∗)−R(Xk)]

=
1

K

K

∑
k=1

E [Rk(X∗)−Rk(Xk)]

≤C · 1√
K
→ 0.

Proof of Theorem 2. We first notice the following ascent

lemma

‖Xk+1−X∗‖2
2

= ‖Xk +η∇Rk(Xk)−X∗‖2
2

= ‖Xk−X∗‖2
2 +η2 ‖∇Rk(Xk)‖2

2 +2η〈∇Rk(Xk),Xk−X∗〉
≤ ‖Xk−X∗‖2

2 +η2 ‖∇Rk(Xk)‖2
2 +2η(Rk(Xk)−Rk(X∗)) ,

where the last inequality is due to the assumption that Rk(X)
is concave. Next we re-arrange the terms and take telescope

650 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

summation,

K

∑
k=1

(Rk(X∗)−Rk(Xk))

≤
K

∑
k=1

1

2η

(
‖Xk−X∗‖2

2−‖Xk+1−X∗‖2
2

)
+

K

∑
k=1

η

2
‖∇Rk(Xk)‖2

2

=
1

2η

(
‖X1−X∗‖2

2−‖XK+1−X∗‖2
2

)
+

T

∑
t=1

η

2
‖∇Rk(Xk)‖2

2

≤ 1

2η
‖X1−X∗‖2

2 +
K

∑
k=1

η

2
‖∇Rk(Xk)‖2

2 ,

which gives the first regret bound.

If further we have ‖∇Rk(X)‖2 ≤ L, then

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
1

2η
‖X1−X∗‖2

2 +
η

2
L2K,

by setting η =
‖X1−X∗‖2

L
√

K
we obtain

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
1

2η
‖X1−X∗‖2

2 +
η

2
L2K

≤ L‖X1−X∗‖2 ·
√

K.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 651

	Introduction
	Motivation
	Limitations of Existing Designs
	Need for Dynamically Finding the Optimal Fraction

	Kayak Overview
	Design Goals
	Architectural Overview

	Kayak Design
	Problem Formulation
	Strawman: X-R Dual Loop Control
	Our Solution: R-X Dual Loop Control
	Perfomance Guarantee
	Scalability and Fault Tolerance

	Implementation
	Evaluation
	Convergence
	Performance
	Fairness
	Scalability
	Sensitivity Analysis

	Discussion and Future Work
	Related Work
	Conclusion
	Supplemental Measurements for Graph Traversal Workload
	Analysis of Algorithms
	Problem Formulation
	Algorithm I: X-R Dual Loop Control
	Algorithm II: R-X Dual Loop Control

