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Abstract

Transfer learning is a widely-used paradigm in which models pre-trained on stan-
dard datasets can efficiently adapt to downstream tasks. Typically, better pre-
trained models yield better transfer results, suggesting that initial accuracy is a
key aspect of transfer learning performance. In this work, we identify another
such aspect: we find that adversarially robust models, while less accurate, of-
ten perform better than their standard-trained counterparts when used for trans-
fer learning. Specifically, we focus on adversarially robust ImageNet classi-
fiers, and show that they yield improved accuracy on a standard suite of down-
stream classification tasks. Further analysis uncovers more differences between
robust and standard models in the context of transfer learning. Our results are
consistent with (and in fact, add to) recent hypotheses stating that robustness
leads to improved feature representations. Our code and models are available
athttps://github.com/Microsoft/robust-models-transfer.

1 Introduction

Deep neural networks currently define state-of-the-art performance across many computer vision
tasks. When large quantities of labeled data and computing resources are available, models perform
well when trained from scratch. However, in many practical settings there is insufficient data or
compute for this approach to be viable. In these cases, transfer learning [Don+14; Sha+14] has
emerged as a simple and efficient way to obtain performant models. Broadly, transfer learning refers
to any machine learning algorithm that leverages information from one (“source”) task to better solve
another (“target”) task. A prototypical transfer learning pipeline in computer vision (and the focus
of our work) starts with a model trained on the ImageNet-1K dataset [Den+09; Rus+15], and then
refines this model for the target task.

Though the exact underpinnings of transfer learning are not fully understood, recent work has
identified factors that make pre-trained ImageNet models amenable to transfer learning. For ex-
ample, [HAE16; Kol+19] investigate the effect of the source dataset; Kornblith, Shlens, and Le
[KSL19] find that pre-trained models with higher ImageNet accuracy also tend to transfer better; Az-
izpour et al. [Azi+15] observe that increasing depth improves transfer more than increasing width.

Our contributions. In this work, we identify another factor that affects transfer learning perfor-
mance: adversarial robustness [Big+13; Sze+14]. We find that despite being less accurate on Ima-
geNet, adversarially robust neural networks match or improve on the transfer performance of their
standard counterparts. We first establish this trend in the “fixed-feature” setting, in which one trains
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Table 1: Transfer learning performance of robust and standard ImageNet models on 12 downstream
classification tasks. For each type of model, we compute maximum accuracy (averaged over three

random trials) over training parameters, architecture, and (for robust models) robustness level ¢.
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a linear classifier on top of features extracted from a pre-trained network. Then, we show that this
trend carries forward to the more complex “full-network™ transfer setting, in which the pre-trained
model is entirely fine-tuned on the relevant downstream task. We carry out our study on a suite of
image classification tasks (summarized in Table 1), object detection, and instance segmentation.

Our results are consistent with (and in fact, add to) recent hypotheses suggesting that adversarial
robustness leads to improved feature representations [Eng+19a; AL20]. Still, future work is needed
to confirm or refute such hypotheses, and more broadly, to understand what properties of pre-trained
models are important for transfer learning.

2 Motivation: Fixed-Feature Transfer Learning

In one of the most basic variants of transfer learning, one uses the source model as a feature ex-
tractor for the target dataset, then trains a simple (often linear) model on the resulting features. In
our setting, this corresponds to first passing each image in the target dataset through a pre-trained
ImageNet classifier, and then using the outputs from the penultimate layer as the image’s feature
representation. Prior work has demonstrated that applying this “fixed-feature” transfer learning ap-
proach yields accurate classifiers for a variety of vision tasks and often out-performs task-specific
handcrafted features [Sha+14]. However, we still do not completely understand the factors driving
transfer learning performance.

How can we improve transfer learning? Both conventional wisdom and evidence from prior
work [Cha+14; SZ15; KSL19; Hua+17] suggests that accuracy on the source dataset is a strong
indicator of performance on downstream tasks. In particular, Kornblith, Shlens, and Le [KSL19] find
that pre-trained ImageNet models with higher accuracy yield better fixed-feature transfer learning
results.

Still, it is unclear if improving ImageNet accuracy is the only way to improve performance. After
all, the behaviour of fixed-feature transfer is governed by models’ learned representations, which
are not fully described by source-dataset accuracy. These representations are, in turn, controlled
by the priors that we put on them during training. For example, the use of architectural compo-
nents [UVL17], alternative loss functions [Mur+18], and data augmentation [VMO1] have all been
found to put distinct priors on the features extracted by classifiers.

The adversarial robustness prior. In this work, we turn our attention to another prior: adversarial
robustness. Adversarial robustness refers to a model’s invariance to small (often imperceptible)
perturbations of its inputs. Robustness is typically induced at training time by replacing the standard
empirical risk minimization objective with a robust optimization objective [Mad+18]:
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where ¢ is a hyperparameter governing how invariant the resulting “adversarially robust model”

(more briefly, “robust model”) should be. In short, this objective asks the model to minimize risk on

the training datapoints while also being locally stable in the (radius-¢) neighbourhood around each

of these points. (A more detailed primer on adversarial robustness is given in Appendix E.)



Adversarial robustness was originally studied in the context of machine learning security [Big+13;
BR18; CW17; Ath+18] as a method for improving models’ resilience to adversarial exam-
ples [GSS15; Mad+18]. However, a recent line of work has studied adversarially robust models in
their own right, casting (1) as a prior on learned feature representations [Eng+19a; Ily+19; Jac+19;
7719].

Should adversarial robustness help fixed-feature transfer? It is, a priori, unclear what to expect
from an “adversarial robustness prior” in terms of transfer learning. On one hand, robustness to
adversarial examples may seem somewhat tangential to transfer performance. In fact, adversarially
robust models are known to be significantly less accurate than their standard counterparts [Tsi+19;
Su+18; Rag+19; Nak19], suggesting that using adversarially robust feature representations should
hurt transfer performance.

On the other hand, recent work has found that the feature representations of robust models carry
several advantages over those of standard models. For example, adversarially robust representa-
tions typically have better-behaved gradients [Tsi+19; San+19; ZZ19; KCL19] and thus facilitate
regularization-free feature visualization [Eng+19a] (cf. Figure 1a). Robust representations are also
approximately invertible [Eng+19a], meaning that unlike for standard models [MV15; DB16], an
image can be approximately reconstructed directly from its robust representation (cf. Figure 1b).
More broadly, Engstrom et al. [Eng+19a] hypothesize that by forcing networks to be invariant to
signals that humans are also invariant to, the robust training objective leads to feature representa-
tions that are more similar to what humans use. This suggests, in turn, that adversarial robustness
might be a desirable prior from the point of view of transfer learning.

(a) Perceptually aligned gradients (b) Representation invertibility

Figure 1: Adversarially robust (top) and standard (bottom) representations: robust representations
allow (a) feature visualization without regularization; (b) approximate image inversion by minimiz-
ing distance in representation space. Figures reproduced from Engstrom et al. [Eng+19a].

Experiments. To resolve these two conflicting hypotheses, we use a test bed of 12 standard trans-
fer learning datasets (all the datasets considered in [KSL19] as well as Caltech-256 [GHPO7]) to
evaluate fixed-feature transfer on standard and adversarially robust ImageNet models. We considere
four ResNet-based architectures (ResNet-{18,50}, WideResNet-50-x{2,4}), and train models with
varying robustness levels ¢ for each architecture (for the full experimental setup, see Appendix A).

In Figure 2, we compare the downstream transfer accuracy of a standard model to that of the best
robust model with the same architecture (grid searching over €). The results indicate that robust
networks consistently extract better features for transfer learning than standard networks—this effect
is most pronounced on Aircraft, CIFAR-10, CIFAR-100, Food, SUN397, and Caltech-101. Due to
computational constraints, we could not train WideResNet-50-4x models at the same number of
robustness levels ¢, so a coarser grid was used. It is thus likely that a finer grid search over € would
further improve results (we discuss the role of € in more detail in Section 4.3).

3 Adversarial Robustness and Full-Network Fine Tuning

A more expensive but often better-performing transfer learning method uses the pre-trained model
as a weight initialization rather than as a feature extractor. In this “full-network™ transfer learning
setting, we update all of the weights of the pre-trained model (via gradient descent) to minimize loss
on the target task. Kornblith, Shlens, and Le [KSL19] find that for standard models, performance
on full-network transfer learning is highly correlated with performance on fixed-feature transfer
learning. Therefore, we might hope that the findings of the last section (i.e., that adversarially
robust models transfer better) also carry over to this setting. To resolve this conjecture, we consider



Aircraft Birdsnap CIFAR-10 CIFAR-100

45 50 80-
T 90-
sl gad - L4 - 11l
s!l l,li,l sI +s- il I ! el " AnENEal “ _Hal NH
DTD

g
>
o Caltech-101 Caltech-256 Cars
5 85- 50-
O go- \ Mod
] i | N N ode
¢ > adid - NN cad I NIl =
qL) 35"‘. e ‘. “ n.. N h. N B.. ‘. E. *. 65- ‘- ‘ .- | Roabnus::‘tr
‘% Flowers Food Pets SUN397
= - B
© 925- 92.5 !
" SN o NI |9°° \I‘Iil unN
' ‘ 60- pmply ‘ 87.5- ‘. 50- NI ‘
A% o ot A ot o o o A o ot
% SO (S % AN x> AN > (@ (WY (I
A @a\\ = e \“@ 0 & @5\\ «*“ = e ‘\N\\ S

Figure 2: Fixed-feature transfer learning results using standard and robust models for the 12 down-
stream image classification tasks considered. Following [KSL19], we record re-weighted accuracy
for the unbalanced datasets, and raw accuracy for the others (cf. Appendix A). Error bars denote
the maximum and minimum error attained over three random trials. A similar plot with ten random
trials is in Appendix F.

three applications of full-network transfer learning: downstream image classification (i.e., the tasks
considered in Section 2), object detection, and instance segmentation.

3.1 Downstream image classification

We first recreate the setup of Section 2: we perform full-network transfer learning to adapt the robust
and non-robust pre-trained ImageNet models to the same set of 12 downstream classification tasks.
The hyperparameters for training were found via grid search (cf. Appendix A). Our findings are
shown in Figure 3—just as in fixed-feature transfer learning, robust models match or improve on
standard models in terms of transfer learning performance.
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Figure 3: Full-network transfer learning results using standard and robust models for the 12 down-
stream image classification tasks considered. Following [KSL19], we record re-weighted accuracy
for the unbalanced datasets, and raw accuracy for the others (cf. Appendix A). Error bars denote
the maximum and minimum error attained over three random trials. A similar plot with ten random
trials is in Appendix F.

3.2 Object detection and instance segmentation

It is standard practice in data-scarce object detection or instance segmentation tasks to initialize
earlier model layers with weights from ImageNet-trained classification networks. We study the
benefits of using robustly trained networks to initialize object detection and instance segmentation
models, and find that adversarially robust networks consistently outperform standard networks.



COCO InstSeg COCO ObjDet VOC ObjDet
L)

o DRSS T o e o | !
< 8- ¥ Mask AP 39.8- ° 53.0—_._'____._____0______.__________:_
,I‘x,, ..... e — e R — [ N e 525- w . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
£>-Robustness Epsilon £,-Robustness Epsilon £>-Robustness Epsilon
Task Box AP Mask AP
Standard Robust Standard Robust
VOC Object Detection 52.80 53.87 — —
COCO Object Detection 39.80 £0.08 40.07£0.10 — —

COCO Instance Segmentation  40.67 £0.06 40.91 £0.15 36.92+0.08 37.08£0.10

Figure 4: AP of instance segmentation and object detection models with backbones initialized with
e-robust models before training. Robust backbones generally lead to better AP, and the best ro-
bust backbone always outperforms the standardly trained backbone for every task. COCO results
averaged over four runs due to computational constraints; = represents standard deviation.

Experimental setup. We evaluate with benchmarks in both object detection (PASCAL Visual
Object Classes (VOC) [Eve+10] and Microsoft COCO [Lin+14]) and instance segmentation (Mi-
crosoft COCO). We train systems using default models and hyperparameter configurations from the
Detectron2 [Wu+19] framework (i.e., we do not perform any additional hyperparameter search).
Appendix C describes further experimental details and more results.

We first study object detection. We train Faster R-CNN FPN [Lin+17] models with varying ResNet-
50 backbone initializations. For VOC, we initialize with one standard network, and twelve adversar-
ially robust networks with different values of €. For COCO, we only train with three adversarially
robust models (due to computational constraints). For instance segmentation, we train Mask R-CNN
FPN models [He+17] while varying ResNet-50 backbone initialization. We train three models using
adversarially robust initializations, and one model from a standardly trained ResNet-50. Figure 4
summarizes our findings: the best robust backbone initializations outperform standard models.

4 Analysis and Discussion

Our results from the previous section indicate that robust models match or improve on the transfer
learning performance of standard ones. In this section, we take a closer look at the similarities and
differences in transfer learning between robust networks and standard networks.

4.1 ImageNet accuracy and transfer performance

In Section 2, we discussed a potential tension between the desirable properties of robust network
representations (which we conjectured would improve transfer performance) and the decreased ac-
curacy of the corresponding models (which, as prior work has established, should hurt transfer
performance). We hypothesize that robustness and accuracy have counteracting yet separate ef-
fects: that is, higher accuracy improves transfer learning for a fixed level of robustness, and higher
robustness improves transfer learning for a fixed level of accuracy.

To test this hypothesis, we first study the relationship between ImageNet accuracy and transfer
accuracy for each of the robust models that we trained. Under our hypothesis, we should expect
to see a deviation from the direct linear accuracy-transfer relation observed by [KSL19], due to the
confounding factor of varying robustness. The results (cf. Figure 5; similar results for full-network
transfer in Appendix F) support this. Indeed, we find that the previously observed linear relationship
between accuracy and transfer performance is often violated once robustness aspect comes into play.

In even more direct support of our hypothesis (i.e., that robustness and ImageNet accuracy have
opposing yet separate effects on transfer), we find that when the robustness level is held fixed, the
accuracy-transfer correlation observed by prior works for standard models actually holds for robust
models too. Specifically, we train highly robust (¢ = 3)—and thus less accurate—models with
six different architectures, and compared ImageNet accuracy against transfer learning performance.
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Figure 5: Fixed-feature transfer accuracies of standard and robust ImageNet models to various
image classification datasets. The linear relationship between ImageNet and transfer accuracies
does not hold.

Table 2: Source (ImageNet) and target (CIFAR-10) accuracies, fixing robustness (¢) but varying
architecture. When robustness is controlled for, ImageNet accuracy is highly predictive of transfer
performance. Similar trends for other datasets are shown in Appendix F.

Architecture (see details in Appendix A.1)

Robustness  Dataset A B C D E F R?
Std (= = 0) ImageNet 77.37 7732 73.66 6526 64.25 60.97 —
€= CIFAR-10 97.84 9747 96.08 9586 9582 9555 0.79
Adv (e = 3) ImageNet 66.12 6592 56.78 50.05 42.87 41.03 —
- CIFAR-10 98.67 9822 9727 9691 96.23 9599 0.97

Table 2 shows that for these models improving ImageNet accuracy improves transfer performance
at around the same rate as (and with higher R? correlation than) standard models.

These observations suggest that transfer learning performance can be further improved by apply-
ing known techniques that increase the accuracy of robust models (e.g. [BGH19; Car+19]). More
broadly, our findings also indicate that accuracy is not a sufficient measure of feature quality or
versatility. Understanding why robust networks transfer particularly well remains an open problem,
likely relating to prior work that analyses the features these networks use [Eng+19a; Sha+19; AL20].

4.2 Robust models improve with width

Our experiments also reveal a contrast between robust and standard models in how their transfer per-
formance scales with model width. Azizpour et al. [Azi+15], find that although increasing network



depth improves transfer performance, increasing width hurts it. Our results corroborate this trend
for standard networks, but indicate that it does not hold for robust networks, at least in the regime of
widths tested. Indeed, Figure 6 plots results for the three widths of ResNet-50 studied here (x1, x2,
and x4), along with a ResNet-18 for reference: as width increases, transfer performance plateaus
and decreases for standard models, but continues to steadily grow for robust models. This suggests
that scaling network width may further increase the transfer performance gain of robust networks
over the standard ones. (This increase comes, however, at a higher computational cost.)
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Figure 6: Varying width and model robustness while transfer learning from ImageNet to various
datasets. Generally, as width increases, transfer learning accuracies of standard models generally
plateau or level off while those of robust models steadily increase. More values of ¢ are in Ap-
pendix F.

4.3 Optimal robustness levels for downstream tasks

We observe that although the best robust models often outperform the best standard models, the op-
timal choice of robustness parameter € varies widely between datasets. For example, when transfer-
ring to CIFAR-10 and CIFAR-100, the optimal ¢ values were 3.0 and 1.0, respectively. In contrast,
smaller values of € (smaller by an order of magnitude) tend to work better for the rest of the datasets.

One possible explanation for this variability in the optimal choice of € might relate to dataset gran-
ularity. We hypothesize that on datasets where leveraging finer-grained features are necessary (i.e.,
where there is less norm-separation between classes in the input space), the most effective values of
¢ will be much smaller than for a dataset where leveraging more coarse-grained features suffices. To
illustrate this, consider a binary classification task consisting of image-label pairs (x, y), where the
correct class for an image y € {0, 1} is determined by a single pixel, i.e., 29,0 = ¢ - y, and z;; =0,
otherwise. We would expect transferring a standard model onto this dataset to yield perfect accuracy
regardless of ¢, since the dataset is perfectly separable. On the other hand, a robust model is trained
to be invariant to perturbations of norm e—thus, if § < ¢, the dataset will not appear separable to
the standard model and so we expect transfer to be less successful. So, the smaller the § (i.e., the
larger the “fine grained-ness” of the dataset), the smaller the € must be for successful transfer.

Unifying dataset scale. We now present evidence in support of our above hypothesis. Although
we lack a quantitative notion of granularity (in reality, features are not simply singular pixels), we
consider image resolution as a crude proxy. Since we scale target datasets to match ImageNet dimen-
sions, each pixel in a low-resolution dataset (e.g., CIFAR-10) image translates into several pixels in
transfer, thus inflating datasets’ separability. Drawing from this observation, we attempt to calibrate
the granularities of the 12 image classification datasets used in this work, by first downscaling all
the images to the size of CIFAR-10 (32 x 32), and then upscaling them to ImageNet size once more.
We then repeat the fixed-feature regression experiments from prior sections, plotting the results in
Figure 7 (similar results for full-network transfer are presented in Appendix F). After controlling
for original dataset dimension, the datasets’ epsilon vs. transfer accuracy curves all behave almost
identically to CIFAR-10 and CIFAR-100 ones. Note that while this experimental data supports our
hypothesis, we do not take the evidence as an ultimate one and further exploration is needed to reach
definitive conclusions.
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Figure 7: Fixed-feature transfer accuracies of various datasets that are down-scaled to 32 x 32 before
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closely aligned, unlike those of Figure 5, which illustrates the same experiment without downscaling.

4.4 Comparing adversarial robustness to texture robustness
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Figure 8: We compare standard, stylized and robust ImageNet models on standard transfer tasks

(and to stylized ImageNet).

We now investigate the effects of adversarial robustness on transfer learning performance in com-
parison to other invariances commonly imposed on deep neural networks. Specifically, we consider
texture-invariant [Gei+19] models, i.e., models trained on the texture-randomizing Stylized Ima-
geNet (SIN) [Gei+19] dataset. Figure 8b shows that transfer learning from adversarially robust
models outperforms transfer learning from texture-invariant models on all considered datasets.

Finally, we use the SIN dataset to further re-inforce the benefits conferred by adversarial robustness.
Figure 8a top shows that robust models outperform standard imagenet models when evaluated (top)
or fine-tuned (bottom) on Stylized-ImageNet.

5 Related Work

A number of works study transfer learning with CNNs [Don+14; Cha+14; Sha+14; Azi+15]. In-
deed, transfer learning has been studied in varied domains including medical imaging [MGM 18],
language modeling [CK 18], and various object detection and segmentation related tasks [Ren+15;
Dai+16; Hua+17; Che+17]. In terms of methods, others [AGM14; Cha+14; Gir+14; Yos+14;
Azi+15; LRM15; HAE16; Chu+16] show that fine-tuning typically outperforms frozen feature-
based methods. As discussed throughout this paper, several prior works [Azi+15; HAE16; KSL19;
Zam+18; Kol+19; Sun+17; Mah+18; Yos+14] have investigated factors improving or otherwise af-
fecting transfer learning performance. Recently proposed methods have achieved state-of-the-art
performance on downstream tasks by scaling up transfer learning techniques [Hua+18; Kol+19].

On the adversarial robustness front, many works—both empirical (e.g., [Mad+18; Miy+18; BGH19;
Zha+19]) and certified (e.g., [Lec+19; Wen+18; WK18; RSL18; CRK19; Sal+19; Yan+20])—
significantly increase model resilience to adversarial examples [Big+13; Sze+14]. A growing body



of research has studied the features learned by these robust networks and suggested that they improve
upon those learned by standard networks (cf. [Ily+19; Eng+19a; San+19; AL20; KSJ19; KCL19]
and references). On the other hand, prior studies have also identified theoretical and empirical
tradeoffs between standard accuracy and adversarial robustness [Tsi+19; BPR18; Su+18; Rag+19].
At the intersection of robustness and transfer learning, Shafahi et al. [Sha+19] investigate transfer
learning for increasing downstream-task adversarial robustness (rather than downstream accuracy,
as in this work). Aggarwal et al. [Agg+20] find that adversarially trained models perform better at
downstream zero-shot learning tasks and weakly-supervised object localization. Finally, concurrent
to our work, [Utr+20] also study the transfer performance of adversarially robust networks. Our
studies reach similar conclusions and are otherwise complementary: here we study a larger set of
downstream datasets and tasks and analyze the effects of model accuracy, model width, and data
resolution; Utrera et al. [Utr+20] study the effects of training duration, dataset size, and also intro-
duce an influence function-based analysis [KL17] to study the representations of robust networks.
For a detailed discussion of prior work, see Appendix D.

6 Conclusion

In this work, we propose using adversarially robust models for transfer learning. We compare trans-
fer learning performance of robust and standard models on a suite of 12 classification tasks, object
detection, and instance segmentation. We find that adversarial robust neural networks consistently
match or improve upon the performance of their standard counterparts, despite having lower Im-
ageNet accuracy. We also take a closer look at the behavior of adversarially robust networks, and
study the interplay between ImageNet accuracy, model width, robustness, and transfer performance.
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7 Statement of Broader Impact

Our work attempts to improve upon standard techniques within computer vision, and as such comes
with all of the positive and negative broader impacts of the larger field. More specifically, however,
transfer learning allows researchers and practitioners to efficiently train models on their custom
datasets starting from models pretrained on large-scale labeled datasets. In this way, transfer learn-
ing helps those who are compute-limited or otherwise resource-constrained competititive, and thus
makes ML more accessible. We believe that our paper discovers new aspects of pretrained mod-
els that make them effective at transfer learning, therefore pushing our understanding of transfer
learning and helping us to improve its performance.
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