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Abstract

Transfer learning is a widely-used paradigm in which models pre-trained on stan-
dard datasets can efficiently adapt to downstream tasks. Typically, better pre-
trained models yield better transfer results, suggesting that initial accuracy is a
key aspect of transfer learning performance. In this work, we identify another
such aspect: we find that adversarially robust models, while less accurate, of-
ten perform better than their standard-trained counterparts when used for trans-
fer learning. Specifically, we focus on adversarially robust ImageNet classi-
fiers, and show that they yield improved accuracy on a standard suite of down-
stream classification tasks. Further analysis uncovers more differences between
robust and standard models in the context of transfer learning. Our results are
consistent with (and in fact, add to) recent hypotheses stating that robustness
leads to improved feature representations. Our code and models are available
at https://github.com/Microsoft/robust-models-transfer.

1 Introduction

Deep neural networks currently define state-of-the-art performance across many computer vision
tasks. When large quantities of labeled data and computing resources are available, models perform
well when trained from scratch. However, in many practical settings there is insufficient data or
compute for this approach to be viable. In these cases, transfer learning [Don+14; Sha+14] has
emerged as a simple and efficient way to obtain performant models. Broadly, transfer learning refers
to any machine learning algorithm that leverages information from one (“source”) task to better solve
another (“target”) task. A prototypical transfer learning pipeline in computer vision (and the focus
of our work) starts with a model trained on the ImageNet-1K dataset [Den+09; Rus+15], and then
refines this model for the target task.

Though the exact underpinnings of transfer learning are not fully understood, recent work has
identified factors that make pre-trained ImageNet models amenable to transfer learning. For ex-
ample, [HAE16; Kol+19] investigate the effect of the source dataset; Kornblith, Shlens, and Le
[KSL19] find that pre-trained models with higher ImageNet accuracy also tend to transfer better; Az-
izpour et al. [Azi+15] observe that increasing depth improves transfer more than increasing width.

Our contributions. In this work, we identify another factor that affects transfer learning perfor-
mance: adversarial robustness [Big+13; Sze+14]. We find that despite being less accurate on Ima-
geNet, adversarially robust neural networks match or improve on the transfer performance of their
standard counterparts. We first establish this trend in the “fixed-feature” setting, in which one trains
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Table 1: Transfer learning performance of robust and standard ImageNet models on 12 downstream
classification tasks. For each type of model, we compute maximum accuracy (averaged over three
random trials) over training parameters, architecture, and (for robust models) robustness level ε.
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Fixed- Robust 44.14 50.72 95.53 81.08 92.76 85.08 50.67 70.37 91.84 69.26 92.05 58.75
feature Standard 38.69 48.35 81.31 60.14 90.12 82.78 44.63 70.09 91.90 65.79 91.83 55.92

Full- Robust 86.24 76.55 98.68 89.04 95.62 87.62 91.48 76.93 97.21 89.12 94.53 64.89
network Standard 86.57 75.71 97.63 85.99 94.75 86.55 91.52 75.80 97.04 88.64 94.20 63.72

a linear classifier on top of features extracted from a pre-trained network. Then, we show that this
trend carries forward to the more complex “full-network” transfer setting, in which the pre-trained
model is entirely fine-tuned on the relevant downstream task. We carry out our study on a suite of
image classification tasks (summarized in Table 1), object detection, and instance segmentation.

Our results are consistent with (and in fact, add to) recent hypotheses suggesting that adversarial
robustness leads to improved feature representations [Eng+19a; AL20]. Still, future work is needed
to confirm or refute such hypotheses, and more broadly, to understand what properties of pre-trained
models are important for transfer learning.

2 Motivation: Fixed-Feature Transfer Learning

In one of the most basic variants of transfer learning, one uses the source model as a feature ex-
tractor for the target dataset, then trains a simple (often linear) model on the resulting features. In
our setting, this corresponds to first passing each image in the target dataset through a pre-trained
ImageNet classifier, and then using the outputs from the penultimate layer as the image’s feature
representation. Prior work has demonstrated that applying this “fixed-feature” transfer learning ap-
proach yields accurate classifiers for a variety of vision tasks and often out-performs task-specific
handcrafted features [Sha+14]. However, we still do not completely understand the factors driving
transfer learning performance.

How can we improve transfer learning? Both conventional wisdom and evidence from prior
work [Cha+14; SZ15; KSL19; Hua+17] suggests that accuracy on the source dataset is a strong
indicator of performance on downstream tasks. In particular, Kornblith, Shlens, and Le [KSL19] find
that pre-trained ImageNet models with higher accuracy yield better fixed-feature transfer learning
results.

Still, it is unclear if improving ImageNet accuracy is the only way to improve performance. After
all, the behaviour of fixed-feature transfer is governed by models’ learned representations, which
are not fully described by source-dataset accuracy. These representations are, in turn, controlled
by the priors that we put on them during training. For example, the use of architectural compo-
nents [UVL17], alternative loss functions [Mur+18], and data augmentation [VM01] have all been
found to put distinct priors on the features extracted by classifiers.

The adversarial robustness prior. In this work, we turn our attention to another prior: adversarial
robustness. Adversarial robustness refers to a model’s invariance to small (often imperceptible)
perturbations of its inputs. Robustness is typically induced at training time by replacing the standard
empirical risk minimization objective with a robust optimization objective [Mad+18]:

min
θ

E(x,y)⇠D [L(x, y; θ)] =⇒ min
θ

E(x,y)⇠D



max
kδk2ε

L(x+ δ, y; θ)

�

, (1)

where ε is a hyperparameter governing how invariant the resulting “adversarially robust model”
(more briefly, “robust model”) should be. In short, this objective asks the model to minimize risk on
the training datapoints while also being locally stable in the (radius-ε) neighbourhood around each
of these points. (A more detailed primer on adversarial robustness is given in Appendix E.)

2















of research has studied the features learned by these robust networks and suggested that they improve
upon those learned by standard networks (cf. [Ily+19; Eng+19a; San+19; AL20; KSJ19; KCL19]
and references). On the other hand, prior studies have also identified theoretical and empirical
tradeoffs between standard accuracy and adversarial robustness [Tsi+19; BPR18; Su+18; Rag+19].
At the intersection of robustness and transfer learning, Shafahi et al. [Sha+19] investigate transfer
learning for increasing downstream-task adversarial robustness (rather than downstream accuracy,
as in this work). Aggarwal et al. [Agg+20] find that adversarially trained models perform better at
downstream zero-shot learning tasks and weakly-supervised object localization. Finally, concurrent
to our work, [Utr+20] also study the transfer performance of adversarially robust networks. Our
studies reach similar conclusions and are otherwise complementary: here we study a larger set of
downstream datasets and tasks and analyze the effects of model accuracy, model width, and data
resolution; Utrera et al. [Utr+20] study the effects of training duration, dataset size, and also intro-
duce an influence function-based analysis [KL17] to study the representations of robust networks.
For a detailed discussion of prior work, see Appendix D.

6 Conclusion

In this work, we propose using adversarially robust models for transfer learning. We compare trans-
fer learning performance of robust and standard models on a suite of 12 classification tasks, object
detection, and instance segmentation. We find that adversarial robust neural networks consistently
match or improve upon the performance of their standard counterparts, despite having lower Im-
ageNet accuracy. We also take a closer look at the behavior of adversarially robust networks, and
study the interplay between ImageNet accuracy, model width, robustness, and transfer performance.
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7 Statement of Broader Impact

Our work attempts to improve upon standard techniques within computer vision, and as such comes
with all of the positive and negative broader impacts of the larger field. More specifically, however,
transfer learning allows researchers and practitioners to efficiently train models on their custom
datasets starting from models pretrained on large-scale labeled datasets. In this way, transfer learn-
ing helps those who are compute-limited or otherwise resource-constrained competititive, and thus
makes ML more accessible. We believe that our paper discovers new aspects of pretrained mod-
els that make them effective at transfer learning, therefore pushing our understanding of transfer
learning and helping us to improve its performance.
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