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Figure 1: (a) EIT-kit supports users in creating a variety of EIT sensing devices and (b) visualizing the resulting data. EIT-kit
provides (c) a 3D editor plugin, (d) a sensing motherboard and microcontroller library, as well as an image reconstruction APL

ABSTRACT

In this paper, we propose EIT-kit, an electrical impedance tomogra-
phy toolkit for designing and fabricating health and motion sensing
devices. EIT-kit contains (1) an extension to a 3D editor for person-
alizing the form factor of electrode arrays and electrode distribu-
tion, (2) a customized EIT sensing motherboard for performing the
measurements, (3) a microcontroller library that automates signal
calibration and facilitates data collection, and (4) an image recon-
struction library for mobile devices for interpolating and visualizing
the measured data. Together, these EIT-kit components allow for
applications that require 2- or 4-terminal setups, up to 64 electrodes,
and single or multiple (up to four) electrode arrays simultaneously.

We motivate the design of each component of EIT-kit with a forma-
tive study, and conduct a technical evaluation of the data fidelity
of our EIT measurements. We demonstrate the design space that
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1 INTRODUCTION

Electrical Impedance Tomography (EIT) is an imaging technique
that measures conductivity, permittivity, and impedance of a sub-
ject [18]. It works by attaching electrodes to the surface of the
subject, and then using the electrodes to either inject current or
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measure the resulting voltages. Interpolating the raw signals then
results in an image of the subject’s internal conductivity.

In the past, EIT sensing required large, expensive hardware setups,
as well as complicated image reconstruction algorithms. As a result,
it was mainly used for professional medical applications in hospitals
for monitoring the inner structure of a part of the human body [18],
such as for observing lung function [16] and detecting cancer [49].
In the last decades, with the development of low-cost electronics and
the availability of open-source EIT image reconstruction libraries,
such as EIDORS [3], EIT sensing also became accessible to HCI
researchers who have used it for touch sensing (Electrick [46]),
tactile sensing [22], and hand gesture recognition (Tomo [45]). Such
advances that made EIT sensing more portable have also fed back
to the health sensing domain [4] where it has been used in sports
medicine on the field [13] and home care [30], which demonstrates
the great potential of low-cost EIT technology.

However, the expertise required for designing custom EIT devices
is still high. To create an EIT device, users first have to design the
form factor of the device to ensure constant contact between the
electrodes and the subject, which depending on the measurement
location and electrode distribution are different each time. Next
users have to connect the EIT device to a sensing board, which for
custom applications often needs to be designed from scratch [37, 47]
since commercial boards do not provide enough options to support
different EIT configurations. On top of that users have to find
the optimal AC injecting current and voltage measurement gain
to optimize the signal acquisition, which can be time consuming
because they are different for each sensing task. Finally, while there
are visualization libraries for desktop applications (e.g. EIDORS [3]
based on MATLAB [27]), they do not work on mobile devices and
thus users have to create their own visualizations when designing
mobile applications.

In this paper, we present EIT-kit, an electrical impedance tomog-
raphy toolkit that supports users across the different stages of
EIT device development. EIT-kit provides (1) a 3D editor for cus-
tomizing the form factor of the measurement setup and the elec-
trode distribution, (2) a customized EIT sensing motherboard that
supports different measurement setups (2- and 4-terminal, up to
64 electrodes, and single or multiple (up to four) electrode arrays),
and that provides adjustable AC injecting current to improve the
quality of the signals, (3) a microcontroller library that automates
the calibration of the signals and facilitates data collection, and
(4) an image reconstruction API for mobile devices that can be
used to interpolate and then visualize the data. We motivate the
development of EIT-kit with a formative user study, demonstrate
the capability of EIT-kit to support various interactive devices that
focus on health and motion sensing (i.e., a muscle monitor for phys-
ical rehabilitation, a wearable hand gesture recognizer, armbands
for non-intrusive distracted driving detection), and also conduct a
technical evaluation of the data fidelity of our EIT measurements.

In summary, we contribute:

e a formative study with 6 participants to understand the chal-
lenges of EIT sensing and how to address them in a toolkit;
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a 3D editor for personalizing measurement setups and a

custom sensing motherboard;

e alibrary for microcontrollers to automate EIT data collection
and a library for mobile devices for image reconstruction;

e a demonstration of EIT-kit’s applicability across different
sensing use cases at the example of four interactive devices;

e a technical evaluation of the data fidelity, image reconstruc-

tion algorithm and system performance of EIT-kit.

2 RELATED WORK

In the next section, we review the types of sensing applications
EIT has been used for and describe how users currently prototype
EIT sensing applications. We then discuss work related to toolkit
development in HCL

2.1 EIT Sensing Applications

Since EIT sensing is non-invasive and low-cost while offering high
frame-rates, it has been used for various sensing use cases in differ-
ent disciplines. For instance, in medical applications, EIT has been
used for monitoring lung function [16], detecting breast cancer [49]
and imaging the brain [35]. EIT has also been used for industrial
applications, such as monitoring the quality of products after man-
ufacturing by detecting interior defects via non-destructive test-
ing [25]. Finally, EIT has been used in geophysics to analyze rocks
and ground without taking them apart (cross-section analysis [10]).

More recently, EIT sensing has also been used for various appli-
cations in HCI [26], such as contact and touch sensing on rigid
(Electrick [46]) as well as soft and stretchable surfaces (iSoft [44]).
In addition, HCI researchers have explored the use of EIT for tac-
tile sensing, i.e. to detect the amount of force applied [22] and the
resulting deformation of the surface [31]. To sense hand gestures,
HCI researchers also developed EIT measurement setups of dif-
ferent resolutions (Tomo [45], Tomo2 [47]) and machine learning
architectures [26, 42], and have also mapped the resulting output
onto robotic prosthesis [43]. Furthermore, HCI researchers used
EIT to identify users by directly using the raw data to train the
classifier rather than first reconstructing an impedance image. For
instance, Cornelius et al. [9] identify users through a wrist-mounted
EIT device. Zensei [37] can also identify users interacting with ob-
jects, such as chairs and phones. Finally, Touché [36] can recognize
complex configurations of human hands and users’ bodies.

2.2 Prototyping EIT Sensing Systems

To build EIT devices, researchers have developed a variety of device
form factors and sensing boards, and explored various methods for
processing the signals and for visualizing the data.

Form Factors: Researchers developed EIT measurement setups for
different parts of the human body, such as the wrist [45], the
chest [16, 49], and the head [35]. EIT measurement setups have
either been mounted on the surface of objects to sense interaction
with them (iSoft [44]) or around objects to sense their interior [25].
For most applications the electrodes are distributed evenly, how-
ever, some applications also use uneven electrode distributions to
collect more data in certain areas (Zensei [37]). Similarly, while
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most applications use a single electrode array, some applications
use two or more electrode arrays to create a 3D volumetric im-
age [16, 35]. Finally, while most medical applications use standard
medical electrodes, applications for interactive devices often use
custom electrodes to better conform to the human body.

Boards: Applications in the medical domain and in industry tend to
use commercial EIT sensing boards [16, 25]. There are also open
source EIT sensing boards (OpenEIT [7]) that provide measurement
solutions for standard EIT use cases. To extend the sensing capabili-
ties of such boards, researchers have also added custom PCB boards
to them to create their own sensing functionality [37]. Most of the
interactive applications, however, use their own custom boards.
The reason for this is that existing commercial boards do not offer
enough options for different EIT configurations. For instance, they
only support a fixed number of electrodes whereas many applica-
tions require a custom number of electrodes [37, 47]. In addition, the
most relevant open-source board we found (OpenEIT [7]) applies
voltage to the electrodes, which imposes noise to EIT theories [6].
In contrast, EIT-kit injects AC current, which is more commonly
used in the medical domain because it is safer to operate and more
accurate when measuring signals.

Sensing Configuration: Commercial boards typically come with their
own software, i.e., a graphical user interface that allows users to
specify the measurement configuration and then start collecting
data [7]. However, such software can often not be used for custom
boards since the code of the commercial software relies on specific
hardware components on the board. Thus, users with custom boards
cannot adapt the software for their own purposes and instead have
to write their own sensing code [45] and manually calibrate it across
different sensing subjects [47].

Visualization: Commercial boards typically come with their own
visualization software [7, 35], which similar to the sensing software
is specific to the board. While there are open source libraries, such
as EIDORS [3], that allow users to interpolate and visualize custom
data, these libraries are nearly 20 years old and based on MAT-
LAB [27], which does not work on today’s mobile and ubiquitous
sensing devices. Even open source solutions, such as OpenEIT [7],
which uses a part of the pyEIT [24] visualization library, do not
offer image reconstruction on mobile devices. EIT-kit’s mobile vi-
sualization API offers additional portability, which unlocks more
sensing environments (e.g., outdoors). In addition, because existing
open source boards do not support multiple electrode arrays, they
do not provide 3D volumetric visualization. This is a problem when
user motions are involved since the EIT device can move slightly
out of place, which 3D volumetric data analysis can compensate
for. EIT-kit can provide such 3D volumetric visualizations because
its sensing board supports multiple electrode array setups.

To address these issues, EIT-kit provides a 3D editor to customize
the EIT measurement setups for different body locations (e.g., hand,
thigh, chest cuffs) and allows users to customize the configura-
tion of the electrodes (up to 64 electrodes, on up to 4 electrode
arrays, with customizable electrode distributions). In addition, it
provides a custom sensing board that supports various measure-
ment configurations (2- and 4-terminal measurements using the
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same hardware components, different injecting currents and volt-
age measurements). The custom sensing board of EIT-kit samples
125x faster than the closest alternative (OpenEIT)) (e.g. under 32-
electrode 4-terminal measurement, EIT-kit runs at 10 fps including
Bluetooth latency while OpenEIT runs 1 frame every 12.8 seconds),
which can be used for motion sensing and monitoring. Furthermore,
EIT-kit provides a custom sensing library to automate the signal
calibration and signal acquisition, and includes a visualization li-
brary that is optimized for mobile applications and capable of both
2D and 3D image reconstructions.

2.3 Toolkit Research in HCI

Toolkit research plays an important role in the field of HCI since
toolkits can "heavily influence both the design and implementation”
of interactive systems [23]. According to Greenberg [14], toolkits
are generative platforms designed to create new interactive arti-
facts, to provide easy access to complex algorithms, to enable fast
prototyping of software and hardware interfaces, and to enable
creative exploration of design spaces. Therefore, a lot of toolkit re-
search focuses on reducing the complexity of existing technologies,
minimizing authoring time, and creating paths of least resistance.
In hardware prototyping, toolkits have played an important role in
lowering the barrier of entry by encapsulating low-level domain
knowlegde [5]. Multi-Touch Kit [34], for instance, makes capacitive
touch sensing technology more accessible by providing fabrication
files and a software library that works with commodity microcon-
trollers. Similarly, Midas [38] supports the design and fabrication of
capacitive touch sensors with custom shapes and layouts that can
be attached to existing objects. WatchConnect [19] is a toolkit for
rapidly prototyping cross-device applications with smartwatches
that includes a custom sensing board which generalizes across dif-
ferent interactive use cases. Other toolkits for fast prototyping,
such as Phidgets [15], .NET Gadgeteer [17], and VooDoolO [39], pro-
vide both hardware and software programming support for users.
Because of the wide variety of EIT measurement setups, sensing
configurations, and visualization options, building a toolkit for both
the hardware and software parts of EIT technology has the potential
to increase access to the technology and enable novel applications.

3 FORMATIVE STUDY

To further increase our understanding of the challenges involved
in EIT sensing, we conducted a formative study with six partici-
pants. The participants included 2 males and 4 females, aged 21-35
(M=27.2, SD = 4.60). Three participants were medical professionals
with an MD degree from a hospital who use EIT or similar sens-
ing technologies (EMG, EEG) in their daily diagnosis. The other
three participants were designers who had previously designed
interactive devices using EIT or similar sensing technologies.

We conducted semi-structured interviews (40 minutes per partici-
pant) and focused our questions on participants’ experiences when
building EIT sensing devices and acquiring data via EIT sensing. We
asked about any challenges participants encountered and invited
them to talk about what would have made their task easier. We
describe our findings below and discuss how they informed our
toolkit design.
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Electrodes Placement: Multiple participants stated that it can be
challenging to ensure that electrodes are placed correctly over
the sensing area and that they are positioned to create sufficient
electrical contact. P2 explained: “it’s difficult to have consistent
electrode placement and to keep it in [good] contact with the skin.”
P3 also stated: “... the electrode placement is really important to
make sure that you're getting a good measurement.” P1 added that
“sometimes even residencies can struggle with electrode placement
across different patients, which results in bad data quality.”

Measurement Automation: All six participants mentioned that they
struggled with calibrating the signals to obtain the best data quality
and wished this step could be automated. This was especially promi-
nent among the medical professionals who have to re-calibrate the
setup for each new patient. P1 mentioned that the more automated
the process, the more beneficial it is, saying “we physicians want
it as simple as possible to measure [across] different patients and
body parts so that we can diagnose more patients.”

Cross-section vs. Volumetric Visualization: Several participants men-
tioned that they prefer a 3D volumetric visualization over the
2D cross-section visualization offered by existing software. P3 ex-
plained that such a visualization would be a reason for doing more
EIT measurements, saying “we [physicians] only use equipment if
it provides a diagnosis that changes or adds to our current diagnosis
[...] we don’t want to scan the patient more than necessary.” P6, one
of the interactive device designers, also expressed that “[volumetric
visualization] would have higher data density to interpolate and
can enable new applications in the VR/AR domain.”

Data Sense Making: Five out of six participants expressed that they
would like to have data sense making capabilities on top of the raw
measurements and reconstructed images. P1 said that “I spend the
most time convincing patients that what I'm saying is valid [...] it
would be nice if this kit also visually validated my interpretation.”.
P5 also stated that “[it] may be helpful to give more detail on what
the data means so that the user can know what they’re looking
at” and P6 added “(data sense making) can be super helpful to
understand what data are represented in the physical world.”

Based on these insights from our formative study, we designed our
toolkit to include a 3D editor that generates the electrodes place-
ment based on a 3D scan of the human body, a sensing board and
sensing library that automates the EIT signal measurements, the
option to use multiple electrode arrays with the board for 3D volu-
metric visualization, and a visualization library that facilitates data
sense making by allowing users to visualize the data in AR overlaid
onto the subject they are measuring.

4 THE EIT-KIT

EIT-kit supports users across the different stages of EIT device
development. EIT-kit offers a 3D editor for creating custom mea-
surement setup for different measuring locations (e.g, wrist, thigh)
and sensing resolutions (number of electrodes, electrode distribu-
tion). In the EIT data measuring stage, EIT-kit provides an EIT
sensing motherboard as well as a sensing library (Arduino-based)
for acquiring data from the board. In the final stage, where users
have to interpolate the data and visualize it, EIT-kit assists users
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with an image reconstruction API for mobile devices (i.e. iOS de-
vices) that is capable of 2D and 3D visualizations, on screen and in
AR. By providing these building blocks that are essential for EIT
device development, EIT-kit facilitates the creation of custom EIT
sensing applications.

4.1 3D Editor for EIT Device Geometry and
Electrode Distribution

When users create a new EIT device, EIT-kit’s 3D editor supports
users in creating a device form factor that ensures sufficient contact
with the subject and allows them to specify the sensing resolution
via custom electrode distributions. Once users are satisfied with
the design, the 3D editor generates the fabrication files for building
the physical EIT device.

Ensuring Sufficient Contact with Subject: To ensure that the electrode
arrays make sufficient contact with the subject, EIT-kit’s 3D editor
automatically generates a device form factor that fits tightly around
the designated sensing area. Users start by importing a 3D model
of the subject they want to measure. The 3D model can be acquired
either through 3D scanning or by downloading a pre-built 3D model
from an open-source platform (e.g., Thingiverse [21]). Next, users
specify the sensing area on the 3D model by marking the corre-
sponding faces, EIT-kit then automatically generates a form factor
that tightly fits around the marked area, as shown in Figure 2.

7

Figure 2: Device Form Factor: EIT-kit’s 3D editor generates
the device geometry and electrode distribution automati-
cally, here shown at the example of a wrist worn device on
an imported arm 3D model.

Specifying the Sensing Resolution: To specify the sensing resolution,
i.e. the number of electrodes, users can either select the desired
number from the user interface and EIT-kit will distribute them
evenly, or directly select locations on the device geometry. This
also allows users to specify a custom measurement focus rather
than using even measurements. EIT-kit supports users in finding
the best electrode distribution for their use case by showing the
resulting sensing paths between the electrodes in a 2D visualization
(Figure 3). In addition, EIT-kit helps users in finding the best trade-
off between measurement resolution and measurement speed by
displaying the estimated frame rate of the chosen electrode setup.
Finally, to support users in creating multi-band designs, EIT-kit
provides functionality that replicates an existing band in a different
location while adjusting the device form factor to fit that geometry.

Exporting the Fabrication Files: Once satisfied with the device form
factor and electrode distribution, users export the design as a
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Figure 3: Sensing Quality: Areal weighting of the EIT mea-
surements of even and uneven electrode distributions.

3D printable .stl file. The 3D printable file already includes spaces for
the electrodes in the corresponding locations. By default, the editor
uses standardized commercially available electrode pads (e.g., 3M
2248 monitoring electrodes [1] or 440C stainless steel balls [28]).
However, users can also define custom electrode shapes, which
the 3D editor then exports as 3D printable files. Such electrodes
can be printed with plastic filament and then coated with silver
particles to make them conductive. After 3D printing, users attach
the electrodes to the EIT device geometry as shown in Figure 4 and
then solder or plug the electrode arrays into the sensing board.

- ring terminals sphere

electrodes

Figure 4: Fabrication: (a) 3D printed prototype and elec-
trodes ready for assembly, (b) adding the wires to the elec-
trodes, (c) attaching the electrodes to the prototype, (d) as-
sembled EIT device.

4.2 EIT Sensing Motherboard

After fabricating the EIT device, users next connect the EIT device
to the EIT-kit sensing motherboard (Figure 5). The motherboard
automates the EIT signal calibration and measurement for different
electrode configurations.

Bottom View
O K a

Top View Stack-up View

Figure 5: EIT sensing motherboard: (a) top view, (b) bottom
view, (c) with two stacked up mux boards.

Different Electrode Configurations: Our motherboard can support
different electrode configurations since its architecture consists of
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a main sensing board that can be flexibly extended with a stack
of modular multiplexer boards. The mux boards can support up
to 64 channels when connected to the main sensing board and
thus allow users to customize the number of electrodes (up to 64)
depending on the use case. The channels can also later be configured
via the EIT-kit sensing library to take measurements for either
single or multiple electrode array (up to 4) configurations.

AC Signal Injection and Voltage Measurement Mode: EIT-kit’s board
supports both 2- and 4-terminal measurements. 2-terminal mea-
surements use opposing pairs of electrodes, i.e. inject AC current
into one pair of opposing electrodes and then measure voltage of
all other pairs of opposing electrodes. 4-terminal measurements,
in contrast, use adjacent pairs of electrodes, i.e. inject AC current
into one pair of adjacent electrodes and then measure voltage of all
other pairs of adjacent electrodes. 2-terminal measurements use a
simpler hardware setup and support higher frame-rates since fewer
measurements have to be taken whereas 4-terminal measurements
have a higher spatial resolution due to the additional measurements
but at the expense of lower frame-rates. To support both types of
measurements, EIT-kit’s board can address each channel individ-
ually and set it to either inject current or measure the resulting
voltage. In addition, EIT-kit’s board provides adjustable AC inject-
ing current and measurement voltages since impedance can vary
across different subjects, different sizes of electrodes, different dis-
tances between adjacent electrodes, and different frame rates [16].
EIT-kit’s board can adjust the injected current by providing differ-
ential AC current up to 500kHz (which covers the main frequencies
used for bio-signal measurements [41]) and output voltages ranging
from -5V to 5V. To accommodate the range of different injected
currents, the boards’ ADC converter is sampling at 20MHz for the
voltage measurements to ensure the signal is accurately captured.

Autocalibration: To help users find the AC current and measure-
ment voltage that delivers the highest data quality for their sensing
application, the board provides an auto-calibration mode that uses
a digital rheostat instead of a fixed resistor for both AC current and
voltage measurement gains.

4.3 EIT Sensing Library

After connecting the EIT device to the sensing board, users next
need to write a program to measure the signals. EIT-kit assists users
by providing an EIT sensing library for the Arduino programming
environment. Users first input the parameters of their measure-
ment setup into the library’s constructor and then call the library’s
take_measurement() function to start collecting data.

Initializing the Constructor: Users start by importing the library
and then construct an object of the library that takes as input
parameters the specifications from the measurement setup, i.e. the
number of electrode arrays, the number of electrodes, the sensing
method, which is either 2- or 4-terminals, and if they want to use
auto-calibration (EIT_setup(int array_num, int electrode_num, int
sensing_method, boolean auto_calibration = TRUE)).

Calibrate Signals: By default, auto-calibration is turned on. To auto-
calibrate the signals, the library evaluates different injecting cur-
rents and voltage measurement gains (i.e., 2048 simulations, 10 bit
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for each current and voltage) and chooses the combination that
maximizes the voltage response within the ADC channel’s range.
Users can also turn the auto-calibration off and manually try dif-
ferent injecting current and voltage measurement gains using the
set_current() and set_voltage_gain() functions. In addition, the li-
brary’s constructor contains a boot-up function, which calibrates
the subject-specific fps based on the subject’s conductivity.

Collecting Data: Once the calibration process is completed, users
can start collecting data by calling the take_measurement() func-
tion. By default, measurement data is retrieved from the electrode
pairs in sequence, i.e. starting with one electrode pair and then the
remaining electrode pairs around the array. Depending on the mea-
surement method (2- or 4-terminal), the data is either collected by
measuring adjacent or opposing electrodes. Users can also directly
access the measurement data for each electrode pair, i.e. retrieve
the raw root mean square (RMS) voltage measurements and phase
measurements via getter methods provided by the library.

Communication Protocol: By default, Bluetooth communication is
turned on. When the microcontroller collects new data, it auto-
matically sends it to the image reconstruction API via Bluetooth.
The image reconstruction API then uses the received data, i.e. the
voltage readings, to reconstruct the image as soon as it receives
the measurements. Users have the option to turn off Bluetooth and
instead write the values to the Serial Port. This also enables users
to use the voltage readings for other applications by having their
application read the values from the Serial Port.

4.4 Image Reconstruction API

Once users started to collect data, they can use the functions from
EIT-kit’s image reconstruction library to interpolate and then visu-
alize the data. The image reconstruction library is built for mobile
devices (e.g., iPhone, iPad) and can be used with the Xcode inte-
grated development environment.
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Figure 6: A reconstructed EIT image: (a) measurement setup,
i.e. a water tank with five 3D printed PLA cylinders, (b) trian-
gulated mesh, (c) reconstructed conductivity map generated
on a mobile phone (model: iPhone XR).

Interpolating the Data: Once the measurement data arrives at the
communication port, the image reconstruction library stores the
data for later data interpolation. Before the data can be interpolated,
users first have to specify the boundary that best approximates the
measuring setup (i.e., circular, rectangular, or elliptical). The image
reconstruction library then processes the voltage measurements
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from the electrode pairs and calculates the conductivity distribution,
i.e. the conductivity at each point within the boundary.

Visualizing the Data: Once the library determined the conductiv-
ity at each point, it still has to visualize it in an image. For this,
the image reconstruction library constructs an empty mesh, which
consists of uniform triangular faces. It then maps the previously cal-
culated conductivity distribution onto the faces (Figure 6). Users can
set the ’visualization mode’ to be either continuous, in which case
a color gradient based on the value of the conductivity is assigned,
or discrete, in which case either black or white is assigned. When
multiple electrode arrays are used, the image reconstruction library
creates a separate 2D visualization for each electrode array. Alter-
natively, users can also visualize the data from multiple electrode
arrays as a 3D volumetric image, which the image reconstruction li-
brary creates by performing a linear interpolation of the previously
generated 2D meshes of each of the electrode arrays. EIT-kit also
provides an AR visualization mode in which the volumetric data
is overlaid onto the user’s environment using the mobile device’s
AR functions. Users can then build their own application-specific
visualizations on top of the reconstructed image data.

5 APPLICATIONS

We demonstrate the applicability of EIT-kit with a range of EIT
devices that support different sensing applications. The applications
include a muscle monitor for physical rehabilitation, a wearable
hand gesture recognizer, and a wrist-worn device that can detect
when users are distracted while driving. To demonstrate that EIT-kit
can accurately sense biological tissue, we also include an application
in which we apply EIT sensing to a cross-cut piece of meat which
is similar to human tissue. All devices are developed via EIT-kit.

5.1 Muscle Monitor for Physical Rehabilitation

We built a personal muscle monitor that can sense muscle strain
and tension in the thigh to monitor muscle recovery after injury
and to prevent re-injury of the muscles. The muscle monitor uses
two electrode arrays to create a 3D volumetric image of the thigh.
This does not only provide more comprehensive data on the muscle
engagement but also reduces measurement errors due to the EIT
device shifting slightly during movement. The muscle monitor uses
a custom electrode distribution to focus the measurements on a
particular muscle group, i.e. the quadriceps femoris.

To create the muscle monitor, we first used EIT-kit’s 3D editor
to select two regions around the 3D scanned thigh model of the
patient to generate the device geometry for the two electrode ar-
rays. Next, we chose the 16 electrode option and set the electrode
type to be 1/2" stainless steel spheres. EIT-kit then distributed the
electrodes evenly along the device geometry. To emphasize the
measurements over the quadriceps femoris, which are four muscles
located at the front of the thigh used for walking, running, jump-
ing and squatting, we adjusted the electrode positions to focus on
this area by repositioning them on the electrode band. We then
3D printed the exported design with elastic filament (TPU), assem-
bled the electrode stainless steel spheres onto the printed device,
and then connected it to the EIT-kit motherboard. We then used
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the EIT microcontroller library to initialize our setup for 4-terminal
measurements to obtain the higher spatial resolution required to
identify each muscle. Next, we built a mobile application using
the EIT image reconstruction library and defined the visualization
to be 3D for an AR environment. To test our device, we placed
it onto our thigh, started our mobile application, and then used
our mobile phone’s augmented reality function to overlay the 3D
visualization onto our leg by using the virtual model of the leg to
align the visualization with our body (Figure 7).

Figure 7: A muscle monitor for physical rehabilitation that
can display an AR view of the muscle activity in real-time.
Here, the AR visualization shows the muscle activity when
the user is (a) standing, and (b) lifting the leg.

5.2 Wearable Hand Gesture Recognizer

To demonstrate how EIT-kit can help with the development of de-
vices for sensing user interaction, we built a wearable hand gesture
recognizer (Figure 8). Since we are not sure what the best measure-
ment location is (e.g., wrist or arm) and what electrode distribution
would be appropriate for sensing gestures (e.g., 8, 16, or 32), we
created a range of prototypes that represent different combinations
of these parameters. We quickly created the different measurement
setups in the EIT-kit 3D editor and then exported them all. To eval-
uate the signal quality of the different measurement setups, we
quickly configured them in the EIT-kit microcontroller library by
specifying different parameters in the constructor, and then used
the EIT-kit image reconstruction library to create the conductivity
maps. Based on the images, we found that measuring on the arm
with a 16-electrode array and a 4-terminal configuration results
in the best trade-off between data quality, recognition speed, and
cost for our device. We then trained a machine learning model
on the conductivity images (default model from CreateML [20]),
and achieved a recognition rate of 97.5% over six different hand
gestures (i.e. rock, paper, scissor, left, right, thumb-up). This applica-
tion demonstrates that EIT-kit can help users quickly prototype EIT
devices for traditional EIT applications, such as gesture recognition,
which is one of the benefits of a toolkit.

5.3 Non-intrusive Distracted Driving Detection

To demonstrate that EIT-kit can be used to build mobile EIT sensing
devices, we built an EIT device that can identify which hand the
user has on the steering wheel while driving. Car manufactures

UIST ’21, October 10-14, 2021, Virtual Event, USA

Figure 8: A wearable hand gesture recognizer that can distin-
guish between 6 different hand gestures, here showing the
reconstructed EIT image for a thumbs-up gesture.

usually require drivers to have both hands on the steering wheel
since not having the hands on the wheel is an indication of being
distracted while driving, which causes a large number of accidents
every year (12% of deadly vehicle crashes [12]). While several car
manufacturers integrate sensors directly into the car (e.g., by adding
them to the steering wheel), they can easily be fooled by attaching
an object to the wheel [32]. Sensors on the hands bypass this issue.
Furthermore, sensors on the hands can be used to remind the user
to switch hands to avoid pain on long drives if one hand is overused.
This cannot be done with sensors integrated into the wheel since
they cannot detect which hand is used when the hand is placed at
6 & 12 o’clock on the wheel.

Figure 9: A wrist-mounted EIT device to detect if both of the
driver’s hands are on the wheel: (a) both hands are on the
steering wheel, i.e. safe driving behavior, (b) the right hand
is off the steering wheel, which displays a warning.

To develop our EIT device, we created two separate 16-electrode
arrays, one for each arm, and connected them to a single EIT-kit
motherboard. In the microcontroller library, we set up the measure-
ment as a two electrode array design and used the 2D visualization
for the image reconstruction. We then built a custom application
on top of the visualization that trains a machine learning model for
each of the user’s arms, and then applies that model during driving.
The app visualizes one of four possible detected outcomes, i.e. both
hands on the wheel, only the left or right hand on the wheel, or
neither hand on the wheel (Figure 9).
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5.4 Visualizing Biological Tissue

Finally, we built an EIT device to demonstrate that EIT-kit is capable
of sensing biological tissue. Since we cannot cut open a human body,
we used a cross-cut piece of meat which closely emulates human
tissue similar to prior work [47]. Since fat and lean tissue have
different electrical conductivity levels, EIT can be used to visualize
the tissue composition of a sample.

We built our EIT device using a single electrode array with 16-
electrodes that are distributed evenly, and then used the EIT-kit
microcontroller library to specify the measurement parameters to
use a 2-terminal configuration. In contrast to the prior applications
that used a gradient conductivity image, we used a discrete visu-
alization (fat vs. lean tissue) for this use case. In EIT-kits image
reconstruction library, we set the visualization mode to be ’discrete’
and defined the threshold level to be the conductivity of lean bi-
ological tissue. If the conductivity falls below the threshold, it is
characterized as fat biological tissue, otherwise, as lean. A percent-
age counter in the corner keeps track of the amount of fat vs lean
biological tissue in the sample (Figure 10).

Est.Marbling Percentage:
36.50%

Figure 10: An EIT device for sensing biological tissue, i.e. the
percentage of fat and lean tissue in the sample.

6 TECHNICAL EVALUATION

To evaluate EIT-kit, we conducted several experiments. First, we
tested how well EIT-kit’s default electrodes make contact with the
human skin by measuring the contact impedance. Second, we eval-
uated the quality of data collected with EIT-kit’s sensing board, i.e.
how well EIT-kit can differentiate between different numbers of
distinct objects and objects of different sizes and shapes. We then
evaluated the quality of EIT-kit’s image reconstruction when com-
pared to EIDORS. Finally, we collected data on the overall system
performance and the latency of individual components.

6.1 Evaluation of Electrode Contact

EIT signals are sensitive to variations in electrode properties, such
as changes in contact impedance, electrode area and the boundary
shape under the electrode. To avoid such variations, electrodes
should have consistent and steady contact with the measurement
subject via a "point-like" contact area [8]. To fulfill this requirement
while avoiding pointy shapes that could cause discomfort to the
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wearer of the EIT device, EIT-kit uses sphere-shaped electrodes
as one of its default electrode types (apart from standard medical
electrodes). To evaluate if sphere-shaped electrodes make sufficient
contact with the human skin, we compared sphere-shaped elec-
trodes (1/2" 440C stainless steel balls) to the gold standard ECG
electrodes. For our experiment, we placed both the ECG electrodes
and the sphere electrodes mounted on a single armband (with and
without conductive gel) at the same locations on the human skin,
and injected a pk-pk 5V differential sinusoidal signal into one pair
of adjacent electrodes. We then measured the signal amplitude
over a signal frequency from 1kHz to 100kHz from another pair
of adjacent electrodes. The contact impedance is represented by
the value of amplitude measured / amplitude injected, with a larger
percentage value indicating better results. .

ECG Electrode vs. Sphere Electrode with and without Conductive Gel

® ECG electrode @ sphere electrode w/o conductive gel
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Figure 11: Quality of contact impedance of medical ECG elec-
trodes and sphere electrodes (with and without conductive
gel) with injecting alternating current frequency ranging
from 1kHz to 100kHz.

Figure 11 shows the measurement results. We found that when
low injecting frequencies are used the sphere electrodes do not
perform as well when compared to the ECG electrodes (i.e., at 5kHz
sphere electrodes with conductive gel perform about 3% worse
and without conductive gel about 7% worse). However, they start
outperforming the ECG electrodes at higher frequencies (i.e., above
35kHz when conductive gel is used and 70kHz when no conductive
gel is used. Since the optimized signal frequencies for human skin
are around 50kHz [41], we conclude that for this range the stainless
steel sphere electrodes have comparable contact impedance (within
2%) with medical ECG electrodes and are therefore also suitable for
health-related EIT sensing applications.

6.2 Evaluation of Measuring Data Quality

To evaluate the data quality from the EIT-kit sensing hardware, we
developed a 32-electrode EIT phantom and designed experiments
similar to those carried out in previous research [11, 13, 47]. Our
phantom was 15cm in diameter and filled with 500ml saline water,
which we used to approximate the conductivity of human tissue.
In our first experiment, we measured how well our hardware can
sense different numbers of distinct objects (first six columns in
Figure 12). For this, we placed 3D printed PLA cylinders (diame-
ter: 2cm) in different numbers (1-6 cylinders) into the phantom. In
addition, we also tested how well our hardware can distinguish
between objects of different sizes (7th and 8th column in Figure 12).
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Figure 12: Reconstructed images of phantom setups with different numbers of objects (first six col.), different object sizes (7th,
8th col.) and different shapes (last col.) measured by EIT-kit’s sensing hardware and visualized by both EIDORS and EIT-kit.

For this, we placed pairs of 3D printed PLA cylinders of different
diameters (2cm and 4cm, and 2cm and 6cm) into the phantom. Fi-
nally, we also evaluated how well our hardware can differentiate
different shapes. For this, we placed a 3D printed PLA cylinder and
3D printed prism into the phantom as shown in the last column in
Figure 12. To ensure that this evaluation only measures the accu-
racy of our sensing hardware and is not influenced by our custom
image reconstruction algorithms, we used EIDORS to reconstruct
the images. The measurement setups and reconstructed EIDORS
images from this experiment are shown in the top two rows of Fig-
ure 12. The reconstructed images show that our sensing hardware
is indeed capable of detecting how many objects are present, how
large the objects are, and which shapes they have.

6.3 Evaluation of Mobile Visualization API

We evaluated the quality of EIT-kit’s image reconstruction by com-
paring it to a standard EIT image reconstruction library (i.e., EI-
DORS). We compared the image reconstruction quality for both data
captured from our measurement board and data created through
simulation.

Measured Data: The data captured from our measurement board
consisted of the phantom measurement data (9 phantom conditions)
from the previous evaluation section, as well as in-use data from
the gesture recognition application in Section 5.2 (the six hand
gestures). We reconstructed the EIT images with both EIDORS and
EIT-kit’s image reconstruction library. Since it is not possible to
acquire ground truth data for measured data, we use EIDORS’s
images as ground truth and define the loss metric to be the con-
ductivity deviation between the results from EIDORS and EIT-kit’s
image reconstruction. Before generating the images, we set the
mesh resolution and boundary shape in both image reconstruction
libraries to be the same, i.e. 1024 triangles with a circular boundary.
After the images were reconstructed from both EIDORS and EIT-kit,
we normalized the conductivity values to 0.0-1.0 greyscale, and
then compared them pixel by pixel to calculate the conductivity
deviation between the two. We did not compare the meshes triangle
by triangle since both image reconstruction libraries triangulate

the meshes differently. The reconstructed EIT images of phantom
data from EIDORS and EIT-kit are shown side by side in the last
two rows of Figure 12. To calculate the average difference between
EIDORS and EIT-kit we averaged the conductivity deviation of the
last 5 continuous frames to account for slight perturbation for each
of the 9 phantom conditions and 6 hand gestures (in total 75 frames).
We used the origin frame oy as control. The results show that for
the 9 phantom conditions, the average difference in conductivity is
0.0407 (std. 0.0123), with the control’s average at 0.235 (std. 0.00891).
For the 6 hand gestures, the average difference in conductivity is
0.114 (std. 0.0373), with the control’s average at 0.205 (std. 0.0170).
The images in Figure 12 emphasize these results, i.e. show that
EIT-kit’s image reconstruction can reconstruct how many objects
are present and what size and shape the objects have.

Simulated Data: While the previous evaluation compared EIT-kit’s
image reconstruction with EIDORS, it does not provide insights into
how accurately EIT-kit and EIDORS represent the ground truth. To
create ground-truth data, we simulated six conditions by creating
input data for frames that contained 1-6 circular objects (diameter =
0.2) inserted into a unit circular boundary. We assigned each object
a high conductivity of 2.0 and assigned the medium surrounding
the objects a low conductivity of 1.0. As the loss metric, we used
the conductivity deviation between the ground truth data and the
reconstructed conductivity image, and compared the results from
EIDORS and EIT-kit. We used the same mesh resolution (1024 tri-
angles with circular boundary), and normalized the conductivity
values from EIDORS and EIT-kit to 0.0-1.0 greyscale, as shown in
Figure 13. The results show that for EIDORS the average differ-
ence in conductivity is 1.108 (std. 0.0518), and for EIT-kit 1.165 (std.
0.0841) when compared to the ground truth. The detailed results
are presented in Table 1.

Table 1: Difference in Conductivity of EIT results from EI-
DORS and EIT-kit when compared to ground truth data.

simulated data | 1 obj. 2obj. 3o0bj. 4obj. 5o0bj. 6obj.
EIDORS 1.043 1.061 1.093 1.123 1.154 1.174
EIT-kit 1.052 1.095 1.144 1.188 1.237 1.271




UIST 21, October 10-14, 2021, Virtual Event, USA

EIDORS

Figure 13: Side-by-side comparison of reconstructed EIT im-
ages by EIDORS and EIT-kit’s image reconstruction library.
For each library the top row shows the ground truth data
and the bottom row the reconstructed image.

6.4 Evaluation of System Performance

Finally, we evaluated EIT-kit’s overall system performance, includ-
ing the sensing motherboard’s frame rate, the system latency, and
the performance of the auto-calibration.

Sensing Motherboard Frame Rate: The board’s sensing frame rate
depends on numbers of electrodes, measuring configurations, in-
jecting current frequency, and period averaging factors. The ADC
chip onboard samples at 20MHz. Under 100kHz injecting AC cur-
rent, 4-terminal 32-electrode configurations (928 measurements
per frame) and default averaging factor (4), the board runs at 26.94
frame-per-second (single measurement in 0.04ms).

System Latency: Apart from the sensing latency reported above,
the mobile visualization API also takes on average 0.0349 second
(28.65 frame-per-second) to solve each frame for 4-terminal 32-
electrode configurations, measured over 200 continuous frames on
an iPhone XR. However, the overall system latency is dominated
by the Bluetooth communication. Depending on the number of
electrodes and the measurement configuration, different amounts of
data have to be sent. For the above configuration, the system overall
runs at 9.93 frame-per-second over 60 seconds of continuous data.

Auto-calibration Performance: The purpose of the auto-calibration
is to remove the need for an oscilloscope, which is required for
manual calibration. The auto-calibration yields within +/-1% (i.e. +/-
10 out of 1024) of manual calibration with an external oscilloscope.
All phantom tests in the evaluation section as well as application
examples used auto-calibrated signals.

7 IMPLEMENTATION

We next provide additional details on how each component of EIT-
kit is implemented. EIT-kit’s components, including the 3D editor
plugin, customized PCB sensing board design files, microcontroller

library, and mobile visualization API, are open sourcel.

Thttps://github.com/HCIELab/EIT-kit_open-source.git
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7.1 EIT-kit 3D Editor

EIT-kit’s 3D editor is implemented as a Grasshopper Plugin for the
3D editor Rhino3D.

Device Geometry: Based on the polyline users drew on the imported
object, our editor plugin first calculates the geodesic curve around
the object and then offsets it along the normal vector of the object
surface to create the device thickness. To generate the mounts for
the electrodes, it first computes the electrodes’ widths and heights
via their bounding boxes, and then generates a rectangle at each
electrode’s location that matches these dimensions. Our editor plu-
gin then offsets all rectangles along the normal vector until a 75%
overlap is created with each electrode’s bounding box. It then lofts
all rectangles, caps the generated open geometry to be a closed
BREP (boundary representation), and calculates the boolean dif-
ference between the electrode 3D models and the closed BREP. As
a result, the electrodes can be snapped into the electrode array
geometry while also maintaining a constant contact area with the
subject’s surface.

Electrode Distribution: To distribute the electrodes evenly, our editor
plugin first computes the overall length of the geodesic curve and
then divides it by the number of electrodes. For custom electrode
distributions, the user’s selected electrode is always moving along
the geodesic curve. For custom electrode shapes, our system re-
quires that the electrode 3D model has its contact area on the 3D
model’s base plane and centered at its local (0, 0, 0) coordinate to
ensure the electrode distribution function works properly.

Connection Mechanism: The connection mechanism for closing the
electrode arrays is implemented as a classic three-piece interlock
clasp design (Figure 14). To ensure the connector does not interfere
with the electrodes, the interlock geometry is generated at the
center between two electrodes, and its length is constrained to be
less than half the distance between the electrodes. A removable
link screw can be exported and 3D printed separately. Alternatively,
an office clip or toothpick can be used to lock the mechanism.
The connector type for the electrodes and wires depends on the
electrode type. For standard medical snap electrodes, our system
generates space for snap electrode cables [33] on the electrode
array’s top surface. For sphere electrode designs, a rectangle slot
is extruded with corresponding ring terminal size [29] on the side
of each electrode. For customized electrode types, users have to
design their own electrode-wire connectors.

removable
link screw

three-piece
interlock clasp
7

Figure 14: To connect (a) the three-piece interlock clasp on
the EIT electrode array, users (b) insert a link screw, and op-
tionally (c) cut off the unused length of the screw. (d) The
assembled electrode array.
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7.2 EIT Sensing Motherboard

The motherboard consists of the main sensing board which is re-
sponsible for injecting the AC signal and measuring the resulting
voltage output, and up to two multiplexer boards, which can be
stacked on top, and that direct the signal to the individual elec-
trodes. The main sensing board has three components: a current
drive circuit for injecting the AC signal, a voltage measurement
circuit for measuring the voltage output from the current drive, and
a control circuit with an ESP32 microcontroller (Figure 15).

:f,

Bottom View

Top View

Current Drive
Voltage Measurement B

I —Contrpl Circuit

Figure 15: (a) Top and (b) bottom view of the EIT sensing
board highlighting the parts that make up the current drive,
voltage measurements, and control circuit.

Current Drive Circuit: The current drive circuit consists of a signal
generator, an adjustable instrumentation amplifier, and a voltage-
controlled current source (VCCS). The signal generator (AD5930)
acts as a voltage source and produces a small, constant-amplitude,
differential sine waveform at the desired injection frequency. This
waveform is routed to the instrumentation amplifier (AD8220) pro-
ducing a single-ended output ranging from 0V to 5V and centered
around 2.5V. The output amplitude (AD8220) is modulated by a
digital rheostat (AD5270) allowing for gain control of 1 to 1024. The
output directly drives the VCCS, which consists of two op-amps
(ADA4841) in a mirrored, modified Howland configuration. The
current output is differential and centered around 0.

Voltage Measurement Circuit: The voltage measurement circuit con-
sists of two input buffers, an adjustable instrumentation amplifier,
and a 10-bit analog-to-digital converter (ADC). The input buffers
consist of two op-amps (ADA4841), each in a unit-gain configura-
tion. The output of each amp passes through an RC high-pass filter
with a cutoff of 350Hz. The input buffers drive the instrumentation
amplifier (AD8220), producing a single-ended output ranging from
0V to 5V and centered around 2.5V. The output amplitude is modu-
lated by a digital rheostat (AD5270), allowing for gain control of
1 to 1024. The output is stepped down from 5V to 3.3V, then fed
into the ADC through an RC band-pass filter with cutoffs at 1kHz
and 1MHz. The ADC (ADS901E) samples at 20MHz and returns a
result in the range 0-1023 corresponding roughly linearly to the
input range of 0-2.2V.

Microcontroller Control Circuit: Both the current drive and voltage
measurement circuits are controlled by the ESP32 microcontroller
via the SPI channels and the GPIO pins. In order to have more direct
control at faster frequencies, we implemented the control circuit
via two separate SPI buses (HSPI & VSPI). The first SPI bus is used
to control the signal generator and digital rheostat. The second
SPI bus is used for the IO expander (MCP23S17) that drives the
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chip-select pins of the multiplexers as well as various other digital
inputs. The ADC converter output is routed directly to ESP32 GPIO
pins and sampled at 20MHz.

Mux Board & Electrodes: Each multiplexer (MUX) board consists of
four 32-to-1 analog multiplexers (ADG731). We refer to the 32-pin
side as “source” and the 1-pin side as “drain”, though all analog pins
are bi-directional. The multiplexers are connected in parallel such
that they share the same 32 source pins and same SPI clock and
data pins. The four drain pins are connected to the current drive
positive, current drive negative, voltage measurement positive, and
voltage measurement negative pins of the sensing board. Each pin
of the 32 source pins is connected directly to an electrode. Thus,
each of the 32 electrodes may be configured to connect to any of
the four current drive and voltage measurement pins of the sensing
board. A second MUX board can be stacked on top of the first to
allow for another 32 electrodes to be connected. Thus, in total 64
electrodes can each be connected to any of the four current drive
and voltage measurement pins of the sensing board.

7.3 Microcontroller Library & Data Acquisition

We next explain how our microcontroller library provides fast ac-
cess to signals and enables auto-calibration.

Faster Read/Write via Memory-mapped Registers: Instead of using
the native digital read/write functions, we implemented our own
functions directly from/to memory-mapped registers to achieve
faster signal processing and steadier performance. Since our library
is implemented to support the specific EIT-kit sensing hardware
from our toolkit, we were able to predefine the internal registers
used for all connections, i.e. between the microcontroller, multi-
plexers, ADC Converter, IO expander, and rheostats, as well as all
frequencies for SPI communication and constants for calibration.

Auto-Calibration: For the auto-calibration, three phases of calibra-
tion are performed. First, the library calibrates for the number of
samples that can be collected over the course of a certain num-
ber of input signal periods. Second, the library finds the greatest
current gain that can be injected and still yields an approximate
sinusoidal root mean square voltage reading within a user-specified
error threshold throughout all injecting and measuring electrode
pairs. In this phase, both differential current source and differential
voltage measurement are controlled via adjustable instrumentation
amplifiers modulated by digital rheostats with gain control of 1
- 1024 respectively (1024*1024=1048576 possible configurations).
Under a 32-electrode 4-terminal setup, the library determines the
greatest current gain (i.e. highest amplitude that keeps a sinusoidal
waveform under the specific measuring load) throughout all in-
jecting pairs (32 electrode pairs*1024=44032 measurements), then
determines the strongest viable signal based on the calibrated inject-
ing current (another 44032 measurements). This calibration stage
allows our library to find the strongest viable signal because higher
amplitude sine waves can be distinguished more easily than lower
amplitude ones. Lastly, our library calculates the phase offset of
the current signal wave to be used as a reference for the voltage
measurement readings.
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7.4 Image Reconstruction Algorithm & iOS API

The image reconstruction library is developed in Xcode via Swift
and builds onto the algorithms from EIDORS [3] and pyEIT [24].
Its backend can perform Finite Element Method (FEM) simulation
and EIT inverse solving, while its frontend interpolates and vi-
sualizes the data. We next provide technical details of the image
reconstruction algorithm we implemented.

Image Reconstruction Algorithm: EIT-kit solves the inverse problem
of inferring the internal conductivity ¢ over a domain Q from
voltage responses ¢ to current sources I, with oy initialized to be of
constant conductance 0.5. This is mathematically formalized by the
continuum Ohm’s law J = 0V¢, where J is the current density, and
the continuum Ampere’s law V - J = I. Combining these equations
under the assumption of no interior current sources gives us the
continuum Kirchoff’s law:

V.oV =0. (1)

Boundary current sources are encoded by j = —J - 71, where 7 is the
surface normal of Q. For a fixed o, and boundary conditions j, one
can solve the linear PDE (1) for voltages ¢ over Q. These fields are
discretized as piece-wise linear voltages and piece-wise constant
conductances on a triangle mesh. Differential operators V and V-
are computed with the standard FEM. This solves the ‘forward’
problem of determining ¢ from known o, j. For convenience of
notation let f(Q, o) be the restriction of voltages ¢ to the boundary
Q.

In the ‘inverse’ problem, one experimentally chooses current sources
J, and measures the boundary voltages ¢. The o can then be inferred
by solving the nonlinear optimization:

o =argmin |[f(2.0) - 3 2)

This problem suffers from being instable to noisy perturbations
in ¢. To achieve a faster and more stable solution, this problem
is frequently regularized with terms such as smoothness of o:
A /Q ||V0'||‘;J [18], or with assumptions that o does not change quickly

in time. Let ¥~ be the solution to (2) for the previous timestep.
One can add a simple regularization term Aljo — ok-1 ||§ to the
computation o for the current timestep.

k

A fast way to solve for ¢~ is to compute

o =L (JT 7+ )T (F(2, 65 - ), 3)
of

where J = 5. This corresponds to taking one Gauss-Newton itera-
tion, or to solve (2) linearized about o = o*~. Since this approach
is designed from linearizing about the previous iteration’s solution,
the quality of (3) depends on o changing slowly between timesteps.

Interactive Speeds: A key focus of our method is to achieve interac-
tive speeds. Our image reconstruction o is therefore computed via
the EIT problem (2) with the assumption that o changes slowly over
time. This assumption can be broken when a new object is intro-
duced to the measuring domain between iterations. However, the
quality of the reconstruction will quickly improve with additional
iterations. In this setting our reconstruction is a visualization of
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Newton iterations. For future work, we plan to explore integrating
regularizers to address this challenge.

3D Visualizations: A secondary feature of our method is the ability
to create 3D visualizations from data of multiple electrode arrays by
interpolating between conductivity measurements from multiple
cross-sections of the measuring object. Since the underlying triangle
mesh topology is fixed regardless of where the cross-section is
imaged, we can use linear blending to visualize conductivity across
a volume that represents an extruded cross-section of the boundary
of the measuring subject (e.g., a cylinder for circular boundaries).
As a result, the resulting mesh is implicitly a triangular prism mesh
but does not need to be constructed explicitly.

8 DISCUSSION

In the next section, we reflect on limitations of our approach and
discuss real-world impact and future opportunities for EIT-kit.

Measurable Impedance Range: Our EIT-kit motherboard is a low-
power board and runs on 5V for portability, which limits the in-
jecting current’s amplitude and voltage measurement range of the
system. We pushed the limit by implementing the current source
and measuring circuit to work with differential signals rather than
single-ended signals, which can generate differential output voltage
ranging from -5V to 5V in theory. However, that range decreases
because current passes through small resistors. The larger the cur-
rent, the more voltage will be lost. The range of injectable current is
+Vi/R, where Vi is the amplitude of the instrumentation amplifier
output after gain and R is the resistance value in the current circuit.
Overall the system has a measurable impedance ranging from R to
Vimax/(Vimin/R). In practice, the minimum and maximum of Vi is
around 0.15V to 5V, which corresponds to a measurable impedance
ranging from R to around 33R. In our current system setup, the
resistance value R can be changed between 220Q, 470Q and 1kQ.
This is an issue faced by all low-power EIT sensing systems. We
can address this in our future work by implementing an additional
voltage booster circuit.

Integrating EIT-kit Sensing Hardware with Measuring Setup: While
the EIT-kit 3D editor allows users to customize the form factor of
the electrode arrays, the editor does not yet include functionality
to integrate the motherboard with the overall device design. For
future work, we plan to include the EIT-kit board geometry with the
3D editor and also investigate how designers can change the shape
of the board to better integrate electronic function with device
form [40, 48].

Microcontroller & Image Reconstruction Libraries: Our microcon-
troller library is currently implemented for ESP32 and Teensy mi-
crocontrollers with hard-coded register addresses for optimized
performance. For future work, we will expand the type of develop-
ment boards EIT-kit supports. Similarly, the image reconstruction
library is implemented for use with Xcode, which limits it to iOS
products only. In addition, EIT-kit currently only supports dynamic
EIT imaging methods (e.g., back projection, GREIT [2]) to enhance
the portability of the toolkit and we plan to explore the integra-
tion of absolute imaging methods, which require significantly more
computation power, in the future as well.
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Deployment for Remote Rehabilitation: As mentioned in the intro-
duction, EIT devices have many applications in the medical domain.
We are currently collaborating with a local hospital to use EIT-kit
for the creation of remote rehabilitation devices that can monitor
different parts of a patient’s body during the healing process. Each
device created with EIT-kit will be customized to the patient’s body
and their particular injury, and will be mobile and thus allow for
at-home use to provide doctors with additional information about
the patient’s healing process.

Pre-Built Applications to Extend Target User Group: In its current
form, the target user group for EIT-kit are interactive device de-
signers who focus on health and motion sensing. Since interactive
device designers often use 3D modeling and 3D printing to build
new devices and write code to program them, EIT-kit’s 3D editor
plugin as well as the microcontroller and visualization APIs match
the capabilities of this user group. To extend EIT-kit’s audience to
users who are less experienced in programming, we will extend
EIT-kit with pre-built applications as part of our future work.

9 CONCLUSION

We presented EIT-kit, an electrical impedance tomography toolkit
for designing and fabricating health and motion sensing devices
that supports users across the stages of EIT device development.
We showed how our 3D editor for personalizing the form factor of
the electrode arrays automatically generates the EIT device geome-
try, distributes the electrodes, and computes the electrode connec-
tions. We demonstrated how our customized EIT sensing mother-
board supports various measurement configurations by providing
adjustable current injection and voltage measurements. We also
showed how our microcontroller library allows users to quickly
auto-calibrate their signals and collect the data. Finally, we illus-
trated how our image reconstruction library interpolates the data
and automatically generates 2D and 3D visualizations while opti-
mizing for interactive speeds. We evaluated the data fidelity of our
EIT measurements and demonstrated the toolkit’s applicability at
the example of four interactive devices.

For future work, we plan to explore how to more tightly integrate
the sensing board with the EIT device design and how to further
improve the signal processing modules on the EIT sensing mother-
board for additional clinical use cases.
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