Trace Reconstruction:
Generalized and Parameterized

Akshay Krishnamurthy, Arya Mazumdar Senior Member, IEEE, Andrew McGregor, Soumyabrata Pal

Abstract—In the beautifully simple-to-state problem of trace
reconstruction, the goal is to reconstruct an unknown binary
string = given random “traces” of x where each trace is generated
by deleting each coordinate of = independently with probability
p < 1. The problem is well studied both when the unknown
string is arbitrary and when it is chosen uniformly at random.
For both settings, there is still an exponential gap between upper
and lower sample complexity bounds and our understanding
of the problem is still surprisingly limited. In this paper, we
consider natural parameterizations and generalizations of this
problem in an effort to attain a deeper and more comprehensive
understanding. Perhaps our most surprising results are:

1) We prove that exp(O(n'/*\/logn)) traces suffice for recon-
structing arbitrary matrices. In the matrix version of the
problem, each row and column of an unknown /1 X \/n
matrix is deleted independently with probability p. Our
results contrasts with the best known results for sequence
reconstruction where the best known upper bound is
exp(O(n'/?)).

2) An optimal result for random matrix reconstruction: we
show that ©(logn) traces are necessary and sufficient.
This is in contrast to the problem for random sequences
where there is a super-logarithmic lower bound and the
best known upper bound is exp(O(log'/® n)).

3) We show that exp(O(k*/31log?/® n)) traces suffice to re-
construct k-sparse strings, providing an improvement over
the best known sequence reconstruction results when
k = o(n/log®n).

4) We show that poly(n) traces suffice if x is k-sparse and we
additionally have a “separation” promise, specifically that
the indices of 1’s in z all differ by Q(klogn).

I. INTRODUCTION

V. Levenshtein in [1] asked the following combinatorial
question regarding reconstruction of a sequence from its sub-
sequences: how many subsequences of a particular length are
necessary and sufficient to reconstruct the original sequence?
He followed up with [2] and [3] where upper and lower bounds
were provided for different variations on the problem, along
with efficient reconstruction algorithms. A similar question
was studied in [4]: to find the minimum value of ¢ such that
we can reconstruct any binary sequence provided we are given
all subsequences of length ¢. In his paper [2], Levenshtein also
introduced the probabilistic version of the problem for discrete

Akshay Krishnamurthy is with Microsoft Research, New York.
Arya Mazumdar is with University of California, San Diego. An-
drew McGregor and Soumyabrata Pall are with College of Information
and Computer Sciences, University of Massachusetts, Amherst. Emails:
{akshay, arya, mcgregor, spal}@cs.umass.edu. This work was
supported in part by the National Science Foundation under CCF1642658,
1637536, 1763618, 1934846, 1909046 and 1908849. Part of this work was
presented in the European Symposium of Algorithms, 2019.

memoryless channels, stopping just short of introducing the
trace reconstruction problem.

In the trace reconstruction problem, first proposed by Batu
et al. [5], the goal is to reconstruct an unknown string
x € {0,1}" given a set of random subsequences of x.
Each subsequence, or “trace”, is generated by passing x
through the deletion channel in which each entry of x is
deleted independently with probability p. The locations of
the deletions are not known; if they were, the channel would
be an erasure channel. The central question is to find how
many traces are required to exactly reconstruct x with high
probability.

This intriguing problem has attracted significant attention
from a large number of researchers [5]-[16]. In a recent
breakthrough, De et al. [13] and Nazarov and Peres [12]
independently showed that exp(O((n/q)'/?)) traces suffice
where ¢ = 1 — p. This bound is achieved by a mean-based
algorithm, which means that the only information used is
the fraction of traces that have a 1 in each position. While
exp(O((n/q)'/?)) is known to be optimal amongst mean-
based algorithms, the best algorithm-independent lower bound
is the much weaker Q(n®/*/logn) [17].

Many variants of the problem have also been considered
including: (1) larger alphabets and (2) an average case analysis
where 2 is drawn uniformly from {0, 1}". Larger alphabets
are only easier than the binary case, since we can encode
the alphabet in binary, e.g., by mapping a single particular
character to 1 and the rest to 0. We can then solve the binary
problem and subsequently, repeat the process for all characters
to reconstruct the entire string. In the average case analysis, the
state-of-the-art result is that exp(O(log'/3(n))) traces suffice!,
whereas Q(log®/* n/v/log log n) traces are necessary [9], [11],
[17]. Very recently, and concurrent with our work, other
variants have been studied including a) where the bits of x
are associated with nodes of a tree whose topology determines
the distribution of traces generated [15] and b) where x is a
codeword from a code with o(n) redundancy [16].

In order to develop a deeper understanding of this intrigu-
ing problem, we consider fine-grained parameterization and
structured generalizations of trace reconstruction. We prove
several new results for these variations that shed new light on
the problem. Moreover, in studying these settings, we refine
existing tools and introduce new techniques that we believe
may be helpful in closing the gaps in the fully general problem.

A. Our Results

!p is assumed to be constant in that work.

In all our results below, we have used the term with high
probability to imply that the statement holds with probability
at least 1 — o(1) where o(1) is a term asymptotically going to
0 as the size of the input (typically the length of the string,
n) grows.

1) Parametrizations: We begin by considering parameteri-
zations of the trace reconstruction problem. Given the impor-
tant role that sparsity plays in other reconstruction problems
(see, e.g., Gilbert and Indyk [18]), we first study the recovery
of sparse strings. Here we prove the following result.

Theorem 1. Let ¢ = 1 — p be the retention probability and
assume that ¢ = Q(k=/21log"?n). If x € {0,1}" has at
most k non-zeros, exp(O((k/q)'/310g*® n)) traces suffice to
recover x exactly, with high probability.

As some points of comparison, note that there is a trivial
exp(O(k/q+logn)) upper bound, which our result improves
on with a polynomially better dependence on k/q in the
exponent. The trivial bound is obtained by getting enough
samples so that it is possible to obtain poly(n) samples where
none of the 1s are deleted. The best known result for the
general case is exp(O((n/q)'/?)) [12], [13] and our result
is a strict improvement when k = o(n/log?n). Note that
since we have no restrictions on k in the statement, improving
upon exp(O((k/q)/?)) would imply an improved bound in
the general setting.

Somewhat surprisingly, our actual result is considerably
stronger (See Corollary 7 for a precise statement). We also
obtain exp(O((k/q)*/?1og?/® n)) sample complexity in an
asymmetric deletion channel, where each O is deleted with
probability extremely close to 1, but each 1 is deleted with
probability p = 1 — g. With such a channel, all but a
vanishingly small fraction of the traces contain only 1s, yet
we are still able to exactly identify the location of every O.
Since we can accommodate k = O(n) this result also applies
to the general case with an asymmetric channel, yielding
improvements over De et al. [13] and Nazarov and Peres [12].

We elaborate more on our techniques in the next section,
but the result is obtained by establishing a connection between
trace reconstruction and learning binomial mixtures. There is
a large body of work devoted to learning mixtures [19]-[28]
where it is common to assume that the mixture components
are well-separated. In our context, separation corresponds to a
promise that each pair of 1s in the original string is separated
by a O-run of a certain length. Our second result concerns
strings with a separation promise.

Theorem 2. If x has at most k 1s and each 1 is separated
by 0-run of length Q(klogn), then, for any constant deletion
probability p, poly(n) traces suffice to recover x with high
probability.

Note that reconstruction with poly(n) traces is straightfor-
ward if every 1 is separated by a 0-run of length Q(1/nlogn);
the basic idea is that we can identify which 1s in a collection
of traces correspond to the same 1 in the original sequence
and then we can use the indices of these 1s in their respective
traces to infer the index of the 1 in the original string.
However, reducing to Q(klogn) separation is rather involved

and is perhaps the most technically challenging result in this
paper.

Here as well, we actually obtain a slightly stronger result.
Instead of parameterizing by the sparsity and the separation,
we instead parameterize by the number of runs, and the run
lengths, where a run is a contiguous sequence of the same
character. We require that each O-run has length Q(rlogn),
where 7 is the total number of runs. Note that this parameter-
ization yields a stronger result since r is at most 2k + 1 if the
string is k sparse, but it can be much smaller, for example if
the 1-runs are very long. On the other hand, the best lower
bound, which is Q(n®/*/logn) [17], considers strings with
Q(n) runs and run length O(1).

Using the general approach used to prove Theorem 2, we
can also prove an average case reconstruction result for sparse
strings: poly(n) traces suffice if each xz; ~ Ber(n) where
n < ¢/v/nlogn for some sufficiently small c¢. As mentioned,
above if n = 1/2, it was already known that a sub-polynomial
number of traces sufficed for reconstruction. However, for
random strings sparsity is not necessarily helpful. In fact, if
n = 1/n it is relatively straightforward to argue that poly(n)
traces are necessary since with constant probability x has the
form

x=200...00100...00
——— N—_——
>n/4 >n/4

and identifying the position of the 1 requires (n) traces.

As our last parametrization, we consider a sparse testing
problem. We specifically consider testing whether the true
string is = or y, with the promise that the Hamming distance
between x and y, A(x,y), is at most 2k. This question is
naturally related to sparse reconstruction, since the difference
sequence v —y € {—1,0,1}™ is 2k sparse, although of course
neither string may be sparse on its own. Here we obtain the
following result.

Theorem 3. For any pair x,y € {0, 1}"™ with A(z,y) < 2k,
exp(O(klogn)) traces from the deletion channel with p <
1 — k/n suffice to distinguish between x and y with high
probability.

2) Generalizations: Turning to generalizations, we consider
a natural multivariate version of the trace reconstruction prob-
lem, which we call matrix reconstruction. Here we receive
matrix traces of an unknown binary matrix X € {0, 1}vV**V7,
where each matrix trace is obtained by deleting each row
and each column with probability p, independently. Here
the deletion channel is much more structured, as there are
only 2y/n random bits, rather than n in the sequence case.
Our results show that we can exploit this structure to obtain
improved sample complexity guarantees.

In the worst case, we prove the following theorem.

Theorem 4. For the matrix deletion channel with deletion
probability p,

exp(O(n/*\/plogn/q))

traces sufice to recover an arbitrary matrix X € {0,1}V7*vn
with high probability.

While no existing results are directly comparable, it is
possible to obtain exp(O(n'/3logn)) sample complexity via
a combinatorial result due to Kds et al. [29]. This agrees
with the results from the sequence case, but is obtained
using very different techniques. Additionally, our proof is
constructive, and the algorithm is actually mean-based, so the
only information it requires are estimates of the probabilities
that each received entry is 1. As we mentioned, for the
sequence case, both Nazarov and Peres [12] and De et al. [13]
prove a exp(€2(n'/3)) lower bound for mean-based algorithms.
Thus, our result provides a strict separation between matrix
and sequence reconstruction, at least from the perspective of
mean-based approaches.

Lastly, we consider the random matrix case, where every
entry of X is drawn iid from Ber(1/2). Here we show that
O(logn) traces are sufficient.

Theorem 5. For any constant deletion probability p <
1, O(logn) traces suffice to reconstruct a random X €
{0, 1}V™*V"™ \ith high probability over the randomness in
X and the channel.

This result is optimal, since with o(logn) traces, there
is reasonable probability that a row/column will be deleted
from all traces, at which point recovering this row/column
is impossible. The result should be contrasted with the
analogous results in the sequence case. For sequences, the
best results for random strings are exp(O(log!/®n)) [9] and
Q(log”* n/y/loglogn) [17]. In light of the lower bound for
sequences, it is perhaps surprising that matrix reconstruction
admits O(logn) sample complexity.

In Section VIII, we show that it is possible to extend
both matrix reconstruction results to tensors in a reasonably
straightforward way.

B. Our Techniques

To prove our results, we introduce several new techniques
in addition to refining and extending many existing ideas in
prior trace reconstruction results.

Theorem 1 is proved via a reduction from trace recon-
struction to learning the parameters of a mixture of binomial
distributions. Surprisingly, this natural connection does not
seem to have been observed in the earlier literature. We then
use a generalization of a complex-analytic approach introduced
by De et al. [13] and Nazarov and Peres [12] to prove a bound
on the sample complexity of learning a binomial mixture. This
generalization is to move beyond the analysis of Littlewood
polynomials, i.e., polynomials with {—1,0,1} coefficients,
to the case where coefficients have bounded precision. The
generalization is not difficult. This is our simplest result to
prove but we consider the final result to be revealing as it
shows that sparsity plays a more important role than length in
the complexity of trace reconstruction.

Our most technically involved result is Theorem 2. This
is proved via an algorithm that constructs a hierarchical
clustering of the individual 1s in all received traces according
to their corresponding position in the original string. This
clustering step requires a careful recursion, where in each step

we ensure no false negatives (two 1s from the same origin are
always clustered together) but we have many false positives,
which we successively reduce. At the bottom of the recursion,
we can identify a large fraction of 1s from each 1 in the
original string. However, as the recursion eliminates many of
the 1s, simply averaging the positions of the surviving fraction
leads to a biased estimate. To resolve this, we introduce a de-
biasing step which eliminates even more 1s, but ensures the
survivors are unbiased, so that we can accurately estimate the
location of each 1 in the original string. The initial recursion
has L = loglogn levels, which is critical since the debiasing
step involves conditioning on the presence of 2 1s in a trace,
which only happens with probability 22" =1 /n.

Theorem 3 leverages combinatorial arguments about k-
decks (the multiset of subsequences of a string) due to
Krasikov and Roditty [4]. The result demonstrates the utility
of these combinatorial tools in trace reconstruction. As further
evidence for the utility of combinatorial tools, the connection
to k-decks was also used by Ban et al. [30] in independent
concurrent work on the deletion channel.

For Theorem 4, we return to the complex-analytic approach
and extend the Littlewood polynomial argument to multivariate
polynomials. Since the unknown matrices are \/n X \/n, we
can use a natural bivariate polynomial of degree O(+/n), which
yields the improvement. However, the result of Borwein and
Erdélyi [31] used in previous work on trace reconstruction
applies only to univariate polynomials. Our key technical result
is a generalization of their result to accommodate bivariate
Littlewood polynomials, which we then use in a statistical test
to identify the unknown matrix.

For Theorem 5, using an averaging argument and exploiting
randomness in the original matrix, we construct a statistical
test to determine if two rows (or columns) from two different
traces correspond to the same row (column) in the original
string. We show that this test succeeds with overwhelming
probability, which lets us align the rows and columns in all
traces. Once aligned, we know which rows/columns were
deleted from each trace, so we can simply read off the original
matrix X.

Notation: Throughout, n is the length of the binary string
being reconstructed, ng is the number of Os, k is the number
of 1s, i.e., the sparsity or weight. For matrices, n is the total
number of entries, and we focus on square /1 X y/n matrices.
For most of our results, we assume that n,ng, k are known
since, if not, they can easily be estimated using a polynomial
number of traces. Let p denote the deletion probability when
the 1s and Os are deleted with the same probability. We also
study a channel where the 1s and Os are deleted with different
probabilities; in this case, pg is the deletion probability of
a 0 and p; is the deletion probability of a 1. We refer to
the corresponding channel as the (pg,p;)-Deletion Channel
or the asymmetric deletion channel. It will also be convenient
to define ¢ = 1 —p,q0o = 1 —pg and ¢1 = 1 — p; as the
corresponding retention probabilities. Throughout, m denotes
the number of traces. For a natural number w we use the
notation [w] = {1,...,w}.

II. SPARSITY AND LEARNING BINOMIAL MIXTURES

We begin with the sparse trace reconstruction problem,
where we assume that the unknown string = has at most
k 1s. Our analysis for this setting is based on a simple
reduction from trace reconstruction to learning a mixture of
binomial distributions, followed by a new sample complexity
guarantee for the latter problem. This approach yields two
new results: first, we obtain an exp(O((k/q1)*/?log¥?n))
sample complexity bound for sparse trace reconstruction, and
second, we show that this guarantee applies even if the deletion
probability for Os is very close to 1.

To establish our results, we introduce a slightly more
challenging channel which we refer to as the Austere Deletion
Channel. The bulk of the proof analyzes this channel, and we
obtain results for the (pg, p1) channel via a simple reduction.

Theorem 6 (Austere Deletion Channel Trace Reconstruction).
In the Austere Deletion Channel, all but exactly one 0 are
deleted (the choice of which 0 to retain is made uniformly at
random) and each 1 is deleted with probability p,. For such
a channel,

m = exp(O((k/q1)"/® log?® n))

traces suffice for sparse trace reconstruction with high prob-
ability where 1 = 1 — py, provided ¢ = Q(\/k~'logn).

We will prove this result shortly, but we first derive our
main result for this section as a simple corollary.

Corollary 7 (Deletion Channel Trace Reconstruction). For the
(po, p1)-deletion channel,

m = g5 ' exp(O((k/q1)"/?log®® n))

traces suffice for sparse trace reconstruction with high prob-
ability where gqo =1 —pg and ¢ =1 —p; = Q(y/k~1logn).

Proof. This follows from Theorem 6. By focusing on just
a single 0, it is clear that the probability that a trace from
the (po, p1)-deletion channel contains at least one 0 is at
least qo. If among the retained Os we keep one at random
and remove the rest, we generate a sample from the austere
deletion channel. Thus, with m samples from the (po,p:1)
deletion channel, we obtain at least mgqy samples from the
austere channel and the result follows. Note that Theorem 1
is a special case where py = p1 = p. O]

Remark 1. Note that the case where q, is constant (a typ-
ical setting for the problem) and k = o(logn) is not covered
by the corollary. However, in this case a simpler approach
applies to argue that poly(n) traces suffice: with probability
q¥ > 1/poly(n) no 1s are deleted in the generation of the
trace and given poly(n) such traces, we can infer the original
position of each 1 based on the average position of each 1 in
each trace.

Remark 2. Note that the weak dependence on qy ensures
that as long as qo = 1/ exp(O((k/q1)*31og??n)), we still
have the exp(O((k/q1)'/310g*/3 n)) bound. Thus, our result
shows that sparse trace reconstruction is possible even when
zeros are retained with super-polynomially small probability.

A. Reduction to Learning Binomial Mixtures

We prove Theorem 6 via a reduction from austere deletion
channel trace reconstruction to learning binomial mixtures.
Given a string x of length n, let r; be the number of ones
before the i zero in x. For example, if = 1001100 then
rr = l,ro = 1,73 = 3,74 = 3. Note that the multi-
set {ry,ra,...,} uniquely determines x, that each r; < k,
and that the multi-set has size ng. The reduction from trace
reconstruction to learning binomial mixtures is appealingly
simple:

1) Given traces t1,...,t, from the austere channel, let s;

be the number of leading ones in ;.

2) Observe that each s; is generated by a uniform? mixture
of Bin(ry,q1),...,Bin(rp,,q1) where ¢1 = 1 — p.
Hence, learning ry,72,...,ry, from s;,s2,..., sy, al-
lows us to reconstruct x.

We will say that a number x has t-precision if 10Y x x € Z
where y € Z and y = O(logt). To obtain Theorem 6, we
establish the following new guarantee for learning binomial
mixtures.

Theorem 8 (Learning Binomial Mixtures). Let M be a
mixture of d = poly(n) binomials:

Draw sample from Bin(ay, q) with probability o

where 0 < aq,...,aq < a are distinct integers, the values

az have poly(n) precision, and ¢ = Q(+/a~'logn). Then
exp(O((a/q) /3 10g?® n)) samples suffice to learn the param-
eters exactly with high probability.

Proof. Let M’ be a mixture where the samples are drawn from
Zle B¢Bin(by, q), where 0 < by,...,bq < a are distinct and
the probabilities 5; € {0,7,27,..., 1} where 1/ = poly(n).
Consider the variational distance), |A; — By| between M
and M’ where

A; = Pr [sample from M is ¢
d .
=> 0 (t’)qt(l —q)

j=1
By = Pr[sample from M’ is {]

d b
_ Y5\ b \bi—t
—jE_lﬁ](t)q (1—q)" .

We will show that the variational distance between M and
M’ is at least

e = exp(—0((a/q)"/*(log 1/7)*/%)) .

Since there are at most ((a+1)-(1/v+ 1)) possible choices
for the parameters of M’, standard union bound arguments
show that

O(log(((a+1) - (1/y +1))%)/€%)
= exp(O((a/q)"/*(log 1/7)*?))

Note that since the 7; are not necessarily distinct some of the binomial
distributions are the same.

samples are sufficient to distinguish M from all other mix-
tures.

To prove the total variation bound, observe that by applying
the binomial formula, for any complex number w, we have

2 (e = Biju’ = Zwt(zaj (atj)qi(l —)"

>0 >0 >0
b\ . B N |
=5 (M)a =0) = T - 52t
>0

where z = qu + (1 — q). Let G(z) = 3_,5o(a;2% — B;zb9)
and apply the triangle inequality to obtain:

S 14— Biflw'| > [G(2)]
>0
Note that G(z) is a non-zero degree d polynomial with
coefficients in the set
{_17 RS _2"/7 - 07"/7 277 RS 1}

We would like to find a z such that G(z) has large modulus but
|wt| is small, since this will yield a total variation lower bound.
We proceed along similar lines to Nazarov and Peres [12] and
De et al. [13]. It follows from Corollary 3.2 in Borwein and
Erdélyi [31] that there exists z € {¢ : —n/L < 0 < w/L}
such that

|G(2)| = yexp(—c1Llog(1/7))

for some constant ¢; > 0. For such a value of z, Nazarov and
Peres [12] show that

lw| < exp(ea/(qL)?)
for some constant ¢y > 0. Therefore,

> Ay — Bilexp(tea/(qL)?) > > |Ar — Byl[w']|

t>0 t>0
> |G(2)| > yexp(—c1Llog(1/7))

For t > 7 = 6qa, by an application of the Chernoff bound,
Ay, By <27t so we obtain

27 expltea/ (qL)?) + 3 |Ar = Bil exp(res/(aL)°)

t>T t=0

=T,
> yexp(—c1Llog(1/7)) .

XT: ‘At _ Bt| > ’Yexp(_clLlog(l/f}/))

—0 exp(Tea/(qL)?)
_ T, ~vexp(—ci Llog(1/7)) B .
e/ (@lP) = ewlrea/@h)?) COC)(1)

where the second equality follows from the assumption that
c2/(qL?) < (In2)/2 (which we will ensure when we set L)
since,
T, ~0(1)- 27" exp(rea/(qL)?)
exp(rea/(qL)?) exp(rea/(qL)?)
=0(277).

Set

L = c{/7/(q*1og(1/7)) = c3/6a/(qlog(1/7))

for some sufficiently large constant c. This ensures that the
first term of Eqn. 1 is

exp(—0((a/q)*1og®?(1/7))).

Note that
o _ cz
qL? " qc®(a/(qlog(1/7)))?/3

<3 (bg(””))z/g <. (bg(l/v))z/?’

= o2 aq'/? = 2 aq?

and so by the assumption that ¢ = Q(+/log(1/7)/a) we may
set the constant c large enough such that c3/(¢L?) < (In2)/2

as required. The second term of Eqn. 1 is a lower order term
given the assumption on ¢ and thus we obtain the required
lower bound on the total variation distance. O

Theorem 6 now follows from Theorem &, since in the
reduction, we have d = O(n) binomials, one per 0 in z, a; is
a multiple of 1/ng and importantly, we have a = k. The key
is that we have a polynomial with degree a = k rather than a
degree n polynomial as in the previous analysis.

Remark: If all o, are equal, Theorem 8 can be improved
to poly(n) -exp(O((a/p)*/3)) by using a more refined bound
from Borwein and Erdélyi [31] in our proof. This follows by
observing that if oy = 8y = 1/d, then 3, (2% — ;2%
is a multiple of a Littlewood polynomial and we may use
the stronger bound |G(z)| > exp(—c1L)/d, see Borwein and
Erdélyi [31].

B. Lower Bound on Learning Binomial Mixtures

We now show that the exponential dependence on a'/3

in Theorem 8 is necessary.

Theorem 9 (Binomial Mixtures Lower Bound). There exists
subsets

{al,...,ak}#{bl,...,bk}C{O,...,a}

such that if M = Zle Bin(a;,1/2)/k and M’ =
¥ Bin(bi, 1/2)/k, then | M — M|y = exp(—Q(al/3)).
Thus, exp(2(a'/3)) samples are required to distinguish M
Sfrom M’ with constant probability.

Proof. Previous work [12], [13] shows the existence of two
strings @,y € {0,1}" such that 3, [t —t¥| = exp(—Q(n'/3))
where t7 is the expected value of the ith element (element at
ith position counted from beginning) of a string formed by
applying the (1/2,1/2)-deletion channel to the string z. We
may assume ., Ti = Y[, Yi = k since otherwise

St =D =

=) @m/2-) yi/2| > 1/2
i€[n] i€[n]

which would contradict the assumption), [t7 — ¢/| =
exp(—Q(n'/3)).

Consider M = Zle Bin(a;,1/2)/k and M’ =
Zle Bin(b;,1/2)/k, where a; (b;) is the number of coor-
dinates preceding the ith 1 in z (y). Note that

" /a " /b

tf _ Z (ir> /2a7,+1 and t? _ Z <ZT> /Qb,,-+1 ,

r=1 r=1

and so

1
- ; E r=1 r=1

2 .
= ST 8] = exp(-)

M = My = 3 | Pr M = i] = Pr[Mm =]|
- () oo -3 (b) o

which proves the result. O

III. WELL-SEPARATED SEQUENCES

We now prove Theorem 2, showing that poly(n) traces
suffice for reconstruction of a k-sparse string when there are
Q(klogn) 0s between each consecutive 1. For clarity of
exposition, we are going to prove the statement of Theorem 2
for p = 1/2. The proof follows verbatim for any other constant
p. We call such sequences of Os the O-runs of the string. We
also refer to the length of the shortest O-run as the gap g of
the string x.

Theorem (Restatement of Theorem 2). Let x be a k-sparse
string of length n and gap at least ck log(n) for a large enough
c. Then poly(n) traces from the (1/2,1/2)-Deletion Channel
suffice to recover x with high probability.

In Section III-A, we present a high-level overview of the
algorithm and the analysis to provide intuition. In Section I1I-B
we describe the algorithm in detail, state the key lemmas, and
explain how to set the parameters. Due to the technical nature
of the analysis, full details, including proofs of the lemmas,
are deferred to Appendix A.

A. A Recursive Hierarchical Clustering Algorithm and lIts
Analysis: Overview

Let {p,}*_, denote the positions (index of the coordinate
from the left) of the k 1s in the original string z. Let N
denote the multi-set of all positions of all received 1s and call
N = |N|. We will construct a graph G on N vertices where
every vertex is associated with a received 1. We decorate each
vertex v with a number z, € N, which is the position of the
associated received 1. Each vertex v also has an unknown label
yp € {1,...,k} denoting the corresponding 1 in the original
string.

At a high level, our approach uses the observed values
{2y }vev to recover the unknown labels {y, },cy . Once this
“alignment” has been performed, the original string can be
recovered easily, since the average of {z,1{y, = u}}yev is
an unbiased estimator for p,, /2.

A starting observation: Our first observation is a simple
fact about binomial concentration, which we will use to
define the edge set in G: by the Chernoff bound, with high
probability, for every vertex v, if y,, = u then we must have
|20 — pu/2| < cy/nlogn for some constant c¢. Defining the
edges in G to be {(v,w) : |z, — 2| < 2¢y/nlogn} then
guarantees that all vertices with y, = u are connected. This
immediately yields an algorithm for the much stronger gap
condition g > 4c+/nlogn, since with such separation, no two
vertices v, w with y, # 1y, will have an edge. Therefore,
the connected components reveal the labeling so that poly(n)
traces suffice with g = Q(1/nlogn).

Intuitively, we have constructed a clustering of the received
1s that corresponds to the underlying labeling. To tolerate
a weaker gap condition, we proceed recursively, in effect
constructing a hierarchical clustering. However there are many
subtleties that must be resolved.

The first recursion: To proceed, let us consider the
weaker gap condition of ¢ > Q(k'/2n!/4). In this regime,
G still maintains a consistency property that for each u all
vertices with y,, = w are in the same connected component, but
now a connected component may have vertices with different
labels, so that each connected component C' identifies a
continguous set U C {1,...,k} of the original 1s. Moreover,
due to the sparsity assumption, C' must have length, defined as
mMaXyeC 2y — Milyeo 2y, at most O(k+/nlogn). Therefore if
we can correctly identify every trace that contains the left-most
and right-most 1 in U, we can recurse and are left to solve a
subproblem of length O(k+/nlogn). Appealing to our starting
observation, this can be done with a gap of g > Q(k!/2n1/4).

The challenge for this step is in identifying every trace that
contains the left-most and right-most 1 in U, which we call uy,
and upg respectively. This is important for ensuring a “clean”
recursion, meaning that the traces used in the subproblem are
generated by passing exactly the same substring through the
deletion channel. To solve this problem we use a device that
we call a Length Filter. For every trace, consider the subtrace
that starts with the first received 1 in U and ends with the last
received 1 in U (this subtrace can be identified using G). If
the trace contains uy,up then the length of this subtrace is
2+Bin(L—2,1/2) where L is the distance between ur,, ug in
the original string. On the other hand, if the subtrace does not
contain both end points, then the length is 2+Bin(L'—2,1/2)
where L' < L — g. Since we know that L < O(k\/ﬁ) and we
are operating with gap condition g = Q(k'/2n'/4) = Q(V/L),
binomial concentration implies that with high probability we
can exactly identify the subtraces containing uy, and ug.

Further recursion: The difficulty in applying a second
recursive step is that when g = o(k'/?n'/4) the length filter
cannot isolate the subtraces that contain the leftmost and
rightmost 1s for a block U, so we cannot guarantee a clean
recursion. However, substrings that pass through the filter are
only missing a short prefix/suffix which upper bounds any
error in the indices of the received 1s. We ensure consistency
at subsequent levels by incorporating this error into a more
cautious definition of the edge set (in fact the additional error
is the same order as the binomial deviation at the next level,
so it has negligible effect). In this way, we can continue the

recursion until we have isolated each 1 from the original
string. The Q(klogn) lower bound on run length arises since
the gap at level ¢ of the recursion, g, is related to the gap at
level t — 1 via g, = y/klogn - g.—1 with g1 = v/nlogn, and
this recursion asymptotes at Q(klogn).

The last technical challenge is that, while we can isolate
each original 1, the error in our length filter introduces some
bias into the recursion, so simply averaging the z, values of
the clustered vertices does not accurately estimate the original
position. However, since we have isolated each 1 into pure
clusters, for any connected component corresponding to a
block of 1s, we can identify all traces that contain the first
and last 1 in the block. Applying this idea recursively from
the bottom up allows us to debias the recursion and accurately
estimate all positions.

B. The algorithm in detail: recursive hierarchical clustering

We now describe the recursive process in more detail. Let
us define the thresholds:

7_1 :O(1/2) O(kl/Q 1/4) 3
_ O(k1—1/2<D l)nl/QD)

_ O(k3/4n1/8)
yeeesTD

which will be used in the length filter and in the definitions of
the edge set. Observe that with D = O(log, log, 1), we have
7o = O(k). Let &1, ..., &, denote the m = poly(n) traces.
We will construct a sequence of graphs G1,Ga,...,Gp on
the vertex sets V43 D V5,...,D Vp, where each vertex v
corresponds to a received 1 in some trace ¢, € [m] and
is decorated with its position z, and the unknown label y,,.
The d™ round of the algorithm is specified as follows with

(1) = 2,, V1 as the multi-set of all received 1s and C'; ©) _ = V.

1) Define G4 with edge set Ed = U {(v,w) : vyw €
VﬁC(d1 and\z \<T}
2) Extract kg < k connected components Cfd), .,C’,g‘j)

from Gg.

3) For each connected component Ci(d), extract subtraces
{z; (, Z)} *, where x(d) is the substring of Z; starting
w1th the first 1 in C(d) and ending with the last 1 in
C’(). Formally, with ¢ = min{z, : v € C; @ 1, = =j}

3

and r = max{z, : v € C\?V t, = j}, we define :U(D=
z;[l,...,r]. ‘

4) Length Filter: Define L(%") = max; len(a?g-d’l)). If

((d 1)) < L(d,i) _ Q(

len L) Jog(L(d:1)),

delete all vertices v € C’i(d) with ¢, = j. Let V11 be
the multi-set of all surviving vertices.
5) For v € Vi1 N Ci(d),

mlnv’ECfd’),tv:tv/ Zy! .

define zfjdﬂ) = 2y —

See Algorithm 1 for pseudocode. We note that zl(,d) cor-

responds to a shifted index of the received 1 associated with
vertex v. Intuitively, we shift by removing a prefix of the trace
t,, which provides a form of noise reduction.

We analyze the procedure via a sequence of lemmas. The
first one establishes a basic consistency property: that two

Algorithm 1 Algorithm RecurGap

Initialize: Traces 7 = {7,}}.,,

cklog®(n), levels of recursion D.

For each received 1, create vertex v decorated with (z,,t,)
where z, € [n] is the position of the received 1 and ¢, € [m]
is the index of the trace.

gap lower bound g >

Define thresholds 71 = 44/2nlog(nmk), 74 =
80\/k7d 1 log(mnk ford=2,...,D.

Set zv = 2, C(O =V

ford—L.. D do

Create graph G, with vertices V; and with edges

E; = U {(v,w) € VdﬂC’](»dA) 2D —) < Td/4}
J

C,(;j) of Gd.

For each connected component C’Z-(d), extract subtraces
~(d,i)\m ~(dyi) _

{@;77 L, where ;77 =

’UEC(d) t, =7} and r = max{z, : UEC()ty =7}

Define L(*") = max; len(; (01

len(jg-d’i)) < LD — 94 /2149 log(kmn),

delete all vertices v € Ci(d) with ¢, = j. Let Vg4 be all
surviving vertlces
For v E C’ ﬂ Viy1, define zf,dH)
v e C ty =1ty }

end for

Extract connected components Cfd'), cee

Z;[¢,r] and £ = min{z, :

= 2, — min{z,

1s originating from the same source 1 are always clustered
together.

Lemma 10 (Consistency). At level d let Vy,, = {v € Vg,y, =
u} for each u € [k]|. Then with high probability, for each d
and v there exists some component CZ-(d) at level d such that
Vd,u C Ol-(d).

The next lemma provides a length upper bound on any
component, which is important for the recursion. At a high
level since we are using a threshold 74 at level d and the string
is k-sparse, no connected component can span more than k7,
positions.

Lemma 11 (Length Bound). At level d, the following holds
with probability at least 1—1/n?: For every component Ci(d) at
level d, we have L% < 2kry. Moreover if U is a contiguous
subsequence of {1,...,k} with J,.y Viu C Ci(d), then
| min, ey py — Maxyey pu| < 2k74.

uelU

Finally we characterize the length filter.

Lemma 12 (Length Filter). Assume m > n. At level d, the
following holds with probability at least 1 — 1/n?: For a
component Cfd) at level d, let U be the maximal contiguous
subsequence of {1,...,k} such that \J,c; Vau C C’i(d)
Define uy, = argmin, cy; py, and ur = arg max, cy Pu. Then
for any v € C’i(d), if ur, and ug are present in t,, then v
survives to round d + 1, that is v € Vgi1. Moreover, for any

v € Vaga, let pmin(v,U) denote the original position of the
first 1 from U that is also in the trace t,. Then we have

Pmin (U, U) — Do, < 8y/k7qlog(nmk).

The lemmas are all interconnected and proved formally
in Appendix A. It is important that the error incurred by the
length filter is \/kT; = 7441 which is exactly the binomial
deviation at level d + 1. Thus the threshold used to construct
G 441 accounts for both the length filter error and the binomial
deviation. This property, established in Lemma 12, is critical
in the proof of Lemma 10.

For the hierarchical clustering, observe that after D =
loglog n iterations, we have 7p = O(k). With gap condition
g = Q(k) and applying Lemma 10, this means that the
connected components at level D each correspond to exactly
one 1 in the original string. Moreover since the length fil-
ter preserves every trace containing the left-most and right-
most 1 in the component, the probability that a subtrace
passes through the length filter is at least 1/4. Hence, after
loglogn levels, the expected number of surviving traces in
each cluster is m /4°81°™ = 1 /(log® n). Thus for each index
u € {1,...,k} corresponding to a 1 in the original string, our
recursion identifies at least m/(log®n) vertices v € V; such
that ¢, = u.

Removing Bias: The last step in the algorithm is to over-
come the bias introduced by the length filter. The de-biasing
process works upward from the bottom of the recursion. Since
we have isolated the vertices corresponding to each 1 in the
original string, for a component Ci(Dfl) at level D — 1, we
can identify all subtraces that survived to this level that contain
the first and last 1 of the corresponding block Ui(D_l) C [k].
Thus, we can eliminate all subtraces that erroneously passed
this length filter.

Working upwards, consider a component C’i(d) that corre-
sponds to a block Ui(d) C [k] of 1s in the original string. Since
we have performed further clustering, we have effectively par-
titioned Ui(d) into sub-blocks Ul(dﬂ), e §d+1). We would
like to identify exactly the subtraces that survived to level d
that contain the first and last 1 of Ui(d), but unfortunately this is
not possible due to a weak gap condition. However, by induc-
tion, we can exactly identify all subtraces that survive to level
d that contain the first and last 1 of the first and last sub-block
of Ui(d), namely Ul(d+1) and Us(dH). Thus we can de-bias the
length filter at level d by filtering based on a more stringent
event, namely the presence of the 2°~¢ nodes required to
de-bias the first and last blocks Ul(dH) and Us(dH). In total
to de-bias all length filters above a particular component, we
require the presence of Y 7, 2P~ = O(2P) = O(logn)
nodes, which happens with probability €(1/n). Thus we can
debias with only a polynomial overhead in sample complexity.
See Figure 1 for an illustration.

IV. APPLICATIONS OF THE WELL-SEPARATED STRINGS
RESULT AND METHODOLOGY

In this section, we present two applications of the results
and methodology developed in the previous section.

A. Strengthening to a Parameterization by Runs

We next strengthen Theorem 2 to show that poly(n) traces
suffice under the assumption that each 0-run has length Q(r)
where 7 = 14 [{i € [n — 1] : &; # x;41}|, in the string =
being reconstructed. Observe that this is a weaker assumption
than assuming = has sparsity k£ and each one is separated by
a O-run of length Q(k) , since r < 2k + 1 always, but r can
be much less than k.

Theorem 13. For the (1/2,1/2)-Deletion Channel, poly(n)
traces suffice with high probability if the lengths of the 0-runs
are S)(r) where r is the number of runs in .

The proof is via a reduction to the k-sparse case in the
previous sections. Let 2’ € {0,1}<" be the string formed by
replacing every run of 1s in x by a single 1. We first argue
that we can reconstruct =’ with high probability using poly(n)
traces generated by applying the (1/2,1/2)-Deletion Channel
to x. We will prove this result for the case r = Q(logn)
since otherwise poly(n) traces is sufficient even with no gap
promise.> Observe that with m = poly(n) traces, if every 0-
run in x has length at least clogn for some sufficiently large
constant ¢ > 0, then a bit in every O-run of = appears in every
trace with high probability. Conditioned on this event, no two
1’s that originally appeared in different runs of x are adjacent
in any trace. Next replace each run of 1s in each trace with
a single 1. The end result is that we generate traces that are
generated as if we had deleted each 0 in 2’ with probability
1/2 and each 1 in 2’ with probability 1 — 1/2% > 1/2 where
t is the length of the run that the 1 belonged to in z. This
channel is not equivalent to the (1/2,1/2)-Deletion channel,
but our analysis for the sparse case (that only depends on
the alignment of 1s using the deletion properties of the Os)
continues to hold even if the deletion probability of each
1 is different. Thus we can apply Theorem 2 to recover
Z’, and the sparsity of z’ is at most r. Since the algorithm
identifies corresponding 1s in z’ in the different traces, we
can then estimate the length of the 1-runs in x that were
collapsed to each single 1 of a2’ by looking at the lengths
of the corresponding 1-runs in the traces of = before they
were collapsed.

B. Reconstruction of random sparse strings with polynomial
traces

Suppose we have an unknown string « € {0, 1}" such that
every element of x is sampled uniformly and independently
according to Ber(n) for some sufficiently small 7. Again, we
send x through the deletion channel where every bit is deleted
with probability 1/2 and observe random traces. We have
the following theorem characterizing the sufficient number of
traces required to recover x.

Theorem 14. poly(n) traces are sufficient to recover v €
{0,1}™ with high probability if every element of x is drawn

3Specifically, if = = O(logn), with probability at least 1/27 =
1/ poly(n) a trace also has r runs. Given poly(n) traces with r runs we
can estimate each run length because we know the i run in each such trace
corresponds to the 5™ run in the original string.

- D

o

oy

E D
D &

Fig. 1.

| : D B
) i

De-biasing of traces. The figure displays the regions of the original string x that correspond to each connected component found in the algorithm.

D
D &

The end-points of each component correspond to 1s in the original string. To de-bias the length filter for component Cl1 at level 1, we identify and retain

only the traces that contain all of the 1s colored red above. Then, to de-bias the length filter at 052) at level 2, we identify and retain only the traces that

contain all of the green 1s.

randomly according to Ber(n) for n < ¢/+/nlogn where ¢ >
0 is some small constant.

Proof. Let {p,} denote the positions (index of the coordinate
from the left) of the 1s in the original string x. Let N
denote the multi-set of all positions of all received 1s and
call N = |N]. construct a graph G on N vertices where
every vertex is associated with a received 1. We decorate each
vertex v with a number z, € N, which is the position of the
associated received 1. Each vertex v also has an unknown
label y, denoting the corresponding 1 in the original string.
Finally, the edges in GG are defined as following: two vertices
v, w will have an edge if {(v,w) : |2y — 20| < 2ay/nlogn}
for some appropriate large constant a. Consider the original
string z partitioned into O(y/n) contiguous segments each of
length 6a+/n logn. In that case, notice that

Pr(logn consecutive segments all include 1’s)

6a+/nlogny logn \
)) < (6ac)°&™.

c
<(1- (1 - —

(vnlogn

Taking a union bound over all sets of logn consecutive
segments (O(y/n) of them), we get that no consecutive logn

segments should all include 1’s with probability at least
1—O(y/n(6ac)!*8™). We now have the following two claims:

Claim 1. For any two vertices u,v such that vy, #* vy, and
Dy, — Py,| > 6ay/nlogn, they will never have an edge with
high probability.

Proof. We will prove this claim by contradiction. Suppose
u, v indeed have an edge which must imply that |z, — z,| <
2a+/nlogn} because of the definition of graph G. Therefore
we must have by using Chernoff bound

Pr(jz, — Dae| > DT 0BT e

we can take a union bound over all vertices of the graph to
conclude that |z, — < 0.5a+/nlogn for all vertices of
the graph G. In that case,

Pyy
2

Pu
2

< 3ay/nlogn

which is a contradiction to the fact that |p,, — py,| >

6a+/nlogn. O

Dy,
2

| + 20 — 20]

Dy, Dy,
AL e

Therefore two 1’s in the original string which are sepa-
rated by at least 6a+/nlogn will never have an edge in the
graph G.

Claim 2. For u,v € N such that y,, = vy, there will exist an
edge between z,, and z, in the graph G with high probability.

Proof. For two vertices u,v € N such that y, = y, (implying
that p,, = p,), we must have

Py.,
2

Dy,

5 | <2ay/nlogn

with probability at least 1 — n . Again, we can take a
union bound over all vertices and over all traces to ensure
that for u,v € N such that 3, = v, there will exist an edge
between z,, and z, in the graph G. O

|Zu_zv|§|2u_ |+|Zv_

—a?/6

Further, the total number of 1’s in a particular segment of
the string = of length 6a\/nlog3 n, denoted by the random
variable X is sampled according to

X ~ Bin(Ga\/nlog?’n #)
" Vnlogn

Therefore, we have EX 6aclogn and we can further
use Chernoff Bound to conclude that X < 12aclogn with
probability at least 1 — n~2%¢. Taking a union bound, we can
say that all segments of the string « of length 6a+\/nlog” n
has at most 12aclogn 1’s with probability of failure at most
nl=29¢ In that case, fix a particular connected component
C in the graph G so that we can focus on reconstructing the
contiguous sub-sequence of x corresponding to the component

C. From our previous analysis, we can ensure that

max |py, — py,| < Ga\/rng’n.
u,veC

since at most logn contiguous segments will include 1 in all
of them. Moreover the total number of 1°s in the component C'
is at most 12aclogn. The probability that in a particular trace,
all the 1°s in the component C' will appear is at least 1/n'2%¢
and from now, we will only consider traces which has all the
1’s present. Subsequently, if the total number of traces used
is 8nl2acts log n, then the number of traces containing all the
1’s in C is at least 8n3 with exponentially high probability.
Using the Binomial Mean Estimator (defined in Appendix A),
on these subset of traces containing all the 1’s from C, we can
recover the length of all the O-runs in the component C' with
probability at least 1 — nexp(—n) (after taking union bound

over at most n 0 runs in C). We can repeat this procedure
to reconstruct the substrings of z corresponding to all the
components in the graph G.

In order to reconstruct the length of the run of 0’s between two
distinct components C, C’, we can only consider those traces
where all the 1’s corresponding to both C,C’ has appeared.
There are at most 24aclogn such 1’s and as before, we
can use 8n24°*+3]ogn traces to obtain 8n3 traces contain-
ing all the 1’s in C,C’. Subsequently, using the Binomial
Mean Estimator, we can reconstruct the length of the 0-
run between C, C’. Thus we can reconstruct the entire string
with probability of failure at most \/n(6ac)'°8™ + nl=2ac 4
p2acts—a’/24 | o(1/n). Setting a, ¢ appropriately results in
a failure probability of o(1). O

V. BOUNDED HAMMING DISTANCE

In this section, we turn to the sparse testing problem. We
show that it is possible to distinguish between two strings
z and y with Hamming distance A(z,y) < 2k, given
exp(O(klogn)) traces. This question is naturally related to
sparse reconstruction, since the difference string z — y €
{=1,0,1}™ is at most 2k sparse, but distinguishing two strings
from traces is also at the core of our analysis in Section II,
as well as the analysis of Nazarov and Peres [12] and De et
al. [13]. In particular given a testing routine, reconstruction
simply requires applying the union bound.

In the binary symmetric channel (where each bit is flipped
independently with some probability), distinguishing between
two strings is easier if the Hamming distance is larger, since
the two strings are farther apart. However, it is unclear if this
intuition carries over to the deletion channel. In particular, the
number of traces required for testing is unlikely to even be
monotonic in the Hamming distance; if the Hamming distance
is odd, then = and y have different Hamming weight, and we
can estimate the Hamming weight using just O(n) traces.

Our analysis uses a combinatorial result about k-decks due
to Krasikov and Roditty [4] that is defined below, along with
an approach first used in McGregor et al. [14].

Definition 1. The k-deck of a string is the multi-set of all
length k subsequences of the string.

Theorem 15 (Krasikov and Roditty [4]). No two strings x,y
of length n have the same k-deck if A(x,y) < 2k.

Theorem 16. The k-deck of a binary string can be determined
exactly with exp(O(klogn)) traces from the symmetric dele-
tion channel with high probability assuming p <1 — k/n.

Proof. We argue that sampling exp(O(klogn)) length k-
subsequence of a string is sufficient to reconstruct the k-
deck with high probability. The result then follows because
if p < 1 — k/n, then with constant probability a trace
generated by the deletion channel has length at least k& and
hence we can take a random k subsequence of such a trace
as a random k subsequence from z. Let f, be the number
of times that u € {0,1}* appears as a subsequence of .
Then, let X,, be the number of times w is generated if we
sample r = 3n2¥ logn* subsequences of length k uniformly

at random. E [X,] = rf,/(}) and by an application of the
Chernoff bound,

pr |1 () 2 = 1

- [lXu ~EX]2/ (kﬂ

r k
< exp <3sz(2)> <1/n".

where the last line follows given f, < (k) and r =
3n?#logn*. Hence, by taking the union bound over all 2*
sequences u, it follows that we can determine the frequency
of all length & subsequences with high probability. O

Theorem 3 follows directly from Theorem 15 and Theo-
rem 16.

Theorem (Restatement of Theorem 3). For all z,y € {0, 1}"
such that A(z,y) < 2k,

m = exp(O(klogn))

traces are sufficient to be distinguished between x and y with
high probability.

As noted earlier, if A(xz,y) is odd then poly(n) traces
suffice. Also, regardless of the Hamming distance, if the
location of the first and second positions (say ¢ and j) where
x and y differs by at least Q(y/nlogn) then it is easy to show
that expected weight of the length i/2 prefix of the traces
differs by Q(1/poly(n)) and hence we can distinguish = and
y with poly(n) traces.

VI. RECONSTRUCTING ARBITRARY MATRICES

Recall that in the matrix reconstruction problem, we are
given samples of a matrix X € {0,1}V™**V" passed through
a matrix deletion channel, which deletes each row and each
column independently with probability p = 1 — ¢. In this
section we prove Theorem 4.

Theorem (Restatement of Theorem 4). For matrix recon-
struction, exp(O(n'/*\/plogn/q)) traces suffice with high
probability to recover an arbitrary matrix X € {0, l}ﬁx\/ﬁ,
where p is the deletion probability and ¢ = 1 — p.

The bulk of the proof involves designing a procedure to
test between two matrices X and Y. This test is based on
identifying a particular received entry where the traces must
differ significantly, and to show this, we analyze a certain
bivariate Littlewood polynomial, which is the bulk of the
proof. Equipped with this test, we can apply a union bound
and simply search over all pairs of matrices to recover the
string.

For a matrix X € {0,1}V"*V7” let X denote a matrix trace.
Let us denote the (i, /)™ entry of the matrix as X; ;,i,j =

0,1,...,4/n—1, an indexing protocol we adhere to for every
matrix. For two complex numbers w1, ws € C, observe that

vn—1 A

i,j=0
Z Xk ke (k;)

_ 2 i,
=q § wiwy
4,7 ki>ik;>j

> (]z.'i)pk'i—iqi k —jqj

V-1

=¢> D Xi, ko (qui +p)* (qua +)™
k1,k2=0

Thus, for two matrices X,Y, we have
V-1

1 S

SE| DY (X - Yij)wiw

q i,j=0
i1

= > (Xky ke — Vi ko) (qwi +p)" (qua +p)*2
k1,k}2=0

2 Az, 29)

where we are rebinding z; = qw; + p and 2o = qws + p.
Observe that A(z1,22) is a bivariate Littlewood polynomial,
all coefficients are in {—1,0,1}, and the degree is /n — 1 in
each variable. For such polynomials, we have the following es-
timate, which extends a result due of Borwein and Erdélyi [31]
for univariate polynomials.

Lemma 17. Let f(z1,22) be non-zero Littlewood polynomial
of degree \/n — 1 in each variable. Then,

|f(21,23)] > exp(~C1L? logn)

for some zt = exp(ib), 25 = exp(ifz) where |01],]02] <
/L, and C} is a universal constant.

Proof. Fix L > 0 and define the polynomial

F(Zl, 22) — H f(Zleﬂia/L7 deﬁib/L).
1<a<L,1<b<L

We use the maximum modulus principle that is stated as
follows: For any holomorphic function f, the modulus of
f ie. |f| does not have a strict local maxima completely
within its domain and therefore achieves the maximum value
on the boundary of its domain. We first show by an iterated
application of the maximum modulus principle that there
exists z},z3 on the unit disk such that F'(z7, 25) > 1. First
factorize F(z1,22) = 25G(21,22) where k is chosen such
that G(z1,22) has no common factors of z,. Since F' has
non-zero coefficients, this implies that G(z1,0) is a non-zero
univariate polynomial. Further factorize G(z1,0) = 2{H(z1)
so that terms in H have no common factors of z;. H is also a
Littlewood polynomial and moreover it has non-zero leading
term, so that |H(0)| > 1. Thus by the maximum modulus
principle:

[F(21,25)| = |G(21, 23)| = |G(21, 0)
=|H(z{)| = [H(0)| = 1.

Now, for any a,b € {1,..., L} we have
1< |F(27,23)] < ‘f(zfeﬂia/Lyzgeﬂ-ib/L)‘ _ n(LQ—l)’

where we are using the fact that |f(z1, z2)| < n. This proves
the lemma, since we may choose a,b such that z{‘e’”a/ L —
exp(ify), z5e™/ L = exp(ifs) for |0y], 62| < 7/L. O

Let vz = {e : |§] < n/L} denote the arc specified
in Lemma 17. For any z; € 1, Nazarov and Peres [12]
provide the following estimate for the modulus of w; =

(21 —p)/a:
¥z € 7r : |(2 = p)/al < exp(Cap/(La)?).
Using these two estimates, we may sandwich |A(z1, z2)| by

exp(—C1L*logn) < max |A(z1, 22)]
21,22C7YL
exp(C'pvn/(Lq)?)
< ; >

q

j

This implies that there exists some coordinate (i, 7) such that

2 /
- > q C'pyn
‘E[X” — }/”} Z ; exp (—Cle logn — L2q2)
2 1/4
> T oo <_0n vplogn> 7
n q

where the second inequality follows by optimizing for L.

The remainder of the proof follows the argument of [12]:
Since we have witnessed significant separation between the
traces received from X and those received from Y, we can
test between these cases with exp(O(n'/*\/logn)) samples
(via a simple Chernoff bound). Since we do not know which
of the 2™ matrices is the truth, we actually test between all
pairs, where the test has no guarantee if neither matrix is the
truth. However, via a union bound, the true matrix will beat
every other in these tests and this only introduces a poly(n)
factor in the sample complexity.

VII. RECONSTRUCTING RANDOM MATRICES

In this section, we prove Theorem 5: O(log n) traces suffice
to reconstruct a random /n X 4/n matrix with high probability
for any constant deletion probability p < 1. This is optimal
since Q(logn) traces are necessary to just ensure that with
high probability, every bit appears in at least one trace.

Our result is proved in two steps. We first design an
oracle that allows us to identify when two rows (or two
columns) in different matrix traces correspond to the same row
(resp. column) of the original matrix. We then use this oracle
to identify which rows and columns of the original matrix have
been deleted to generate each trace. This allows us to identify
the original position of each bit in each trace. Hence, as long
as each bit is preserved in at least one trace (and O(logn)
traces is sufficient to ensure this with high probability), we
can reconstruct the entire original matrix.

A. Steps to reconstruct the matrix

a) Oracle for Identifying Corresponding Rows/Columns:
We will first design an oracle that given two strings ¢ and ¢/
distinguishes, for any constant ¢ > 0, with high probability
between the cases:

Case 1: ¢ and ¢ are traces generated by the deletion
channel with preservation probability ¢ from the
same random string = €x {0,1}V"

Case 2: t and t’ are traces generated by the deletion channel
with preservation probability ¢ from independent
random strings z,y €x {0,1}V"

It t and ¢’ are two rows (or two columns) from two different
matrix traces, then this test determines whether ¢ and ¢’
correspond to the same or different row (resp. column) of the
original matrix. In Section VII-B, we show how to perform
this test with failure probability at most 1/n'°. In fact, the
failure probability can be made exponentially small but a
polynomially small failure probability will be sufficient for
our purposes.

b) Using the Oracle for Reconstruction: Given m =
O(logn) traces we can ensure that every bit of X appears
in at least one of the matrix traces with high probability. We
then use this oracle to associate each row in each trace with the
rows in other traces that are subsequences of the same original
row. This requires at most (™Y") < (m+/n)? applications of
the oracle and so, by the union bound, this can performed
with failure probability at most (m+/n)?/n'® < 1/n® where
the inequality applies for sufficiently large n.

After using the oracle to identify corresponding rows
amongst the different traces we group all the rows of the traces
into \/n groups G, ..., G ;; where the expected size of each
group is mq. We next infer which group corresponds to the i
row of X for each i € [\/n]. Let f be the bijection between
groups and [y/n] that we are trying to learn, i.e., f(j) = ¢ if
the j™ group corresponds to the i row of X. If suffices to
determine whether f(j) < f(j') or f(j) > f(j') for each pair
j # j’. If there exists a matrix trace X that includes a row in
G; and a row in G then we can infer the relative ordering
of f(j) and f(j') based on whether the row from G, appears
higher or lower in X than the row in Gjs. The probability
there exists such a trace is 1 — (1 — ¢?)™ > 1 — 1/ poly(n)
and we can learn the bijection f with high probability.

We also perform an analogous process with columns. After
both rows and columns have been processed, we know exactly
which rows and columns were deleted to form each trace,
which reveals the original position of each received bit in each
trace. Given that every bit of X appeared in at least some trace,
this suffices to reconstruct X, proving Theorem 5.

Theorem (Restatement of Theorem 5). For any constant
deletion probability p < 1, O(logn) traces are sufficient to
reconstruct a random X € {0, l}ﬁxﬁ with high probability.

B. Oracle: Testing whether two traces come from same ran-
dom string

For any i € {0,1,...,|[n/2w]}, define S; = {2wi + j :
j=0,...,w— 1} to be a contiguous subset of size

w = 100n'*\/1/q - logn .

Note that there are size w gaps between each S; and S; 41, i.e.,
w elements that are both larger than S; and smaller than S; ;.
This will later help us argue that the bits in positions S; and
Si+1 in different traces are independent. Given traces ¢,t’,
define the three quantities: X; = > g 1, Vi = > ;06 1]
and Z; = (X; — Y;)2. We will show that by considering
Zo,Z1,Zs, ... we can determine whether ¢ and t’ are traces
of the same original string or traces of two different random
strings.

The basic idea is that if ¢ and ¢’ are generated by the same
string, many of the bits summed to construct X; and the bits
summed to construct Y; will correspond to the same bits of the
original string; hence Z; will be smaller than it would be if ¢
and ' were generated from two independent random strings.
To make this precise, we need to introduce some additional
notation.

Definition 2. For A C {0,1,2,...}, let Ri(A) be the indices
of the bits in the transmitted string that landed in positions
A in trace t. Similarly define Ry (A). For example, if bits in
position 0 and 2 were deleted during the transmission of t

then R;({0,1,2}) ={1,3,4}.
The next lemma quantifies the overlap between R;(.S;) and
Rt/(Si).
Lemma 18 (Deletion Patterns). With high probability over the
randomness of the deletion channel,
Vi 5 |Rt(51) n Rtf(Sl)‘ 2 qw/2
|R:(Si) N Ry (S;)| =0

and

ViFE],

Note that conditioned on the second property, each of the Z;’s
are independent random variables.

Proof. First note that by the Chernoff bound, for each j €
[\/n], the j™ bit of the original sequence appears in position
that belongs to [qj —r,qj —r + 1,...,qj + 7 — 1,qj + 7]
where 7 = 5n'/*,/qlogn with high probability. The second
part of the lemma follows since r = wq/20 < w/20 and
therefore, with high probability, any bit in the original string
will not appear in S, in one trace and Sg in another for o #
because there was a size w gap between S, and Sg .

For the first part of the lemma, for each S;, define

¢ ¢ q q q q

By the Chernoff Bound, with high probability the w/q —
2r/q > 0.9w/q bits in S! positions in the original string
arrive in positions .S; in the trace. Also with high probability,
0.9¢%|S!| of the bits in S} are transmitted in the generation of
both ¢ and #'. Hence, |R:(S;) N Ry (S;)| > 0.9w/q - 0.9¢% >
qw/2 as required. O

%

S’*{@—i—f @_i_rJrl 2wi+w—1 1"}

Now, we prove a helper lemma characterizing the mean
and variance of the square of difference of two independent
binomials.

Lemma 19. Let A ~ Bin(h,1/2) and B ~ Bin(h,1/2) be
independent and C = (A — B)?. Then,

E[C] =h/2 and var[C] < h?/2 .

Proof. The result follows by direct calculation:

E[(A — B)?] = E[A?%] 4+ E[B?] — 2E[A]E|[B]
=h(h+1)/2—h?/2=h/2

and
var((A — B)?) = E[(A - B)"] — (h/2)”

:h/2+6(§>/4—h2/4:(2h—1)h/4. O

We are now ready to argue that the values Zy, Z1,... are
sufficient to determine whether or not ¢ and ¢ are generated
from the same random string.

Theorem 20. Let zj = > 9" Z;,1; for g = 96/¢° and D =
median(zo, Z1,%25 -5 20(log n))

Case 1. Ift and t' are generated from the same string,
then Pr[D < (1 — q¢/4)gw/2] > 1 —1/n'0.

Case 2. If t and t' are generated from different strings,
then Pr[D > (1 — q/4)gw/2] > 1 —1/n'0.

Proof. Throughout the proof we condition on the equations
in Lemma 18 being satisfied. Note that this event is a function
of the randomness of the deletion channel rather than the
randomness of the strings being transmitted over the deletion
channel.

First, suppose t and t' are generated from different
strings. Then Z; has the same distribution as the variable C
in Lemma 19 when r is set to w. Hence, E[z;] = gw/2 and
var(z;) < gw?/2. Therefore,

Pr(z; < (1 - q/4)gw/2] < Pr[z; — Elz]| > (¢/4)gw/2]

var(z;) _
SERF /16 = gyt P

Therefore, by the Chernoff bound, D > (1 — ¢/4)gw/2 with
probability at least 1 — 1/n0.

Now, suppose ¢ and t’ are generated from the same string.
Then, Z; has the same distribution as C' in Lemma 19 for some
r < w — quw/2. Hence, E[z;] = gr/2 and var(z;) < gr?/2.
Therefore,

Prz; > (1 — q/4)gw/2] < Pr[|z; — E[z]| > (¢/4)gw/2]
var(z;) 2
~ E[z]? - ¢?/16 T gq*/16

=1/3.

Therefore, by the Chernoff bound, D < (1 — ¢/4)gw/2 with
probability at least 1 — 1/n!0. O

VIII. EXTENDING MATRIX RESULTS TO TENSORS
A. Reconstruction of arbitrary tensors

In this setting, we have a k'" order binary tensor T' €
{O,l}”l/kxnl/kx'“xnl/k such that 7" has equal number of
elements along every dimension. The tensor 7" is now passed
through a tensor deletion channel, which deletes each ele-
ment along every dimension independently with probability
p =1 — q. Notice that this is a generalization of the previous
settings in matrix reconstruction (special case for k = 2) and
the trace reconstruction problem (special case for £k = 1)
considered earlier.

In this section we prove Theorem 21.

Theorem 21. For tensor
exp (O (n(kp/*)* 10g? n)/+2)))

with high probability
T e {013/ xnt
probability and ¢ = 1 — p.

reconstruction,
suffice
to recover an arbitrary tensor
X xnl k, where p is the deletion

traces

We again design a procedure to test between two tensors
Ty and T5. This test is based on identifying a particular
received entry where the traces (traces of the two tensors)
must differ significantly, and to show this, we analyze a certain
multivariate Littlewood polynomial. Equipped with this test,
we can apply a union bound and simply search over all pairs
of tensors to recover the correct one. We will begin by showing
an extension of Lemma 17 for any value of k.

Lemma 22. Let f(z1,22,...,2) be a non-zero Littlewood
polynomial of degree n*/* in each variable. In that case,

|f (25,25, ..., 25)| > exp(—=C1 LFlogn)
for some zt = exp(ibh),z5 = exp(ibh),...,z; = exp(iby)
where |01],10a|,...,|0x] < w/L and Cy is a universal con-

stant.

The proof of Lemma 22 follows from an iterative use of the
maximum modulus principle for multivariate Littlewood poly-
nomials and follows along the lines of the proof presented in
Lemma 17. The detailed proof has been deferred to Appendix
B.

For a matrix T’ € {0,1}" xn*’" et T denote a
tensor trace (the output after the tensor T is passed through
the tensor deletion channel). Let us denote by Tj ;. . i,
the element in 7' whose location along the ;" dimension
is 4; + 1 i.e. there are i; elements along the 4™ dimension
before T}, ;,,...i,- Notice that this indexing protocol uniquely
determines the element within the tensor. We now show the
following lemma:

1k pt/k ..

Lemma 23. For any two distinct tensors Ty, Ts, there exists
a position denoted by the set of ordered indices 11,10, ...,1%
such that

e~ Ty in i)
k 2/k .

> Lo (_Cnl/(k+2)<kpbg2n)k/(k+2)> 7
n q

The proof of Lemma 23 follows from using the complex
generating function of the tensor traces and subsequently,

using Lemma 22 based on similar ideas as in Section VI.
The detailed proof has been deferred to Appendix B. For the
remaining part, we follow the argument of [12]: Since we have
witnessed significant separation between the traces received
from X and those received from Y, we can test between these
cases with exp(O((nk* log? n)/(*+2))) samples (via a simple
Chernoff bound). Since we do not know which of the 2" traces
is the truth, we actually test between all pairs, where the test
has no guarantee if neither tensor is the truth. However, via
a union bound, the true tensor will beat every other in these
tests and this only introduces a poly(n) factor in the sample
complexity.

B. Reconstruction of random tensors

In this section, we extend the results in Section VII for
random tensors. Suppose we have a k*" order random binary
tensor T' € {0, 1}”1/kxnl/kx”'xnl/k such that 7" has equal
number of elements along every dimension and every element
in T is randomly sampled from {0, 1} uniformly and indepen-
dently. The tensor 7" is now passed through a tensor deletion
channel, which deletes each element along every dimension
independently with probability p = 1 — ¢. In this section we
will prove the following theorem:

Theorem 24. For any constant deletion probability p < 1,
O(logn/(1 — p)¥) traces are sufficient with high probability
to reconstruct a random X € {0, 1}"1/kxnl/k.

Notice that this bound is also tight since we need
Q(logn/(1 — p)*) traces to at least observe every bit in the
tensor 7. The detailed proof of Theorem 24 is a generalization
of the ideas presented in Section VII and has been deferred to
Appendix B.

IX. CONCLUSION

In this paper, we study several variations on the trace recon-
struction problem to understand how structural assumptions
on the input influence the sample complexity. Our results shed
light on how sparsity, separation between 1s, randomness, and
multivariate structures can enable efficient statistical inference
with the deletion channel. Along the way, we refine existing
techniques, such as the Littlewood polynomial approach, and
introduce several new ideas, including clustering and com-
binatorial methods. We hope our insights and techniques will
prove useful in future work on trace reconstruction and related
problems.

APPENDIX A
SPARSITY WITH GAP: TECHNICAL DETAILS

This section contains missing details from Section III.
Recall that we have a string « € {0,1}" that is k-sparse. We
further assume that each pair of successive 1s in x is separated
by a run of g 0s, and we refer to g as the gap. Recall that we
define {p, }*_, as the position of the k 1s in original string,
where p; < ps < ...,Dpr. As further notation we refer to the
collection of m = poly(n) traces as T = {Z; }}L;.

The first level: As a warm up, we show an algorithm
called FindPositions, that uses poly(n) traces to recon-
struct x exactly with high probability when the gap g =
Q(y/nlogn). The algorithm returns the values {p,}*_; and
crucially uses a binomial mean estimator. Given s samples
X1,Xs,...,Xs from a binomial distribution Bin(n, %) this
estimator returns an estimate of n, 7 = round(2 Y7 | X,),
where the round function simply rounds the argument to the
nearest integer. From the Hoeffding bound, it is clear that

Pr(n #n) =Pr(Jn —n| > 1)

s

1 n 1
=rr([Xx-g]=)

< 2exp (— 8%) < 2exp(—n°),
n

as long as s = 8n?*< for any € > 0.

Algorithm 2 FindPositions
Initialize: length of =
41/2nlog(mn3).
For each received 1, create a vertex v decorated with tuple
(zy, ty) where z, € [n] is the position of the received 1 and
t, € [m] is the index of the trace.
Create graph G = (V, E) using vertex set above, and with
edges:

n, m traces T, gap ¢g >

E = {(U,w) e — 2w] < 2n10g(mn3)}

Find connected components C1,...,Cy in G (If k' # k
report failure).

For each connected component C;, use the binomial mean
estimator on /{Zv}veCi to estimate p;.

Return {p; }5_ ;.

The algorithm FindPositions is displayed in Algo-
rithm 2. Our first result of this section guarantees that with
g = Q(yv/nlogn) Algorithm 2 recovers x exactly with poly(n)
traces.

Proposition 25. Algorithm 2 (FindPositions) success-
fully returns the string x from m traces with probability at
least 1 — 3n=2 as long as m > Q(nlogn) and the gap

g > 44/2nlog(nm3) = O(y/nlogn).

Proof. First, let us associate with each vertex v an unknown
label y, € [k] describing the correspondence between this
received 1 and a 1 in the original string. The first observation
is that if y, = wu then z, ~ Bin(p,, %) and we always have
Py, < n. Thus, by Hoeffding’s inequality and a union bound,
we have

Pr[3v € V i |zy — pu /2| > 7]

< |V]exp(—27%/n) < exp(log(mk) — 272 /n)
And so with 7 = y/nlog(mkn?)/2, with probability at least
1 —n~2 all z, values concentrate appropriately.

This event immediately implies that G is consistent in the
sense that if y, = y, then (v,v’) € E. Further the gap

condition implies the converse property, which we call purity:
if y, # y, then (v,v’) ¢ E. Formally, if y, # y, then

9/2 < |pyv/2 _prI/Q‘
<z _pyu/2| + |20 — 20| + |pyv//2 — Zyr|

< V2nlog(mkn?) + |z, — 2|

which implies that |z, — z,/| > ¢g/2 —

2nlog(mn3). Hence (v,v') ¢ E.

The above two properties reveal that each connected compo-
nent can be identified with a single index u € [k] correspond-
ing to a 1 in the original string and the component contains
exactly the received 1s corresponding to that original one
(formally C,, = {v : y, = u}). From here we simply use the
binomial estimator on each component. First observe that, by
a Chernoff bound, with probability at least 1 —k exp(—m/36),
each 1 from the original string appears in at least a 1/3-
fraction of the traces, so that |C,| > m/3. Then apply
the guarantee for the binomial mean estimator along with
another union bound over the k positions. Overall the failure
probability is at most

2nlog(mkn?) >

_9 —m
n~° + kexp(—m/36) + 2k exp (m)

which is at most 3n~2 with m > 24n? log(2kn?). With this
choice, we can tolerate g = O(y/nlogn). O

The recursion: The algorithm RecurGap (Algorithm 1)
uses the clustering scheme in FindPositions in arecursive
manner to estimate the parameters pq,...,pr even when the
gap ¢ is much less than y/n log n. Define a series of threshold
parameters, to be used in each level of the recursion:

71 = 4v/2nlog(mnk);
Ta = 80/ k74—1 log(mnk),

where the total number of levels is D. Note that, 74 <
802 . 44/2 . kT m@T paa loglfl/Qd (nmk). In particular, if
D = O(loglogn) then we have 7p = O(klog(n)).

Recall that V is the vertex set for the graph used above,
where each vertex v corresponds to a received 1 and is
associated with an unknown original one ¥,. Our main result
for RecurGap is the following.

d=2,...,D

Theorem 26. Assume g > 27p for some D < loglog(n).
Then with probability at least 1 — 1/n, Algorithm 1
(RecurGap) with D levels of recursion returns sets
Sty Sk CV such that Yu € [k]

) Sy, c{veV .y, =u}l
2) |Sy| > m/ logs(n).

The theorem follows from the three lemmas stated earlier.
Here we restate the lemmas and provide the proofs.

Lemma (Consistency, restatement of Lemma 10). At level d
let Vg = {v € Vag,y, = u} for each v € [k]. Then with
probability 1 — 1/n?, for each d and u there exists some
component C’i(d) at level d such that Vg, C C’i(d).

Lemma (Length Bound, restatement of Lemma 11). At level
d, the following holds with probability at least 1 — 1/n?: For

every component C’i(d) at level d, we have L(®Y < 2kTty.

Moreover if U is a contiguous subsequence of {1,...,k} with
d .

Uwer Vau C C’i(), then | ming ey py, — maxyepy po| < 4k7q

with high probability.

Lemma (Length Filter, restatement of Lemma 12). Assume
m > n. At level d, the following holds with probability at
least 1 — 1/n2: For a component Ci(d) at level d, let U be
the maximal contiguous subsequence of {1,...,k} such that
Uwer Vau C Ci(d). Define uy, = argmin, oy p, and ur =
argmax,cy Pu. Then for any v € Ci(d), if ur, and ug are
present in t,, then v survives to round d+1, that is v € V.
Moreover, for any v € Vg1, let pmin(v, U) denote the original
position of the first 1 from U that is also in the trace t,.
Then we have pumin(v,U) — py, < 8y/ktqlog(nmk) with
high probability.

The proofs of the lemmas are all-intertwined. In the in-
duction step we will assume that all lemmas hold at the
previous level of the recursion. Throughout we repeatedly take
union bound over all m traces and all up-to-k components,
and set the failure probability for each event to be 1/n?.
In applications of Hoeffding’s inequality, this produces a
2log(nmk) term inside the square root.

Proof of Lemma 11. We proceed by induction. For the base
case, by Hoeffding’s inequality, we know that for all v € V;
we have

|20 = Py, /2| < V/nlog(mkn) = 7/8

except with probability at most 2. This means that the posi-
tion corresponding to a single index u € [k] can span at most
71/4 positions. Formally, if two vertices v # v’ have y,, = Y,
then, by the triangle inequality, |z, —z,/| < 71 /4. Additionally,
if two vertices v # v’ have y,, # y, and |z, — 2,/ | < 71/4 (s0
that (v,v") € Ey), then |py, /2 —p, , /2| < 71/2. Use these
two facts, along with the fact that there are at most k distinct
values for y,, the total length of any connected component is
at most (k — 1)71 + k71/4 < 2k7;. The second claim follows
from the concentration statement.

For the induction step, assume that the connected compo-
nents at level d—1 have length at most 2k7,_1. Fix a connected
component C’i(dfl) and let ul(-fifl) denote the left-most original
1 present in C’i(d_l) (ug]’l—l) = min{y, : v € C’i(d_l)}). By
another application of Hoeffding’s inequality and using the
error guarantee in Lemma 12, we have that
247D = (py, = pya-)/2]
< 12670 = (g, = Pruin (0, UL)) /2
+ |pmin(v7 Ui(dil)) - pugdfn |/2

< \/2k1y_1 log(mkn) + 8+y/kt4_1 log(mkn) < 74/8

except with probability at most n~2. From here, the same
argument as in the base case yields the claim. O

Proof of Lemma 12. We have two conditions to verify. Fix
a component Ci(d) at level d with maximal contiguous subse-
quence U C [k] and recall the definitions vy, = argmin,c;; py,

and ug = argmax,cy Pu. By another concentration bound,
we know that

VJ len((’)) S (puR _pu[‘)/2
+V/ (Pup — Pu,) log(mnk)

with probability at least 1 — n~2. This reveals that:

- puL)/2 + \/(puR

Moreover, for any trace j that contains up, vy, the tail bound
is two-sided:

LD < (pu — Puy) log(mnk)

(d,i) (d Z))

Vj st ur,ur € T; llen

< \/puR

Note that we also have L(®9) > (p,,.
whelming probability as:

Pr[vj : len(z\"")

(Pur —Pus)/2|

Du,) log(mnk).

— pu,,)/2 with over-

< (Pur = Pur)/2|

< H Pr[len(igd’i))
j=1

S (puR _p'u.L)/2 | UR,UL] N PI‘[UR,UL}

1 1\™
- :2—37n
(2 3)

Here we are using the symmetry of the binomial distribu-
tion. Thus, with m > n, the failure probability here is
exp(—(n))), which is negligible.

IN

Using the upper bound on L(%%) reveals that :i'lg-d’i) survives,
since
len(z (")
> (puR - puL)/2 - \/(puR - puL) log(mnk)
> L4 — 2\ /(pu,, — pu,) log(mnk)

> L) 9, /or(di) log(mnk).

For the second condition, assume that some trace j survives
but does not contain ur. Let umy, = argmin{y, : v €
C’Z—(d),tv = j} denote the first original 1 in this trace that
belongs to Ci(d)s block (By definition p,,,_,, = Pmin(v,U) for
each v : t, = j). Then we know that

len(z ;d Z))
< (puR - pun]in)/z + \/(puR - pun—nin) log(nmk)
< (Pur = Pumin)/2 + 1/ 2110 log(nmbk)
but since 7% passed through the length filter, we also have

a lower bound on its length, and so we get that

Pumin — Pur

< 44/2L049) log(nmk) < 8v/ktqlog(nmk)

where the last inequality follows from Lemma 11. O

Proof of Lemma 10. The proof here is similar to that
of Lemma 11. Fix a component C’i(d_l) with corresponding
block Ui(d_l) C [k] at level d — 1 and assume that all

three lemmas apply for all previous levels. For a subtrace
2975 in this component observe and recall the definition

J
ul(-fifl) HORS Cl-(dfl)} and pmin(v7Ui(d71)), which
is the position of the first 1 in Ui(d_l) that appears in trace

t, = j. Since the length of the subtrace is at most 2k74_1
by Lemma 11 we get that

= min{y,

|Zz(;d_1) _ (p,gu — pugdfl))/2|
< 2 = (py, — pain (0,0)) /2]

+ |pmin(v7 Ui(d_l)) — pu(_dl—l) |/2

< \/Zk:Td_l log(mnk) + 8\/de_1 log(mkn) = 74/8. (2)

Here the last inequality uses Hoeffding’s bound along
with Lemma 12 at level d — 1. This implies that the clustering
at level d is consistent. O

Proof of Theorem 26. First take a union bound over D <
loglogn applications of the three lemmas, so that the total
failure probability is ¢cD/n? < 1/n. From now, assume that
the events in the three lemmas all hold for all levels. In par-
ticular, this implies that the components C’Z-(D) are consistent.
We must verify that the clusters are pure and then track how
many vertices remain.

For the first claim, let us revisit the proof of Lemma 10. If
two vertices, say v,v’, in a component at level D — 1 corre-
sponded to different 1s, say u,u’ then by the gap condition,
we know that |p, — py/| > g. On the other hand, we know
that (2) holds, and we will use this to prove that no edge
appears between these vertices. We have that

|2y — 20| > ‘pyu _pyv/|/2 —71p/8—71p/8
ZQ/Q_TD/47

and so, if g/2 > 7p, then the two vertices will not share
an edge. The argument applies for all pairs and hence the
clusters at level D are pure, which establishes the first claim
in the Theorem 26.

For the second claim, note that by Lemma 12, for ev-
ery component at every level, if a trace contains the two
endpoints of that component, then it will survive the filter.
Hence, in every filtering step we expect to retain 1/4 of the
subtraces passing through, and, by a Chernoff bound, we will
retain 1/5 of the subtraces except with exp(—(n)), provided
m > n. Since we perform D = loglogn levels, we retain
m/5'°81°8™ — m /log®(n) traces in each cluster with high
probability. O

Removing Bias: The reverse recursion: Now that we have
isolated the vertices into pure clusters, we need to work our
way up through the recursion to remove biases introduced
by the hierarchical clustering. For any component C’ZA(Dfl)
corresponding to block Ui(D_l) C [k] at level D — 1, since
the components at level D are pure, we can identify exactly
the subtraces that contain the first and last 1 in the block. We
throw away all other traces, which de-biases the length filter
at level D — 1.

Unfortunately for a component C’i(d_l) corresponding to a
block Ui(d_l) at level d — 1, we cannot identify exactly the

subtraces that contain the exactly the first and last 1 in the
block. However, we know that C; (@=1) is further refined into
sub-components {Cl,)} at level d, and by induction we can
identify all the traces that contain the left-most and right-most
1 in the left-most and right-most sub-components. We identify
all such traces and eliminate the rest to debias the length filter
at level d — 1. See Figure 1 for an illustration.

To debias this length filter, we filter based on the presence
of two 1s at level d — 1 (just the end points), and two futher
1s at level d (the inner endpoints of the first and last sub-
components), four further 1s at d 4+ 1, and so on. So, just to
debias the length filter at level d — 1 we require 2°—(¢—1
1s to be present. Since we must debias all length filters
above a particular component, we require the presence of

lel 2P=d < 2P < log,(n) 1s. The probability of all
log,(n) of these 1s appearing is 1/n and by Chernoff bound,
with high probability at least m/2n of our traces will contain
all of these 1s.

For any 1, w, in the original string, let S denote the
subset of log,(n) 1s, whose presence we require to debias the
length filters above the pure component containing u. After
the debiasing step, the remaining vertices in the component
containing v have z, values distributed as

2y ~ Bin(p, — 1 —1|S¢[,1/2) + (|SL| + 1)

where | S| is the number of 1s in |S| that appear before u in
the sequence, and the final 1 is due to the presence of u. Using
the binomial mean estimator, we can therefore estimate p,,
with probability at least 1 —O(1/n), provided m > n? log(n).
Thus, poly(n) traces suffice to recover all p,, values, provided
that g > 7p and D = log, log, n. This proves Theorem 2.

APPENDIX B
MISSING PROOFS FROM SECTION VIII

Proof of Lemma 22. Fix L > 0 and define the polynomial

F(Zl,ZQ,...

-

1<ai,az,...

7Zk)
miaq

f(zleTa

,ap<L

miag

zo€ Lo ...,

miay,

zpe L).

We first show that there exists z7,z3,...,2; on the unit
disk (|| = |25 = --- = |z = 1) such that
F(z7,23,...,2;) > 1. This follows from an iterated ap-
plication of the maximum modulus principle. First factor-
ize F(z1,22,...,2k) = zz’“Fl(zl, Z9,...,2k) Where sy is
chosen such that F'(z1,z2g,...,2;) has no common fac-
tors of z,. Since F' has non-zero coefficients, this implies
that F1(zq,29,...,0) is a non-zero polynomial and there-
fore using the maximum modulus principle, for any fixed
Z1,%2,...,%k_1, there exists a value of z; = Z, such that
|Zx| = 1 and
‘F(Zl,ZQ, ‘e ,Zk)| Z |F1(21,ZQ, ‘e ,0)|

Subsequently we can further factorize F'(zy,zo,...
zZ’“_‘lle(zl, 29, ..., 2p—1) SO that Fo(z1, 29, ...,

,0) =
zk—1) has no

common factors in z;_1. Repeating this procedure k times, we
can show the following chain of inequalities

|F (27, 25,y 20)]
= |[F (2,25, 20 2 |[FH(, ., 0)
= |F2(Zfa Z;a RS ZI:—l)|
> |F2(zf,...,0) > . [FR(2)| > [FR(0)) > 1
Now, for any ay,as,...,a; € {1,..., L} we have
1< |F(21, 25,5 21)]
< |,f(* 'mal/L Z;BWMQ/L,.) .’Z;;em'ak/L” .n(["ﬂfl),
where we are using the fact that |f(z1,22,...,2;)] < n.
This proves the lemma, since we may choose ai,aq,...,ax
such that zfe™/L = exp(if;) for |0;| < /L for all
i=1,2,... k. O
Proof of Lemma 23. For k complex numbers
w1y, Wa, ..., w, € C, observe that
nt/k_1
E Z Til,ig,...,ikwilwéz . U};Ck
11,12,...,0=0
Z wilwh? .. wk
l1322) 7k

k .
Jt\ g—i, i
X Z Xj1,j2,...,jk H (it>pjt thlt

J12i1,J2 212,k 2tk t=1
nt/k_q k
E 317]2, 7kH qwt+p
J1,J25e:Jk t=1

Thus, for two tensors 17,15, we have

nk—1

1 -
- [Z (T1i1.,i27-~7ik

q 11,82,...,5 =0
11 i2 ik
- TQil,ig,..A,ik)wl Wy .. - Wy }

n'/*_1

-y

J1,J2s--5Jk=0

k
X H(qwt +p)’
t=1

£ A(Zl,ZQ, “e

(T1J1,J27 T1J17J2-,--~7j1c)

7Zk)

where we are rebinding z; = quw; +p forall t =1,2,... k.
Observe that A(zy, 22,...,2x) is a mulfivariate Littlewood
polynomial; all coefficients are in {—1,0,1}, and the degree
is n'/* in each variable.

Again, for z1,29,...,2; € v = {ew
use Lemma 22 and the fact that

10| < 7w/L} we can

Vz €71 1 |(2 — p)/q| < exp(Cap/(Lg)?).

to sandwich |A(z1, 22, 23, ..., 2k)| by

exp(—C1 L¥ logn)
|A(z1, 22, . . .

< max
Z21,22,..,2k €VL

exp(Ckpn'/* /(Lq)?)
X Z ‘E[Tlil,iQ,ik - TZil,z'Q,...,ik.]
ij

» 2k)]

This implies that there exists 41,42, ..., %; such that

’E[Tlil,iz,m,ik - T2i17i2w~,ik]
k k 1/k
> 4 exp (—ClL’c logn — CLanQ>
n q
k 2/k
> L oxp [—OonV/kE+2) (kp10g2 n)k/<k+2> |
n q

where the second inequality follows by optimizing for L. [J

Proof of Theorem 24. We will use the oracle described in
Section VII again. Recall that the oracle was able to distinguish
between the following two cases

Case 1: ¢ and t’ are traces generated by the deletion channel
with preservation probability ¢ = 1—p from the same
random string x € {0,1}"

Case 2: t and ¢ are traces generated by the deletion
channel with preservation probability ¢ = 1 —p from
independent random strings ,y € {0,1}"’

with failure probability at most 1/n20/.

Notice that the probability of a particular bit in 7" getting
deleted is 1 — ¢*. In that case, with m = 2logn/q" traces
we can ensure that every bit of X appears in at least one of
the tensor traces with probability at least 1 — % Suppose we
fix k£ — 1 dimensions and without loss of generality suppose
we fix the value of the rt" dimension of T to be i, for all
r # 1. In that case the elements {Tiigin Y= /1 form a

binary vector of length {0,1}""". There are n(*=1/% such
binary vectors corresponding to the n(*~1)/¥ different values
of is,13,...,1; and we will denote the set of traces from the
I*" such binary vector by G;. Notice that there exists a natural
ordering among these groups {G;}]_ (k Y For two distinct
groups Gy, Gy, where [0’ is deﬁned by (ig,i37...,ik) and
(J2, 73, - -, jx) respectively, we will have [< !’ if and only if
there exists a value » < k such that

i < Jr and 7 < j¢ VtE{T-i-l,’I“—FQ,...,]{i}.

Moreover, when we observe a tensor trace after fixing all the
dimensions, except the first one, we actually observe the vector
traces of one of those n(*~1/* binary vectors. Suppose for
every tensor trace, we do this process and collect all the vector
traces by fixing every dimension except the first one. We can
now use our oracle to group all these vector traces according to
the original binary vector they emanated from i.e two vector
traces belong to the same group if both of them belong to
G, for some value of I € [n(*=1)/¥], This requires at most

(mnl/k) < (mn

1/k)2 applications of the oracle and so, by the

union bound, this can performed with failure probability at

most
(mnl/k>2

n20/k

22k+210g%
n18/k

where the inequality applies for sufficiently large n. We next
infer the ordering among the n*~V/% groups {G,}; "
For two distinct 1,1’ € [n*=V/k] where 1,1’ is deﬁned by
(9,13, ...,%x) and (J1,jo2, - - -, jx) respectively, suppose there
exists a tensor trace having at least one vector trace from both
G and G. Moreover suppose the position of the vector trace
from G is given by (52,23, e ﬂk) and the position of the
vector trace from Gy is given by (52, J8y e ey jk) In that case,
we will infer that [< I’ if there exists an r < k such that

ip<jr and 4, <j, Vte{r+1,r+2,...,k}.

and infer | > [’ otherwise. The probability there exists
such a trace is 1 — (1 — ¢?)™ > 1 — 1/ poly(n). We also
perform an analogous process with every such dimension.
After all dimensions have been processed, we know exactly
the elements along each dimension that has been deleted to
form each tensor trace, which subsequently reveals the original
position of each received bit in each tensor trace. Given that
every bit of X appeared in at least some trace, this suffices to
reconstruct X, proving the main theorem. O

REFERENCES

[1] V. Levenshtein, “Reconstruction of objects from a minimum number of
distorted patterns,” in Doklady Mathematics, vol. 55, no. 3. Pleiades
Publishing, Ltd., 1997, pp. 417-420.

[2] V. L. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans-
actions on Information Theory, vol. 47, no. 1, pp. 2-22, 2001.

[3] V. Levenshtein, “Efficient reconstruction of sequences from their sub-
sequences or supersequences,” Journal of Combinatorial Theory, Series
A, vol. 93, no. 2, pp. 310-332, 2001.

[4] I Krasikov and Y. Roditty, “On a reconstruction problem for sequences,”
Journal of Combinatorial Theory, Series A, 1997.

[5] T. Batu, S. Kannan, S. Khanna, and A. McGregor, ‘“Reconstructing
strings from random traces,” in Symposium on Discrete Algorithms,
2004.

[6] S. Kannan and A. McGregor, “More on reconstructing strings from
random traces: Insertions and deletions,” in International Symposium
on Information Theory, 2005.

[71 K. Viswanathan and R. Swaminathan, “Improved string reconstruction
over insertion-deletion channels,” in Symposium on Discrete Algorithms,
2008.

[8] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results,” in
Symposium on Discrete Algorithms, 2008.

[9] N. Holden, R. Pemantle, and Y. Peres, “Subpolynomial trace reconstruc-

tion for random strings and arbitrary deletion probability,” in Conference

On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018.,

2018, pp. 1799-1840.

Y. Peres and A. Zhai, “Average-case reconstruction for the deletion

channel: Subpolynomially many traces suffice,” in Symposium on Foun-

dations of Computer Science, 2017.

L. Hartung, N. Holden, and Y. Peres, “Trace reconstruction with

varying deletion probabilities,” in Workshop on Analytic Algorithmics

and Combinatorics, 2018.

E. Nazarov and Y. Peres, “Trace reconstruction with exp(O(nl/3)

samples,” in Symposium on Theory of Computing, 2017.

A. De, R. O’Donnell, and R. A. Servedio, “Optimal mean-based algo-

rithms for trace reconstruction,” in Symposium on Theory of Computing,

2017.

A. McGregor, E. Price, and S. Vorotnikova, “Trace reconstruction

revisited,” in European Symposium on Algorithms, 2014.

S. Davies, M. Z. Racz, and C. Rashtchian, “Reconstructing trees from

traces,” in Conference On Learning Theory. PMLR, 2019, pp. 961-978.

[10]

[11]

[12]

[13]

[14]

[15]

[16] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded
trace reconstruction,” IEEE Transactions on Information Theory, vol. 66,
no. 10, pp. 6084-6103, 2020.

N. Holden, R. Lyons et al., “Lower bounds for trace reconstruction,”
Annals of Applied Probability, vol. 30, no. 2, pp. 503-525, 2020.

A. C. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,”
Proceedings of the IEEE, 2010.

S. Dasgupta, “Learning mixtures of gaussians,” in Foundations of
Computer Science, 1999.

D. Achlioptas and F. McSherry, “On spectral learning of mixtures of
distributions,” in Conference on Learning Theory, 2005.

A. T. Kalai, A. Moitra, and G. Valiant, “Efficiently learning mixtures of
two gaussians,” in Symposium on Theory of Computing, 2010.

M. Belkin and K. Sinha, “Polynomial learning of distribution families,”
in Foundations of Computer Science, 2010.

S. Arora and R. Kannan, “Learning mixtures of arbitrary gaussians,” in
Symposium on Theory of Computing, 2001.

A. Moitra and G. Valiant, “Settling the polynomial learnability of
mixtures of gaussians,” in Foundations of Computer Science, 2010.

J. Feldman, R. O’Donnell, and R. A. Servedio, “Learning mixtures
of product distributions over discrete domains,” SIAM Journal on
Computing, 2008.

S.-O. Chan, I. Diakonikolas, R. A. Servedio, and X. Sun, “Learning mix-
tures of structured distributions over discrete domains,” in Symposium
on Discrete Algorithms, 2013.

S. B. Hopkins and J. Li, “Mixture models, robustness, and sum of
squares proofs,” in Symposium on Theory of Computing, 2018.

M. Hardt and E. Price, “Tight bounds for learning a mixture of two
gaussians,” in Symposium on Theory of Computing, 2015.

G. Kos, P. Ligeti, and P. Sziklai, “Reconstruction of matrices from
submatrices,” Mathematics of Computation, 2009.

F. Ban, X. Chen, A. Frelich, R. A. Servedio, and S. Sinha, “Beyond
trace reconstruction: Population recovery from the deletion channel,”
arXiv:1904.05532, 2019.

P. Borwein and T. Erdélyi, “Littlewood-type problems on subarcs of the
unit circle,” Indiana University Mathematics Journal, 1997.

[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

Akshay Krishnamurthy is a Principal Researcher at Microsoft Research,
New York City. From 2016-2018, he was an assistant professor in the College
of Information and Computer Sciences at the University of Massachusetts
Amherst. Prior to that, he was a Postdoctoral Researcher at Microsoft
Research, and he obtained his PhD from Carnegie Mellon University, in
2015. He currently serves as an Associate Editor for the IEEE Transactions
on Information Theory. His research interests are in statistical learning and
reinforcement learning.

Arya Mazumdar (S’05-M’13-SM’16) is an Associate Professor of Data
Science at the University of California San Diego. In 2015-2021, he was an
Assistant followed by an Associate Professor in the College of Information
and Computer Sciences in University of Massachusetts Amherst. Prior to that,
he was a faculty member at University of Minnesota-Twin Cities (2013-15),
and a postdoctoral researcher at Massachusetts Institute of Technology (2011-
12). Arya obtained his Ph.D. degree from University of Maryland, College
Park (2011). Arya is a recipient of multiple awards, including a Distinguished
Dissertation Award for his Ph.D. thesis (2011), the NSF CAREER award
(2015), an EURASIP JASP Best Paper Award (2020), and the IEEE ISIT
Jack K. Wolf Student Paper Award (2010). He currently serves as an Associate
Editor for the IEEE Transactions on Information Theory and as an Area editor
for Now Publishers Foundation and Trends in Communication and Information
Theory series. His research interests include coding theory (error-correcting
codes and related combinatorics), information theory, statistical learning and
distributed optimization.

Andrew McGregor is an Associate Professor in the College of Information
and Computer Sciences at the University of Massachusetts Amherst. Prior
to this, he was a postdoctoral scholar at the University of California, San
Diego and Microsoft Research, Silicon Valley. He obtained his Ph.D. degree
from the University of Pennsylvania in 2007. Andrew is a recipient of the
NSF CAREER Award (2010), the College of Information and Computer
Sciences Outstanding Teacher Award (2016), and the ACM PODS Alberto
O. Mendelzon Test-of-Time Award (2020). His research interests include
algorithms, communication complexity, and information theory.

Soumyabrata Pal is a PhD student in College of Information and Computer
Sciences at the University of Massachusetts Amherst, advised by Professor
Arya Mazumdar. He is interested in theoretical machine learning, applied
statistics and information theory. Before coming to Ambherst, he obtained his
B.Tech from Indian Institute of Technology Kharagpur in India in 2016.

	Introduction
	Our Results
	Parametrizations
	Generalizations

	Our Techniques

	Sparsity and Learning Binomial Mixtures
	Reduction to Learning Binomial Mixtures
	Lower Bound on Learning Binomial Mixtures

	Well-Separated Sequences
	A Recursive Hierarchical Clustering Algorithm and Its Analysis: Overview
	The algorithm in detail: recursive hierarchical clustering

	Applications of the Well-Separated Strings Result and Methodology
	Strengthening to a Parameterization by Runs
	Reconstruction of random sparse strings with polynomial traces

	Bounded Hamming Distance
	Reconstructing Arbitrary Matrices
	Reconstructing Random Matrices
	Steps to reconstruct the matrix
	Oracle: Testing whether two traces come from same random string

	Extending Matrix Results to Tensors
	Reconstruction of arbitrary tensors
	Reconstruction of random tensors

	Conclusion
	Appendix A: Sparsity with gap: Technical details
	Appendix B: Missing Proofs from Section VIII
	References
	Biographies
	Akshay Krishnamurthy
	Arya Mazumdar
	Andrew McGregor
	Soumyabrata Pal

