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ABSTRACT

We develop a methodology for assessing the robustness of models to subpopulation
shift—specifically, their ability to generalize to novel data subpopulations that were
not observed during training. Our approach leverages the class structure underlying
existing datasets to control the data subpopulations that comprise the training and
test distributions. This enables us to synthesize realistic distribution shifts whose
sources can be precisely controlled and characterized, within existing large-scale
datasets. Applying this methodology to the ImageNet dataset, we create a suite
of subpopulation shift benchmarks of varying granularity. We then validate that
the corresponding shifts are tractable by obtaining human baselines. Finally, we
utilize these benchmarks to measure the sensitivity of standard model architectures
as well as the effectiveness of existing train-time robustness interventions. '

1 INTRODUCTION

Robustness to distribution shift has been the focus of a long line of work in machine learning (Schlim-
mer & Granger, 1986; Widmer & Kubat, 1993; Kelly et al., 1999; Shimodaira, 2000; Sugiyama et al.,
2007; Quionero-Candela et al., 2009; Moreno-Torres et al., 2012; Sugiyama & Kawanabe, 2012).
At a high-level, the goal is to ensure that models perform well not only on unseen samples from the
datasets they are trained on, but also on the diverse set of inputs they are likely to encounter in the
real world. However, building benchmarks for evaluating such robustness is challenging—it requires
modeling realistic data variations in a way that is well-defined, controllable, and easy to simulate.

Prior work in this context has focused on building benchmarks that capture distribution shifts caused
by natural or adversarial input corruptions (Szegedy et al., 2014; Fawzi & Frossard, 2015; Fawzi et al.,
2016; Engstrom et al., 2019b; Ford et al., 2019; Hendrycks & Dietterich, 2019; Kang et al., 2019),
differences in data sources (Saenko et al., 2010; Torralba & Efros, 2011; Khosla et al., 2012; Tommasi
& Tuytelaars, 2014; Recht et al., 2019), and changes in the frequencies of data subpopulations (Oren
et al., 2019; Sagawa et al., 2020). While each of these approaches captures a different source of
real-world distribution shift, we cannot expect any single benchmark to be comprehensive. Thus,
to obtain a holistic understanding of model robustness, we need to keep expanding our testbed to
encompass more natural modes of variation. In this work, we take another step in that direction by
studying the following question:

How well do models generalize to data subpopulations they have not seen during training?
The notion of subpopulation shift this question refers to is quite pervasive. After all, our training
datasets will inevitably fail to perfectly capture the diversity of the real word. Hence, during

deployment, our models are bound to encounter unseen subpopulations—for instance, unexpected
weather conditions in the self-driving car context or different diagnostic setups in medical applications.

OUR CONTRIBUTIONS

The goal of our work is to create large-scale subpopulation shift benchmarks wherein the data
subpopulations present during model training and evaluation differ. These benchmarks aim to

*Equal contribution.
!Code and data available at https: //github.com/MadryLab/BREEDS-Benchmarks.
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assess how effectively models generalize beyond the limited diversity of their training datasets—
e.g., whether models can recognize Dalmatians as “dogs” even when their training data for “dogs”
comprises only Poodles and Terriers. We show how one can simulate such shifts, fairly naturally,
within existing datasets, hence eliminating the need for (and the potential biases introduced by)
crafting synthetic transformations or collecting additional data.

BREEDS benchmarks. The crux of our approach is to leverage existing dataset labels and use them
to identify superclasses—i.e., groups of semantically similar classes. This allows us to construct
classification tasks over such superclasses, and repurpose the original dataset classes to be the
subpopulations of interest. This, in turn, enables us to induce a subpopulation shift by directly making
the subpopulations present in the training and test distributions disjoint. By applying this methodology
to the ImageNet dataset (Deng et al., 2009), we create a suite of subpopulation shift benchmarks of
varying difficulty. This involves modifying the existing ImageNet class hierarchy—WordNet (Miller,
1995)—to ensure that superclasses comprise visually coherent subpopulations. We conduct human
studies to validate that the resulting benchmarks capture meaningful subpopulation shifts.

Model robustness to subpopulation shift. In order to demonstrate the utility of our benchmarks,
we employ them to evaluate the robustness of standard models to subpopulation shift. In general, we
find that model performance drops significantly on the shifted distribution—even when this shift does
not significantly affect humans. Still, models that are more accurate on the original distribution tend
to also be more robust to these subpopulation shifts. Moreover, adapting models to the shifted domain,
by retraining their last layer on this domain, only partially recovers the original model performance.

Impact of robustness interventions. Finally, we examine whether various train-time interventions,
designed to decrease model sensitivity to synthetic data corruptions (e.g., {2-bounded perturbations)
make models more robust to subpopulation shift. We find that many of these methods offer small, yet
non-trivial, improvements along this axis—at times, at the expense of performance on the original
distribution. Often, these improvements become more pronounced after retraining the last layer of
the model on the shifted distribution. Nevertheless, the increase in model robustness to subpopulation
shifts due to these interventions is much smaller than what is observed for other families of input
variations such as data corruptions (Hendrycks & Dietterich, 2019; Ford et al., 2019; Kang et al.,
2019; Taori et al., 2020). This indicates that handling subpopulation shifts, such as those present in
the BREEDS benchmarks, might require a different set of robustness tools.

2 DESIGNING BENCHMARKS FOR DISTRIBUTION SHIFT

When constructing distribution shift benchmarks, the key design choice lies in specifying the rarget
distribution to be used during model evaluation. This distribution is meant to be a realistic variation
of the source distribution, that was used for training. Typically, studies focus on variations due to:

e Data corruptions: The target distribution is obtained by modifying inputs from the source
distribution via a family of transformations that mimic real-world corruptions, as in Fawzi
& Frossard (2015); Fawzi et al. (2016); Engstrom et al. (2019b); Hendrycks & Dietterich
(2019); Ford et al. (2019); Kang et al. (2019); Shankar et al. (2019).

e Differences in data sources: Here, the target distribution is an independent dataset for the
same task (Saenko et al., 2010; Torralba & Efros, 2011; Tommasi & Tuytelaars, 2014; Recht
et al., 2019)—e.g., collected at a different geographic location (Beery et al., 2018), time
frame (Kumar et al., 2020) or user population (Caldas et al., 2018). For instance, this could
involve using PASCAL VOC (Everingham et al., 2010) to evaluate Caltech101-trained
classifiers (Fei-Fei et al., 2006). The goal is to test whether models are overly reliant on the
idiosyncrasies of their training datasets (Ponce et al., 2006; Torralba & Efros, 2011).

o Subpopulation representation: The source and target distributions differ in terms of how
well-represented each subpopulation is. Work in this area typically studies whether models
perform equally well across all subpopulations from the perspective of reliability (Mein-
shausen et al., 2015; Hu et al., 2018; Duchi & Namkoong, 2018; Caldas et al., 2018; Oren
et al., 2019; Sagawa et al., 2020) or algorithmic fairness (Dwork et al., 2012; Kleinberg
et al., 2017; Jurgens et al., 2017; Buolamwini & Gebru, 2018; Hashimoto et al., 2018).
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Figure 1: Illustration of our pipeline to create subpopulation shift benchmarks. Given a dataset,
we define superclasses based on the semantic hierarchy of dataset classes. This allows us to treat
the dataset labels as subpopulation annotations. Then, we construct a BREEDS task of specified
granularity (i.e., depth in the hierarchy) by posing the classification task in terms of superclasses at
that depth and then partitioning their respective subpopulations into the source and target domains.

These variations simulate realistic ways in which the data encountered during deployment can deviate
from training conditions. However, each of the aforementioned benchmarks capture only one facet of
real-world distribution shifts. It is not clear a priori that robustness to any subset of these variations
will necessarily translate to robustness with respect to the rest. Thus, to effectively assess and improve
model robustness, we require a varied suite of distribution shift benchmarks.

3 THE BREEDS METHODOLOGY

In this work, we focus on modeling a pertinent, yet less studied, form of subpopulation shift: one
wherein the target distribution (used for testing) contains subpopulations that are entirely absent from
the source distribution that the model was trained on. To simulate such shifts, we need to precisely
control the data subpopulations present in the source and target data distributions. Our procedure
for doing this comprises two stages that are outlined below—see Figure 1 for an illustration and
Appendix A.2 for pseudocode.

Devising subpopulation structure. Typical datasets do not contain annotations for individual
subpopulations. Since collecting such annotations would be challenging, we take an alternative
approach: we bootstrap the existing dataset labels to simulate subpopulations. That is, we group
semantically similar classes into broader superclasses which, in turn, allows us to re-purpose existing
class labels as the desired subpopulation annotations. Moreover, we can group classes in a hierarchical
manner, obtaining superclasses of different specificity. As we will see in Section 4, such class
hierarchies are already present in large-scale benchmarks (Deng et al., 2009; Kuznetsova et al., 2018).

Simulating subpopulation shifts. Given a set of superclasses, we can define a classification task
over them: the inputs of each superclass correspond to pooling together the inputs of its subclasses
(i.e., the original dataset classes). Within this setup, we can simulate subpopulation shift in a
relatively straightforward manner. Specifically, for each superclass, we split its subclasses into two
random and disjoint sets, and assign one of them to the source and the other to the target domain.
Then, we can evaluate model robustness under subpopulation shift by simply training on the source
domain and testing on the target domain. Note that the classification task remains identical between
domains—both domains contain the same (super)classes but the subpopulations that comprise each
(super)class differ. > Intuitively, this corresponds to using different dog breeds to represent the class
“dog” during training and testing—hence the name of our toolKkit.

This methodology is quite general and can be applied to a variety of setting to simulate realistic
distribution shifts. Moreover, it has a number of additional benefits:

o Flexibility: Different semantic groupings of a fixed set of classes lead to BREEDS tasks of
varying granularity. For instance, by only grouping together classes that are quite similar

Note that this approach can be extended to simulate milder subpopulation shifts where the source and target
distributions overlap but the relative subpopulation frequencies vary, similar to the setting of Oren et al. (2019).
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one can reduce the severity of the subpopulation shift. Alternatively, one can consider broad
superclasses, each having multiple subclasses, resulting in a more challenging benchmark.

e Precise characterization: The exact subpopulation shift between the source and target
domains is known. Since both domains are constructed from the same dataset, the impact
of any external factors (e.g., differences in data collection pipelines) is minimized. Note
that such external factors can significantly impact the difficulty of the task (Ponce et al.,
2006; Torralba & Efros, 2011; Tsipras et al., 2020). In fact, minimizing these effects and
ensuring that the shift between the source and target domain is caused solely by the intended
input variations is one of the major challenges in building distribution shift benchmarks. For
instance, recent work (Engstrom et al., 2020) demonstrates that statistical biases during data
collection can significantly skew the intended target distribution.

e Symmetry: Since subpopulations are split into the source and test domains randomly, we
expect the resulting tasks to have comparable difficulty.

o Reuse of existing datasets: No additional data collection or annotation is required other
than choosing the class grouping. This approach can thus be used to also re-purpose other
existing large-scale datasets—even beyond image recognition—with minimal effort.

4  SIMULATING SUBPOPULATION SHIFTS WITHIN IMAGENET

We now describe how our methodology can be applied to ImageNet (Deng et al., 2009)—specifically,
the ILSVRC2012 subset (Russakovsky et al., 2015)—to create a suite of BREEDS benchmarks.
ImageNet contains a large number of classes, making it particularly well-suited for our purpose.

4.1 UTILIZING THE IMAGENET CLASS HIERARCHY

Recall that creating BREEDS tasks requires grouping together similar classes. For ImageNet, such a
semantic grouping already exists—ImageNet classes are a part of the WordNet hierarchy (Miller,
1995). However, WordNet is not a hierarchy of objects but rather one of word meanings. Thus,
intermediate hierarchy nodes are not always well-suited for object recognition due to:

e Abstract groupings: WordNet nodes often correspond to abstract concepts, e.g., related
to the functionality of an object. Children of such nodes might thus share little visual
similarity—e.g., “umbrella” and “roof” are visually different, despite both being “coverings.”

e Non-uniform categorization: The granularity of object categorization is vastly different
across the WordNet hierarchy—e.g., the subtree rooted at “dog” is 25-times larger than the
one rooted at “cat.” Hence, the depth of a node in this hierarchy does not always reflect the
specificity of the corresponding object category.

e Lack of tree structure: Nodes in WordNet can have multiple parents and thus the resulting
classification task would contain overlapping classes, making it inherently ambiguous.

Due to these issues, we cannot directly use WordNet to identify superclasses that correspond to a
well-calibrated classification task. To illustrate this, we present some of the superclasses that Huh
et al. (2016) constructed by applying clustering algorithms directly to the WordNet hierarchy in
Appendix Table 7. Even putting the issue of overlapping classes aside, a BREEDS task based on these
superclasses would induce a very skewed subpopulation shift across classes—e.g., varying the types
of “bread” is very different that doing the same for different “mammal” species.

To better align the WordNet hierarchy with the task of object recognition in general, and BREEDS
benchmarks in particular, we manually modify it according to the following two principles: (i) nodes
should be grouped together based on their visual characteristics rather than abstract relationships
like functionality, and (ii) nodes of similar specificity should be at the same distance from the root,
irrespective of how detailed their categorization within WordNet is. Details of this procedure along
with the resulting hierarchy are presented in Appendix A.4.
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Figure 3: Sample images from random object categories for the ENTITY-13 and LIVING-17 tasks.
For each task, the top and bottom row correspond to the source and target distributions respectively.

4.2 CREATING BREEDS TASKS

Once the modified version of the WordNet hierarchy is in place, BREEDS tasks can be created in
an automated manner. Specifically, we first choose the desired granularity of the task by specifying
the distance from the root (“entity”) and retrieving all superclasses at that distance in a top-down
manner. Each resulting superclass corresponds to a subtree of our hierarchy, with ImageNet classes
as its leaves. Note that these superclasses are roughly of the same specificity, due to our hierarchy
restructuring process. Then, we randomly sample a fixed number of subclasses for each superclass to
produce a balanced dataset (omitting superclasses with an insufficient number of subclasses). Finally,
as described in Section 3, we randomly split these subclasses into the source and target domain. >

For our analysis, we create four tasks (cf. Table 2) based on different levels/parts of the hierarchy. To
illustrate what the corresponding subpopulation shifts look like, we present (random) image samples
for a subset of the tasks in Figure 3. Note that while we focus on the tasks in Table 2 in our study, our
methodology readily enables us to create other variants of these tasks in an automated manner.

Name Subtree Level Subpopulations Examples
ENTITY-13 “entity” (root) 3 20 “mammal”, “appliance”
ENTITY-30 “entity” (root) 4 8 “fruit”, “carnivore”
LIVING-17 “living thing” 5 4 “ape”, “bear”
NON-LIVING-26 ~ “non-living thing” 5 4 “fence”, “ball”

Table 2: BREEDS benchmarks constructed using ImageNet. Here, “level” indicates the depth of
the superclasses in the class hierarchy (task granularity), and the number of “subpopulations” (per
superclass) is fixed to create balanced datasets. We also construct specialized tasks by focusing on
subtrees in the hierarchy, e.g., only living (LIVING-17) or non-living (NON-LIVING-26) objects.
Datasets naming reflects the root of the subtree and the number of superclasses they contain.

BREEDS benchmarks beyond ImageNet. It is worth nothing that the methodology we described
is not restricted to ImageNet and can be readily applied to other datasets as well. The only requirement
is that we have access to a semantic grouping of the dataset classes, which is the case for many
popular vision datasets—e.g., CIFAR-100 (Krizhevsky, 2009), Pascal-VOC (Everingham et al., 2010),
Openlmages (Kuznetsova et al., 2018), COCO-Stuff (Caesar et al., 2018). Moreover, even when a
class hierarchy is entirely absent, the needed semantic class grouping can be manually constructed
with relatively little effort (proportional to the number of classes, not the number of datapoints).

More broadly, the methodology of utilizing existing dataset annotations to construct data subpop-
ulations goes beyond image classification tasks. In particular, by splitting inputs into a source and
target domain based on some attribute, we can measure how well models generalize along this axis.
Examples would include grouping by brand in Amazon reviews (McAuley et al., 2015), by location
in Berkeley DeepDrive (Yu et al., 2020), and by facial attributes in CelebA (Liu et al., 2015).

3We also consider more benign or adversarial subpopulation splits for these tasks in Appendix C.2.1.
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4.3 CALIBRATING BREEDS BENCHMARKS VIA HUMAN STUDIES

For a distribution shift benchmark to be meaningful, it is essential that the source and target domains
capture the same high-level task—otherwise generalizing from one domain to the other would be
impossible. To ensure that this is the case for the BREEDS task, we assess how significant the resulting
distribution shifts are for human annotators (crowd-sourced via MTurk).

Annotator task. To obtain meaningful performance estimates, it is crucial that annotators perform
the task based only on the visual content of the images, without leveraging prior knowledge. To
achieve this, we design the following annotation task. First, annotators are shown images from the
source domain, grouped by superclass, without being aware of the superclass name (i.e., the grouping
it corresponds to). Then, they are presented with images from the target domain and are asked to
assign each of them to one of the groups. For simplicity, we present two random superclasses at a
time, effectively simulating binary classification. Annotator accuracy can be measured directly as the
fraction of images that they assign to the superclass to which they belong. We perform this experiment
for each of the BREEDS tasks constructed in Section 4.2. For comparison, we repeat this experiment
without subpopulation shift (test images are sampled from the source domain) and for the superclasses
constructed by Huh et al. (2016) using the WordNet hierarchy directly (cf. Appendix A.6).
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Figure 4: Human performance on (binary) BREEDS tasks. Annotators are provided with labeled
images from the source distribution for a pair of (undisclosed) superclasses, and asked to classify
samples from the target domain (‘T”) into one of the two groups. As a baseline we also measure
annotator performance without subpopulation shift (i.e., on test images from the source domain, ‘S’)
and tasks created via the WordNet hierarchy (cf. Appendix A.6). We observe that annotators are fairly
robust to subpopulation shift. Further, they consistently perform better on BREEDS task compared
to those based on WordNet directly—indicating that our modified class hierarchy is indeed better
calibrated for object recognition. (We discuss model performance in Section 5.)

Human performance. We find that, across all tasks, annotators perform well on unseen data from
the source domain, as expected. More importantly, annotators also appear to be quite robust to
subpopulation shift, experiencing only a small accuracy drop between the source and target domains
(cf. Figure 5). This indicates that the source and target domains are indeed perceptually similar
for humans, making these benchmarks suitable for studying model robustness. Finally, across all
benchmarks, annotators perform better on BREEDS tasks, compared to their WordNet equivalents—
even on source domain samples. This indicates that our modified class hierarchy is indeed better
aligned with the underlying visual recognition task.

5 EVALUATING MODEL PERFORMANCE UNDER SUBPOPULATION SHIFT

We can now use our suite of BREEDS tasks as a testbed for assessing model robustness to subpopula-
tion shift as well as gauging the effectiveness of various train-time robustness interventions. Specifics
of the evaluation setup and additional experimental results are provided in Appendices A.7 and C.2.
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5.1 STANDARD TRAINING

We start by evaluating the performance of various model architectures trained in the standard fashion:
empirical risk minimization (ERM) on the source distribution (cf. Appendix A.7.1). While models
perform well on unseen inputs from the domain they are trained on, i.e., they achieve high source
accuracy, their accuracy considerably drops under subpopulation shift—more than 30% in most
cases (cf. Figure 5). At the same time, models that are more accurate on the source domain also
appear to be more robust to subpopulation shift. Specifically, the fraction of source accuracy that is
preserved in the target domain typically increases with source accuracy. (If this were not the case, i.e.,
the model accuracy dropped by a constant fraction under distribution shift, the target accuracy would
match the baseline in Figure 5.) This indicates that, improvements in source accuracy do correlate
with models generalizing better to variations in testing conditions.
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Figure 5: Robustness of standard models to subpopulation shifts. For each task, we plot the accuracy
of various model architectures (denoted by different symbols) on the target domain as a function of
their source accuracy. We find that model accuracy drops significantly between domains (orange vs.
dashed line). Still, models that are more accurate on the source domain seem to also be more robust
(the improvements exceed the baseline (grey) which would correspond to a constant accuracy drop
relative to AlexNet). Moreover, the drop in model performance can be significantly (but not fully)
reduced by retraining the final model layer with data from the target domain (green).

Models vs. Humans. We compare the best performing model (DenseNet-121 in this case) to our
previously obtained human baselines in Figure 4. To allow for a fair comparison, model accuracy is
measured on pairwise superclass classification tasks (cf. Appendix A.7). We observe that models do
exceedingly well on unseen samples from the source domain—significantly outperforming annotators
under our task setup. At the same time, models also appear to be more brittle, performing worse than
humans on the target domain of these binary BREEDS tasks, despite their higher source accuracy.

Adapting models to the target domain. Finally, we focus on the intermediate data representations
learned by these models, to assess how suitable they are for distinguishing classes in the target
domain. To evaluate this, we retrain the last (fully-connected) layer of models trained on the source
domain with data from the target domain. We find that the target accuracy of these models increases
significantly after retraining, indicating that the learned representations indeed generalize to the target
domain. However, we cannot match the accuracy of models trained directly (end-to-end) on the target
domain—see Figure 5—demonstrating that there is significant room for improvement.

5.2 ROBUSTNESS INTERVENTIONS

We now turn our attention to existing methods for decreasing model sensitivity to specific synthetic
perturbations. Our goal is to assess if these methods enhance model robustness to subpopulation shift
too. Concretely, we consider the following families of interventions (cf. Appendix A.7.3 for details):
(i) adversarial training to enhance robustness to worst-case £,-bounded perturbations (in our case
£5) (Madry et al., 2018), (ii) training on a stylized version of ImageNet to encourage models to rely
more on shape rather than texture (Geirhos et al., 2019), and (iii) training with random noise to make
models robust to data corruptions (here, Gaussian and Erase noise (Zhong et al., 2020)).
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Note that these methods can be viewed as ways of imposing a prior on the features that the model
relies on (Heinze-Deml & Meinshausen, 2017; Geirhos et al., 2019; Engstrom et al., 2019a). That is,
by rendering certain features ineffective during training (e.g., texture) they incentivize the model to
utilize alternative ones (e.g., shape). Since different feature families may manifest differently in the
target domain, such interventions could significantly impact model robustness to subpopulation shift.
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Figure 6: Effect of train-time interventions on model robustness to subpopulation shift. We measure
model performance in terms of relative accuracy—i.e., the ratio between its target and source accu-
racies. This allows us to visualize the accuracy-robustness trade-off along with the corresponding
Pareto frontier (dashed). (Also shown are 95% confidence intervals computed via bootstrapping.) We
observe that some interventions do improve model robustness to subpopulation shift—specifically,
erase noise and adversarial training—albeit by a small amount and often at the cost of source accuracy.

Relative accuracy. To measure the impact of these interventions, we will focus on the models’
relative accuracy—the ratio of target accuracy to source accuracy. This metric accounts for the fact
that train-time interventions can impact model accuracy on the source domain itself. By measuring
relative performance, we are able to compare different training methods on an equal footing.

We find that robustness interventions do have a small, yet non-trivial, impact on the robustness of
a model to subpopulation shift—see Figure 6. Specifically, for the case of adversarial training and
erase noise, models often retain a larger fraction of their accuracy on the target domain compared
to standard training, hence lying on the Pareto frontier of a robustness-accuracy trade-off. In fact,
for some of these interventions, the target accuracy is slightly higher than models obtained via
standard training, even without adjusting for their lower source accuracy (raw accuracies are in
Appendix C.2.2). Nonetheless, it is important to note that none of these methods offer significant
subpopulation robustness—relative accuracy is not improved by more than a few percentage points.

Adapting models to the target domain. The impact of these interventions is more pronounced if
we consider the accuracy of models after their last layer is retrained on the target domain (cf. Appendix
Figure 21). In particular, we find that for adversarially robust models, retraining significantly boosts
accuracy on the target domain—e.g., for LIVING-17 it is almost comparable to the initial source
accuracy. This suggests that the feature priors imposed by these interventions incentivize models
to learn representations that generalize to other domains—in line with recent results of Utrera et al.
(2020); Salman et al. (2020). Moreover, we observe that models trained on stylized inputs perform
consistently worse, suggesting that texture might be an important feature for these tasks.

6 RELATED WORK

In Section 2, we surveyed prior work on distribution shift benchmarks. Here, we discuss further the
benchmarks most closely related to ours and defer discussing additional related work to Appendix B.

Our benchmarks can be viewed as an instance of domain generalization. However, we focus on
generalizing between different distributions of real-world images (photographs). This is in contrast
to typical domain generalization benchmarks that focus on generalizing between different stylistic
representations, e.g., from cartoons to drawings. Hence, the only comparable benchmark would be
VLCS (Ghifary et al., 2015), which is however significantly smaller in scale and granularity than our
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benchmarks. In a similar vein, datasets used in federated learning (Caldas et al., 2018) can be viewed
as subpopulation shift benchmarks since the users present during training and testing might differ.
However, to the best of our knowledge, there has been no large-scale vision benchmark in this setting.

Hendrycks & Dietterich (2019), in Appendix G, also (manually) construct a classification task over
superclasses and use ImageNet classes outside of ILSVRC2012 (ImageNet-1k) to measure “subtype
robustness”. (Unfortunately, these classes are no longer publicly available (Yang et al., 2019).)
Compared to their work, we use a general methodology to create a broader suite of benchmarks. Also,
our analysis of architectures and robustness interventions is significantly more extensive.

7 CONCLUSION

In this work, we develop a methodology for constructing large-scale subpopulation shift benchmarks.
The motivation behind our BREEDS benchmarks is to test if models can generalize beyond the limited
diversity of their training datasets—specifically, to novel data subpopulations. A major advantage
of our approach is its generality. It can be applied to any dataset with a meaningful class structure—
including tasks beyond classification (e.g., object detection) and domains other than computer vision
(e.g., natural language processing). Moreover, the subpopulation shifts are induced in a manner that
is both controlled and natural, without altering inputs synthetically or requiring new data.

By applying this approach to the ImageNet dataset, we construct a suite of benchmarks of varying
difficulty, that we then use to assess model robustness and the efficacy of various train-time interven-
tions. Further, we obtain human baselines for these tasks to both put model performance in context
and validate that the corresponding subpopulation shifts do not significantly affect humans.

Overall, our results indicate that existing models still have a long way to go before they can fully
tackle BREEDS subpopulation shifts, even using current robustness interventions. We thus believe that
our methodology provides a useful tool for studying and improving model robustness to distribution
shift—an increasingly pertinent topic for real-world deployments of machine learning models.
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A EXPERIMENTAL SETUP

A.1 DATASET

We perform our analysis on the ILSVRC2012 dataset (Russakovsky et al., 2015). This dataset
contains a thousand classes from the ImageNet dataset (Deng et al., 2009) with an independently
collected validation set. The classes are part of the broader hierarchy, WordNet (Miller, 1995),
through which words are organized based on their semantic meaning. We use this hierarchy as a
starting point of our investigation but modify it as described in Appendix A.5.

For all the BREEDS superclass classification tasks, the train and validation sets are obtained by
aggregating the train and validation sets of the descendant ImageNet classes (i.e., subpopulations).
Specifically, for a given subpopulation, the training and test splits from the original ImageNet dataset
are used as is.

A.2 PIPELINE FORMALIZATION

Recall that our process for evaluating model robustness under subpopulation shift (cf. Section 3) is as
follows. We present the pseudocode for this process in Algorithm 1.

1. Choose a level in the hierarchy and use it to define a set of superclasses by grouping the
corresponding dataset classes together. Note that the original dataset classes form the
subpopulations of the superclasses.

2. For every superclass, select a (random) set of subpopulations (i.e., classes in the original
dataset) and use them to train the model to distinguish between superclasses (we call this
the source domain).

3. For every superclass, use the remaining unseen subpopulations (i.e., classes in the original
dataset) to test how well the model can distinguish between the superclasses (target domain).

Algorithm 1 The BREEDS methodology. Evaluating the training method train on level L of the
hierarchy H—rtestricted to the subtree under root—using N,; subpopulations per superclass.

function createDatasets (H, L, Ny, root) :
source, target <[], []

for node € H do

if node.depth = L and root € node.ancestors and len(node.leaves) > Ng,;, then
y < node.label

subclasses < random.choice(node.leaves, Ngyp)
for (i, ¢) € enumerate(subclasses) do
if i < Ny /2 then
| domain < source
else
| domain < target
for x € c.inputs do

| domain.append((X,y))
return (source, target)

function evaluateMethod (¢train, H, L, Ngup, T00t) :
source, target <— createDatasets (H, L, Ngyp, root)

model + train(source)
correct, total + 0,0
for (x,y) € target do

correct += (model(x) = y)

total +=1
target Accuracy <+

correct
total

return target Accuracy
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A.3 WORDNET ISSUES

As discussed in Section 4, WordNet is a semantic rather than a visual hierarchy. That is, object classes
are arranged based on their meaning rather than their visual appearance. Thus, using intermediate
nodes for a visual object recognition task is not straightforward. To illustrate this, we examine a
sample superclass grouping created by Huh et al. (2016) via automated bottom-up clustering in
Table 7.

Superclass Random ImageNet classes

instrumentality fire engine, basketball, electric fan, wok, thresher, horse cart, harvester,
balloon, racket, can opener, carton, gong, unicycle, toilet seat, carousel,
hard disc, cello, mousetrap, neck brace, barrel

man-made structure beacon, yurt, picket fence, barbershop, fountain, steel arch bridge,
library, cinema, stone wall, worm fence, palace, suspension bridge,
planetarium, monastery, mountain tent, sliding door, dam, bakery,
megalith, pedestal

covering window shade, vestment, running shoe, diaper, sweatshirt, breastplate,
shower curtain, shoji, miniskirt, knee pad, apron, pajama, military
uniform, theater curtain, jersey, football helmet, book jacket, bow tie,
suit, cloak

commodity espresso maker, maillot, iron, bath towel, lab coat, bow tie, washer, jer-
sey, mask, waffle iron, mortarboard, diaper, bolo tie, seat belt, cowboy
hat, wig, knee pad, vacuum, microwave, abaya

organism thunder snake, stingray, grasshopper, barracouta, Newfoundland,
Mexican hairless, Welsh springer spaniel, bluetick, golden retriever,
keeshond, African chameleon, jacamar, water snake, Staffordshire bull-
terrier, Old English sheepdog, pelican, sea lion, wire-haired fox terrier,
flamingo, green mamba

produce spaghetti squash, fig, cardoon, mashed potato, pineapple, zucchini,
broccoli, cauliflower, butternut squash, custard apple, pomegranate,
strawberry, Granny Smith, lemon, head cabbage, artichoke, cucumber,
banana, bell pepper, acorn squash

Table 7: Superclasses constructed by Huh et al. (2016) via bottom-up clustering of WordNet to obtain
36 superclasses—for brevity, we only show superclasses with at least 20 ImageNet classes each.

First, we can notice that these superclasses have vastly different granularities. For instance, “organism”
contains the entire animal kingdom, hence being much broader than “produce”. Moreover, “covering”
is rather abstract class, and hence its subclasses often share little visual similarity (e.g., “window
shade”, “pajama”). Finally, due to the abstract nature of these superclasses, a large number of
subclasses overlap—*“covering” and “commodity” share 49 ImageNet descendants.

A.4 MANUAL CALIBRATION

We manually modify the WordNet hierarchy according to the following two principles so as to make
it better aligned for visual object recognition.

1. Nodes should be grouped together based on their visual characteristics, rather than ab-
stract relationships like functionality—e.g., we eliminate nodes that do not convey visual
information such as “covering”.

2. Nodes of similar specificity should be at the same distance from the root, irrespective of
how detailed their categorization within WordNet is—for instance, we placed “dog” at the
same level as “cat” and “flower”, even though the “dog” sub-tree in WordNet is much larger.
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Finally, we removed a number of ImageNet classes that did not naturally fit into the hierarchy.
Concretely, we modified the WordNet hierarchy by applying the following operations:

e Collapse node: Delete a node from the hierarchy and add edges from each parent to each
child. Allows us to remove redundant or overly specific categorization while preserving the
overall structure.

o [nsert node above: Add a dummy parent to push a node further down the hierarchy. Allows
us to ensure that nodes of similar granularity are at the same level.

e Delete node: Remove a node and all of its edges. Used to remove abstract nodes that do not
reveal visual characteristics.

e Add edge: Connect a node to a parent. Used to reassign the children of nodes deleted by the
operation above.

We manually examined the hierarchy and implemented these actions in order to produce superclasses
that are calibrated for classification. The resulting hierarchy contains nodes of comparable granularity
at the same level. Moreover, as a result of this process, each node ends up having a single parent and
thus the resulting hierarchy is a tree. The full hierarchy can be explored using the notebooks provided
with the hierarchy in the Supplementary Material.

A.5 RESULTING HIERARCHY

The parameters for constructing the BREEDS benchmarks (hierarchy level, number of subclasses, and
tree root) are given in Table 2. The resulting tasks—obtained by sampling disjoint ImageNet classes
(i.e., subpopulations) for the source and target domain—are shown in Tables 8, 9, 10, and 11. Recall
that for each superclass we randomly sample a fixed number of subclasses per superclass to ensure
that the dataset is approximately balanced.
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Superclass

Source

Target

garment

trench coat, abaya, gown, poncho, mil-
itary uniform, jersey, cloak, bikini,
miniskirt, swimming trunks

lab coat, brassiere, hoopskirt, cardigan,
pajama, academic gown, apron, diaper,
sweatshirt, sarong

bird

African grey, bee eater, coucal, Ameri-
can coot, indigo bunting, king penguin,
spoonbill, limpkin, quail, kite

prairie chicken, red-breasted mer-
ganser, albatross, water ouzel, goose,
oystercatcher, American egret, hen,
lorikeet, ruffed grouse

reptile

Gila monster, agama, triceratops,
African chameleon, thunder snake, In-
dian cobra, green snake, mud turtle,
water snake, loggerhead

sidewinder, leatherback turtle, boa con-
strictor, garter snake, terrapin, box
turtle, ringneck snake, rock python,
American chameleon, green lizard

arthropod

rock crab, black and gold garden spi-
der, tiger beetle, black widow, barn spi-
der, leathopper, ground beetle, fiddler
crab, bee, walking stick

cabbage butterfly, admiral, lacewing,
trilobite, sulphur butterfly, cicada, gar-
den spider, leaf beetle, long-horned
beetle, fly

mammal

Siamese cat, ibex, tiger, hippopota-
mus, Norwegian elkhound, dugong,
colobus, Samoyed, Persian cat, Irish
wolfhound

English setter, llama, lesser panda, ar-
madillo, indri, giant schnauzer, pug,
Doberman, American Staffordshire ter-
rier, beagle

accessory

bib, feather boa, stole, plastic bag,
bathing cap, cowboy boot, necklace,
crash helmet, gasmask, maillot

hair slide, umbrella, pickelhaube, mit-
ten, sombrero, shower cap, sock, run-
ning shoe, mortarboard, handkerchief

craft

catamaran, speedboat, fireboat, yawl,
airliner, container ship, liner, trimaran,
space shuttle, aircraft carrier

schooner, gondola, canoe, wreck, war-
plane, balloon, submarine, pirate,
lifeboat, airship

equipment

volleyball, notebook, basketball, hand-
held computer, tripod, projector, bar-
bell, monitor, croquet ball, balance
beam

cassette player, snorkel, horizontal bar,
soccer ball, racket, baseball, joystick,
microphone, tape player, reflex camera

furniture

wardrobe, toilet seat, file, mosquito
net, four-poster, bassinet, chiffonier,
folding chair, fire screen, shoji

studio couch, throne, crib, rocking
chair, dining table, park bench, chest,
window screen, medicine chest, barber
chair

instrument

upright, padlock, lighter, steel drum,
parking meter, cleaver, syringe, aba-
cus, scale, corkscrew

maraca, saltshaker, magnetic compass,
accordion, digital clock, screw, can
opener, odometer, organ, screwdriver

man-made structure

castle, bell cote, fountain, planetarium,
traffic light, breakwater, cliff dwelling,
monastery, prison, water tower

suspension bridge, worm fence, turn-
stile, tile roof, beacon, street sign,
maze, chainlink fence, bakery, drilling
platform

wheeled vehicle

snowplow, trailer truck, racer, shop-
ping cart, unicycle, motor scooter, pas-
senger car, minibus, jeep, recreational
vehicle

jinrikisha, golfcart, tow truck, ambu-
lance, bullet train, fire engine, horse
cart, streetcar, tank, Model T

produce

broccoli, corn, orange, cucumber,
spaghetti squash, butternut squash,
acorn squash, cauliflower, bell pepper,
fig

pomegranate, mushroom, strawberry,
lemon, head cabbage, Granny Smith,
hip, ear, banana, artichoke

Table 8: Superclasses used for the ENTITY-13 task, along with the corresponding subpopulations
that comprise the source and target domains.
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Superclass Source Target

serpentes green mamba, king snake, garter boa constrictor, green snake, ringneck
snake, thunder snake snake, rock python

passerine goldfinch, brambling, water ouzel, magpie, house finch, indigo bunting,
chickadee bulbul

saurian alligator lizard, Gila monster, Ameri- Komodo dragon, African chameleon,
can chameleon, green lizard agama, banded gecko

arachnid harvestman, barn spider, scorpion, wolf spider, black and gold garden spi-

black widow

der, tick, tarantula

aquatic bird

albatross, red-backed sandpiper, crane,
white stork

goose, dowitcher, limpkin, drake

crustacean crayfish, spiny lobster, hermit crab, king crab, rock crab, American lobster,
Dungeness crab fiddler crab

carnivore Italian greyhound, black-footed ferret, flat-coated retriever, otterhound, Shih-
Bedlington terrier, basen;ji Tzu, Boston bull

insect lacewing, fly, grasshopper, sulphur but- long-horned beetle, leathopper, dung
terfly beetle, admiral

ungulate llama, gazelle, zebra, ox hog, hippopotamus, hartebeest,

warthog

primate baboon, howler monkey, Madagascar  siamang, indri, capuchin, patas
cat, chimpanzee

bony fish coho, tench, lionfish, rock beauty sturgeon, puffer, eel, gar

barrier breakwater, picket fence, turnstile, chainlink fence, stone wall, dam,
bannister worm fence

building bookshop, castle, mosque, butcher grocery store, toyshop, palace, beacon

shop

electronic equipment

printer, pay-phone, microphone, com-
puter keyboard

modem, cassette player, monitor, dial
telephone

footwear clog, Loafer, maillot, running shoe sandal, knee pad, cowboy boot, Christ-
mas stocking
garment academic gown, apron, miniskirt, fur jean, vestment, sarong, swimming
coat trunks
headdress pickelhaube, hair slide, shower cap, bathing cap, cowboy hat, bearskin,

bonnet

crash helmet

home appliance

washer, microwave, Crock Pot, vac-
uum

toaster, espresso maker, space heater,
dishwasher

kitchen utensil

measuring cup, cleaver, coffeepot,
spatula

frying pan, cocktail shaker, tray, cal-
dron

measuring instrument

digital watch, analog clock, parking
meter, magnetic compass

barometer, wall clock, hourglass, digi-
tal clock

motor vehicle

limousine, school bus, moped, convert-
ible

trailer truck, beach wagon, police van,
garbage truck

musical instrument

French horn, maraca, grand piano, up-
right

acoustic guitar, organ, electric guitar,
violin

neckwear

feather boa, neck brace, bib, Windsor
tie

necklace, stole, bow tie, bolo tie
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sports equipment

ski, dumbbell, croquet ball, racket

rugby ball, balance beam, horizontal
bar, tennis ball

tableware mixing bowl, water jug, beer glass, wa-  goblet, wine bottle, coffee mug, plate
ter bottle

tool quill, combination lock, padlock, fountain pen, screwdriver, shovel,
screw torch

vessel container ship, lifeboat, aircraft carrier, liner, wreck, catamaran, yawl
trimaran

dish potpie, mashed potato, pizza, cheese- burrito, hot pot, meat loaf, hotdog
burger

vegetable zucchini, cucumber, butternut squash, cauliflower, spaghetti squash, acorn
artichoke squash, cardoon

fruit strawberry, pineapple, jackfruit, buckeye, corn, ear, acorn

Granny Smith

Table 9: Superclasses used for the ENTITY-30 task, along with the corresponding subpopulations
that comprise the source and target domains.
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Superclass Source Target

salamander eft, axolotl common newt, spotted salamander
turtle box turtle, leatherback turtle loggerhead, mud turtle

lizard whiptail, alligator lizard African chameleon, banded gecko
snake night snake, garter snake sea snake, boa constrictor

spider tarantula, black and gold garden spider ~ garden spider, wolf spider

grouse ptarmigan, prairie chicken ruffed grouse, black grouse
parrot macaw, lorikeet African grey, sulphur-crested cockatoo
crab Dungeness crab, fiddler crab rock crab, king crab

dog bloodhound, Pekinese Great Pyrenees, papillon

wolf coyote, red wolf white wolf, timber wolf

fox grey fox, Arctic fox red fox, kit fox

domestic cat

tiger cat, Egyptian cat

Persian cat, Siamese cat

bear sloth bear, American black bear ice bear, brown bear

beetle dung beetle, rhinoceros beetle ground beetle, long-horned beetle
butterfly sulphur butterfly, admiral cabbage butterfly, ringlet

ape gibbon, orangutan gorilla, chimpanzee

monkey marmoset, titi spider monkey, howler monkey

20
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Superclass Source Target

bag plastic bag, purse mailbag, backpack

ball volleyball, punching bag ping-pong ball, soccer ball
boat gondola, trimaran catamaran, canoe

body armor bulletproof vest, breastplate chain mail, cuirass

bottle pop bottle, beer bottle wine bottle, water bottle

bus trolleybus, minibus school bus, recreational vehicle
car racer, Model T police van, ambulance

chair folding chair, throne rocking chair, barber chair
coat lab coat, fur coat kimono, vestment

digital computer

laptop, desktop computer

notebook, hand-held computer

dwelling palace, monastery mobile home, yurt
fence worm fence, chainlink fence stone wall, picket fence
hat bearskin, bonnet sombrero, cowboy hat

keyboard instrument

grand piano, organ

upright, accordion

mercantile establishment

butcher shop, barbershop

shoe shop, grocery store

outbuilding

greenhouse, apiary

barn, boathouse

percussion instrument steel drum, marimba drum, gong

pot teapot, Dutch oven coffeepot, caldron
roof dome, vault thatch, tile roof
ship schooner, pirate aircraft carrier, liner
skirt hoopskirt, miniskirt overskirt, sarong

stringed instrument

electric guitar, banjo

violin, acoustic guitar

timepiece

digital watch, stopwatch

parking meter, digital clock

truck

fire engine, pickup

tractor, forklift

wind instrument

oboe, sax

flute, bassoon

squash

spaghetti squash, acorn squash

zucchini, butternut squash

Table 11: Superclasses used for the NON-LIVING-26 task, along with the corresponding subpopula-
tions that comprise the source and target domains.
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A.6 ANNOTATOR TASK

As described in Section 4.3, the goal of our human studies is to understand whether humans can
classify images into superclasses even without knowing the semantic grouping. Thus, the task
involved showing annotators two groups of images, each sampled from the source domain of a
random superclass. Then, annotators were shown a new set of images from the target domain (or
the source domain in the case of control) and were asked to assign each of them into one of the two
groups. A screenshot of an (random) instance of our annotator task is shown in Figure 12.

Each task contained 20 images from the source domain of each superclass and 12 images for
annotators to classify (the images where rescaled and center-cropped to size 224 x 224 to match the
input size use for model predictions). The two superclasses were randomly permuted at load time.
To ensure good concentration of our accuracy estimates, for every superclass, we performed binary
classification tasks w.r.t. 3 other (randomly chosen) superclasses. Further, we used 3 annotators per
task and annotators were compensated $0.15 per task.

Comparing with the original hierarchy. In order to compare our superclasses with those obtained
by Huh et al. (2016) via WordNet clustering,* we need to define a correspondence between them.
To do so, for each of our tasks, we selected the clustering (either top-down or bottom-up) that
had the closest number of superclasses. Following the terminology from that work, this mapping
is: ENTITY-13 — DOWNUP-36, ENTITY-30 — UPDOWN-127, LIVING-17 — DOWNUP-753
(restricted to “living” nodes), and NON-LIVING-26 — DOWNUP-345 (restricted to “non-living”
nodes).

*nttps://github.com/minyoungg/wnigftl/tree/master/label_sets/hierarchy
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Classify images into one of the following groups

Below you are shown example images from two groups. Your task will be to look at new images and determine the group each of them belongs to.

Group 2

S|

Grp‘1 : Grp 1 Grp2 Grp 1 Grp 2 Grp 1 Grp2 Grp2

Figure 12: Sample MTurk annotation task to obtain human baselines for BREEDS benchmarks.
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A.7 EVALUATING MODEL PERFORMANCE
A.7.1 MODEL ARCHITECTURES AND TRAINING

The model architectures used in our analysis are in Table 13 for which we used standard implemen-
tations from the PyTorch library (https://pytorch.org/docs/stable/torchvision/
models.html). For training, we use a batch size of 128, weight decay of 10~*, and learning
rates listed in Table 13. Models were trained until convergence. On ENTITY-13 and ENTITY-30,
this required a total of 300 epochs, with 10-fold drops in learning rate every 100 epochs, while on
LIVING-17and NON-LIVING-26, models a total of 450 epochs, with 10-fold learning rate drops
every 150 epochs. For adapting models, we retrained the last (fully-connected) layer on the train
split of the target domain, starting from the parameters of the source-trained model. We trained that
layer using SGD with a batch size of 128 for 40,000 steps and chose the best learning rate out of
[0.01,0.1,0.25,0.5,1.0,2.0,3.0,5.0,7.0,8.0,10.0, 11.0, 12.0], based on test accuracy.

Model Learning Rate
alexnet 0.01
vggll 0.01
resnetl8 0.1
resnet34 0.1
resnet50 0.1
densenetl21 0.1

Table 13: Models used in our analysis.

A.7.2 MODEL PAIRWISE ACCURACY

In order to make a fair comparison between the performance of models and human annotators on the
BREEDS tasks, we evaluate model accuracy on pairs of superclasses. On images from that pair, we
determine the model prediction to be the superclass for which the model’s predicted probability is
higher. A prediction is deemed correct if it matches the superclass label for the image. Repeating this
process over random pairs of superclasses allows us to estimate model accuracy on the average-case
binary classification task.

A.7.3 ROBUSTNESS INTERVENTIONS

For model training, we use the hyperparameters provided in Appendix A.7.1. Additional intervention-
specific hyperparameters are listed in Appendix Table 14. Due to computational constraints,
we trained a restricted set of model architectures with robustness interventions—ResNet-18 and
ResNet-50 for adversarial training, and ResNet-18 and ResNet-34 for all others. Adversarial train-
ing was implemented using the robustness library,” while random erasing using the PyTorch
transforms.®

Eps Stepsize #Steps

05 0.4 3 Mean StdDev Probability Scale Ratio
1 0.8 3 0 0.2 0.5 0.02-0.33 03-33
(a) PGD-training (Madry etal.,  (b) Gaussian noise (c) Random erasing
2018)

Table 14: Additional hyperparameters for robustness interventions.

Shttps://github.com/MadryLab/robustness
*https://pytorch.org/docs/stable/torchvision/transforms.html
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B ADDITIONAL RELATED WORK

In Section 2, we provide an overview of prior work that is focused on evaluating model robustness to
distribution shift. In Section 6, we discuss existing benchmarks that are most similar to our work.
Here, we discuss other research direction related to model robustness and generalization.

Distributional robustness. Distribution shifts that are small with respect to some f-divergence
have been studied in prior theoretical work (Ben-Tal et al., 2013; Duchi et al., 2016; Esfahani & Kuhn,
2018; Namkoong & Duchi, 2016). However, this notion of robustness is typically too pessimistic to
capture realistic data variations (Hu et al., 2018). Distributional robustness has also been connected
to causality (Meinshausen, 2018): here, the typical approach is to inject spurious correlations into
the dataset, and assess to what extent models rely on them for their predictions (Heinze-Deml &
Meinshausen, 2017; Arjovsky et al., 2019; Sagawa et al., 2020).

Domain adaptation and transfer learning. The goal here is to adapt models to the target domain
with relatively few samples from it (Ben-David et al., 2007; Saenko et al., 2010; Ganin & Lempitsky,
2015; Courty et al., 2016; Gong et al., 2016; Donahue et al., 2014; Sharif Razavian et al., 2014). In
domain adaptation, the task is the same in both domains, while in transfer learning, the task itself
could vary. In a similar vein, the field of domain generalization aims to generalize to samples from
a different domain (e.g., from ClipArt to photos) by training on a number of explicitly annotated
domains (Muandet et al., 2013; Li et al., 2017; Peng et al., 2019).

Zero-shot learning. Work in this domain focuses on learning to recognize previously unseen
classes (Lampert et al., 2009; Xian et al., 2017), typically described via a semantic embedding (Lam-
pert et al., 2009; Mikolov et al., 2013; Socher et al., 2013; Frome et al., 2013; Romera-Paredes & Torr,
2015). This differs from our setup, where the focus is on generalization to unseen subpopulations for
the same set of classes.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 HUMAN BASELINES FOR BREEDS TASKS

In Section 4.3, we evaluate human performance on binary versions of our BREEDS tasks. Appendix
Figures 15a and 15b show the distribution of annotator accuracy over different pairs of superclasses
for test data sampled from the source and target domains respectively.
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(b) Target domain (with subpopulation shift)

Figure 15: Distribution of annotator accuracy over pairwise superclass classification tasks. We
observe that human annotators consistently perform better on tasks constructed using our modified
ImageNet class hierarchy (i.e., BREEDS) as opposed to those obtained directly from WordNet.
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C.2 MODEL EVALUATION

In Figures 16- 18, we visualize model performance over BREEDS superclasses for different model
architectures. We observe in general that models perform fairly uniformly over classes when the
test data is drawn from the source domain. This indicates that the tasks are well-calibrated—the
various superclasses are of comparable difficulty. At the same time, we see that model robustness to
subpopulation shift, i.e., drop in accuracy on the target domain, varies widely over superclasses. This
could be either due to some superclasses being broader by construction or due to models being more
sensitive to subpopulation shift for some classes.
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Figure 16: Per-class source and target accuracies for AlexNet on BREEDS tasks.
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C.2.1 EFFECT OF DIFFERENT SPLITS

As described in Section 3, to create BREEDS tasks, we first identify a set of relevant superclasses
(at the chosen depth in the hierarchy), and then partition their subpopulations between the source
and target domains. For all the tasks listed in Table 2, the superclasses are balanced—each of them
comprise the same number of subpopulations. To ensure this is the case, the desired number of
subpopulations is chosen among all superclass subpopulations at random. These subpopulations are
then randomly split between the source and target domains.

Instead of randomly partitioning subpopultions (of a given superclass) between the two domains,
we could instead craft partitions to be more/less adversarial as illustrated in Figure 19. Specifically,
we could control how similar the subpopulations in the target domain are to those in the source
domain. For instance, a split would be less adversarial (good) if subpopulations in the source and
target domain share a common parent. On the other hand, we could make a split more adversarial
(bad) by ensuring a greater degree of separation (in terms of distance in the hierarchy) between the
source and target domain subpopulations.
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Figure 19: Different ways to partition the subpopulations of a given superclass into the source and
target domains. Depending on how closely related the subpopulations in the two domain are, we can
construct splits that are more/less adversarial.

We now evaluate model performance under such variations in the nature of the splits themselves—see
Figure 20. As expected, models perform comparably well on test data from the source domain,
independent of the how the subpopulations are partitioned into the two domains. However, model
robustness to subpopulation shift varies considerably based on the nature of the split—it is lowest
for the most adversarially chosen split. Finally, we observe that retraining the linear layer on data
from the target domain recovers a considerable fraction of the accuracy drop in all cases—indicating
that even for the more adversarial splits, models do learn features that transfer well to unknown
subpopulations.

C.2.2 ROBUSTNESS INTERVENTIONS

In Tables 22 and 23, we present the raw accuracies of models trained using various train-time
robustness interventions.
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Figure 20: Model robustness as a function of the nature of subpopulation shift within specific BREEDS
tasks. We vary how the underlying subpopulations of each superclass are split between the source
and target domain—we compare random splits (used in the majority of our analysis), to ones that
are more (bad) or less adversarial (good). When models are tested on samples from the source
domain, they perform equally well across different splits, as one might expect. However, under
subpopulation shift (i.e., on samples from the target domain), model robustness varies drastically,
and is considerably worse when the split is more adversarial. Yet, for all the splits, models have
comparable target accuracy after retraining their final layer.
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Figure 21: Target accuracy of models after they have been retrained (only the final linear layer)
on data from the target domain (with 95% bootstrap confidence intervals). Models trained with
robustness interventions often have higher target accuracy than standard models post retraining.
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ResNet-18
Accuracy (%)
Task € Source Target Target-RT
0 90.91 + 0.73 61.52 +1.23 76.71 £+ 1.09
ENTITY-13 0.5 89.23 + 0.80 61.10 = 1.23 74.92 £ 1.04
1.0 88.45 + 0.81 58.53 £1.26 7335+ 1.11
0 87.88 + 0.89 49.96 + 1.31 73.05 +1.17
ENTITY-30 0.5 85.68 +0.91 48.93 + 1.34 71.34 £ 1.14
1.0 84.23 +0.91 47.66 + 1.23 70.27 £ 1.17
0 92.01 +£1.30 58.21 +£2.32 83.38 + 1.79
LIVING-17 0.5 90.35 £ 1.35 55.79 £ 2.44 83.00 = 1.89
1.0 88.56 + 1.50 53.89 £ 2.36 80.90 + 1.92
0 88.09 + 1.28 41.87 + 2.01 73.52 +1.71
NON-LIVING-26 0.5 86.28 + 1.32 41.02 =191 7241 + 1.71
1.0 85.19 + 1.38 40.23 +1.92 70.61 +£1.73
ResNet-50
Accuracy (%)
Task ¢ Source Target Target-RT
0 91.54 + 0.64 62.48 + 1.16 79.32 +1.01
ENTITY-13 0.5 89.87 + 0.80 63.01 + 1.15 80.14 + 1.00
1.0 89.71 £ 0.74 61.21 £1.22 78.58 + 0.98
0 89.26 + 0.78 51.18 +£1.24 77.60 £ 1.17
ENTITY-30 0.5 87.51 £ 0.88 50.72 +1.28 78.92 + 1.06
1.0 86.63 + 0.88 50.99 + 1.27 78.63 +1.03
0 92.40 + 1.28 58.22 +2.42 85.96 + 1.72
LIVING-17 0.5 90.79 £ 1.55 55.97 + 2.38 87.22 + 1.66
1.0 89.64 + 1.47 54.64 £+ 2.48 85.63 +£1.73
0 88.13 +1.30 41.82 + 1.86 76.58 + 1.69
NON-LIVING-26 0.5 88.20 + 1.20 42.57 £+ 2.03 78.84 £ 1.62
1.0 86.17 £ 1.36 41.69 + 1.96 76.16 + 1.61

Table 22: Effect of adversarial training on model robustness to subpopulation shift. All models
are trained on samples from the source domain—either using standard training (¢ = 0.0) or using
adversarial training. Models are then evaluated in terms of: (a) source accuracy, (b) target accuracy
and (c) target accuracy after retraining the linear layer of the model with data from the target domain.
Confidence intervals (95%) obtained via bootstrapping. Maximum task accuracy over ¢ (taking into

account confidence interval) shown in bold.
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ResNet-18
. Accuracy (%)

Task Intervention Source Target Target-RT
Standard 9091 £0.73 61.52+1.23 76.71 £1.09
ENTITY-13 Erase Noise 91.01 £ 0.68 62.79 +1.27 78.10 + 1.09
Gaussian Noise 77.00 £1.04 4790+1.21 7037 +1.17
Stylized ImageNet 76.85 +1.00 50.18 £1.21 6591 + 1.17
Standard 8788 £0.89 4996 131 73.05+1.17
ENTITY-30 Erase Noise 88.09 £ 0.80 49.98 +1.31 74.27 +£1.15
Gaussian Noise 7412 £1.16 35794+1.21 6562 +1.28
Stylized ImageNet 70.96 + 1.16 37.67 £ 1.21 60.45 + 1.22
Standard 92.01 =1.30 58.21 +2.32 83.38 +1.79
LIVING-17 Erase Noise 93.09 £1.27 59.60 +-2.40 85.12+1.71
Gaussian Noise 80.13 +1.99 46.16 £2.57 77.31 +2.08
Stylized ImageNet 79.21 +1.85 4396 £2.38 72.74 +2.09
Standard 88.09 +1.28 41.87 +£2.01 73.52+1.71
NON-LIVING-26 Erase Noise 88.68 +1.18 43.17 +2.10 73.91 +1.78
Gaussian Noise 78.14 £1.60 35.134+1.94 67.79+1.79
Stylized ImageNet 71.43 +1.73 3056 £1.75 61.83 +1.98

ResNet-34
. Accuracy (%)

Task Intervention Source Target Target-RT
Standard 91.75 £ 0.70 63.45 +1.13 78.07 £+ 1.02
ENTITY-13 Erase Noise 91.76 £ 0.70 62.71 £1.25 7743 +1.06
Gaussian Noise 81.60 £0.97 50.69 +1.28 71.50+1.13
Stylized ImageNet 78.66 0.94 51.05+ 1.30 67.38 = 1.16
Standard 88.81 = 0.81 51.68 + 1.28 75.12 +1.11
ENTITY-30 Erase Noise 89.07 £ 0.82 51.04 £1.27 74.88 = 1.08
Gaussian Noise 7505+ 1.11 3831+126 6747=+1.22
Stylized ImageNet 72.51 £ 1.10 3898 £1.22  61.65 + 1.25
Standard 9283 +1.19 59.74 £227 85.46 +1.83
LIVING-17 Erase Noise 9296 +1.32 61.13 +£230 85.66 = 1.78
Gaussian Noise 84.06 = 1.71 4838 +2.44 78.79 +£1.91
Stylized ImageNet 80.94 +2.00 44.16 £243  72.77 £ 2.18
Standard 89.64 £ 1.17 43.03 +1.99 74.99 + 1.66
NON-LIVING-26 Erase Noise 89.62 131 43.53+1.89 75.04 £1.70
Gaussian Noise 79.26 £ 1.61 34.89+1.91 68.07 £ 1.78
Stylized ImageNet 71.49 £ 1.65 31.10£1.80 62.94 +1.90

Table 23: Effect of various train-time interventions on model robustness to subpopulation shift. All
models are trained on samples from the the source domain. Models are then evaluated in terms of:
(a) source accuracy, (b) target accuracy and (c) target accuracy after retraining the linear layer of
the model with data from the target domain. Confidence intervals (95%) obtained via bootstrapping.
Maximum task accuracy over ¢ (taking into account confidence interval) shown in bold.
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