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Abstract—Scientific workflow applications have become main-
stream and their automated and efficient execution on large-
scale compute platforms is the object of extensive research and
development. For these efforts to be successful, a solid experi-
mental methodology is needed to evaluate workflow algorithms
and systems. A foundation for this methodology is the availability
of realistic workflow instances. Dozens of workflow instances for
a few scientific applications are available in public repositories.
While these are invaluable, they are limited: workflow instances
are not available for all application scales of interest. To ad-
dress this limitation, previous work has developed generators
of synthetic, but representative, workflow instances of arbitrary
scales. These generators are popular, but implementing them is a
manual, labor-intensive process that requires expert application
knowledge. As a result, these generators only target a handful of
applications, even though hundreds of applications use workflows
in production.

In this work, we present WfChef, a framework that fully auto-
mates the process of constructing a synthetic workflow generator
for any scientific application. Based on an input set of workflow
instances, WfChef automatically produces a synthetic workflow
generator. We define and evaluate several metrics for quantifying
the realism of the generated workflows. Using these metrics,
we compare the realism of the workflows generated by WfChef
generators to that of the workflows generated by the previously
available, hand-crafted generators. We find that the WfChef
generators not only require zero development effort (because it
is automatically produced), but also generate workflows that are
more realistic than those generated by hand-crafted generators.

Index Terms—Scientific workflows, synthetic workflow gener-
ation, workflow management systems

I. INTRODUCTION

Many computationally intensive scientific applications have
been framed as scientific workflows that execute on various
compute platforms and platform scales [[1]]. Scientific work-
flows are typically described as Directed Acyclic Graphs
(DAGs) in which vertices represent tasks and edges represent
dependencies between tasks, as defined by application-specific
semantics. The automated execution of workflows on these
platforms have been the object of extensive research and devel-
opment, as seen in the number of proposed workflow resource
management and scheduling approachesﬂ and the number of
developed workflow systems (a self-titled “incomplete” lis
points to 290+ distinct systems, although many of them are

' The IEEE Xplore digital database includes 118 articles with both the words
“Workflow” and “Scheduling” in their title for 2020 alone.

Zhttps://s.apache.org/existing-workflow-systems

no longer in use). Thus, in spite of workflows and workflow
systems being used in production daily, workflow computing
is an extremely active research and development area, with
many remaining challenges [2], [3].

Addressing these challenges requires a solid experimental
methodology for evaluating and benchmarking workflow algo-
rithms and systems. A fundamental component of this method-
ology is the availability of sets of representative workflow
instances. One approach is to infer workflow structures from
real-world execution logs. We have ourselves followed this
approach in previous work [4]], [5], resulting in a repository
that provides ~20 workflow instances for each of a handful
of scientific applications. These instances have been used by
researchers, often for driving simulation experiments designed
to evaluate scheduling and resource management algorithms.

Real workflow instances are by definition representative
of real applications, but they cover only a limited number
of scenarios. To overcome this limitation, in previous work
we have developed tools for generating synthetic workflows
by extrapolating the patterns seen in real workflow instances.
The work in [4]] presented a synthetic workflow generator for
four workflow applications, which has been used extensively
by researcher The method for generating the synthetic
workflows was ad-hoc and based on expert knowledge and
manual inspection of real workflow instances. Our more recent
generator in [5] improves on the previous generator by using
information derived from statistical analysis of execution logs.
It was shown to generate more realistic workflows than the
earlier generator, and in particular to preserve key workflow
features when generating workflows at different scales [5]]. The
main drawback of these two generators is that implementing
the workflow generation procedure is labor-intensive. Genera-
tors are manually crafted for each application, which not only
requires significant development effort (several hundreds of
lines of code) but also, and more importantly, expert knowl-
edge about the scientific application semantics that define
workflow structures. As a result, this approach is not scalable
if synthetic workflow instances are to be generated for a large
number of scientific applications.

In this work, we present WfChef, a framework that au-
tomates the process of constructing a synthetic workflow

3To date, 300+ bibliographical references to the research article and/or the
software repository’s URL.
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generator for any given workflow application. WfChef takes
as input a set of real workflow instances from an application,
and outputs the code of a synthetic workflow generator for
that application. WfChef analyzes the real workflow graphs
in order to identify subgraphs that represent fundamental task
dependency patterns. Based on the identified subgraphs and on
measured task type frequencies in the real workflows, WfChef
outputs a generator that can generate realistic synthetic work-
flow instances with an arbitrary numbers of tasks. In this work,
we evaluate the realism of the synthetic workflows generated
by our approach, both in terms of workflow structure and
execution behavior. Specifically, this work makes the following
contributions:

1) We describe the overall architecture of WfChef and the
algorithms it uses to analyze real workflow instances and
produce a workflow generator;

2) We quantify the realism of the generated workflows when
compared to real workflow instances, in terms of abstract
graph similarity metrics and of the realism of simulated
workflow executions;

3) We compare the realism of the generated workflows to
that of the workflows generated by the original workflow
generator in [4] and by the more recent generator in [5];

4) Our key finding is that the generators automatically
produced by Wf{Chef lead to equivalent or improved
(often vastly) results when compared to the previously
available, manually implemented, workflow generators.

This paper is organized as follows. Section [lI] discusses

related work. Section [[IT] defines our target problem. Section|[V]
describes WfChef. Section [V] presents experimental evaluation
results. Finally, Section concludes with a summary of
results and perspectives on future work.

II. RELATED WORK

Scientific workflow configurations, both inferred from real-
world executions and synthetically generated, have been used
extensively in the workflow research and development com-
munity, in particular for evaluating resource management and
scheduling approaches. As scientific workflows are typically
represented as Directed Acyclic Graphs (DAGs), several tools
have been developed to generate random DAGs, based on
specified ranges for various parameters [6]-[9]]. For instance,
DAGGEN [6] and SDAG [7] generate random DAGs based
on ranges of parameters such as the number of tasks, the
width, the edge density, the maximum number of levels that
can be spanned by an edge, the data-to-computation ratio, etc.
Similarly, DAGEN [8]] generates random DAGS, but does so
for parallel programs in which the task computation and com-
munication payloads are modeled according to actual parallel
programs. DAGITIZER [9] is an extension of DAGEN for
grid workflows where all parameters are randomly generated.
Although these generators can produce a very diverse set of
DAGs, they may not resemble those of actual scientific work-
flows as they do not capture patterns defined by application-
specific semantics.

An alternative to random generation is to generate DAGs
based on the structure of real workflows for particular sci-
entific applications. In [10], over forty workflow patterns are
identified for addressing business process requirements (e.g.,
sequence, parallelism, choice, synchronization, etc.). Although
several of these patterns can be mapped to some extent to
structures that occur in scientific workflows [11]], they do
not fully capture these structures. In particular, they do not
necessarily respect the ratios of different types of particular
workflow tasks in these structures. This is important because
a workflow structure is not only defined by a set of vertices
and edges, but also by the task type (e.g., an executable
name) of each vertex. The work in [[12] focuses on identifying
workflow “motifs” based on observing the data created and
used by workflow tasks so as to reverse engineer workflow
structures. These motifs capture workflow (sub-)structures,
and can thus be used for automated workflow generation.
Unfortunately, identifying these motifs is an arduous manual
process [12]]. In our previous work [4], we developed a tool for
generating synthetic workflow configurations based on real-
world workflow instances. Although the overall structure of
generated workflows was reasonably realistic, we found that
workflow execution (simulated) behavior was not (see [5] and
also results in Section . In [5], we developed an enhanced
version of that earlier generator in which task computational
loads are more accurately captured by using statistical meth-
ods. As a result, the generated synthetic workflows are more
realistic when compared to real-world workflows. While the
task computational load characterization is automated, the
DAG-generation procedure is labor-intensive because gener-
ators are manually crafted and rely on expert knowledge of
the workflow application.

To the best of our knowledge, this is the first work that
attempts a completely automated synthetic workflow genera-
tion approach (automated analysis of real workflow instances
to drive the automated generation of synthetic workflows).
Our approach makes it straightforward to generate synthetic
workflows for arbitrary scales that are representative of real
workflow instances for any workflow application. These syn-
thetic workflows are key for supporting the development and
evaluation of workflow algorithms. Also, they can provide a
fundamental building block for the automatic generation of
workflow application skeletons [[13]], which can then be used
to benchmark workflow systems.

III. PROBLEM STATEMENT

Consider a scientific application for which a list of real
workflow instances, W, is available. Each workflow w in W
is a DAG, where the vertices represent workflow tasks and
the edges represent task dependencies. In this work, we only
consider workflows that comprise tasks that execute on a single
compute node — i.e., tasks are not parallel jobs (which is the
case for a large number of scientific workflow applications [1]],
(21, [14], [15]). More formally, w = (V,E), where V is
a set of vertices and E is a set of directed edges. We use
the notation |w| to denote the number of vertices in w (i.e.,



|w| = |V[). We assume that each workflow has a single entry
vertex and a single exit vertex (for workflows that do not we
simply add dummy entry/exit vertices with necessary edges
to all actual entry/exist vertices). Finally, a type is associated
to each vertex v, denoted as type(v). This type denotes
the particular computation that the corresponding workflow
task must perform. In this work, we consider workflows in
which every task corresponds to an invocation of a particular
executable, and we simply define a vertex’s type as the name
of that executable. Several tasks in the same workflow can
thus have the same type.

Problem Statement — Given W, the objective is to produce
the code for a workflow generator that generates realistic
synthetic workflow instances. This workflow generator takes
as input an integer, n > min,ecw (Jw|). It outputs a workflow
w’ with n’ > n vertices that is as realistic as possible. n’ may
not be equal to n, because real worfklows for most scientific
applications cannot be feasibly instantiated for arbitray num-
bers of tasks. Our approach guarantees that n’ is the smallest
feasible number of tasks that is greater than n.

We use several metrics to quantify the realism of the
generated workflow. Consider a workflow generated with the
workflow generator, w’, and a real workflow instance with
the same number of vertices, w. The realism of workflow
w’ can be quantified based on DAG similarity metrics that
perform vertex-to-vertex and edge-to-edge comparisons (see
Section [V-B). The realism can also be quantified based on
similarity metrics computed between the logs of (simulated)
executions of workflows w and w’ on a given compute

platform (see Section [V-C).
IV. THE WFCHEF APPROACH

In this section, we describe our approach, WfChef. In
Section we define particular sub-DAGs in a set of
workflow instances. Algorithms to detect these sub-DAGs and
use them for synthetic workflow generation are described in
Section Finally, in Section we briefly describe our
implementation of W{Chef.

A. Pattern Occurrences

The basis for our approach is the identification of particular
sub-DAGS in workflow instances for a particular application.
Let us first define the concept of a type hash:

Definition 1V-A.1 (Type hash): Given a workflow vertex
v, we define its fop-down hash, TD(v), recursively as the
following string. Consider the lexicographically sorted list of
the unique top-down hashes of v’s successors. T'D(v) is the
concatenation of these top-down hashes and of type(v). We
define v’s bottom-up hash, BU (v), similarly, but considering
predecessors instead of successors. Finally, we define v’s type
hash, TH (v), as the concatenation of 7D (v) and BU (v).

Figure [I] shows an example for a simple 4-task diamond
workflow, where T'D, TU, and T H strings are shown for each
vertex. The type hash of each vertex in a workflow encodes
information regarding the vertex’s role in the structures and
sub-structures of the workflow. From now on, we assume that

TDr := ¢ + red = red
BUr := {BUp, BUb} + red = yellow-purple-yellow-blue-red
THr := TDr + BUr = red-yellow-purple-yellow-blue-red

TDb := {TDr} + blue < red-blue
BUb := {BUpy} + blue ellow-blue
THb := TDrb + BUb = red-blue-yellow-blue

TDp := {TDr} + purple = red-purple
BUp := {BUpy} + purple = yellow-purple
THp := TDrp + BUp =xed-purple-yellow-purple

TDy := {TDp, TDb} + yellow = red-purple-red-blue-yellow
BUy := yellow + ¢ = yellow
THy := TDy + BUy = red-purple-red-blue-yellow-yellow

Fig. 1: Example workflow with T'D, BU, and T'H strings
shown for each vertex. Vertex types are simply their colors
(“red”, “purple”, “blue”, or “yellow”). ) denotes the empty
string, and + denotes the string concatenation operator.

each vertex is annotated with its type hash. Given a workflow
w, we define the type hash of w, denoted as TH (w), as the
set of unique type hashes of w’s vertices. TH(w) can be
computed in O(|w|? log(|w|)). We must calculate T'D and
BU hashes for all vertices because they can have the same
TD and different BU, and vice-versa, resulting in different
pattern occurrences, concept introduced in

The basis of our approach is the observation that, given
a workflow, sub-DAGs of it that have the same type hash
are representative of the same application-specific pattern (i.e.,
groups of vertices of certain types with certain dependency
structures, but not necessarily the same size). We formalize
the concept of a pattern occurrence as follows:

Definition IV-A.2 (Pattern Occurrence (PO)): Given W,
a set of workflow instances for an application, a pattern
occurrence is a DAG po such that:

e po is a sub-DAG of at least one workflow in W

o There exists at least one workflow in W with two sub-

DAGs ¢’ and ¢” such that:

— ¢’ and ¢" are disjoint;

- TH(g) = TH(g") = TH(po):

— Any two entry, resp. exit, vertices in ¢’ and ¢’ that
have the same type hash have the exact same parents,
resp. children.

Figure 2] shows an example workflow, where vertex types are
once again indicated by colors. Based on the above definitions,
this workflow contains 6 POs, each shown within a rectangular
box. The two POs in the red boxes have the same type hash,
and we say that they correspond to the same pattern. But note
that although they correspond to the same pattern, they do not
have the same number of vertices. POs can occur within POs,
as is the case for the POs in the green boxes in this example.
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Fig. 2: Example workflow with 6 POs, shown in rectangular
boxes. Boxes with the same color indicate POs with identical
type hashes.

Note that a sub-DAG of the rightmost POs (the three-task PO
in the red box) has the same type hash as the POs in the green
boxes. In fact, it is identical to those POs (i.e., a blue vertex
followed by a green vertex). But this subgraph is not a PO
because it does not have a common ancestor with any of the
other POs with similar type hashes.

B. Algorithms

WfChef consists of two main algorithms, WFCHEFRECIPE
and WFCHEFGENERATE. The former is invoked only once
and takes as input a set of workflow instances for a particular
application, W, and outputs a “recipe”, i.e., a data structure
that encodes relevant information extracted from the workflow
instances. The latter is invoked each time a synthetic workflow
instance needs to be generated. It takes as input a recipe and
a desired number of vertices (as well as a seeded pseudo-
random number generator), and outputs a synthetic workflow
instance. Both these algorithms have polynomial complexity
and implement several heuristics, as described hereafter.

The pseudo-code for WFCHEFRECIPE is shown in Algo-
rithm [1] Lines 2 to 16 are devoted to detecting all POs in W.
For each w in W, the algorithm visits w’s vertices (Lines 5-
15). An arbitrary unvisited vertex v is visited, and another
arbitrary unvisited vertex v’ is found, if it exists, that has the
same type-hash as v (Lines 6-7). If no such v’ exists then the
algorithm visits another vertex v (Line 8). Otherwise, it marks
v’ as visited (Line 9) and computes the set of closest common
ancestor and successor vertices for v and v’ (Lines 10-11).
The pseudo-code of the CLOSESTCOMMONANCESTORS and
CLOSESTCOMMONDESCENDANTS functions is not shown as
they are simple DAG traversals. If v and v’ do not have at least
one common ancestor and one common descendant, then the
algorithm visits another vertex v (Line 12). Otherwise, two
POs have been found, which are constructed and appended to
the list of POs that occur in w at Lines 13 and 14. The pseudo-
code for function SUBDAG is not shown. It takes as input a

Algorithm 1 Algorithm to compute a recipe based on a set
of real workflow instances.
1: function WFCHEFRECIPE(WW)

2: POs < {} > dictionary of POs

3: for each w € W do

4: POs[w] + || > list of POs in w

5: for each unvisited vertex v in w do

6: mark v as visited

7: v’ = an unvisited vertex s.t. TH (v') = TH (v)

8: if v/ is not found then continue

9: mark v’ as visited

10: A = CLOSESTCOMMONANCESTORS(v,0")

11: D = CLOSESTCOMMONDESCENDANTS(v,v")

12: if A=0 or B = ( continue

13: POs[w)].append(SUBDAG(v, A, B))

14: POs[w].append(SUBDAG(v', A, B))

15: end for

16: end for

17: Errors < {} > dictionary of errors

18: for each w € W do

19: for each b € W s.t. |b| < |w| do

20: g < REPLICATEPOS (|lw|, b, POsbl,
POs[w))

21 Errors[b][w] < ERROR(w,g)

22: end for

23: end for

24: return new Recipe(W, POs, Errors)
25: end function

vertex in a DAG, a set of ancestors of that vertex, and a set of
descendants of that vertex. It returns a DAG that contains all
paths from all ancestors to all descendants to traverse v, but
from which the ancestors and descendants have been removed
(along with their outgoing and incoming edges).

Lines 17 to 23 are devoted to computing a set of “errors”
resulting from using a particular (smaller) base workflow to
generate a larger (synthetic) workflow. The WfChef approach
consists in replicating POs in a base workflow to scale up
its number of vertices while retaining a realistic structure.
Therefore, when needing to generate a synthetic workflow at a
particular scale, it is necessary to choose a base workflow as a
starting point. To provide some basis for this choice, for each
w € W, the algorithm generates a synthetic workflow with
|w| vertices using as a base each workflow in W with fewer
vertices than w (Lines 12-22). The REPLICATEPOS function
replicates POs in a base workflow to generate a larger synthetic
workflow (it is described at the end of this section). The error,
that is the discrepancy between the generated workflow and
w, is quantified via some error metric (the ERROR function)
and recorded at Line 21 (in our implementation we use the
THF metric described in Section [V-B). The way in which
these recorded errors are used in our approach is explained
in the description of WFCHEFGENERATE hereafter. Finally,
at Line 24, the algorithm returns a recipe, i.e., a data structure
that contains the workflow instances (1), the discovered



pattern occurrences (POs), and the above errors (Errors).

Algorithm 2 Algorithm for generating a synthetic workflow
with n vertices based on a recipe.

1: function WFCHEFGENERATE(rcp, n)

2: closest < w in rep.W s.t. ||w| — n| is minimum

3: base < w in rep.W t. rep. Errors|w, closest)

is minimum
g < REPLICATEPOS (n, base, rcp.POs[base],
r.POs|closest])

»

5: return g
6: end function

The pseudo-code for WFCHEFGENERATE is shown in
Algorithm 2] It takes as input a recipe (rcp) and a desired
number of vertices n. At Line 2, the algorithm determines the
workflow in W that has the numbers of vertices closest to
n. This workflow is called closest. At Line 3, the algorithm
finds the workflow in W that, when used as a base for
generating a synthetic workflow with |closest| vertices, leads
to the lowest error. The intent here is to pick the best base
workflow for generating a synthetic workflow with n vertices.
No workflow in W may have exactly n vertices. As a heuristic,
we choose the best base workflow for generating a synthetic
workflow with |closest| vertices, based on the errors computed
at Lines 17 to 23 in Algorithm [I] The synthetic workflow is
generated by calling function REPLICATEPOS at Line 4, and
returned at Line 5.

Algorithm 3 Algorithm for replicating POs in a base work-
flow.
1: function REPLICATEPOS(n, base, bPOs, cPOs)

2 g < base

3 prob « {} > dictionary of probabilities
4: for each po € bPOs do

5: nc=|{p € cPOs | TH(p) =TH (po)}|

6: tc = |{p € cPOs}|

7 nb=|{p € bPOs | TH(p) = TH(po)}|

8 prob[po] < (nc/tc)/nb

9: end for

10: while |g| < n do

11: po <— sample from bPO with distribution prob
12: g < ADDPO(g, po)

13: end while

14: return g

15: end function

The pseudo-code for REPLICATEPOS is shown in Algo-
rithm [3] It takes as input a desired number of vertices (n),
a base workflow (base), the list of POs in the base workflow
(bPOs), and the list of POs in the workflow whose number of
vertices is the closest to n (¢POs). The intent is to replicate
POs in the base workflow, picking which pattern to replicate
based on the frequency of POs for that pattern in the closest
workflow. At Line 2, the algorithm first sets the generated
workflow to be the base workflow. Lines 4-9 are devoted

to computing a probability distribution. More specifically, for
each PO in bPOs, the algorithm computes the probability with
which this PO should be replicated. Given a PO in bPOs, nc
is the number of POs for that same pattern in ¢cPOs (Line 5)
and tc is the total number of POs in ¢POs. Thus, nc/tc is
the probability that a PO in ¢POs is for that same pattern.
nb is the number of POs in bPOs for that same pattern
(Line 7). The probability of picking one of these POs in bPO
for replication is thus computed as ((nc/tc)/nb) (Line 8).
Note that this probability could be zero since nc could be
zero. The algorithm then iteratively adds one PO from the
base graph to the generated graph (while loop at Lines 10
to 13). At each iteration, a PO po in bPO is picked randomly
with probability prob[po] (Line 11), and this pattern is added
to g (Line 12). The function ADDPO operates as follows.
Given a workflow, g, and a to-be-added PO, po, for a specific
pattern, it: (i) randomly picks in g one existing PO for that
same pattern, po’; (ii) adds po to the workflow, connecting its
entry, resp. exit, vertices to the parent, resp. children, vertices
of the corresponding entry, resp. exit, vertices of po’.

The pseudo-code in this section is designed for clarity. Our
actual implementation, described in the next section, is more
efficient and avoids all unnecessary re-computations (e.g., the
probabilities computed in WFCHEFGENERATE).

C. Implementation

We have implemented our approach in a Python pack-
age called wfchef. Specifically, this package defines a
Recipe class. The constructor for that class takes as in-
put a list of workflow instances and implements algorithm
WFCHEFRECIPE. The workflow instances are provided as files
in the WfCommons JSON format EI The class has a public
method duplicate that implements the WFCHEFGENER-
ATE algorithm, and a private method duplicate_nodes
that implements the REPLICATEPOS algorithm. This Python
package is available on GitHulﬂ

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach and compare it to
previously proposed approaches. In Section we describe
our experimental methodology. We evaluate the realism of
generated workflows based on their structure, in Section
and based on their simulated execution, in Section

A. Methodology

We compare the realism of the synthetic workflow instances
generated by WfChef generators to that of instances generated
with the original workflow generator in [4], which is called
WorkflowGenerator, and with the more recent generator
proposed in [5[], which is called WorkflowHub. Recall that
both WorkflowGenerator and WorkflowHub are hand-crafted,
while WfChef generators and automatically produced.

We consider workflow instances from two scientific appli-
cations: (i) Epigenomics, a bioinformatics workflow [16]; and

4https://github.com/wfcommons/workflow-schema
Shttps://github.com/tainagdcoleman/wfchef
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(i) Montage, an astronomy workflow [17]. We choose these
two applications because they are well-known and used in
production. But also, WorkflowGenerator and WorkflowHub
can generate synthetic workflow instances for both of these
applications, which makes it possible to compare our approach
to previous work. Note that both these previously proposed
generators support several scientific workflow applications.
However, the only ones they have in common are Epige-
nomics and Montage. Two other applications are supported by
WorkflowGenerator and also by WorkflowHub. Unfortunately,
WorkflowGenerator generates synthetic workflow structures
that are no longer valid with respect to the current versions of
these applications. Therefore, they are incorrect and not com-
parable to real workflow instances or to synthetic workflows
generated by WorkflowHub.

Our ground truth consists of real Montage and Epigenomics
workflow instances. These instances are publicly available on
the WorkflowHub repository [5]]. They were obtained based
on logs of application executions with the Pegasus Workflow
Management System [[18] on the Chameleon academic cloud
testbed [19]]. Specifically, we consider 14 Montage workflow
instances with between 105 and 9807 tasks, and 25 Epige-
nomics workflow instances with between 75 and 1697 tasks.

We generate synthetic workflow instances with the same
number of tasks as real workflow instances, so as to compare
synthetic instances to real instances. Both WorkflowGenerator
and WorkflowHub encode application-specific knowledge to
produce synthetic workflow instances for any desired number
of tasks, n. Instead, WfChef generators rely on training data,
i.e., real workflow instances. We use a simple “training and
testing” approach. That is, for generating a synthetic workflow
instance with n tasks, we invoke WFCHEFRECIPE with all
real workflow instances with < n tasks. For instance, say we
want to use WfChef to generate an Epigenomics workflow
with 127 tasks. We have real Epigenomics instances for 75,
121, and 127 tasks. We invoke WFCHEFRECIPE with the 75-
and 121-tasks instances to generate the recipe. We then invoke
WFCHEFGENERATE, passing to it this receipt and asking it
to generate a 127-tasks instance.

B. Evaluating the Realism of Synthetic Workflow Structures

We use two graph metrics to quantify the realism of
generated workflows, as described hereafter.

Approximate Edit Distance (AED) — Given a real workflow
instance w and a synthetic workflow instance w’, the AED
metric is computed as the approximate number of edits (vertex
removal, vertex addition, edge removal, and edge addition)
necessary so that w = w’, divided by |w|. Lower values
include a higher similarity between w and w’. We compute
this metric via the optimize_graph_edit_distance
method from the Python’s NetworkX package. Note that
NetworkX also provides a method to compute an exact edit
distance, but its complexity is prohibitive for the size of the
workflow instances we consider. Even though the AED metric
can be computed much faster, because it is approximate, we

were able to compute it only for workflow instances with 865
or fewer tasks for Epigenomics and 750 or fewer tasks for
Montage. This is because or RAM footprint issues (despite
using a dedicated host with 192 GiB of RAM).

Figure 3] shows AED results for Epigenomics (top) and
Montage (bottom) workflow instances, for WfChef, Workflow-
Generator, and WorkflowHub. WorkflowHub and W{Chef use
randomization in their heuristics. Therefore, for each number
tasks we generated 10 sample synthetic workflow with each
tool. The heights of the bars in Figure [3| correspond to average
AED values, and we show error bars that represent the range
between the third quartile (Q3) and the first quartile (Q1), in
which 50 percent of the results lie. Error bars also show min-
imum and maximum values. Note that error bars, minimum,
and maximum values are not shown for WorkflowGenerator
as it generates synthetic workflow structures deterministically.

The key observation from Figure [3] is that in most cases
Wi{Chef leads to lower average AED values than its com-
petitors. For Epigenomics, WorkflowGenerator leads to the
worst results for all workflow sizes, being significantly out-
performed by WorkflowHub. WorkflowHub is itself outper-
formed by W{Chef for all workflow sizes. On average over
all Epigenomics instances, WorkflowGenerator, WorkflowHub,
and Wf{Chef lead to an AED of 2.039, 1.473, and 1.086,
respectively. For Montage workflows (Figure 3}bortom), Work-
flowGenerator outperforms WorkflowHub for all workflow
instances, and both are outperformed by Wf{Chef. On aver-
age over all Montage instances, WorkflowGenerator, Work-
flowHub, and W{Chef lead to an AED of 1.694, 2.216, and
1.111, respectively.

The good results obtained by W{Chef are due to it being
able to generated instances that are closer in size and that are
more faithful to real workflow instances. Note that the AED
metric values are quite high overall, often above 1. Although
the synthetic instances may have a structure that is overall
similar to that of the real instances, making the two workflows
absolutely identical requires a large number of edits. For this
reason, hereafter we present results for a second metric.

Type Hash Frequency (THF) — Given a real workflow
instance w and a synthetic workflow instance w’, the THF
metric is computed as the Root Mean Square Error (RMSE)
of the frequencies of vertex type hashes. Recall from Defini-
tion that the type hash of a vertex encodes information
about a vertex’s type but also the types of its ancestors and
successors. Therefore, the more similar the workflow structure
and sub-structures, the lower the THF metric.

Figure [ shows THF results for Epigenomics (top) and
Montage (bottom). More results are shown than in Figure [3]
since we can evaluate the THF metric for larger workflow
instances. Like in Figure bar heights represent averages
and error bars, minimum, and maximum values are shown
for WorkflowHub and W{Chef.

Results are mostly in line with AED results. For Epige-
nomics, WorkflowGenerator leads to the worst average results
for all workflow sizes. WfChef leads to significantly better
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results on average than WorkflowHub in all but two cases. For
349- and 423-task workflows, although W{Chef leads to better
average results, error bars for WfChef and WorkflowHub have
a large amount of overlap. Note that the length of the error bars
for the W{Chef results show a fair amount of variation, with
short error bars for one workflow size and significantly longer
error bars for the next size up (e.g., going from 265 tasks to
349 tasks). This behavior is due to “jumps” in structure be-
tween workflows of certain scales. In other words, for a given
application, it is common for smaller workflows to contain
only a subset of the patterns that occur in larger workflows. On
average over all Epigenomics instances, WorkflowGenerator,
WorkflowHub, and WfChef lead to a THF of 0.097, 0.021,
and 0.004, respectively. For Montage, WorkflowGenerator
leads to better average results than WorkflowHub for all
workflow sizes, and WfChef leads to strictly better results
than its competitors for all workflow sizes. On average over
all Montage instances, WorkflowGenerator, WorkflowHub, and
WiChef lead to a THF of 0.211, 0.252, and 0.040, respectively.

We conclude that generators produced by WfChef generate
synthetic workflow instances with structures that are signif-
icantly more realistic than that of workflows generated by
WorkflowGenerator and WorkflowHub.

C. Evaluating the Accuracy of Synthetic Workflows

Synthetic workflow instances are typically used in the litera-
ture to drive simulations of workflow executions. A pragmatic

way to evaluate the realism of synthetic workflow instances
is thus to quantify the discrepancy between their simulated
executions to that of their real counterparts, for executions
simulated for the same compute platform using the same
Workflow Management System (WMS). To do so, we use a
simulator [20] of a the state-of-the-art Pegasus WMS [18].
The simulator is built using WRENCH , a framework for
implementing simulators of WMSs that are accurate and can
run scalably on a single computer. In [22], it was demon-
strated that WRENCH provides high simulation accuracy for
workflow executions using Pegasus. To ensure accurate and
coherent comparisons, all simulation results in this section
are obtained for the same simulated platform specification as
that of the real-world platforms that was used to obtain the
real workflow instances (based on execution logs): 4 compute
nodes each with 48 processors on the Chameleon testbed [19].

We quantify the discrepancies between the simulated ex-
ecution of a synthetic workflow instance and that of a real
workflow instance with the same number of vertices, using
two metrics. The first metric is the absolute relative difference
between the simulated makespans (i.e., overall execution times
in seconds). The second metric is the Root Mean Square
Percentage Error (RMSPE) of workflow task start dates. The
former metric is simpler (and used often in the literature to
quantify simulation error), but the latter captures more detailed
information about the temporal structure of the simulated
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executions.

Figure [5] shows makespans of simulated executions for real
workflow instance and synthetic instances generated by Work-
flowGenerator, WorkflowHub, and W{Chef, for Epigenomics
(top) and Montage (bottom). Note that, unlike for the results
in the previous section, error bars are shown for Workflow-
Generator. Although it generates workflows with deterministic
structure, it samples task characteristics (i.e., task runtimes,
input/output data sizes) from particular random distribution.
Both WorkflowHub and WfChef do a similar sampling, but
from distributions determined via statistical analysis of real
workflow instances.

Overall, we find that the execution of synthetic workflows
generated by WorkflowGenerator leads to the least accu-
rate makespans. WorkflowHub and Wf{Chef lead to better
results, with a small advantage for WorkflowHub. On av-
erage over all Epigenomics instances, the average relative
differences between makespans of the real workflow instances
and of the synthetic instances generated by WorkflowGener-
ator, WorkflowHub, and WfChef are 75.73%, 15.21%, and
15.50%, respectively. For Montage instances, these averages
are 135.12%, 32.61%, and 25.59%.

Figure [6] shows results for the RMSPE of workflow task
start dates. Here again, we find that the synthetic workflow
instances generated by WorkflowGenerator lead to unrealistic
simulated execution. WorkflowHub and W{Chef lead to more

similar results, with a small advantage to WfChef. On average
over all Epigenomics instances, the RMSPE of workflow
task completion dates for synthetic Epigenomics instances
generated by WorkflowGenerator, WorkflowHub, and WfChef
are 294.70%, 46.08%, and 40.49%, respectively. For Montage
instances, these averages are 558.93%, 64.29%, and 55.42%.

We conclude that WfChef generators produce synthetic
workflow instances that lead to simulated executions that are
drastically more realistic than that of synthetic workflows
generated by WorkflowGenerator. In fact, it is fair to say
that WorkflowGenerator does not make it possible to obtain
realistic simulation results (which is a concern given its
popularity and commonplace use in the literature). WfChef
generators lead to results that are similar but typically more
accurate than WorkflowHub. And yet, WfChef generators
are automatically generated meaning that, and very much
unlike WorkflowGenerator and WorkflowHub, require zero
implementation effort.

VI. CONCLUSION

The availability of synthetic but realistic scientific workflow
instances is crucial for supporting research and development
activities in the area of workflow computing, and in particular
for evaluating workflow algorithms and systems. Although
synthetic workflow instance generators have been developed in
previous work, these generators were hand-crafted using expert
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knowledge of scientific applications. As a result, their devel-
opment is labor-intensive and cannot easily scale to supporting
large number of scientific applications. As an alternative, in
this work we have presented W{Chef, a tool for automatically
generating generators of realistic synthetic scientific workflow
instances. Given a set of real workflow instances for a par-
ticular scientific application, WfChef analyzes these instances
in order to discover application-specific patterns. A synthetic
workflow instance with any number of tasks can then be
generated by replicating these patterns in a real workflow
instance with fewer tasks. We have demonstrated that the
Wi{Chef generators, which require zero software development
efforts, generate more realistic synthetic workflow instances
than the previously available hand-crafted generators. We
quantified workflow instance realism both based on workflow
DAG metrics and on simulated workflow executions.

A short-term future work direction is to replace the hand-
crafted WorkflowHub generators developed in [5] and avail-
able on the WorkflowHub web siteﬁ by generators automati-
cally generated by WfChef. Another short-term future direc-
tion is to apply WfChef to more scientific workflow applica-
tions beyond those supported by WorkflowHub. A longer-term
direction is to investigate whether machine learning techniques
can be applied to solve the synthetic workflow generation

Shttps://workflowhub.org/generator

problem, to compare these techniques to WfChef, and perhaps
evolve WfChef accordingly. Our suspicion, however, is that
the amount of training data necessary for machine learning
approaches to be effective could be prohibitive. By contrast,
the WfChef algorithms are able to analyze a few real workflow
instances to discover patterns. In fact, another interesting
research direction is to determine the minimum amount of
training data that still allows WfChef to produce realistic
synthetic workflow instances. In the results presented in this
work, for the purpose of evaluating WfChef and of comparing
it to previously proposed approaches, we use as training data
all available real workflow instances with fewer than the
desired number of workflow tasks. But it may be that using
fewer such instances would still lead to good results.
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