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Figure 1: SensiCut augments standard laser cutters with a speckle sensing add-on that can (a) identify materials often found in 
workshops, including visually similar ones. (b) SensiCut’s user interface integrates material identifcation into the laser cutting 
workfow and also ofers suggestions on how to adjust a design’s geometry based on the identifed material (e.g., adjusting the 
size of an earring cut from felt since the kerf for felt is larger than for other materials). (c) Each identifed sheet is cut with 
the correct power and speed settings. 

ABSTRACT 
Laser cutter users face difculties distinguishing between visu-
ally similar materials. This can lead to problems, such as using 
the wrong power/speed settings or accidentally cutting hazardous 
materials. To support users, we present SensiCut, an integrated 
material sensing platform for laser cutters. SensiCut enables ma-
terial awareness beyond what users are able to see and reliably 
diferentiates among similar-looking types. It achieves this by de-
tecting materials’ surface structures using speckle sensing and deep 
learning. 

SensiCut consists of a compact hardware add-on for laser cut-
ters and a user interface that integrates material sensing into the 
laser cutting workfow. In addition to improving the traditional 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 

workfow and its safety1, SensiCut enables new applications, such 
as automatically partitioning designs when engraving on multi-
material objects or adjusting their geometry based on the kerf of 
the identifed material. 

We evaluate SensiCut’s accuracy for diferent types of materials 
under diferent sheet orientations and illumination conditions. 
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1 INTRODUCTION 
While there have been many support tools for laser cutting that help 
users with tasks such as automatically packing parts onto sheets [42, 
46], systems that support users with the diferent material types 
available for laser cutting are largely unexplored [6]. 

For users, working with the various materials available in a work-
shop comes with several challenges: First, identifying unlabeled 
sheets from scrap buckets or material stockpiles in a shared work-
shop is challenging since many materials are visually similar [25]. 
As a result, users may take the wrong material from the stack and 
use it with another material’s power and speed setting. This can 
lead to wasted material when the power setting is too low, causing 
the outline to not be cut through – or worse the material may catch 
fre when the power is too high leading to safety risks. Further, 
there are many materials that are not safe to laser cut because they 
release toxic fumes [43]. These hazardous materials may easily be 
mistaken for safe materials due to similarity in appearance (e.g., 
PVC vs. acrylic) [37]. 

Because of the challenges outlined above, laser cutter users de-
sire smarter machines that can "identify the materials they [are] 
working with, so that the system could [...] suggest settings based 
on material" as shown in a recent HCI study by Yildirim et al. [55]. 
One naive solution for this is to add a camera to laser cutters to 
automatically identify the sheets. However, a conventional camera 
can be easily fooled by visually similar materials or materials with 
printed decorative textures that imitate another material. 

To ensure reliable identifcation, recent laser cutters use sticker 
tags attached to the sheets (e.g., QR codes on Glowforge Proofgrade 
sheets [23]). As can be seen in Figure 2b, these tags can be detected 
by a camera even when materials look similar or are transparent. 
However, scanning the tags to detect the material type has its own 
issues. First, a new tag has to be attached onto each new material 
sheet. Second, laser cutter users need to be careful to not cut of the 
tag to ensure that the remaining part of the sheet can later still be 
identifed. These issues exist because using tags for identifcation is 
not inherently material-aware as the laser cutter does not measure 
the physical properties of the material. 

Figure 2: Existing material identifcation approaches: 
(a) Manually selecting from a database (e.g., ULS [50]) or 
(b) scanning QR code stickers on sheets (Glowforge). (c) Sen-
siCut uses speckle sensing to identify the material based on 
its surface structure without the need for additional tags. 

In this paper, we investigate how we can identify laser cutting 
materials by leveraging one of their inherent properties, i.e., surface 
structure. A material’s surface structure is unique even when it is 
visually similar to another type. To achieve this, we use speckle 
sensing. This imaging technique works by pointing a laser onto the 

material’s surface and imaging the resulting speckle patterns. We 
built a hardware add-on consisting of a laser pointer and a lensless 
image sensor, which can be attached to the laser cutter head using 
a mount. We then use the captured speckle patterns to identify the 
material type with our trained neural network. Our user interface 
uses the material type information to support users in diferent 
ways, i.e. it automatically sets the power and speed settings for the 
detected material, it warns the user against hazardous materials, it 
automatically adjusts the shape of a design based on the kerf for 
the detected material, and fnally, it automatically splits designs 
when engraving onto multi-material objects. We also discuss how 
speckle sensing can be used to estimate the thickness of sheets as 
another material-aware component for future laser cutters. 

In summary, by leveraging speckle sensing as an identifcation 
technique, we can improve the material awareness of existing laser 
cutters. Our work enables safer and smarter material usage, ad-
dresses common material identifcation-related challenges users 
face when laser cutting, and encourages makers to reuse laser-cut 
scraps to reduce waste [9, 51]. Our contributions are the following: 

• An end-to-end laser cutting pipeline that helps users identify 
materials by sensing the material’s surface structure using 
laser speckles to, e.g., automatically set the corresponding 
power/speed, warn against hazardous materials, adjust de-
signs based on material-specifc kerf, or split designs when 
engraving onto multi-material objects. 

• A compact (114g) and low-cost material sensing add-on for 
laser cutters that simplifes hardware complexity over prior 
work by using deep learning. 

• A speckle pattern dataset of 30 material types (38,232 images), 
which we used to train a convolutional neural network for 
robust laser cutter material classifcation (98.01% accuracy). 

• A technical evaluation showing which visually similar ma-
terials speckle sensing can distinguish under various sheet 
orientation and illumination conditions. 

2 MOTIVATION 
SensiCut addresses an important open challenge in the personal 
fabrication literature. A recent feld study [55] in HCI revealed an 
unaddressed user need for fabrication tools concerning the “aware-
ness of material types”. In particular, users wished that the tools 
could “identify the materials they were working with [and] sug-
gest settings.” The authors conclude that “HCI researchers could 
advance [these tools] by leveraging new sensing [...] capabilities”. 

To further understand what specifc challenges exist, we sur-
veyed fve additional HCI publications [2, 7, 22, 26, 36]. We also con-
ducted formative interviews with six expert users that we recruited 
by reaching out to makerspaces. Each expert user had several years 
of laser cutting experience working with diferent material types. 
During the 1-hour semi-structured interviews, we interviewed them 
about their experiences using diferent material types, difculties 
they had identifying materials, and how diferent material types 
afected their designs for laser cutting. Additionally, we performed 
a study in which we gave 13 novice users, who had used laser cut-
ters at least once but no more than four times, a list of 30 materials 
commonly found in workshops (list of materials in Section 6.1), and 
asked them to match them to 30 unlabeled sheets. For the interview 
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responses, we took a bottom-up approach in our thematic analysis 
to identify four main challenges, which we report below. 

Characterizing unlabeled sheets: We found that users have a hard 
time identifying materials. In our study, novices were able to label 
on average only 29.23% (SD=6.41) of the sheets correctly. The ones 
that were correctly identifed by most users were cardboard and 
cork. The top 10 mislabeled sheets were all diferent types of either 
plastic or wood. However, this is not only an issue for novices, but 
also for experts. One senior maker we interviewed reported that 
certain materials are too similar to distinguish by only looking and 
touching. He added that he checks if a sheet is acrylic or Delrin 
by "breaking the sheet and seeing how brittle it is." Identifying 
materials by their surface structure eliminates these issues since 
even similar types of plastic have diferent surfaces structures. 

Democratizing material knowledge: One way to help novices identify 
materials is to ensure sheets are labeled at all times. However, 
in practice, this is infeasible to do for all sheets. One expert we 
interviewed, a manager of a large workshop, said that "there is no 
way to keep track of all the sheets [as] so many people contribute 
to the scrap piles." Another option if sheets are unlabeled is that 
novice makers ask an experienced maker which type of material it 
is. However, Annett et al. [2] report that makers with “knowledge 
[of] material [were] often difcult to access” and that users need 
“intelligent sensing [of] materials.” Hudson et al. [22] show that 
“early in the casual makers’ learning process motivation appeared to 
be very fragile” and “early failures [can] result in them completely 
giving up.” A smart system that provides access to reliable material 
identifcation would eliminate this issue, thereby lowering the entry 
barrier to laser cutting and democratizing its use. 

Automating mundane work: Laser cutting requires several steps 
that are mundane and would beneft from being automated. For 
instance, in today’s workfow, users have to identify the sheet, 
select the correct material type from the material database, and 
then verify the power/speed settings. Yildirim et al. [55] found that 
professional users want "automated [fabrication tools] that could 
pick up menial work, [e.g.] registering materials." They "fnd it 
frustrating when they have to monitor an autonomous [tool]." A 
material-aware sensing platform can remove the tedious overhead 
and allow users to focus on the essential work. 

Enhancing safety of all users: Laser cutting poses both safety and 
health hazards [20, 30]. In our interviews, all experts reported 
that they experienced multiple fres in the laser cutter at their 
workspaces. One of them said that "all of the places [he has] worked 
at had a fre" and that it is a "huge safety risk." Concerning health, 
one of our interviewees, a class instructor, said someone almost cut 
a hazardous material that includes chlorine, which would release 
toxic fumes and corrode the machine. In addition, not adhering to 
the rules would have "revoked all class participants’ access to the 
workshop." For safety-critical tasks, HCI researchers have looked 
into designing interfaces where the role of users is “mediated by 
computer technology” [7, 36]. For fabrication tools specifcally, 
Knibbe et al. [26] found the “implementation [of] safety alerts could 
provide signifcant benefts within group makerspaces.” A smart 
sensing platform can provide such safety alerts and prevent human 

error by determining if hazardous materials are used or when users 
accidentally select wrong laser settings, which can cause a fre. 

3 RELATED WORK 
In this section, we summarize previous work on detecting material 
sheets in laser cutters, discuss sensor-based material classifcation 
techniques, and survey prior work in laser speckle sensing. 

3.1 Detecting Properties of Material Sheets 
inside Laser Cutters 

Several research projects have augmented laser cutters with cam-
eras to detect diferent properties of the material sheet, such as 
its location inside the laser cutter, its geometry (i.e., outline and 
position of holes), and the material type. 

As conventional laser cutting interfaces do not show where 
the inserted material sheets are located, users typically align their 
drawing with the sheets manually before cutting. To aid this process, 
researchers suggested placing a camera on top of the cutting bed 
to display the sheets’ position to the user (VisiCut [34]). Even with 
a camera preview, packing parts onto sheets can be a cumbersome 
task, especially when the sheet has many holes. To support users, 
PacCAM [42] extracts the sheets’ boundary and holes from a photo. 
Once the outlines are detected, it provides interaction techniques to 
speed up the packing on the sheet. Fabricaide [46] packs the parts 
during the design process to make the user aware of constraints 
such as sheet availability. 

After packing the parts onto the sheet, users still have to set the 
power and speed settings for the laser depending on the material 
type. To automatically detect the material type, Laser Cooking [14] 
uses an overhead camera to distinguish between diferent food 
items using the brightness diference of the pixels in the captured 
photos. However, this does not work reliably when the materials 
are visually similar. To bypass this issue, a recent commercial laser 
cutter (Glowforge Plus [23]) uses tag stickers, i.e., QR codes, attached 
to the material sheets. Such tags have also recently been studied 
in other areas of digital fabrication research, e.g., as an integrated 
feature of 3D printed objects [10, 15, 29]. However, as mentioned in 
the introduction, additional tags come with several issues. SensiCut 
is able to distinguish between visually similar materials and difers 
from prior work by not relying on external tags and instead sensing 
the material type based on its inherent surface structure. 

3.2 Material Type Sensing for Applications 
Outside Personal Fabrication 

Outside of the realm of personal fabrication, researchers have 
explored diferent ways to sense a material’s type. Rather than 
distinguishing between materials by comparing their colors, re-
searchers measured a material’s refectance properties [45]. This 
can be achieved by capturing images with conventional cameras, 
which include information on the bidirectional refectance distribu-
tion function (BRDF) of materials [38]. However, such techniques 
require multiple images from diferent perspectives, which can 
either be achieved through multiple cameras or a single camera 
placed at diferent locations [11]. Alternatively, one can use a sin-
gle camera and multiple light sources. For instance, SpeCam [54] 
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Figure 3: Speckle sensing. (a) Laser rays refect of the material surface and arrive at the image sensor. Phase diferences 
between the rays result in mutual interference and thus dark or bright pixels in the captured image. (b) Diferent materials 
viewed by a regular camera, a scanning electron microscope, and our speckle sensing imaging setup. (c) Our speckle sensing 
add-on consists of a laser pointer, lensless image sensor, microprocessor, and battery. 

uses a smartphone display as a multispectral light source and cap-
tures the refection of the display’s light on a material’s surface 
with the front camera. Lightweight Material Detection [18] uses 
multiple LEDs, photoresistors, and a light sensor IC to determine 
a material’s type. Alternatively, one can identify a material by its 
subsurface scattering properties as measured by time-of-fight (ToF) 
cameras [49]. Another technique is to measure the material’s ther-
mal conductivity: When humans touch a surface, a thermal camera 
can sense how long the material maintains the temperature in-
crease caused by the touch [1], which can be used to determine 
the material type. In the context of laser cutters, SensiCut’s sensing 
technique is particularly suitable because it reduces the numbers of 
hardware components compared to previous work by using only a 
single laser and imaging sensor mounted to the laser cutter’s head. 

3.3 Laser Speckle Sensing Applications 
In contrast to the approaches explained previously, speckle sensing 
is a sensing technique that uses a laser pointer for material identif-
cation. Because the laser cutter already comes with a laser pointer 
to show its current position on the platform, speckle sensing can 
leverage the existing components in the laser cutter. 

A laser speckle is a grainy pattern that can be observed when 
a surface is illuminated with a coherent light source, such as a 
laser pointer [16]. Speckle sensing has attracted interest in HCI 
for diferent applications, such as environment or motion sensing. 
VibroSight [56], for instance, analyzes speckle patterns to determine 
if appliances are on/of. When on, objects vibrate and their surface 
moves slightly, which results in a change in the refected speckles. 
SpeckleSense [57] enables motion sensing for spatially-aware mobile 
devices by computing how much the speckles have moved from 
one image to the next to infer the motion. SpeckleEye [33] and 
CoLux [47] use this approach to also sense hand gestures. 

While speckle imaging has been used for environment and mo-
tion sensing, it can also be used for material classifcation. This is 
due to the fact that at the microscale, sheets that appear similar 

to the human eye have irregularities that create a refection pat-
tern unique to the material [8]. For instance, SpecTrans [44] uses 
speckle sensing in combination with multispectral LED illumina-
tion to understand where the user is holding their smartphone in 
relation to an object made from diferent transparent materials. 
In contrast to this work, SensiCut focuses on material identifca-
tion in the context of laser cutting. In particular, with SensiCut, 
we contribute an end-to-end material-aware laser cutting pipeline, 
a speckle sensing add-on for laser cutters that reduces hardware 
complexity by taking advantage of deep learning, a user interface 
that integrates material sensing, and a dataset of speckle patterns 
for material types commonly found in makerspaces and workshops. 
As outlined in the next section, our method has the potential to be 
afordably integrated and democratized in future laser cutters. 

4 SPECKLE SENSING HARDWARE ADD-ON 
FOR LASER CUTTERS 

In this section, we frst discuss the working principle behind laser 
speckle imaging. We will then show how we built a sensing add-on 
that can be mounted onto existing laser cutters and highlight the 
technical contributions of our add-on over prior work. 

4.1 Speckle Sensing Working Principle 
Figure 3a illustrates how laser speckle sensing works. It uses a 
coherent light source, i.e., a laser, to create the speckles and an 
image sensor for capturing them. To create the speckle pattern, the 
laser light refects of the material surface, resulting in a refectance 
pattern (speckle) of bright and dark spots that looks diferent de-
pending on the material’s surface structure. This occurs because 
the tiny features of the material surface lead to small deviations in 
the optical path of the refected laser beam. To show this, we pro-
vide additional electron microscope images of diferent materials 
in Figure 3b. Although the materials look visually similar to the 
human eye, the electron microscope images clearly show diferent 
surface structures, resulting in diferent speckle images that can be 
used for material identifcation. 
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4.2 Hardware Add-on 
To integrate speckle sensing into an existing laser cutter, we con-
sider (1) which light source and (2) image sensor to use, as well as 
(3) how to mount all required components on the platform. We pro-
vide additional specifcations for each component in the appendix. 

Laser Pointer: Our initial idea was to utilize the laser pointer present 
in our laser cutter (model: Universal Laser Systems (ULS) PLS6.150D), 
which conventionally serves as a guide to align the material sheet. 
However, we found that laser pointers need to be sufciently pow-
erful to create speckles detectable by the image sensor. For this 
reason, green laser pointers work best given equal power since 
most commercial cameras have a Bayer mask with twice as many 
green elements as red or blue. Unfortunately, our laser cutter has 
a red laser pointer with a power of <1 mW, which according to 
our experiments was not sufcient to create detectable speckle pat-
terns. We therefore decided to use an additional green laser pointer 
(515nm, <5mW). In the future, this additional laser pointer may not 
be necessary if manufacturers increase the power of their existing 
laser pointers. 

Image Sensor: Our goal was to choose a sensing setup that is com-
pact, i.e., uses as few components as possible, yet provides suf-
ciently high resolution to detect the speckles. When surveying the 
related work, we found that existing setups consist of multiple sen-
sors and/or LEDs [18, 44]. Each component in these setups helps 
acquire a unique datapoint related to high-level statistics, such as 
the average brightness or overall spectral refectivity, which are 
then input into a classifer as 1D data. We found that we can re-
duce the hardware complexity over prior work to only a single 
image sensor if feed the raw image, in which the 2D spatial data 
correlates with the materials’ surface structure, directly into a con-
volutional deep neural network (see Section 6.3). Although the 2D 
image input requires additional time to compute the prediction 
result compared to 1D data, it does cause not a disruption to the 
laser cutting workfow (0.21s on a 2GHz Intel Core i5 processor). 

For the image sensor, we chose an 8MP module (model: Rasp-
berry Pi [35]. As explained previously, this image sensor, like most 
commercial ones, has a higher sensitivity to the green region of 
the spectrum [48], which is benefcial for capturing speckle images 
created by our green laser pointer. We placed the laser pointer and 
image sensor as close as possible so that the speckles’ intensity 
caused by the laser illumination is high enough when captured by 
the image sensor. 

Before mounting the image sensor, we removed the lens of the 
camera module using a lens focus adjustment tool. We did this 
because the laser pointer only illuminates a tiny area on the material 
sheet (i.e., size of the laser spot). When imaging the sheet with the 
of-the-shelf camera module that has the lens attached, the speckle 
is present in only a small portion of the entire image because the 
lens directs not just the laser light, but all the available light rays 
in the scene onto the image sensor. This gives us less speckle data 
to work with. When removing the lens from the camera module, 
however, it is mainly just the refected laser light that hits the sensor, 
causing the speckle pattern to appear across the entire image (last 
column in Figure 3b). Thus, the camera module with no lens utilizes 

all the pixels of the bare image sensor and can capture a higher-
resolution pattern. 

Microprocessor and Battery: Since commercial laser cutters are closed 
source, we had to add a small and lightweight microprocessor and 
an external battery pack to allow our add-on to capture images. 
Since the microprocessor has limited computational capacity, we 
send the captured images wirelessly to a computer for further pro-
cessing. To make speckle sensing available in future laser cutters, 
manufacturers do not need to add these components since laser 
cutters already include processing hardware and a power supply. 

Mounting on Laser Cutter: To make our hardware add-on compact 
and easy to use, we designed and 3D printed the lightweight me-
chanical housing (60g) shown in Figure 3c. The housing snaps onto 
the laser cutter’s head and can be mounted with a small rod. At-
taching the sensing hardware to the laser head allows us to avoid 
additional calibration since because of the mount, the add-on is 
always located at a fxed ofset from the laser. All together, the 
add-on weighs 114g. 

In summary, our speckle-based hardware add-on consists of 
a laser pointer, a lensless image sensor, a microprocessor, and a 
battery pack. However, to integrate speckle sensing into future laser 
cutters, manufacturers only need to add the lensless image sensor – 
all other components (power and computing infrastructure, laser 
pointer) already exist in laser cutters. 

5 USER INTERFACE & APPLICATIONS 
In this section, we describe our custom user interface (UI) that 
integrates laser speckle sensing into the laser cutting pipeline. In 
particular, we show how it helps users identify the material of a 
single sheet or multiple sheets at once, and supports users with cut-
ting or engraving multi-material objects. Additionally, SensiCut can 
ofer safety warnings, provide extra information on materials, and 
help with kerf-related geometry adjustments. We also describe how 
we use the interface and SensiCut’s material sensing capabilities 
for diferent applications. 

Similar to the traditional laser cutting pipeline, users frst start 
by loading their design (i.e., an SVG fle) into the SensiCut UI, which 
subsequently shows it on the canvas (Figure 4a). Next, users place 
the material sheet they intend to use inside the laser cutter. 

Figure 4: SensiCut UI. (a) The Pinpoint tool allows users to 
identify the material at a desired location on the cutting bed. 
(b) The user enters the thickness value corresponding to the 
detected sheet and starts cutting. 
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Figure 5: Making a face shield. (a) Find fexible sheets from the stockpiles and (b) place in the cutter. (c) Upon identifcation, the 
UI labels all 3 materials and gives relevant information on, e.g., their handling and safety. (d) After the cut parts are assembled, 
the shield can be safely sanitized with alcohol. 

5.1 Identifying Single Material Sheets 
To identify a single material sheet, users point SensiCut’s laser 
pointer to a desired location on the sheet as shown in Figure 4a. 
They can do this by frst choosing the Pinpoint tool (arrow 1) and 
clicking the point on the canvas that corresponds to the physical 
location in the laser cutter (arrow 2). SensiCut then moves the laser 
over this location to capture the speckle pattern and classify the 
material. The resulting material name is then shown to the user 
(arrow 3). 

After the user clicks Continue, the shapes in the canvas are color-
coded to refect the material type (e.g., red corresponds to Cast 
Acrylic). The user then enters the material thickness in the text 
feld next to the classifcation result (Figure 4b). Once ready for laser 
cutting, they can hit the Start button and SensiCut automatically 
retrieves the appropriate laser power, speed, and pulse per inch 
(PPI) settings from the material settings database. 

Using the identifed material type, SensiCut can further support 
users via diferent functionalities: 

Toxic and Flammable Material Warnings: As mentioned in the in-
troduction, there are many materials that should not be laser cut 
because they are toxic, fammable, and/or harmful to the machine. 
Based on the identifed material type, SensiCut displays a warning 
whenever the user requests to cut a material that is hazardous and 
should not be used in the laser cutter. 

Showing Material-Relevant Information: Even though some materials 
appear similar, they may exhibit diferent characteristics, which 
novice users may not be aware of. To address this, SensiCut displays 
additional information on each detected material to inform users 
about general characteristics of the material, ideal uses with sample 
pictures, and handling/care instructions. We referred to the laser 
cutting service Ponoko [24] to retrieve this information. Workshop 
managers can edit and extend this information depending on the 
workshop type and its users (architecture vs. engineering). 

Kerf Adjustments: Design fles can have details that are too intri-
cate for certain material types, especially when the sheets are thin. 
Cutting these fne geometries can fuse details together because of 
kerf. The kerf, i.e., the amount of the material removed due to the 
laser, depends on the type of the material [39, 40]. When details are 

afected by kerf, SensiCut shows a warning to the user and then of-
fers three options to address it: SensiCut can either slightly enlarge 
the design based on the material type, smooth out too intricate 
details, or ask the user to adjust the fle manually in the drawing 
editor (e.g., Adobe Illustrator). 

Application: Fabricating a Face Shield From Diferent Unlabeled 
Scraps: In this application example, we would like to fabricate a 
face shield and use transparent plastic materials to ensure clear 
sight while wearing it. We start by surveying diferent designs 
online and after deciding on one [12], we download the parts, which 
consist of a visor and a shield. The design instructions highlight the 
importance of using the correct material for each part. In particular, 
it is recommended to use a transparent rigid material for the visor 
(e.g., acrylic) and a transparent fexible material for the face shield 
(e.g., acetate or PETG). 

We start by browsing through the leftover scrap materials from 
our workshop. However, while going through the transparent scrap 
materials, we notice that almost all of them are unlabeled. To make 
the visor, we take the frst rigid transparent material we fnd in the 
pile that has a sufcient size and place it inside the laser cutter. We 
then open SensiCut’s UI (Figure 4a) and select Pinpoint to identify 
the material at a desired location. The right-hand bar shows the 
material has been detected as cast acrylic, which is a suitable rigid 
material for the visor. Once we confrm, SensiCut automatically 
retrieves the appropriate power/speed settings for this job and the 
laser cutter starts cutting the acrylic. 

We repeat the procedure for the shield, which needs to be made 
from a fexible transparent material. We go back to the scrap ma-
terials and fnd three diferent fexible sheets (Figure 5a). We read 
online that acetate and PETG may be more suitable than other 
plastics, but are not sure which one is which. We take all three and 
place them in the laser cutter. In the UI, we then choose Identify 
sheets and set the number of sheets to 3. Next, we click on one 
point on each sheet to instruct SensiCut to identify the material 
there. Once the results are displayed, we realize that one of them is 
a polycarbonate (Lexan), which SensiCut labels with a "hazardous" 
warning (Figure 5c). The other two sheets are identifed as acetate 
and (thin) cast acrylic. 
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Figure 6: Rapid material testing for product design. (a) Choosing multiple samples from a material swatch and (b) inserting in 
the laser cutter. (c) After sensing, the UI matches each shape with the corresponding material. It also warns that the kerf for 
felt will compromise the design. 

To learn more about the diference between the two materials, 
SensiCut shows information from its knowledge database and dis-
plays it on the corresponding material. For example, it shows that 
acetate has high impact strength and is reasonably fexible, and that, 
in contrast to acrylic, it can be wiped down with alcohol, which is 
important to disinfect the shield. We remove the Lexan and acrylic 
sheets from the laser cutter, choose acetate in the UI, and start 
cutting. Now that all parts are cut, we can assemble the fnal face 
shield (Figure 5d). 

5.2 Identifying Multiple Sheets of Diferent 
Materials at Once 

SensiCut also allows users to cut multiple sheets of diferent mate-
rial types in rapid succession. The user frst loads the design fles 
that contain the shapes they want to cut from the diferent sheets. 
Next, they place the corresponding material sheets inside the laser 
cutter and initiate the Scan multiple shapes mode. This causes Sen-
siCut to go to the location of each shape and capture an image 
there for material identifcation. The resulting material names are 
then displayed in the Material Detection sidebar and the shapes are 
similarly color-coded based on the material types. 

Application: Rapid Testing of Multiple Material Types for Product 
Design: In our second example, we want to rapidly prototype a new 
earring design in a white color. We want to fabricate the earrings 
to test the look and feel of diferent materials to determine which 

one looks best when worn. To evaluate diferent material types, we 
pick a handful of white samples from a material swatch (Figure 6a). 

To speed up our prototyping process, we want to cut all the 
material samples at once. To do this, we place all our selected 
material samples on the laser cutter bed as shown in Figure 6b. 
We then load the earring design. Next, we position a copy of the 
earring design in the UI in the location where each material sample 
is placed. Next, we choose the Scan multiple shapes option. After 
the scan, each earring’s shape is color-coded to refect the detected 
material type: felt, foam board, cast acrylic, and leather (Figure 6c). 

Next, we enter the thickness for each material sheet: 1mm for 
felt and leather, and 3mm for the others. For felt, SensiCut shows 
a notifcation that our design has details that are too intricate for 
a thickness of 1mm and may thus fuse together because of kerf 
(Figure 7b). We choose the Make shape bigger option and enlarge 
the felt earring so that the minimum feature size no longer goes 
below the kerf limit (Figure 7a). Once adjusted, we cut and engrave 
all sheets in a single job. The fnished earring prototypes are shown 
in Figure 7c. 

5.3 Engraving onto Multi-Material Objects 
Compared to individual material sheets, cutting or engraving de-
signs onto multi-material objects (e.g., the smartphone case in Fig-
ure 8a) is a particularly challenging task. It requires a cumbersome 
workfow where users frst have to split the design into multiple 
fles, one for each material. More specifcally, proper alignment 
of the shapes in the digital design with the diferent parts of the 

Figure 7: Adjusting the design for kerf. (a) The user can enlarge the shape to compensate for the thicker kerf for felt. (b) With-
out the adjustment, details like the hole and fne blades of the leaf disappear in the cut felt. (c) The fabricated prototypes. 
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Figure 8: Engraving a multi-material phone case, which consists of (a) wood-like rubber and leather. SensiCut scans (b) the 
input design’s outline and (c) splits it into two parts based on the material type detection. (d) Engraved design. 

physical object is challenging without knowing where the material 
borders are located. 

SensiCut facilitates cutting and engraving on multi-material 
objects by automatically splitting the design precisely along the 
border of diferent materials by sensing the material type at each 
point in the design. For this, users start by loading a single fle 
containing the entire design, insert the multi-material object into 
the laser cutter, position the design onto the multi-material object, 
and select the Scan multi-material objects mode. SensiCut then 
samples points along the laser-cut path to identify the material at 
each point. The scanning progress is shown in the SensiCut UI by 
highlighting the scanned trajectory. After scanning is completed, 
SensiCut splits the design according to the detected material type 
at each point to ensure the correct laser settings will be used. 

Application: Personalizing Existing Multi-Material Products: In 
this example, we want to engrave a custom design at the center of 
a smartphone case that consists of two diferent materials across 
its surface, i.e., leather and wooden parts (Figure 8a). 

First, we load the design fle, position it on top of the phone case, 
and select Scan multi-material objects, which then moves the laser 
head along the design’s engraving path to detect the material at 
each point (Figure 8b). Once the scan is complete, SensiCut splits the 
design into two parts, one for each of the two materials (Figure 8c). 

Once SensiCut identifed the materials, we realize that the part 
we had thought was wood is actually made of silicone rubber with 
a decorative wood pattern. SensiCut is not deceived by the disguise 
pattern because it measures surface structure and sets the correct 
laser engraving settings. Once we confrm, our design is engraved 
onto our multi-material phone case (Figure 8c). 

Application: Customizing Multi-Material Garments: Figure 9a 
shows another multi-material item, i.e. a T-shirt, that we want to 
engrave with a custom seagull design. The T-shirt has a plastic iron-
on material applied on it. To engrave our design, SensiCut detects 
which parts are made of textile and which are made of plastic. It then 
splits the seagull design into multiple paths accordingly and assigns 
the correct laser power/speed settings for each one (Figure 9b). If we 
had instead used only one set of laser power/speed settings for the 
entire seagull design, i.e., the settings for either textile or plastic, the 
lines would either not be visible on the yellow plastic or the textile 

would have been burned. Further, it would be particularly difcult 
to achieve this without SensiCut: One would have to remove the 
iron-on plastic from the fabric itself, engrave the plastic and fabric 
separately, and put them back together precisely. This shows how 
SensiCut could help users further customize garments that have 
non-textile parts (e.g., [13]) quickly and on demand. 

Figure 9: Engraving a pattern on a T-shirt that has (a) plastic 
details on it. (b) SensiCut uses the right combination of laser 
settings after partitioning the design (middle). Top/bottom 
shows the outcome for singular settings. 

6 CLASSIFICATION OF MATERIALS 
SensiCut can diferentiate between 30 diferent materials relevant 
to the challenges laser cutter users face. In the next section, we 
discuss how we built a dataset of speckle patterns of these materials 
using an automated script, and how we trained a convolutional 
neural network (CNN) to be able to distinguish between them. 

6.1 Choosing Material Samples 
For our dataset, our goal was to choose materials that are most 
representative of the materials commonly found in makerspaces 
and workshops, with a particular focus on the ones that cause 
confusion because of their appearances. Figure 10a summarizes 
the list of materials we compiled by surveying a range of online 
communities (e.g., Thingiverse [31], Instructables [4]), educational 
materials on laser cutting [5], supply vendors [24, 28], as well as 
the laser cutter material databases that come with the default laser 
cutter control software (e.g., ULS Universal Control Panel [50]). 

The resulting material list includes 30 diferent materials ranging 
from diferent types of paper, plastic, wood, fabric to (engraved) 
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metal. In the next section, we discuss how these selected materials 
are representative of the challenges that laser cutter users face. 

Diferent Laser Cutting Materials with Similar Appearance: As our 
formative material labeling study showed, plastics are particularly 
challenging to distinguish for users due to their visual similar-
ity (Figure 10b). To represent such cases, we purchased samples of 
cast acrylic, extruded acrylic, and Delrin (also known as acetal or 
POM) of the same color, which require diferent settings to properly 
cut/engrave a design [5]. We also included samples of diferent 
transparent sheets, i.e., acrylic, PETG, and acetate. In addition, we 
included other materials that have slightly varying appearances, 
but still are difcult to distinguish for non-expert users who are 
not familiar with the specifc nuances, such as diferent types of 
wood (e.g., maple, oak, bamboo, or birch) [52]. 

Hazardous Materials that Look Similar to Safe Ones: To represent 
cases where some of the commonly found materials in workshops 
are hazardous (fammable, toxic, or harmful to the machine) and 
cannot be safely laser cut [5, 27], we included polyvinyl chloride 
(PVC), Lexan (polycarbonate), acrylonitrile butadiene styrene (ABS), 
and carbon fber sheets. PVC is often mistaken for the common 
laser-cut material acrylic. However, it is highly toxic as it releases 
hydrochloric acid fumes when heated, which also rapidly corrode 
the laser system [20]. Lexan and ABS are also hazardous and easily 
fammable2 but look similar to safe plastics. However, whether 
a material is considered safe for laser cutting or not depends on 
the specifc hardware setup (air flter type and volume, power of 
laser) as well as local regulations [17]. For our setup, materials in 
the ULS material database that comes with our laser cutter and 
its UAC 2000 flter (MERV 14, HEPA, 2 Carbon flters) are marked 
as safe. For instance, polystyrene is listed as safe for our setup 
but may not be safe for others. Thus, we recommend that when 
deployed in a new workshop, SensiCut’s database be updated by the 
workshop manager locally after checking material safety data sheets 
(MSDS) for potential laser generated air contaminants (LGAC). 
Workshop managers should also talk to their local occupational 
health institution (e.g., NIOSH3 in the US). 

To make the material composition of our dataset representative 
of a real-world workshop, where certain materials like acrylic and 
cardboard are much more available in terms of quantity/color op-
tions, we included more than 1 sheet for these as seen in Figure 10a. 
This also allows us to evaluate our system for diferent colors and 
transparencies. In total, we used 59 material samples, the majority 
of which were purchased from Ponoko [24], except for the 5 haz-
ardous material sheets (PVC, Lexan, etc.), which we purchased from 
other suppliers on Amazon.com. A list of these material samples 
and the associated vendors can be found in the appendix. 

6.2 Data Capture & Material Speckle Dataset 
After purchasing the diferent materials, we captured images of 
each sample to build a dataset for training our convolutional neural 
network. 

2https://wiki.aalto.f/display/AF/Laser+Cutter+Materials 
3https://www.cdc.gov/niosh/ 

Preliminary Experiment: Before capturing data for all materials, 
we ran a preliminary experiment to determine two values: (1) the 
distance between the image sensor and the material surface at which 
the speckle pattern is most visible, and (2) the number of images 
necessary for training the classifer with high accuracy. For the 
distance, we empirically found that 11cm between our image sensor 
and the material surface led to the best results. For the number of 
images, we placed material samples below the image sensor at the 
recommended distance and took images, moving the sample in the 
xy plane manually to simulate how the laser cutter would take 
images at various points of the sheet. We found empirically that 
around 80-100 images are sufcient for each material to train a 
CNN for classifcation. 

Data Collection: After this manual exploration, we started the data 
collection of all materials. For this, we wrote a script to automate 
the laser cutter’s movement and image capture. For our material 
samples (6.3cm x 6.3cm), we chose to capture a 9x9 grid of points 
leading to 81 images, which satisfes our criteria from the prelimi-
nary experiment. For consistency, we kept the image sensor settings, 
i.e., exposure time, digital/analog gains, and white balance constant. 

Additionally, we captured images at diferent heights (z-locations) 
to ensure that the network can classify materials of diferent thick-
nesses. This is necessary since the speckle pattern changes with 
the distance between the material surface and the image sensor. 
We chose 8 diferent heights ranging from 0mm (to support paper) 
to 7mm (thickest material sheet we were able to buy) spaced at 
1mm increments. However, not every sheet has a thickness of a 
multiple of 1mm (e.g., some sheets are 2.5mm). We can generate 
this additional data using data augmentation methods as explained 
in Section 6.3. Since our model was trained for materials with a 
thickness of 0-7mm and the material surface was 11cm away from 
the image sensor, this leads to an efective detection range of 110-
117mm. To integrate material identifcation into other cutting-based 
methods like LaserOrigami [32] or FoldTronics [53], the model can 
be trained for larger distances in the future. 

Dataset: Our fnal data set contains 38,232 images from 59 material 
samples of 30 unique materials (14.93 GB, 800x800 pixels each). Each 
material sample includes 648 images (81 images/height x 8 heights), 
which took about 40 minutes to capture with our automated setup. 
The majority of this time is spent waiting for the laser head to 
stabilize after moving to a new location to ensure that the captured 
image is not blurry. The dataset is used for training the CNN and 
does not need to be stored on the user’s computer. The trained 
CNN model that is used at detection time is 120MB. The dataset is 
publicly available4. 

6.3 Training the Neural Network 
To train the CNN and build a detection model using the captured 
images, we used transfer learning with a ResNet-50 model [19] that 
was pre-trained on the ImageNet dataset [41]. We used the Adam 
optimizer with a learning rate of 0.003 and a batch size of 64. We 
used 80% of images for the training set and reserved 20% for the 
validation set. 

4https://hcie.csail.mit.edu/research/sensicut/sensicut.html 

https://wiki.aalto.fi/display/AF/Laser+Cutter+Materials
https://www.cdc.gov/niosh/
https://hcie.csail.mit.edu/research/sensicut/sensicut.html
https://Amazon.com
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Figure 10: Material considerations and evaluation. (a) Most common material types for laser cutting. (b) Visually similar ma-
terials. (c) Confusion matrix from our trained classifer for 30 material subtypes. 

Image Size Used for Training: For the input image size, we chose 
256x256 pixels. Although we captured the images in 800x800 pixels, 
we found that the higher resolution caused lower accuracy as the 
model overft to irrelevant details in the image. The lower resolution 
input also saves training time because the model has fewer nodes 
to compute. Moreover, it speeds up the detection during use (i.e., 
average prediction time: 0.21s for 256x256px vs. 0.51s for 400x400px 
on a 2GHz Intel Core i5). We still keep the full-size images in our 
dataset to enable future research. 

Data Augmentation: To make the model robust to diferent lighting 
conditions and intermediate sheet thicknesses (e.g., 2.5mm), we 
generated additional images during training using data augmen-
tation. Every time the network starts training on a new batch of 
images, a portion of the images is transformed by changing the 
brightness and the contrast of all pixels (by up to ±30%), as well 
as zooming into the image to enlarge the speckles as would be the 
case when the thickness of the sheet decreases (by up to ±20%). 
This allows our model to generalize better and also saves time by 
avoiding the capture of more images with the physical setup. 

In the future, new materials can be added to SensiCut by capturing 
more speckle images and adding them to the dataset. For this, the 
neural network needs to be retrained but the weights from this pre-
vious training can be used (transfer learning), which signifcantly 
speeds up the process , i.e., takes only 10-12 minutes vs. 6 hours 
training from scratch. 

7 EVALUATION OF MATERIAL 
CLASSIFICATION 

We conducted a technical evaluation to determine our trained clas-
sifer’s accuracy. We also carried out additional tests to understand 
how the model generalizes to diferent physical conditions (rotation 
of sheets, illumination variations) and material sheets purchased 
from diferent vendors. 

7.1 Detection Accuracy Results 
The results of the classifcation accuracy for the 30 diferent mate-
rials in our dataset are shown as a confusion matrix in Figure 10c. 
Our average identifcation accuracy is 98.01% (SD=0.20) across the 
diferent materials. This is based on a 5-fold cross-validation, which 
we ran to ensure consistency of the classifcation accuracy across 
diferent training and validation splits. The small standard deviation 
shows that training our model leads to similar results independent 
of how the dataset is split. For this reason and the fact that cross-
validation is a time-consuming procedure (30 hours for 5-fold), the 
remainder of the technical evaluation is based on a single run. 

We further analyzed the results to understand which of the 
materials outlined in Section 6.1 are confused for each other most. 
For instance, given a specifc color (either white, black, or red), we 
evaluated the identifcation accuracy across cast acrylic, felt, paper, 
and laminated MDF. The accuracy was 100% for white and red, 
and 92% (SD=12.72) for black, on average. The latter is likely due 
to the fact that black refects less light. Since the image sensor’s 
exposure is the same for all photos, this causes the reduced accuracy 

https://SD=12.72
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Figure 11: Efect of (a) varying illumination and (b) sheet orientation on detection. 

for black materials. Enabling adaptive exposure when capturing 
images could eliminate this diference in the future [54]. 

Figure 10c also shows materials that were mistaken for each 
other. For instance, leather and silicone were confused with each 
other at a relatively high rate compared to other pairs. We believe 
this is because our full-grain leather piece is hot stufed, i.e., con-
ditioned with unrefned oils and greases, which likely makes its 
surface structure closer to that of silicone. One can also observe 
some confusion between walnut and paper-based materials, such 
as cardstock. Thesimilarity in their surfaces may be due to the fact 
that paper is produced using cellulose fbres derived from wood. 

We also evaluated the accuracy of materials within the same 
material groups. We got a mean accuracy of 98.92% across woods 
(SD=1.66), 98.84% across plastics (SD=2.36), 97.25% across textiles 
(SD=2.50), 95.90% (SD=2.94) across paper-based materials, and 97.00% 
(SD=2.16) across metals. The fact that paper-based sheets had the 
lowest rate is expected as they share the most similarities in their 
surface structures among diferent subtypes (e.g., cardstock vs. card-
board have a similar surface texture). 

7.2 Efect of Illumination and Sheet 
Orientation on Detection 

To understand how detection accuracy is afected under diferent 
illumination (ambient light) conditions and sheet orientations, we 
ran additional tests. 

Ambient Light: When we captured the images for our main dataset, 
we kept illumination in the workshop low (i.e., all lights turned of). 
To evaluate if the trained model can distinguish between materials 
even when the ambient light varies, we created an additional test 
set of images under diferent lighting conditions. For this, we used 
two lamps, one on the left and one on the right corner of the room, 
resulting in three conditions (light1 on, light2 on, both lights on) 
that cover an illumination range of up to 80 lux, in addition to the 
initial data with all lights of. We tested this on diferent black and 
white sheets, representing the two ends of the light refectance 
spectrum, as well as clear (transparent) sheets. We compare the 
accuracy in the following three scenarios: 8 white and 8 black sheets 
(for each color 2 sheets per type: plastic, paper, textile, wood), and 
6 transparent sheets (all plastic). 

The results are shown in Figure 11a. We found that the increased 
brightness did not have a major impact on the detection of white 
and black sheets. For clear sheets, however, the mean accuracy 
was lower (66.67%). The reason for this is that while opaque sheets 
beneft from data augmentation, this is not the case for clear sheets. 
We found that the illumination increase in the room was not realis-
tically simulated in the digitally generated images of clear sheets 

because such materials allow light to pass through in all directions. 
This can be overcome by capturing additional images of clear ma-
terials under the varying light conditions and then retraining the 
model. Indeed, such retraining resulted in an increased accuracy of 
88.10% (shown in the last bar). We also found that retraining the 
model on this augmented dataset did not have a major impact on 
other materials’ detection (only by 0.41% on average). 

Orientation of the Sheets: The images we captured for our main 
dataset were all taken in a specifc sheet orientation. We thus eval-
uated if the classifer is still accurate when the sheets are arbi-
trarily rotated for materials with uniform (e.g., acrylic) or non-
uniform/irregular surface structure (e.g., wood). For this, we created 
an additional test set by capturing speckle images while rotating 
the material sheets at 45◦ increments. For materials with uniform 
surface (plastic, textile, paper, metal), we picked two subtypes each 
(cast acrylic, Delrin, cardboard, matboard, felt, leather, aluminium, 
carbon steel). For materials with non-uniform surface, we tested 
eight subtypes of wood (oak, maple, walnut, birch, MDF, veneer, 
bamboo, laminated). 

The results are shown in Figure 11b. The lowest average detection 
accuracy was for wood sheets (70.31%), which also had a high 
standard deviation among the wood subtypes (24.94%). This is due to 
the fact that wood sheets included both artifcial ones with regular 
surface structure (e.g., MDF), which resulted in 100% detection 
accuracy, and natural woods with irregular surface structure (e.g., 
oak), which resulted in lower accuracies. The misidentifed images 
for those materials were all captured at the odd degrees (45◦, 135◦, 
etc.). We believe this is due to the cellular 3D microstructure of 
natural wood that has a 90◦ rotational symmetry at the microscopic 
level [3]. We can increase detection accuracy for natural woods 
by augmenting the training dataset with more pictures taken at 
diferent angles, at the expense of longer capture time. 

7.3 Generalization to Diferent Material 
Batches and Manufacturers 

In our main dataset, each set of samples came from one manu-
facturer. To ensure that our trained model can work robustly for 
sheets from diferent batches of the same manufacturer or diferent 
manufacturers, we conducted the following two tests. 

New sheets from the same manufacturer: Two months after we pur-
chased our samples, we ordered a second batch of sheets from 
Ponoko (two subtypes per material: oak, maple, cast acrylic, Delrin, 
felt, leather, cardboard, cardstock) and placed them inside the laser 
cutter to test if our trained model can still identify them. We found 
that only the maple sheet was incorrectly classifed. As explained in 
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Section 7.2, this is likely due to unique microstructural orientation 
of natural wooden sheets. 

New sheets from diferent manufacturers: To test if sheets from difer-
ent manufacturers can be reliably identifed, we ordered 8 diferent 
sheets from various vendors on Amazon.com (two subtypes per 
material: birch, cork, cast acrylic, Lexan, leather, felt, cardboard, 
matboard). Only one of them, leather, was incorrectly classifed. We 
later found out that the new sample was synthetic leather, whereas 
the classifer was trained on natural leather. 

While the above evaluation demonstrated that our classifcation 
model can detect material types across various conditions, more 
longitudinal tests are needed to further verify its applicability across 
various workshop settings. 

8 SOFTWARE IMPLEMENTATION 
Our user interface is Web-based and implemented using JavaScript 
and the Paper.js library. When users request a material identifca-
tion, our system automatically moves the laser cutter head to the 
corresponding xy-coordinates on the physical cutting bed. These 
coordinates are ofset by the distance between SensiCut’s laser 
pointer and the cutting laser. For the z-value, a fxed distance to the 
sheet is used for capturing the speckles (Section 6.2). To input the 
coordinates and initiate the movement, our system uses the PyAu-
toGUI library to interface with the ULS Universal Control Panel 
(UCP). It then detects if the laser head stopped moving, i.e., is stable 
enough to take a picture, by checking if the laser is in idle mode. 
This is indicated via a color change in UCP, which our system can 
detect via PyAutoGUI ’s screenshot() and getcolors() functions. 

Next, the captured image is wirelessly sent from the hardware 
add-on’s Raspberry Pi board to the main server, which runs on an 
external computer. This Python server uses the image as input to 
the trained CNN model, which was implemented using PyTorch 
and fast.ai [21]. The CNN returns the classifcation results, which 
are then displayed in the UI. The communication between the 
JavaScript front-end and the Python back-end is handled by the 
Socket.IO framework. The complete pipeline is shown in Figure 12. 

Figure 12: Our detection pipeline takes the user’s drawing 
as input and turns it into target points to capture speckle 
patterns. The captured images at those points are passed to 
the CNN to retrieve the material label. 

After the user confrms the results, the laser power, speed, and 
PPI (pulses per inch) settings are retrieved from the ULS database 
based on the detected material. Because the UCP interface does not 
have an API, we extracted these values from the its back-end using 

a Firebird server and Database Workbench 5 Pro to create an interim 
datasheet from which we can look up values as needed. 

To detect kerf-related issues, we frst dilate the drawing with 
a kernel of the size of the material-specifc kerf. We check if two 
curves overlap or if the dilation results in extra blobs, i.e., the cut 
may lead to an undesired shape. The materials’ kerf values are 
based on the "Minimum feature size" values listed on Ponoko. 

For the multi-material object mode, our system samples points 
uniformly along the cutting path and processes the captured images 
according to the pipeline described previously. Our system then 
assigns the respective identifed material to each part of the users’ 
drawings. 

9 DISCUSSION 
In the next section, we discuss insights gained from our work, 
acknowledge the limitations of our approach, and propose future 
research. 

Avoiding Dust on the Sensor: In conventional cameras, lenses help 
prevent dust particles from landing on the sensor. Although we use 
a lensless image sensor to capture the speckle patterns, over the 
course of our research we did not observe the lack of the lens to 
interfere with classifcation results. We hypothesize that this is the 
case because (1) the sensor is facing down, which prevents dust 
particles from reaching the surface of the sensor due to gravity, and 
(2) the ventilation in the laser cutter bed sucks away particles from 
the image sensor. 

Confdence Scores for Misidentifed and/or Unknown Materials: The 
neural network’s fnal layer outputs a vector for the confdence 
score of each material type. If multiple types have similar scores, 
the material is either misclassifed or not included in the original 
training dataset. As part of our future work, we will extend the user 
interface to show bars to visualize the confdence scores and inform 
the user to act with caution when confdence scores of multiple 
materials are similar. Additionally, a confdence threshold for when 
a material is safely classifed could be set by the workshop manager 
for all users of the workshop. 

Efect of Scratches on Sheets: Scratches on sheets are often local, i.e., 
they occur when a sheet’s sharp corner abrades a spot on another 
sheet’s surface. We picked 2 cast acrylic, 2 birch, 2 cardboard sheets 
with the most scratches from the material pile in our workshop and 
captured speckle patterns at 30 uniformly distributed points across 
the surface of each material sample. We found that the majority of 
points were correctly classifed, i.e. 90% for acrylic, 91.7% for birch, 
86.7% for cardboard. In future work, to make material detection 
robust to local scratches, SensiCut could take more than one image 
and cross-check the classifcation result at the expense of longer 
detection times. 

Materials with Protective Cover: Some material sheets come with a 
protective plastic/paper cover to avoid scratches during transporta-
tion and some users may prefer to leave it on during laser cutting. 
Since SensiCut needs access to the material’s surface, users can peel 
a small section from the corner and use our interface’s Pinpoint 
function to detect the material type from that corner. 

https://Socket.IO
https://Paper.js
https://Amazon.com
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Estimating the Sheet Thickness from Speckles: As the distance be-
tween the image sensor and the material surface increases, the 
speckles appear larger in the image [47]. If the pictures are taken 
at a fxed height (i.e., a fxed distance of the laser head to the cut-
ting bed), then the surface of thicker sheets is closer to the laser 
head, which results in smaller speckles, while thinner sheets are 
further away from the laser head, resulting in larger speckles. We 
tested if this can be used to detect the sheet thickness by using 
the same dataset and CNN structure as the material type classi-
fer (ResNet). However, as this is a regression problem, we used 
mean squared error instead of cross-entropy as our loss function. 
An initial test across 14 material sheets gave us a mean error of 
0.55mm (SD=0.68mm). For the ULS laser lens we have, the depth of 
focus (i.e., tolerance to deviations from the laser’s focus) is 2.54 mm, 
which is larger than this detection rate. Thus, for future versions of 
SensiCut, we can also include thickness detection. 

Labeling Workfows: While some users may prefer to keep material 
sheets unlabelled and launch SensiCut every time they use the laser 
cutter, SensiCut can also support hybrid workfows, such as printing 
a sticker tag after identifying a sheet, which can then subsequently 
be attached to the material sheet. Similarly, the software interface 
could remind users to label the material sheet with a pen after use 
as a courtesy to the next maker. 

Material Identifcation for Other Fabrication Tools: For future work, 
we plan to explore how SensiCut’s material identifcation method 
can be used for other personal fabrication machines as well. For 
example, in 3D printing, some manufacturers, such as Ultimaker, 
add NFC chips into flament spools to allow the chip reader inte-
grated in the 3D printer to automatically detect them. However, 
not all spools come with such chips. To address this issue, we plan 
to investigate how speckle sensing can be integrated into flament 
feeder systems to detect the flament type when a new spool is 
loaded onto the 3D printer. 

10 CONCLUSION 
In this paper, we presented SensiCut, a material sensing platform 
that helps laser cutter users to identify visually similar materials 
commonly found in workshops. We demonstrated how this can be 
achieved with speckle sensing by adding a compact and low-cost 
hardware add-on to existing laser cutters. We showed how the ma-
terial type detection can be used to create a user interface that can 
warn users of hazardous materials, show material-relevant informa-
tion, and suggest kerf adjustments. Our applications demonstrated 
how SensiCut can help users identify unlabeled sheets, test vari-
ous materials at once, and engrave onto multi-material objects. We 
discussed how we chose the materials in our dataset and how we 
trained the convolutional neural network for their classifcation. 
We reported on the detection accuracy for diferent material types 
and evaluated the impact of varying the room illumination, rotating 
the sheets, and using sheets purchased from diferent manufactur-
ers. We then highlighted how our system can be extended to also 
detect the thickness of sheets. For future work, we plan to investi-
gate how speckle sensing can be used to detect materials in other 
fabrication tools. Furthermore, we plan to collaborate with laser 
cutter manufacturers to integrate our material sensing approach 

into future commercial products, which only requires adding the 
lensless image sensor and adjusting the power of the existing visible 
laser pointer. 
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A APPENDIX 
Hardware Components: The components used for the speckle sens-
ing add-on and their specifcations are provided in Table 1. 

Material Samples: The material samples used for the evaluation and 
their properties are provided in Table 2. 
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Component Model Specifcations Link 
Laser Pointer Hawkgazer HG-LG-9 515nm, <5mW http://hawkgazer.com/productright.aspx?id=49 
Image Sensor Raspberry Pi v2 8MP module Sony IMX219PQH5-C sensor https://www.raspberrypi.org/products/camera-module-v2/ 
Microprocessor Raspberry Pi Zero W 1GHz GPU, 512MB RAM https://www.raspberrypi.org/products/raspberry-pi-zero-w/ 
Battery 5000mah Portable Battery Charger Dual 2Amp ports https://www.amazon.com/gp/product/B07QXZ6DJL/ 

Table 1: Components used in the SensiCut hardware add-on. 

Material Type Product Name Thickness Link 
Oak Red Oak Hardwood 3.2mm https://www.ponoko.com/materials/red-oak-hardwood 
Maple Maple Hardwood 3.2 mm https://www.ponoko.com/materials/maple-hardwood 
Walnut Walnut Hardwood 3.2 mm https://www.ponoko.com/materials/walnut-hardwood 
Birch Plywood Birch Plywood 3.2 mm https://www.ponoko.com/materials/birch-plywood 
Cork Brown Cork 3.0 mm https://www.ponoko.com/materials/brown-cork 
MDF MDF Fiberboard 3.0 mm https://www.ponoko.com/materials/mdf-fberboard 
Veneer MDF Bamboo Veneer MDF 3.5 mm https://www.ponoko.com/materials/bamboo-premium-veneer-mdf 

Amber Bamboo Plywood 2.7 mm https://www.ponoko.com/materials/amber-bamboo-plywood Bamboo Blonde Bamboo Plywood 6.6 mm https://www.ponoko.com/materials/blonde-bamboo-plywood 
White Melamine MDF 6.4mm https://www.ponoko.com/materials/white-melamine-mdf 

Laminated MDF Black Melamine MDF 6.4 mm https://www.ponoko.com/materials/black-melamine-mdf 
Black Coated MDF 3.0 mm https://www.ponoko.com/materials/black-coated-mdf 
Clear Acrylic 3.0 mm https://www.ponoko.com/materials/clear-acrylic 
Clear Matte Acrylic 3.0 mm https://www.ponoko.com/materials/clear-matte-acrylic 
White Acrylic 3.0 mm https://www.ponoko.com/materials/white-acrylic 
White Matte Acrylic 3.0 mm https://www.ponoko.com/materials/white-matte-acrylic 
Black Acrylic 3.0 mm https://www.ponoko.com/materials/black-acrylic 

Cast Acrylic Black Matte Acrylic 3.0 mm https://www.ponoko.com/materials/black-matte-acrylic 
Green Acrylic 3.0 mm https://www.ponoko.com/materials/green-acrylic 
Green Translucent Acrylic 3.0 mm https://www.ponoko.com/materials/green-translucent-acrylic 
Orange Acrylic 3.0 mm https://www.ponoko.com/materials/orange-acrylic 
Red Acrylic 3.0 mm https://www.ponoko.com/materials/red-acrylic 
Cream Acrylic 3.0 mm https://www.ponoko.com/materials/cream-acrylic 
Black Extruded Acrylic 4.5 mm https://www.amazon.com/Glossy-Acrylic-Plexiglass-Extruded-AZM/dp/B07RG43Q4L/ Extruded Acrylic Clear Extruded Acrylic 6.4 mm https://www.amazon.com/12-24-Extruded-Acrylic-Plexiglass/dp/B0178GAY9K 
White Delrin 3.2 mm https://www.ponoko.com/materials/white-delrin Delrin Black Delrin 3.0 mm https://www.ponoko.com/materials/black-delrin 

PETG PETG Sheet 1.0 mm https://www.amazon.com/gp/product/B0841W16NL/ 
Acetate Clear Acetate 0.2 mm https://www.amazon.com/gp/product/B0027AAOIY/ 
Silicone Black Silicone 1.5 mm https://www.ponoko.com/materials/black-silicone 
Styrene White Styrene 0.5 mm https://www.ponoko.com/materials/white-styrene 
Foamboard Foamboard 3.2 mm https://www.amazon.com/gp/product/B07MB31G6S 
PVC Clear Vinyl 1.5 mm https://www.amazon.com/gp/product/B0816LCQWD/ 

Clear Lexan Sheet 3.0 mm https://www.amazon.com/gp/product/B004U7B9HM/ Lexan White PC Sheet 3.0 mm https://www.amazon.com/gp/product/B0070Z4ZL8/ 
Carbon Fiber Carbon Fiber Plate Sheet 2.0 mm https://www.amazon.com/gp/product/B07YDQ3F1W 
ABS ABS Plastic 3.2 mm https://www.amazon.com/gp/product/B0007WTF02/ 

Black Wool Felt 3.0 mm https://www.ponoko.com/materials/black-wool-felt 
White Wool Felt 3.0 mm https://www.ponoko.com/materials/white-wool-felt 

Felt Orange Wool Felt 3.0 mm https://www.ponoko.com/materials/orange-wool-felt 
Fire Wool Felt 3.0 mm https://www.ponoko.com/materials/fre-wool-felt 
Red Synthetic Felt 2.0 mm https://www.ponoko.com/materials/red-synthetic-felt 

Leather Black Leather 2.5 mm https://www.ponoko.com/materials/black-leather 
Black Ultrasuede 0.7 mm https://www.ponoko.com/materials/black-ultrasuede Suede Red Ultrasuede 0.7 mm https://www.ponoko.com/materials/red-ultrasuede 
Black Cardstock 0.3 mm https://www.ponoko.com/materials/black-cardstock 
Ivory Cardstock 0.3 mm https://www.ponoko.com/materials/ivory-cardstock 

Cardstock Grey Cardstock 0.3 mm https://www.ponoko.com/materials/grey-cardstock 
Green Cardstock 0.3 mm https://www.ponoko.com/materials/green-cardstock 
Red Cardstock 0.3 mm https://www.amazon.com/RED-HOT-Cardstock-Paper-Warehouse/dp/B075FC2R6M 
Brown Cardboard 1.3 mm https://www.ponoko.com/materials/brown-cardboard 
White Coasterboard 1.5 mm https://www.ponoko.com/materials/white-coasterboard Cardboard White Corrug. Cardboard 4.0 mm https://www.ponoko.com/materials/white-one-side-corrugated-cardboard 
Brown Corrug. Cardboard 4.0 mm https://www.ponoko.com/materials/brown-corrugated-cardboard 
Black Matboard 2.7 mm https://www.ponoko.com/materials/black-matboard Matboard Green Matboard 1.3 mm https://www.ponoko.com/materials/green-matboard 

Aluminum Standard Aluminum 3.0 mm https://www.ponoko.com/materials/standard-aluminum 
Stainless Steel Stainless Steel 1.5 mm https://www.ponoko.com/materials/stainless-steel 
Carbon Steel Carbon Steel 1.3 mm https://www.ponoko.com/materials/carbon-steel 

Table 2: Materials used for the evaluation. 

https://www.ponoko.com/materials/red-oak-hardwood
https://www.ponoko.com/materials/maple-hardwood
https://www.ponoko.com/materials/walnut-hardwood
https://www.ponoko.com/materials/birch-plywood
https://www.ponoko.com/materials/brown-cork
https://www.ponoko.com/materials/mdf-fiberboard
https://www.ponoko.com/materials/bamboo-premium-veneer-mdf
https://www.ponoko.com/materials/amber-bamboo-plywood
https://www.ponoko.com/materials/blonde-bamboo-plywood
https://www.ponoko.com/materials/white-melamine-mdf
https://www.ponoko.com/materials/black-melamine-mdf
https://www.ponoko.com/materials/black-coated-mdf
https://www.ponoko.com/materials/clear-acrylic
https://www.ponoko.com/materials/clear-matte-acrylic
https://www.ponoko.com/materials/white-acrylic
https://www.ponoko.com/materials/white-matte-acrylic
https://www.ponoko.com/materials/black-acrylic
https://www.ponoko.com/materials/black-matte-acrylic
https://www.ponoko.com/materials/green-acrylic
https://www.ponoko.com/materials/green-translucent-acrylic
https://www.ponoko.com/materials/orange-acrylic
https://www.ponoko.com/materials/red-acrylic
https://www.ponoko.com/materials/cream-acrylic
https://www.amazon.com/Glossy-Acrylic-Plexiglass-Extruded-AZM/dp/B07RG43Q4L/
https://www.amazon.com/12-24-Extruded-Acrylic-Plexiglass/dp/B0178GAY9K
https://www.ponoko.com/materials/white-delrin
https://www.ponoko.com/materials/black-delrin
https://www.amazon.com/gp/product/B0841W16NL/
https://www.amazon.com/gp/product/B0027AAOIY/
https://www.ponoko.com/materials/black-silicone
https://www.ponoko.com/materials/white-styrene
https://www.amazon.com/gp/product/B07MB31G6S
https://www.amazon.com/gp/product/B0816LCQWD/
https://www.amazon.com/gp/product/B004U7B9HM/
https://www.amazon.com/gp/product/B0070Z4ZL8/
https://www.amazon.com/gp/product/B07YDQ3F1W
https://www.amazon.com/gp/product/B0007WTF02/
https://www.ponoko.com/materials/black-wool-felt
https://www.ponoko.com/materials/white-wool-felt
https://www.ponoko.com/materials/orange-wool-felt
https://www.ponoko.com/materials/fire-wool-felt
https://www.ponoko.com/materials/red-synthetic-felt
https://www.ponoko.com/materials/black-leather
https://www.ponoko.com/materials/black-ultrasuede
https://www.ponoko.com/materials/red-ultrasuede
https://www.ponoko.com/materials/black-cardstock
https://www.ponoko.com/materials/ivory-cardstock
https://www.ponoko.com/materials/grey-cardstock
https://www.ponoko.com/materials/green-cardstock
https://www.amazon.com/RED-HOT-Cardstock-Paper-Warehouse/dp/B075FC2R6M
https://www.ponoko.com/materials/brown-cardboard
https://www.ponoko.com/materials/white-coasterboard
https://www.ponoko.com/materials/white-one-side-corrugated-cardboard
https://www.ponoko.com/materials/brown-corrugated-cardboard
https://www.ponoko.com/materials/black-matboard
https://www.ponoko.com/materials/green-matboard
https://www.ponoko.com/materials/standard-aluminum
https://www.ponoko.com/materials/stainless-steel
https://www.ponoko.com/materials/carbon-steel
https://www.amazon.com/gp/product/B07QXZ6DJL
https://www.raspberrypi.org/products/raspberry-pi-zero-w
https://www.raspberrypi.org/products/camera-module-v2
http://hawkgazer.com/productright.aspx?id=49
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