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Figure 1: SensiCut augments standard laser cutters with a speckle sensing add-on that can (a) identify materials often found in
workshops, including visually similar ones. (b) SensiCut’s user interface integrates material identification into the laser cutting
workflow and also offers suggestions on how to adjust a design’s geometry based on the identified material (e.g., adjusting the
size of an earring cut from felt since the kerf for felt is larger than for other materials). (c) Each identified sheet is cut with

the correct power and speed settings.

ABSTRACT

Laser cutter users face difficulties distinguishing between visu-
ally similar materials. This can lead to problems, such as using
the wrong power/speed settings or accidentally cutting hazardous
materials. To support users, we present SensiCut, an integrated
material sensing platform for laser cutters. SensiCut enables ma-
terial awareness beyond what users are able to see and reliably
differentiates among similar-looking types. It achieves this by de-
tecting materials’ surface structures using speckle sensing and deep
learning.

SensiCut consists of a compact hardware add-on for laser cut-
ters and a user interface that integrates material sensing into the
laser cutting workflow. In addition to improving the traditional
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workflow and its safety!, SensiCut enables new applications, such
as automatically partitioning designs when engraving on multi-
material objects or adjusting their geometry based on the kerf of
the identified material.

We evaluate SensiCut’s accuracy for different types of materials
under different sheet orientations and illumination conditions.
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1 INTRODUCTION

While there have been many support tools for laser cutting that help
users with tasks such as automatically packing parts onto sheets [42,
46], systems that support users with the different material types
available for laser cutting are largely unexplored [6].

For users, working with the various materials available in a work-
shop comes with several challenges: First, identifying unlabeled
sheets from scrap buckets or material stockpiles in a shared work-
shop is challenging since many materials are visually similar [25].
As a result, users may take the wrong material from the stack and
use it with another material’s power and speed setting. This can
lead to wasted material when the power setting is too low, causing
the outline to not be cut through — or worse the material may catch
fire when the power is too high leading to safety risks. Further,
there are many materials that are not safe to laser cut because they
release toxic fumes [43]. These hazardous materials may easily be
mistaken for safe materials due to similarity in appearance (e.g.,
PVC vs. acrylic) [37].

Because of the challenges outlined above, laser cutter users de-
sire smarter machines that can "identify the materials they [are]
working with, so that the system could [...] suggest settings based
on material" as shown in a recent HCI study by Yildirim et al. [55].
One naive solution for this is to add a camera to laser cutters to
automatically identify the sheets. However, a conventional camera
can be easily fooled by visually similar materials or materials with
printed decorative textures that imitate another material.

To ensure reliable identification, recent laser cutters use sticker
tags attached to the sheets (e.g., QR codes on Glowforge Proofgrade
sheets [23]). As can be seen in Figure 2b, these tags can be detected
by a camera even when materials look similar or are transparent.
However, scanning the tags to detect the material type has its own
issues. First, a new tag has to be attached onto each new material
sheet. Second, laser cutter users need to be careful to not cut off the
tag to ensure that the remaining part of the sheet can later still be
identified. These issues exist because using tags for identification is
not inherently material-aware as the laser cutter does not measure
the physical properties of the material.
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Figure 2: Existing material identification approaches:
(a) Manually selecting from a database (e.g., ULS [50]) or
(b) scanning QR code stickers on sheets (Glowforge). (c) Sen-
siCut uses speckle sensing to identify the material based on
its surface structure without the need for additional tags.

In this paper, we investigate how we can identify laser cutting
materials by leveraging one of their inherent properties, i.e., surface
structure. A material’s surface structure is unique even when it is
visually similar to another type. To achieve this, we use speckle
sensing. This imaging technique works by pointing a laser onto the
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material’s surface and imaging the resulting speckle patterns. We
built a hardware add-on consisting of a laser pointer and a lensless
image sensor, which can be attached to the laser cutter head using
a mount. We then use the captured speckle patterns to identify the
material type with our trained neural network. Our user interface
uses the material type information to support users in different
ways, i.e. it automatically sets the power and speed settings for the
detected material, it warns the user against hazardous materials, it
automatically adjusts the shape of a design based on the kerf for
the detected material, and finally, it automatically splits designs
when engraving onto multi-material objects. We also discuss how
speckle sensing can be used to estimate the thickness of sheets as
another material-aware component for future laser cutters.

In summary, by leveraging speckle sensing as an identification
technique, we can improve the material awareness of existing laser
cutters. Our work enables safer and smarter material usage, ad-
dresses common material identification-related challenges users
face when laser cutting, and encourages makers to reuse laser-cut
scraps to reduce waste [9, 51]. Our contributions are the following:

e An end-to-end laser cutting pipeline that helps users identify
materials by sensing the material’s surface structure using
laser speckles to, e.g., automatically set the corresponding
power/speed, warn against hazardous materials, adjust de-
signs based on material-specific kerf, or split designs when
engraving onto multi-material objects.

e A compact (114g) and low-cost material sensing add-on for

laser cutters that simplifies hardware complexity over prior

work by using deep learning.

A speckle pattern dataset of 30 material types (38,232 images),

which we used to train a convolutional neural network for

robust laser cutter material classification (98.01% accuracy).

o A technical evaluation showing which visually similar ma-
terials speckle sensing can distinguish under various sheet
orientation and illumination conditions.

2 MOTIVATION

SensiCut addresses an important open challenge in the personal
fabrication literature. A recent field study [55] in HCI revealed an
unaddressed user need for fabrication tools concerning the “aware-
ness of material types”. In particular, users wished that the tools
could “identify the materials they were working with [and] sug-
gest settings.” The authors conclude that “HCI researchers could
advance [these tools] by leveraging new sensing [...] capabilities”.

To further understand what specific challenges exist, we sur-
veyed five additional HCI publications [2, 7, 22, 26, 36]. We also con-
ducted formative interviews with six expert users that we recruited
by reaching out to makerspaces. Each expert user had several years
of laser cutting experience working with different material types.
During the 1-hour semi-structured interviews, we interviewed them
about their experiences using different material types, difficulties
they had identifying materials, and how different material types
affected their designs for laser cutting. Additionally, we performed
a study in which we gave 13 novice users, who had used laser cut-
ters at least once but no more than four times, a list of 30 materials
commonly found in workshops (list of materials in Section 6.1), and
asked them to match them to 30 unlabeled sheets. For the interview



SensiCut: Material-Aware Laser Cutting Using Speckle Sensing

responses, we took a bottom-up approach in our thematic analysis
to identify four main challenges, which we report below.

Characterizing unlabeled sheets: We found that users have a hard
time identifying materials. In our study, novices were able to label
on average only 29.23% (SD=6.41) of the sheets correctly. The ones
that were correctly identified by most users were cardboard and
cork. The top 10 mislabeled sheets were all different types of either
plastic or wood. However, this is not only an issue for novices, but
also for experts. One senior maker we interviewed reported that
certain materials are too similar to distinguish by only looking and
touching. He added that he checks if a sheet is acrylic or Delrin
by "breaking the sheet and seeing how brittle it is" Identifying
materials by their surface structure eliminates these issues since
even similar types of plastic have different surfaces structures.

Democratizing material knowledge: One way to help novices identify
materials is to ensure sheets are labeled at all times. However,
in practice, this is infeasible to do for all sheets. One expert we
interviewed, a manager of a large workshop, said that "there is no
way to keep track of all the sheets [as] so many people contribute
to the scrap piles" Another option if sheets are unlabeled is that
novice makers ask an experienced maker which type of material it
is. However, Annett et al. [2] report that makers with “knowledge
[of] material [were] often difficult to access” and that users need
“intelligent sensing [of] materials” Hudson et al. [22] show that
“early in the casual makers’ learning process motivation appeared to
be very fragile” and “early failures [can] result in them completely
giving up.” A smart system that provides access to reliable material
identification would eliminate this issue, thereby lowering the entry
barrier to laser cutting and democratizing its use.

Automating mundane work: Laser cutting requires several steps
that are mundane and would benefit from being automated. For
instance, in today’s workflow, users have to identify the sheet,
select the correct material type from the material database, and
then verify the power/speed settings. Yildirim et al. [55] found that
professional users want "automated [fabrication tools] that could
pick up menial work, [e.g.] registering materials." They "find it
frustrating when they have to monitor an autonomous [tool]." A
material-aware sensing platform can remove the tedious overhead
and allow users to focus on the essential work.

Enhancing safety of all users: Laser cutting poses both safety and
health hazards [20, 30]. In our interviews, all experts reported
that they experienced multiple fires in the laser cutter at their
workspaces. One of them said that "all of the places [he has] worked
at had a fire" and that it is a "huge safety risk." Concerning health,
one of our interviewees, a class instructor, said someone almost cut
a hazardous material that includes chlorine, which would release
toxic fumes and corrode the machine. In addition, not adhering to
the rules would have "revoked all class participants’ access to the
workshop." For safety-critical tasks, HCI researchers have looked
into designing interfaces where the role of users is “mediated by
computer technology” [7, 36]. For fabrication tools specifically,
Knibbe et al. [26] found the “implementation [of] safety alerts could
provide significant benefits within group makerspaces.” A smart
sensing platform can provide such safety alerts and prevent human
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error by determining if hazardous materials are used or when users
accidentally select wrong laser settings, which can cause a fire.

3 RELATED WORK

In this section, we summarize previous work on detecting material
sheets in laser cutters, discuss sensor-based material classification
techniques, and survey prior work in laser speckle sensing.

3.1 Detecting Properties of Material Sheets
inside Laser Cutters

Several research projects have augmented laser cutters with cam-
eras to detect different properties of the material sheet, such as
its location inside the laser cutter, its geometry (i.e., outline and
position of holes), and the material type.

As conventional laser cutting interfaces do not show where
the inserted material sheets are located, users typically align their
drawing with the sheets manually before cutting. To aid this process,
researchers suggested placing a camera on top of the cutting bed
to display the sheets’ position to the user (VisiCut [34]). Even with
a camera preview, packing parts onto sheets can be a cumbersome
task, especially when the sheet has many holes. To support users,
PacCAM [42] extracts the sheets’ boundary and holes from a photo.
Once the outlines are detected, it provides interaction techniques to
speed up the packing on the sheet. Fabricaide [46] packs the parts
during the design process to make the user aware of constraints
such as sheet availability.

After packing the parts onto the sheet, users still have to set the
power and speed settings for the laser depending on the material
type. To automatically detect the material type, Laser Cooking [14]
uses an overhead camera to distinguish between different food
items using the brightness difference of the pixels in the captured
photos. However, this does not work reliably when the materials
are visually similar. To bypass this issue, a recent commercial laser
cutter (Glowforge Plus [23]) uses tag stickers, i.e., QR codes, attached
to the material sheets. Such tags have also recently been studied
in other areas of digital fabrication research, e.g., as an integrated
feature of 3D printed objects [10, 15, 29]. However, as mentioned in
the introduction, additional tags come with several issues. SensiCut
is able to distinguish between visually similar materials and differs
from prior work by not relying on external tags and instead sensing
the material type based on its inherent surface structure.

3.2 Material Type Sensing for Applications
Outside Personal Fabrication

Outside of the realm of personal fabrication, researchers have
explored different ways to sense a material’s type. Rather than
distinguishing between materials by comparing their colors, re-
searchers measured a material’s reflectance properties [45]. This
can be achieved by capturing images with conventional cameras,
which include information on the bidirectional reflectance distribu-
tion function (BRDF) of materials [38]. However, such techniques
require multiple images from different perspectives, which can
either be achieved through multiple cameras or a single camera
placed at different locations [11]. Alternatively, one can use a sin-
gle camera and multiple light sources. For instance, SpeCam [54]
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Figure 3: Speckle sensing. (a) Laser rays reflect off the material surface and arrive at the image sensor. Phase differences
between the rays result in mutual interference and thus dark or bright pixels in the captured image. (b) Different materials
viewed by a regular camera, a scanning electron microscope, and our speckle sensing imaging setup. (c) Our speckle sensing
add-on consists of a laser pointer, lensless image sensor, microprocessor, and battery.

uses a smartphone display as a multispectral light source and cap-
tures the reflection of the display’s light on a material’s surface
with the front camera. Lightweight Material Detection [18] uses
multiple LEDs, photoresistors, and a light sensor IC to determine
a material’s type. Alternatively, one can identify a material by its
subsurface scattering properties as measured by time-of-flight (ToF)
cameras [49]. Another technique is to measure the material’s ther-
mal conductivity: When humans touch a surface, a thermal camera
can sense how long the material maintains the temperature in-
crease caused by the touch [1], which can be used to determine
the material type. In the context of laser cutters, SensiCut’s sensing
technique is particularly suitable because it reduces the numbers of
hardware components compared to previous work by using only a
single laser and imaging sensor mounted to the laser cutter’s head.

3.3 Laser Speckle Sensing Applications

In contrast to the approaches explained previously, speckle sensing
is a sensing technique that uses a laser pointer for material identifi-
cation. Because the laser cutter already comes with a laser pointer
to show its current position on the platform, speckle sensing can
leverage the existing components in the laser cutter.

A laser speckle is a grainy pattern that can be observed when
a surface is illuminated with a coherent light source, such as a
laser pointer [16]. Speckle sensing has attracted interest in HCI
for different applications, such as environment or motion sensing.
VibroSight [56], for instance, analyzes speckle patterns to determine
if appliances are on/off. When on, objects vibrate and their surface
moves slightly, which results in a change in the reflected speckles.
SpeckleSense [57] enables motion sensing for spatially-aware mobile
devices by computing how much the speckles have moved from
one image to the next to infer the motion. SpeckleEye [33] and
CoLux [47] use this approach to also sense hand gestures.

While speckle imaging has been used for environment and mo-
tion sensing, it can also be used for material classification. This is
due to the fact that at the microscale, sheets that appear similar

to the human eye have irregularities that create a reflection pat-
tern unique to the material [8]. For instance, SpecTrans [44] uses
speckle sensing in combination with multispectral LED illumina-
tion to understand where the user is holding their smartphone in
relation to an object made from different transparent materials.
In contrast to this work, SensiCut focuses on material identifica-
tion in the context of laser cutting. In particular, with SensiCut,
we contribute an end-to-end material-aware laser cutting pipeline,
a speckle sensing add-on for laser cutters that reduces hardware
complexity by taking advantage of deep learning, a user interface
that integrates material sensing, and a dataset of speckle patterns
for material types commonly found in makerspaces and workshops.
As outlined in the next section, our method has the potential to be
affordably integrated and democratized in future laser cutters.

4 SPECKLE SENSING HARDWARE ADD-ON
FOR LASER CUTTERS

In this section, we first discuss the working principle behind laser
speckle imaging. We will then show how we built a sensing add-on
that can be mounted onto existing laser cutters and highlight the
technical contributions of our add-on over prior work.

4.1 Speckle Sensing Working Principle

Figure 3a illustrates how laser speckle sensing works. It uses a
coherent light source, i.e., a laser, to create the speckles and an
image sensor for capturing them. To create the speckle pattern, the
laser light reflects off the material surface, resulting in a reflectance
pattern (speckle) of bright and dark spots that looks different de-
pending on the material’s surface structure. This occurs because
the tiny features of the material surface lead to small deviations in
the optical path of the reflected laser beam. To show this, we pro-
vide additional electron microscope images of different materials
in Figure 3b. Although the materials look visually similar to the
human eye, the electron microscope images clearly show different
surface structures, resulting in different speckle images that can be
used for material identification.
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4.2 Hardware Add-on

To integrate speckle sensing into an existing laser cutter, we con-
sider (1) which light source and (2) image sensor to use, as well as
(3) how to mount all required components on the platform. We pro-
vide additional specifications for each component in the appendix.

Laser Pointer: Our initial idea was to utilize the laser pointer present
in our laser cutter (model: Universal Laser Systems (ULS) PLS6.150D),
which conventionally serves as a guide to align the material sheet.
However, we found that laser pointers need to be sufficiently pow-
erful to create speckles detectable by the image sensor. For this
reason, green laser pointers work best given equal power since
most commercial cameras have a Bayer mask with twice as many
green elements as red or blue. Unfortunately, our laser cutter has
a red laser pointer with a power of <1 mW, which according to
our experiments was not sufficient to create detectable speckle pat-
terns. We therefore decided to use an additional green laser pointer
(515nm, <5mW). In the future, this additional laser pointer may not
be necessary if manufacturers increase the power of their existing
laser pointers.

Image Sensor: Our goal was to choose a sensing setup that is com-
pact, i.e., uses as few components as possible, yet provides suffi-
ciently high resolution to detect the speckles. When surveying the
related work, we found that existing setups consist of multiple sen-
sors and/or LEDs [18, 44]. Each component in these setups helps
acquire a unique datapoint related to high-level statistics, such as
the average brightness or overall spectral reflectivity, which are
then input into a classifier as 1D data. We found that we can re-
duce the hardware complexity over prior work to only a single
image sensor if feed the raw image, in which the 2D spatial data
correlates with the materials’ surface structure, directly into a con-
volutional deep neural network (see Section 6.3). Although the 2D
image input requires additional time to compute the prediction
result compared to 1D data, it does cause not a disruption to the
laser cutting workflow (0.21s on a 2GHz Intel Core i5 processor).

For the image sensor, we chose an 8MP module (model: Rasp-
berry Pi [35]. As explained previously, this image sensor, like most
commercial ones, has a higher sensitivity to the green region of
the spectrum [48], which is beneficial for capturing speckle images
created by our green laser pointer. We placed the laser pointer and
image sensor as close as possible so that the speckles’ intensity
caused by the laser illumination is high enough when captured by
the image sensor.

Before mounting the image sensor, we removed the lens of the
camera module using a lens focus adjustment tool. We did this
because the laser pointer only illuminates a tiny area on the material
sheet (i.e., size of the laser spot). When imaging the sheet with the
off-the-shelf camera module that has the lens attached, the speckle
is present in only a small portion of the entire image because the
lens directs not just the laser light, but all the available light rays
in the scene onto the image sensor. This gives us less speckle data
to work with. When removing the lens from the camera module,
however, it is mainly just the reflected laser light that hits the sensor,
causing the speckle pattern to appear across the entire image (last
column in Figure 3b). Thus, the camera module with no lens utilizes
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all the pixels of the bare image sensor and can capture a higher-
resolution pattern.

Microprocessor and Battery: Since commercial laser cutters are closed
source, we had to add a small and lightweight microprocessor and
an external battery pack to allow our add-on to capture images.
Since the microprocessor has limited computational capacity, we
send the captured images wirelessly to a computer for further pro-
cessing. To make speckle sensing available in future laser cutters,
manufacturers do not need to add these components since laser
cutters already include processing hardware and a power supply.

Mounting on Laser Cutter: To make our hardware add-on compact
and easy to use, we designed and 3D printed the lightweight me-
chanical housing (60g) shown in Figure 3c. The housing snaps onto
the laser cutter’s head and can be mounted with a small rod. At-
taching the sensing hardware to the laser head allows us to avoid
additional calibration since because of the mount, the add-on is
always located at a fixed offset from the laser. All together, the
add-on weighs 114g.

In summary, our speckle-based hardware add-on consists of
a laser pointer, a lensless image sensor, a microprocessor, and a
battery pack. However, to integrate speckle sensing into future laser
cutters, manufacturers only need to add the lensless image sensor —
all other components (power and computing infrastructure, laser
pointer) already exist in laser cutters.

5 USER INTERFACE & APPLICATIONS

In this section, we describe our custom user interface (UI) that
integrates laser speckle sensing into the laser cutting pipeline. In
particular, we show how it helps users identify the material of a
single sheet or multiple sheets at once, and supports users with cut-
ting or engraving multi-material objects. Additionally, SensiCut can
offer safety warnings, provide extra information on materials, and
help with kerf-related geometry adjustments. We also describe how
we use the interface and SensiCut’s material sensing capabilities
for different applications.

Similar to the traditional laser cutting pipeline, users first start
by loading their design (i.e., an SVG file) into the SensiCut UI, which
subsequently shows it on the canvas (Figure 4a). Next, users place
the material sheet they intend to use inside the laser cutter.

SensiCut SR -1 wwoiconns - Wateral Detoction
Lict of materals
() Material Detection (@ comtrerc =L
R e T o oo o0 o o | © Use material atpinoint: Cast Acrylic
E [ T O Identify|v|sheets
S O Scan multiple shapes
_q;_detecﬁ"g O Scan multi-material objects.
) =
T im0 ;
identify the material @ confirm

Figure 4: SensiCut UL (a) The Pinpoint tool allows users to
identify the material at a desired location on the cutting bed.
(b) The user enters the thickness value corresponding to the
detected sheet and starts cutting.
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5.1 Identifying Single Material Sheets

To identify a single material sheet, users point SensiCut’s laser
pointer to a desired location on the sheet as shown in Figure 4a.
They can do this by first choosing the Pinpoint tool (arrow 1) and
clicking the point on the canvas that corresponds to the physical
location in the laser cutter (arrow 2). SensiCut then moves the laser
over this location to capture the speckle pattern and classify the
material. The resulting material name is then shown to the user
(arrow 3).

After the user clicks Continue, the shapes in the canvas are color-
coded to reflect the material type (e.g., red corresponds to Cast
Acrylic). The user then enters the material thickness in the text
field next to the classification result (Figure 4b). Once ready for laser
cutting, they can hit the Start button and SensiCut automatically
retrieves the appropriate laser power, speed, and pulse per inch
(PPI) settings from the material settings database.

Using the identified material type, SensiCut can further support
users via different functionalities:

Toxic and Flammable Material Warnings: As mentioned in the in-
troduction, there are many materials that should not be laser cut
because they are toxic, flammable, and/or harmful to the machine.
Based on the identified material type, SensiCut displays a warning
whenever the user requests to cut a material that is hazardous and
should not be used in the laser cutter.

Showing Material-Relevant Information: Even though some materials
appear similar, they may exhibit different characteristics, which
novice users may not be aware of. To address this, SensiCut displays
additional information on each detected material to inform users
about general characteristics of the material, ideal uses with sample
pictures, and handling/care instructions. We referred to the laser
cutting service Ponoko [24] to retrieve this information. Workshop
managers can edit and extend this information depending on the
workshop type and its users (architecture vs. engineering).

Kerf Adjustments: Design files can have details that are too intri-
cate for certain material types, especially when the sheets are thin.
Cutting these fine geometries can fuse details together because of
kerf. The kerf, i.e., the amount of the material removed due to the
laser, depends on the type of the material [39, 40]. When details are

affected by kerf, SensiCut shows a warning to the user and then of-
fers three options to address it: SensiCut can either slightly enlarge
the design based on the material type, smooth out too intricate
details, or ask the user to adjust the file manually in the drawing
editor (e.g., Adobe Illustrator).

Application: Fabricating a Face Shield From Different Unlabeled
Scraps: In this application example, we would like to fabricate a
face shield and use transparent plastic materials to ensure clear
sight while wearing it. We start by surveying different designs
online and after deciding on one [12], we download the parts, which
consist of a visor and a shield. The design instructions highlight the
importance of using the correct material for each part. In particular,
it is recommended to use a transparent rigid material for the visor
(e.g., acrylic) and a transparent flexible material for the face shield
(e.g., acetate or PETG).

We start by browsing through the leftover scrap materials from
our workshop. However, while going through the transparent scrap
materials, we notice that almost all of them are unlabeled. To make
the visor, we take the first rigid transparent material we find in the
pile that has a sufficient size and place it inside the laser cutter. We
then open SensiCut’s UI (Figure 4a) and select Pinpoint to identify
the material at a desired location. The right-hand bar shows the
material has been detected as cast acrylic, which is a suitable rigid
material for the visor. Once we confirm, SensiCut automatically
retrieves the appropriate power/speed settings for this job and the
laser cutter starts cutting the acrylic.

We repeat the procedure for the shield, which needs to be made
from a flexible transparent material. We go back to the scrap ma-
terials and find three different flexible sheets (Figure 5a). We read
online that acetate and PETG may be more suitable than other
plastics, but are not sure which one is which. We take all three and
place them in the laser cutter. In the UI, we then choose Identify
sheets and set the number of sheets to 3. Next, we click on one
point on each sheet to instruct SensiCut to identify the material
there. Once the results are displayed, we realize that one of them is
a polycarbonate (Lexan), which SensiCut labels with a "hazardous"
warning (Figure 5c). The other two sheets are identified as acetate
and (thin) cast acrylic.
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felt will compromise the design.

To learn more about the difference between the two materials,
SensiCut shows information from its knowledge database and dis-
plays it on the corresponding material. For example, it shows that
acetate has high impact strength and is reasonably flexible, and that,
in contrast to acrylic, it can be wiped down with alcohol, which is
important to disinfect the shield. We remove the Lexan and acrylic
sheets from the laser cutter, choose acetate in the Ul, and start
cutting. Now that all parts are cut, we can assemble the final face
shield (Figure 5d).

5.2 Identifying Multiple Sheets of Different
Materials at Once

SensiCut also allows users to cut multiple sheets of different mate-
rial types in rapid succession. The user first loads the design files
that contain the shapes they want to cut from the different sheets.
Next, they place the corresponding material sheets inside the laser
cutter and initiate the Scan multiple shapes mode. This causes Sen-
siCut to go to the location of each shape and capture an image
there for material identification. The resulting material names are
then displayed in the Material Detection sidebar and the shapes are
similarly color-coded based on the material types.

Application: Rapid Testing of Multiple Material Types for Product
Design: In our second example, we want to rapidly prototype a new
earring design in a white color. We want to fabricate the earrings
to test the look and feel of different materials to determine which
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one looks best when worn. To evaluate different material types, we
pick a handful of white samples from a material swatch (Figure 6a).

To speed up our prototyping process, we want to cut all the
material samples at once. To do this, we place all our selected
material samples on the laser cutter bed as shown in Figure 6b.
We then load the earring design. Next, we position a copy of the
earring design in the Ul in the location where each material sample
is placed. Next, we choose the Scan multiple shapes option. After
the scan, each earring’s shape is color-coded to reflect the detected
material type: felt, foam board, cast acrylic, and leather (Figure 6c).

Next, we enter the thickness for each material sheet: 1mm for
felt and leather, and 3mm for the others. For felt, SensiCut shows
a notification that our design has details that are too intricate for
a thickness of 1mm and may thus fuse together because of kerf
(Figure 7b). We choose the Make shape bigger option and enlarge
the felt earring so that the minimum feature size no longer goes
below the kerf limit (Figure 7a). Once adjusted, we cut and engrave
all sheets in a single job. The finished earring prototypes are shown
in Figure 7c.

5.3 Engraving onto Multi-Material Objects

Compared to individual material sheets, cutting or engraving de-
signs onto multi-material objects (e.g., the smartphone case in Fig-
ure 8a) is a particularly challenging task. It requires a cumbersome
workflow where users first have to split the design into multiple
files, one for each material. More specifically, proper alignment
of the shapes in the digital design with the different parts of the

original
on felt

enlarged

on felt © adjusted prototypes

Figure 7: Adjusting the design for kerf. (a) The user can enlarge the shape to compensate for the thicker kerf for felt. (b) With-
out the adjustment, details like the hole and fine blades of the leaf disappear in the cut felt. (c) The fabricated prototypes.
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physical object is challenging without knowing where the material
borders are located.

SensiCut facilitates cutting and engraving on multi-material
objects by automatically splitting the design precisely along the
border of different materials by sensing the material type at each
point in the design. For this, users start by loading a single file
containing the entire design, insert the multi-material object into
the laser cutter, position the design onto the multi-material object,
and select the Scan multi-material objects mode. SensiCut then
samples points along the laser-cut path to identify the material at
each point. The scanning progress is shown in the SensiCut UI by
highlighting the scanned trajectory. After scanning is completed,
SensiCut splits the design according to the detected material type
at each point to ensure the correct laser settings will be used.

Application: Personalizing Existing Multi-Material Products: In
this example, we want to engrave a custom design at the center of
a smartphone case that consists of two different materials across
its surface, i.e., leather and wooden parts (Figure 8a).

First, we load the design file, position it on top of the phone case,
and select Scan multi-material objects, which then moves the laser
head along the design’s engraving path to detect the material at
each point (Figure 8b). Once the scan is complete, SensiCut splits the
design into two parts, one for each of the two materials (Figure 8c).

Once SensiCut identified the materials, we realize that the part
we had thought was wood is actually made of silicone rubber with
a decorative wood pattern. SensiCut is not deceived by the disguise
pattern because it measures surface structure and sets the correct
laser engraving settings. Once we confirm, our design is engraved
onto our multi-material phone case (Figure 8c).

Application: Customizing Multi-Material Garments: Figure 9a
shows another multi-material item, i.e. a T-shirt, that we want to
engrave with a custom seagull design. The T-shirt has a plastic iron-
on material applied on it. To engrave our design, SensiCut detects
which parts are made of textile and which are made of plastic. It then
splits the seagull design into multiple paths accordingly and assigns
the correct laser power/speed settings for each one (Figure 9b). If we
had instead used only one set of laser power/speed settings for the
entire seagull design, i.e., the settings for either textile or plastic, the
lines would either not be visible on the yellow plastic or the textile

would have been burned. Further, it would be particularly difficult
to achieve this without SensiCut: One would have to remove the
iron-on plastic from the fabric itself, engrave the plastic and fabric
separately, and put them back together precisely. This shows how
SensiCut could help users further customize garments that have
non-textile parts (e.g., [13]) quickly and on demand.
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Figure 9: Engraving a pattern on a T-shirt that has (a) plastic
details on it. (b) SensiCut uses the right combination of laser
settings after partitioning the design (middle). Top/bottom
shows the outcome for singular settings.

6 CLASSIFICATION OF MATERIALS

SensiCut can differentiate between 30 different materials relevant
to the challenges laser cutter users face. In the next section, we
discuss how we built a dataset of speckle patterns of these materials
using an automated script, and how we trained a convolutional
neural network (CNN) to be able to distinguish between them.

6.1 Choosing Material Samples

For our dataset, our goal was to choose materials that are most
representative of the materials commonly found in makerspaces
and workshops, with a particular focus on the ones that cause
confusion because of their appearances. Figure 10a summarizes
the list of materials we compiled by surveying a range of online
communities (e.g., Thingiverse [31], Instructables [4]), educational
materials on laser cutting [5], supply vendors [24, 28], as well as
the laser cutter material databases that come with the default laser
cutter control software (e.g., ULS Universal Control Panel [50]).
The resulting material list includes 30 different materials ranging
from different types of paper, plastic, wood, fabric to (engraved)
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metal. In the next section, we discuss how these selected materials
are representative of the challenges that laser cutter users face.

Different Laser Cutting Materials with Similar Appearance: As our
formative material labeling study showed, plastics are particularly
challenging to distinguish for users due to their visual similar-
ity (Figure 10b). To represent such cases, we purchased samples of
cast acrylic, extruded acrylic, and Delrin (also known as acetal or
POM) of the same color, which require different settings to properly
cut/engrave a design [5]. We also included samples of different
transparent sheets, i.e., acrylic, PETG, and acetate. In addition, we
included other materials that have slightly varying appearances,
but still are difficult to distinguish for non-expert users who are
not familiar with the specific nuances, such as different types of
wood (e.g., maple, oak, bamboo, or birch) [52].

Hazardous Materials that Look Similar to Safe Ones: To represent
cases where some of the commonly found materials in workshops
are hazardous (flammable, toxic, or harmful to the machine) and
cannot be safely laser cut [5, 27], we included polyvinyl chloride
(PVC), Lexan (polycarbonate), acrylonitrile butadiene styrene (ABS),
and carbon fiber sheets. PVC is often mistaken for the common
laser-cut material acrylic. However, it is highly toxic as it releases
hydrochloric acid fumes when heated, which also rapidly corrode
the laser system [20]. Lexan and ABS are also hazardous and easily
flammable? but look similar to safe plastics. However, whether
a material is considered safe for laser cutting or not depends on
the specific hardware setup (air filter type and volume, power of
laser) as well as local regulations [17]. For our setup, materials in
the ULS material database that comes with our laser cutter and
its UAC 2000 filter (MERV 14, HEPA, 2 Carbon filters) are marked
as safe. For instance, polystyrene is listed as safe for our setup
but may not be safe for others. Thus, we recommend that when
deployed in a new workshop, SensiCut’s database be updated by the
workshop manager locally after checking material safety data sheets
(MSDS) for potential laser generated air contaminants (LGAC).
Workshop managers should also talk to their local occupational
health institution (e.g., NIOSH? in the US).

To make the material composition of our dataset representative
of a real-world workshop, where certain materials like acrylic and
cardboard are much more available in terms of quantity/color op-
tions, we included more than 1 sheet for these as seen in Figure 10a.
This also allows us to evaluate our system for different colors and
transparencies. In total, we used 59 material samples, the majority
of which were purchased from Ponoko [24], except for the 5 haz-
ardous material sheets (PVC, Lexan, etc.), which we purchased from
other suppliers on Amazon.com. A list of these material samples
and the associated vendors can be found in the appendix.

6.2 Data Capture & Material Speckle Dataset

After purchasing the different materials, we captured images of
each sample to build a dataset for training our convolutional neural
network.

Zhttps://wiki.aalto.fi/display/AF/Laser+Cutter+Materials
3https://www.cdc.gov/niosh/
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Preliminary Experiment: Before capturing data for all materials,
we ran a preliminary experiment to determine two values: (1) the
distance between the image sensor and the material surface at which
the speckle pattern is most visible, and (2) the number of images
necessary for training the classifier with high accuracy. For the
distance, we empirically found that 11cm between our image sensor
and the material surface led to the best results. For the number of
images, we placed material samples below the image sensor at the
recommended distance and took images, moving the sample in the
xy plane manually to simulate how the laser cutter would take
images at various points of the sheet. We found empirically that
around 80-100 images are sufficient for each material to train a
CNN for classification.

Data Collection: After this manual exploration, we started the data
collection of all materials. For this, we wrote a script to automate
the laser cutter’s movement and image capture. For our material
samples (6.3cm x 6.3cm), we chose to capture a 9x9 grid of points
leading to 81 images, which satisfies our criteria from the prelimi-
nary experiment. For consistency, we kept the image sensor settings,
i.e., exposure time, digital/analog gains, and white balance constant.

Additionally, we captured images at different heights (z-locations)
to ensure that the network can classify materials of different thick-
nesses. This is necessary since the speckle pattern changes with
the distance between the material surface and the image sensor.
We chose 8 different heights ranging from 0mm (to support paper)
to 7mm (thickest material sheet we were able to buy) spaced at
1mm increments. However, not every sheet has a thickness of a
multiple of 1mm (e.g., some sheets are 2.5mm). We can generate
this additional data using data augmentation methods as explained
in Section 6.3. Since our model was trained for materials with a
thickness of 0-7mm and the material surface was 11cm away from
the image sensor, this leads to an effective detection range of 110-
117mm. To integrate material identification into other cutting-based
methods like LaserOrigami [32] or FoldTronics [53], the model can
be trained for larger distances in the future.

Dataset: Our final data set contains 38,232 images from 59 material
samples of 30 unique materials (14.93 GB, 800x800 pixels each). Each
material sample includes 648 images (81 images/height x 8 heights),
which took about 40 minutes to capture with our automated setup.
The majority of this time is spent waiting for the laser head to
stabilize after moving to a new location to ensure that the captured
image is not blurry. The dataset is used for training the CNN and
does not need to be stored on the user’s computer. The trained
CNN model that is used at detection time is 120MB. The dataset is
publicly available?.

6.3 Training the Neural Network

To train the CNN and build a detection model using the captured
images, we used transfer learning with a ResNet-50 model [19] that
was pre-trained on the ImageNet dataset [41]. We used the Adam
optimizer with a learning rate of 0.003 and a batch size of 64. We
used 80% of images for the training set and reserved 20% for the
validation set.

“https://hcie.csail. mit.edu/research/sensicut/sensicut.html
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Figure 10: Material considerations and evaluation. (a) Most common material types for laser cutting. (b) Visually similar ma-
terials. (c) Confusion matrix from our trained classifier for 30 material subtypes.

Image Size Used for Training: For the input image size, we chose
256x256 pixels. Although we captured the images in 800x800 pixels,
we found that the higher resolution caused lower accuracy as the
model overfit to irrelevant details in the image. The lower resolution
input also saves training time because the model has fewer nodes
to compute. Moreover, it speeds up the detection during use (i.e.,
average prediction time: 0.21s for 256x256px vs. 0.51s for 400x400px
on a 2GHz Intel Core i5). We still keep the full-size images in our
dataset to enable future research.

Data Augmentation: To make the model robust to different lighting
conditions and intermediate sheet thicknesses (e.g., 2.5mm), we
generated additional images during training using data augmen-
tation. Every time the network starts training on a new batch of
images, a portion of the images is transformed by changing the
brightness and the contrast of all pixels (by up to +30%), as well
as zooming into the image to enlarge the speckles as would be the
case when the thickness of the sheet decreases (by up to +20%).
This allows our model to generalize better and also saves time by
avoiding the capture of more images with the physical setup.

In the future, new materials can be added to SensiCut by capturing
more speckle images and adding them to the dataset. For this, the
neural network needs to be retrained but the weights from this pre-
vious training can be used (transfer learning), which significantly
speeds up the process , i.e., takes only 10-12 minutes vs. 6 hours
training from scratch.

7 EVALUATION OF MATERIAL
CLASSIFICATION

We conducted a technical evaluation to determine our trained clas-
sifier’s accuracy. We also carried out additional tests to understand
how the model generalizes to different physical conditions (rotation
of sheets, illumination variations) and material sheets purchased
from different vendors.

7.1 Detection Accuracy Results

The results of the classification accuracy for the 30 different mate-
rials in our dataset are shown as a confusion matrix in Figure 10c.
Our average identification accuracy is 98.01% (SD=0.20) across the
different materials. This is based on a 5-fold cross-validation, which
we ran to ensure consistency of the classification accuracy across
different training and validation splits. The small standard deviation
shows that training our model leads to similar results independent
of how the dataset is split. For this reason and the fact that cross-
validation is a time-consuming procedure (30 hours for 5-fold), the
remainder of the technical evaluation is based on a single run.

We further analyzed the results to understand which of the
materials outlined in Section 6.1 are confused for each other most.
For instance, given a specific color (either white, black, or red), we
evaluated the identification accuracy across cast acrylic, felt, paper,
and laminated MDF. The accuracy was 100% for white and red,
and 92% (SD=12.72) for black, on average. The latter is likely due
to the fact that black reflects less light. Since the image sensor’s
exposure is the same for all photos, this causes the reduced accuracy
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Figure 11: Effect of (a) varying illumination and (b) sheet orientation on detection.

for black materials. Enabling adaptive exposure when capturing
images could eliminate this difference in the future [54].

Figure 10c also shows materials that were mistaken for each
other. For instance, leather and silicone were confused with each
other at a relatively high rate compared to other pairs. We believe
this is because our full-grain leather piece is hot stuffed, i.e., con-
ditioned with unrefined oils and greases, which likely makes its
surface structure closer to that of silicone. One can also observe
some confusion between walnut and paper-based materials, such
as cardstock. Thesimilarity in their surfaces may be due to the fact
that paper is produced using cellulose fibres derived from wood.

We also evaluated the accuracy of materials within the same
material groups. We got a mean accuracy of 98.92% across woods
(SD=1.66), 98.84% across plastics (SD=2.36), 97.25% across textiles
(SD=2.50), 95.90% (SD=2.94) across paper-based materials, and 97.00%
(SD=2.16) across metals. The fact that paper-based sheets had the
lowest rate is expected as they share the most similarities in their
surface structures among different subtypes (e.g., cardstock vs. card-
board have a similar surface texture).

7.2 Effect of Illumination and Sheet
Orientation on Detection

To understand how detection accuracy is affected under different
illumination (ambient light) conditions and sheet orientations, we
ran additional tests.

Ambient Light: When we captured the images for our main dataset,
we kept illumination in the workshop low (i.e., all lights turned off).
To evaluate if the trained model can distinguish between materials
even when the ambient light varies, we created an additional test
set of images under different lighting conditions. For this, we used
two lamps, one on the left and one on the right corner of the room,
resulting in three conditions (light1 on, light2 on, both lights on)
that cover an illumination range of up to 80 lux, in addition to the
initial data with all lights off. We tested this on different black and
white sheets, representing the two ends of the light reflectance
spectrum, as well as clear (transparent) sheets. We compare the
accuracy in the following three scenarios: 8 white and 8 black sheets
(for each color 2 sheets per type: plastic, paper, textile, wood), and
6 transparent sheets (all plastic).

The results are shown in Figure 11a. We found that the increased
brightness did not have a major impact on the detection of white
and black sheets. For clear sheets, however, the mean accuracy
was lower (66.67%). The reason for this is that while opaque sheets
benefit from data augmentation, this is not the case for clear sheets.
We found that the illumination increase in the room was not realis-
tically simulated in the digitally generated images of clear sheets

because such materials allow light to pass through in all directions.
This can be overcome by capturing additional images of clear ma-
terials under the varying light conditions and then retraining the
model. Indeed, such retraining resulted in an increased accuracy of
88.10% (shown in the last bar). We also found that retraining the
model on this augmented dataset did not have a major impact on
other materials’ detection (only by 0.41% on average).

Orientation of the Sheets: The images we captured for our main
dataset were all taken in a specific sheet orientation. We thus eval-
uated if the classifier is still accurate when the sheets are arbi-
trarily rotated for materials with uniform (e.g., acrylic) or non-
uniform/irregular surface structure (e.g., wood). For this, we created
an additional test set by capturing speckle images while rotating
the material sheets at 45° increments. For materials with uniform
surface (plastic, textile, paper, metal), we picked two subtypes each
(cast acrylic, Delrin, cardboard, matboard, felt, leather, aluminium,
carbon steel). For materials with non-uniform surface, we tested
eight subtypes of wood (oak, maple, walnut, birch, MDF, veneer,
bamboo, laminated).

The results are shown in Figure 11b. The lowest average detection
accuracy was for wood sheets (70.31%), which also had a high
standard deviation among the wood subtypes (24.94%). This is due to
the fact that wood sheets included both artificial ones with regular
surface structure (e.g., MDF), which resulted in 100% detection
accuracy, and natural woods with irregular surface structure (e.g.,
oak), which resulted in lower accuracies. The misidentified images
for those materials were all captured at the odd degrees (45°, 135°,
etc.). We believe this is due to the cellular 3D microstructure of
natural wood that has a 90° rotational symmetry at the microscopic
level [3]. We can increase detection accuracy for natural woods
by augmenting the training dataset with more pictures taken at
different angles, at the expense of longer capture time.

7.3 Generalization to Different Material
Batches and Manufacturers

In our main dataset, each set of samples came from one manu-
facturer. To ensure that our trained model can work robustly for
sheets from different batches of the same manufacturer or different
manufacturers, we conducted the following two tests.

New sheets from the same manufacturer: Two months after we pur-
chased our samples, we ordered a second batch of sheets from
Ponoko (two subtypes per material: oak, maple, cast acrylic, Delrin,
felt, leather, cardboard, cardstock) and placed them inside the laser
cutter to test if our trained model can still identify them. We found
that only the maple sheet was incorrectly classified. As explained in
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Section 7.2, this is likely due to unique microstructural orientation
of natural wooden sheets.

New sheets from different manufacturers: To test if sheets from differ-
ent manufacturers can be reliably identified, we ordered 8 different
sheets from various vendors on Amazon.com (two subtypes per
material: birch, cork, cast acrylic, Lexan, leather, felt, cardboard,
matboard). Only one of them, leather, was incorrectly classified. We
later found out that the new sample was synthetic leather, whereas
the classifier was trained on natural leather.

While the above evaluation demonstrated that our classification
model can detect material types across various conditions, more
longitudinal tests are needed to further verify its applicability across
various workshop settings.

8 SOFTWARE IMPLEMENTATION

Our user interface is Web-based and implemented using JavaScript
and the Paper.js library. When users request a material identifica-
tion, our system automatically moves the laser cutter head to the
corresponding xy-coordinates on the physical cutting bed. These
coordinates are offset by the distance between SensiCut’s laser
pointer and the cutting laser. For the z-value, a fixed distance to the
sheet is used for capturing the speckles (Section 6.2). To input the
coordinates and initiate the movement, our system uses the PyAu-
toGUI library to interface with the ULS Universal Control Panel
(UCP). It then detects if the laser head stopped moving, i.e., is stable
enough to take a picture, by checking if the laser is in idle mode.
This is indicated via a color change in UCP, which our system can
detect via PyAutoGUI’s screenshot() and getcolors() functions.
Next, the captured image is wirelessly sent from the hardware
add-on’s Raspberry Pi board to the main server, which runs on an
external computer. This Python server uses the image as input to
the trained CNN model, which was implemented using PyTorch
and fast.ai [21]. The CNN returns the classification results, which
are then displayed in the UL The communication between the
JavaScript front-end and the Python back-end is handled by the
Socket.IO framework. The complete pipeline is shown in Figure 12.
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Figure 12: Our detection pipeline takes the user’s drawing
as input and turns it into target points to capture speckle
patterns. The captured images at those points are passed to
the CNN to retrieve the material label.

After the user confirms the results, the laser power, speed, and
PPI (pulses per inch) settings are retrieved from the ULS database
based on the detected material. Because the UCP interface does not
have an AP, we extracted these values from the its back-end using
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a Firebird server and Database Workbench 5 Pro to create an interim
datasheet from which we can look up values as needed.

To detect kerf-related issues, we first dilate the drawing with
a kernel of the size of the material-specific kerf. We check if two
curves overlap or if the dilation results in extra blobs, i.e., the cut
may lead to an undesired shape. The materials’ kerf values are
based on the "Minimum feature size" values listed on Ponoko.

For the multi-material object mode, our system samples points
uniformly along the cutting path and processes the captured images
according to the pipeline described previously. Our system then
assigns the respective identified material to each part of the users’
drawings.

9 DISCUSSION

In the next section, we discuss insights gained from our work,
acknowledge the limitations of our approach, and propose future
research.

Avoiding Dust on the Sensor: In conventional cameras, lenses help
prevent dust particles from landing on the sensor. Although we use
a lensless image sensor to capture the speckle patterns, over the
course of our research we did not observe the lack of the lens to
interfere with classification results. We hypothesize that this is the
case because (1) the sensor is facing down, which prevents dust
particles from reaching the surface of the sensor due to gravity, and
(2) the ventilation in the laser cutter bed sucks away particles from
the image sensor.

Confidence Scores for Misidentified and/or Unknown Materials: The
neural network’s final layer outputs a vector for the confidence
score of each material type. If multiple types have similar scores,
the material is either misclassified or not included in the original
training dataset. As part of our future work, we will extend the user
interface to show bars to visualize the confidence scores and inform
the user to act with caution when confidence scores of multiple
materials are similar. Additionally, a confidence threshold for when
a material is safely classified could be set by the workshop manager
for all users of the workshop.

Effect of Scratches on Sheets: Scratches on sheets are often local, i.e.,
they occur when a sheet’s sharp corner abrades a spot on another
sheet’s surface. We picked 2 cast acrylic, 2 birch, 2 cardboard sheets
with the most scratches from the material pile in our workshop and
captured speckle patterns at 30 uniformly distributed points across
the surface of each material sample. We found that the majority of
points were correctly classified, i.e. 90% for acrylic, 91.7% for birch,
86.7% for cardboard. In future work, to make material detection
robust to local scratches, SensiCut could take more than one image
and cross-check the classification result at the expense of longer
detection times.

Materials with Protective Cover: Some material sheets come with a
protective plastic/paper cover to avoid scratches during transporta-
tion and some users may prefer to leave it on during laser cutting.
Since SensiCut needs access to the material’s surface, users can peel
a small section from the corner and use our interface’s Pinpoint
function to detect the material type from that corner.
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Estimating the Sheet Thickness from Speckles: As the distance be-
tween the image sensor and the material surface increases, the
speckles appear larger in the image [47]. If the pictures are taken
at a fixed height (i.e., a fixed distance of the laser head to the cut-
ting bed), then the surface of thicker sheets is closer to the laser
head, which results in smaller speckles, while thinner sheets are
further away from the laser head, resulting in larger speckles. We
tested if this can be used to detect the sheet thickness by using
the same dataset and CNN structure as the material type classi-
fier (ResNet). However, as this is a regression problem, we used
mean squared error instead of cross-entropy as our loss function.
An initial test across 14 material sheets gave us a mean error of
0.55mm (SD=0.68mm). For the ULS laser lens we have, the depth of
focus (i.e., tolerance to deviations from the laser’s focus) is 2.54 mm,
which is larger than this detection rate. Thus, for future versions of
SensiCut, we can also include thickness detection.

Labeling Workflows: While some users may prefer to keep material
sheets unlabelled and launch SensiCut every time they use the laser
cutter, SensiCut can also support hybrid workflows, such as printing
a sticker tag after identifying a sheet, which can then subsequently
be attached to the material sheet. Similarly, the software interface
could remind users to label the material sheet with a pen after use
as a courtesy to the next maker.

Material Identification for Other Fabrication Tools: For future work,
we plan to explore how SensiCut’s material identification method
can be used for other personal fabrication machines as well. For
example, in 3D printing, some manufacturers, such as Ultimaker,
add NFC chips into filament spools to allow the chip reader inte-
grated in the 3D printer to automatically detect them. However,
not all spools come with such chips. To address this issue, we plan
to investigate how speckle sensing can be integrated into filament
feeder systems to detect the filament type when a new spool is
loaded onto the 3D printer.

10 CONCLUSION

In this paper, we presented SensiCut, a material sensing platform
that helps laser cutter users to identify visually similar materials
commonly found in workshops. We demonstrated how this can be
achieved with speckle sensing by adding a compact and low-cost
hardware add-on to existing laser cutters. We showed how the ma-
terial type detection can be used to create a user interface that can
warn users of hazardous materials, show material-relevant informa-
tion, and suggest kerf adjustments. Our applications demonstrated
how SensiCut can help users identify unlabeled sheets, test vari-
ous materials at once, and engrave onto multi-material objects. We
discussed how we chose the materials in our dataset and how we
trained the convolutional neural network for their classification.
We reported on the detection accuracy for different material types
and evaluated the impact of varying the room illumination, rotating
the sheets, and using sheets purchased from different manufactur-
ers. We then highlighted how our system can be extended to also
detect the thickness of sheets. For future work, we plan to investi-
gate how speckle sensing can be used to detect materials in other
fabrication tools. Furthermore, we plan to collaborate with laser
cutter manufacturers to integrate our material sensing approach
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into future commercial products, which only requires adding the
lensless image sensor and adjusting the power of the existing visible
laser pointer.
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A APPENDIX

Hardware Components: The components used for the speckle sens-
ing add-on and their specifications are provided in Table 1.

Material Samples: The material samples used for the evaluation and
their properties are provided in Table 2.
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Model
Hawkgazer HG-LG-9
Raspberry Pi v2 8MP module

Link
http://hawkgazer.com/productright.aspx?id=49
https://www.raspberrypi.org/products/camera-module-v2/

Component
Laser Pointer
Image Sensor

Specifications
515nm, <5mW
Sony IMX219PQHS5-C sensor

Microprocessor ~ Raspberry Pi Zero W 1GHz GPU, 512MB RAM https://www.raspberrypi.org/products/raspberry-pi-zero-w/
Battery 5000mah Portable Battery Charger ~ Dual 2Amp ports https://www.amazon.com/gp/product/B07QXZ6D]JL/
Table 1: Components used in the SensiCut hardware add-on.
Material Type Product Name Thickness Link
Oak Red Oak Hardwood 3.2mm https://www.ponoko.com/materials/red- oak-hardwood
Maple Maple Hardwood 3.2 mm https://www.ponoko.com/materials/maple-hardwood
Walnut Walnut Hardwood 3.2 mm https://www.ponoko.com/materials/walnut-hardwood
Birch Plywood Birch Plywood 3.2 mm https://www.ponoko.com/materials/birch-plywood
Cork Brown Cork 3.0 mm https://www.ponoko.com/materials/brown-cork
MDF MDF Fiberboard 3.0 mm https://www.ponoko.com/materials/mdf-fiberboard
Veneer MDF Bamboo Veneer MDF 3.5 mm https://www.ponoko.com/materials/bamboo-premium-veneer-mdf
Bamboo Amber Bamboo Plywood 2.7 mm https://www.ponoko.com/materials/amber-bamboo-plywood
Blonde Bamboo Plywood 6.6 mm https://www.ponoko.com/materials/blonde-bamboo-plywood
White Melamine MDF 6.4mm https://www.ponoko.com/materials/white- melamine-mdf
Laminated MDF ~ Black Melamine MDF 6.4 mm https://www.ponoko.com/materials/black-melamine-mdf
Black Coated MDF 3.0 mm https://www.ponoko.com/materials/black-coated-mdf
Clear Acrylic 3.0 mm https://www.ponoko.com/materials/clear-acrylic
Clear Matte Acrylic 3.0 mm https://www.ponoko.com/materials/clear-matte-acrylic
White Acrylic 3.0 mm https://www.ponoko.com/materials/white-acrylic
White Matte Acrylic 3.0 mm https://www.ponoko.com/materials/white- matte-acrylic
Black Acrylic 3.0 mm https://www.ponoko.com/materials/black-acrylic
Cast Acrylic Black Matte Acrylic 3.0 mm https://www.ponoko.com/materials/black-matte-acrylic
Green Acrylic 3.0 mm https://www.ponoko.com/materials/green-acrylic
Green Translucent Acrylic 3.0 mm https://www.ponoko.com/materials/green-translucent-acrylic
Orange Acrylic 3.0 mm https://www.ponoko.com/materials/orange-acrylic
Red Acrylic 3.0 mm https://www.ponoko.com/materials/red-acrylic
Cream Acrylic 3.0 mm https://www.ponoko.com/materials/cream-acrylic
Extruded Acrylic Black Extruded Acrylic 4.5 mm https://www.amazon.com/Glossy-Acrylic-Plexiglass-Extruded- AZM/dp/B07RG43Q4L/
Clear Extruded Acrylic 6.4 mm https://www.amazon.com/12-24-Extruded- Acrylic- Plexiglass/dp/B0178 GAY9K
Delrin White Delrin 3.2 mm https://www.ponoko.com/materials/white-delrin
Black Delrin 3.0 mm https://www.ponoko.com/materials/black-delrin
PETG PETG Sheet 1.0 mm https://www.amazon.com/gp/product/B0841W16NL/
Acetate Clear Acetate 0.2 mm https://www.amazon.com/gp/product/B0027AAOTY/
Silicone Black Silicone 1.5 mm https://www.ponoko.com/materials/black-silicone
Styrene White Styrene 0.5 mm https://www.ponoko.com/materials/white-styrene
Foamboard Foamboard 3.2 mm https://www.amazon.com/gp/product/B07MB31G6S
PVC Clear Vinyl 1.5 mm https://www.amazon.com/gp/product/B0816LCQWD/
Lexan Clear Lexan Sheet 3.0 mm https://www.amazon.com/gp/product/B004U7B9HM/
White PC Sheet 3.0 mm https://www.amazon.com/gp/product/B0070Z4ZL8/
Carbon Fiber Carbon Fiber Plate Sheet 2.0 mm https://www.amazon.com/gp/product/B07YDQ3F1W
ABS ABS Plastic 3.2 mm https://www.amazon.com/gp/product/B0007WTF02/
Black Wool Felt 3.0 mm https://www.ponoko.com/materials/black-wool-felt
White Wool Felt 3.0 mm https://www.ponoko.com/materials/white-wool-felt
Felt Orange Wool Felt 3.0 mm https://www.ponoko.com/materials/orange-wool-felt
Fire Wool Felt 3.0 mm https://www.ponoko.com/materials/fire-wool-felt
Red Synthetic Felt 2.0 mm https://www.ponoko.com/materials/red- synthetic-felt
Leather Black Leather 2.5 mm https://www.ponoko.com/materials/black-leather
Suede Black Ultrasuede 0.7 mm https://www.ponoko.com/materials/black-ultrasuede
Red Ultrasuede 0.7 mm https://www.ponoko.com/materials/red-ultrasuede
Black Cardstock 0.3 mm https://www.ponoko.com/materials/black-cardstock
Ivory Cardstock 0.3 mm https://www.ponoko.com/materials/ivory-cardstock
Cardstock Grey Cardstock 0.3 mm https://www.ponoko.com/materials/grey-cardstock
Green Cardstock 0.3 mm https://www.ponoko.com/materials/green-cardstock
Red Cardstock 0.3 mm https://www.amazon.com/RED-HOT- Cardstock-Paper- Warehouse/dp/B075FC2R6M
Brown Cardboard 1.3 mm https://www.ponoko.com/materials/brown-cardboard
Cardboard White Coasterboard 1.5 mm https://www.ponoko.com/materials/white- coasterboard
White Corrug. Cardboard 4.0 mm https://www.ponoko.com/materials/white-one-side- corrugated- cardboard
Brown Corrug. Cardboard 4.0 mm https://www.ponoko.com/materials/brown-corrugated-cardboard
Matboard Black Matboard 2.7 mm https://www.ponoko.com/materials/black-matboard
Green Matboard 1.3 mm https://www.ponoko.com/materials/green-matboard
Aluminum Standard Aluminum 3.0 mm https://www.ponoko.com/materials/standard-aluminum
Stainless Steel Stainless Steel 1.5 mm https://www.ponoko.com/materials/stainless-steel
Carbon Steel Carbon Steel 1.3 mm https://www.ponoko.com/materials/carbon-steel

Table 2: Materials used for the evaluation.
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