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Abstract—Anomaly detection based on Machine Learning can
be a powerful tool for understanding the behavior of large,
complex computer systems in the wild. The set of anomalies
seen, however, can change over time: as the system evolves, is
put to different uses, and encounters different workloads, both
its ‘typical’ behavior and the anomalies that it encounters can
change as well. This naturally raises two questions: how effective
is automated anomaly detection in this setting, and how much
does anomalous behavior change over time?

In this paper, we examine these question for a dataset taken
from a system that manages the lifecycle of servers in datacenters.
We look at logs from one year of operation of a datacenter of
about 500 servers. Applying state-of-the art techniques for finding
anomalous events, we find that there are a ‘core’ set of anomaly
patterns that persist over the entire period studied, but that in to
track the evolution of the system, we must re-train the detector
periodically. Working with the administrators of this system, we
find that, despite these changes in patterns, they still contain
actionable insights.

I. INTRODUCTION

A key task for administrators of large computer facilities is
understanding the steady-state operation of their facilities and
reacting to any anomalies that might occur. The sequences of
events that actually take place in “normal” operation may or
may not align with administrators’ intuition about the behavior
of the facility and its users; having a full understanding is
important to effective system administration. Exceptions to
normal sequences may indicate problems with the facility’s
hardware, software, or configuration and may require admin-
istrator attention. Such exceptions could also signal new uses
or emergent behaviors that administrators should be aware of.

Understanding “normal” and anomalous behavior is not
always straightforward. Events from these types of systems
are typically collected in logfiles [8], and simply looking for
“errors” in these logfiles is not always informative [4]. Some
“errors” may be benign: they might correspond to ways in
which the facility is used that were not anticipated by software
writers, or they may represent transient states that the system
is able to recover from itself. On the flip-side, some sequences
that are not explicitly flagged in logs as “errors” may be quite
worrying, such as increased frequency of certain operations or
cessation of others. The examination of logfiles for anomalies
and errors is thus a ripe area for machine learning and data
mining [8], [15], [5].
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In this paper, we apply the technique of anomaly detec-
tion by invariant mining [14], [13] to the administration of
CloudLab [9], a facility used by thousands of researchers and
educators in computer science. CloudLab collects extensive
logfiles regarding the provisioning of the servers under its
control; as we lay out in more detail in Section III, the dataset
used for this paper covers a year of operation of 583 servers,
comprising a total of 15,018,235 log entries. Invariant mining
looks at the relationships between frequencies of entries in
these logfiles, finding patterns that describe typical operation
(“invariants”) and log sequences that “violate” those invariants
and are thus anomalous. Our goal is to look at the following
questions to find whether invariant mining is a useful technique
to aid administrators in this setting:

1) Does invariant mining successfully create discriminators
capable of distinguishing “normal” behavior from anoma-
lous behavior?

2) Do the invariants found provide information that is inter-
pretable by the administrators of these systems?

3) Do the set of invariants change over time, and if so, how
much?

In Section II, we cover related work on analyzing system
logfiles and mining them for anomalies. In Section III, we
describe the facility from which our dataset comes and the
dataset itself. Section IV explains how we use invariant mining
on this dataset, Section V goes through our findings from this
analysis, and Section VI concludes and suggests future work.

II. RELATED WORK

The high risk posed by compromised systems, anomalies,
and security threats has led to substantial interest in analyzing
system logs to debug system failures and perform root cause
analysis.

Moreover, Machine Learning (ML) and data mining tech-
niques have been used widely to monitor large scale systems
for the purpose of anomaly detection and system diagnosis.
Several statistical and machine-learning models have been
proposed to analyze the behavior of systems and detect failures
or problem by deeply analyzing systems logs and other sources
of data. In this section, we discuss the most closely related
efforts in the area of anomaly detection and log file analysis.



A. Anomaly Detection

There are some generic methods that use system logs for
anomaly detection. Typically, this is done by using a log parser
to parse the unstructured log entries into a structured form [7]
that can be analyzed and modeled by different machine
learning techniques. These machine learning techniques are
divided into supervised and unsupervised methods.

For supervised methods, labels are required to complete the
analysis and perform anomaly detection. The simplest labels
for this use would be “normal” and “anomalous”. In practice,
however, it is usually hard to obtain labeled data in log
files: system logs commonly contain hundreds of thousands to
millions of entries, making manual labeling by administrators
too time-consuming. Additionally, because anomalies are, by
definition, rare, it is not practical to use small subsets of system
logs for training, since this would risk including too few, or
even zero, anomalies.

Related work in the area of anomaly detection in systems
goes back several decades. For example, Bates et al. [3]
proposed an event definition language that allow programs
to generate logs with deep semantics information, such as
hierarchical relationships between events. However, this ap-
proach requires access to the source code. Some more recent
methods [5] perform anomaly detection on log files without re-
quiring hand-crafted features or pre-processing of data. These
work on raw text data and output a score for each log entry,
which enables the systems administrator to classify the log
entry as either anomalous or normal. Baseman [2] proposes
a framework that performs anomaly detection by combining
graph analysis, relational learning and kernel density esti-
mation. Moreover, it presents a novel event block detection
algorithm that extracts related syslog messages from the log
files. The proposed methods analyze individual messages
rather than event blocks which limit the application scope.
Furthermore, Baseman [1] introduced Interpretable and Inter-
active Classifier-Adjusted Density Estimation with Temporal
components (iCADET). This framework utilizes random forest
classifiers to explain the labeling of certain points as likely
anomalous. This technique is more suitable for smaller scale
data.

There are also some open source solutions for log files in-
spection and anomaly detection. For example, Project Scorpio
! connects to streaming sources and uses unsupervised ma-
chine learning methods to generate a prediction of anomalous
log entries.

B. Logfile Analysis

Other research efforts have specifically targeted logfile
analysis for anomaly detection. For example, DeepLog [8]
proposes a deep neural network model utilizing Long Short-
Term Memory (LSTM). This model allows DeepLog to train
a model unsupervised based on the log pattern and report an
anomaly when log patterns deviate from the expected result by
the trained model. Several other approaches based in machine
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learning have been proposed for different systems. Many of
these are rule-based approaches, which limits them to specific
application and requires domain knowledge. For example, M.
Cinque [6], performs a change in the logging mechanism
itself, which requires both effort and domain knowledge to
implement the change to the logging system first. Other kinds
of tool rely on comparing anomalous logs against normal ones,
such as [15]. A limitation of such tools such tools is the fact
that it is hard to detect new kind of anomalies that the model
has not been exposed to before. Because our goal in this work
is to study how anomalies change over time, it is important
that we be able to find anomalies that were not seen during
earlier periods.

Furthermore, some methods were developed to reduce the
size of the log files and thus reducing the effort needed
for analysis. For example, LSTM, which have been recently
used for log analysis purposes in data centers. T. Yang and
V. Agrawal. [19] introduced a framework that highlights the
messages it deems to be the most important text in the failed
log messages, making it less tedious for the human operator
or even automated software to analyze the cause behind the
failures.

Invariant mining [14] is a general approach that does not
rely on the nature of the data or require any significant domain
knowledge and unlike rule/keyword based log analysis tools
the rules are easier to update when components are upgraded
or changed as they usually tend to do. Our work builds on this
work, which we give an overview of in Section IV-A. Lou et
al. [14] applied invariant mining to two case studies, Hadoop
and CloudDB (a structured data storage service developed by
Microsoft). The testing environment was setup specifically for
the purposes of this research. In contrast, our our work uses
real-life data from a time span of one year, giving us the
opportunity to gain a better understanding of the nature of
anomalies and the benefits of using invariant mining to detect
anomalies in real datacenter systems.

III. DATASET

In this section, we describe the dataset. We talk about
CloudLab?, the facility our logfiles come from. In addition
to describing the contents of the logs themselves, we also
cover the process we used to prepare the data for analysis. The
dataset used for this paper is available with DOI 10.5281/zen-
0do.4073861.

A. CloudLab

CloudLab [9] is a facility that serves the computer systems
research community. It operates as an environment in which
researchers can build their own clouds: it provisions resources
at a “bare metal” level, enabling its users to see, control,
and modify portions of the cloud software stack including
virtualization, networking, and storage. It has approximately
5,00 users around the world who have, to date, run 150,000
experiments on it. CloudLab has three main clusters; the data
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that we use for this paper comes from its cluster at the
University of Utah [17].

We chose CloudLab for this study because we have access
to both its logfiles, which are collected centrally, and its ad-
ministrators, who can help us interpret our results and evaluate
their utility. While CloudLab is a unique facility in terms of
the specific features it offers to users, its basic functionality of
managing the provisioning of servers, interaction with users
via a web interface, etc. has much in common with other
facilities and should lead to generalizable results.

In this paper, we focus on CloudLab’s node booting process:
the automated process of booting servers into various operating
systems for user experiments, utility tasks (such as re-imaging
local hard drives), and general system administration. Though
a conceptually simple task, this process involves interactions
between firmware and BIOS on the servers themselves, stan-
dard network protocols such as DHCP and TFTP, and a num-
ber of services that CloudLab runs to track server state [16]
and inform servers what their next actions should be. There
is substantial emergent complexity in this system and large
amounts of parallelism that are difficult to control. As a result,
failures to boot are not uncommon, and the CloudLab code
includes many measures to detect and automatically recover
from common failure modes. Because of the way CloudLab
allocates resources, it is common for a server to be part of
several experiments in a single day in sequence, and thus to go
through this boot process every few hours. It is also common
for some servers to be allocated to an individual experiment
for long periods of time, meaning that they may not reboot
for a period of days or weeks.

B. Data Collection

CloudLab log data is collected, processed and stored using
the ELK (Elasticsearch’, Logstash4, Kibana’) stack. In our
configuration, the ElasticSearch cluster is composed of five
data nodes and one client node that also serves the Kibana
frontend. As is common with the ELK stack, we have Filebeat®
aggregate and forward logs from the main CloudLab servers
to be processed by Logstash and stored in the ElasticSearch
cluster.

The logfiles that we collect come from a mix of standard
server software, such as Apache, ISC DHCPD, and tftpd;
and custom software that has been developed for CloudLab
and other related testbeds [18], [11]. Overall, we collect on
average 350,000 logs entries per hour (though only a subset
of those is used in this analysis.)

C. Farsing and Cleaning

To be used for data mining and machine learning, log
messages must be individually identified and parameters,
etc. parsed out; the relatively unstructured text found in the
logfiles must be converted into structured data. For invariant
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mining in particular, each log message must be assigned a
corresponding event ID, (also called a log key) that indicates
the message type. These event IDs are matched to specific
patterns, where the pattern represents the constant parts of the
message and the variable parameters that the message contains.
To get this information, we process each message against a
set of Grok [10] patterns. While this log parsing method is
sometimes automated [7], [20], [12], our initial attempts to use
these automated systems did not produce satisfactory results;
thus, we created the Grok patterns by hand to ensure accuracy
and to further explore our data. Lists of patterns are consumed
by a script to automatically generate a LogStash configuration
file to process messages, and we version these patterns: each
entry in Elasticsearch is tagged with the version number of
the pattern set, so that when we add or change patterns, we
can re-parse all stored log entries.

An interesting aspect of processing logfiles is that some-
times mapping is required between different identifiers for
the same entity. One way this manifests in the CloudLab
data is that in some logfiles, machines are identified by their
“node ID”, the primary identifier CloudLab uses to track
its resources. In others this information is not available. For
example, in DHCP logs, initial requests are identified only by
their MAC address. As part of our parsing process in Logstash,
we use mapping tables to augment records with all identifiers
for the node to make it easier to relate entries with each other.

With the data processed and stored using our ELK stack,
the data must be collected and formed into data files before
applying invariant mining. Data files were created using a
script that generated ElasticSearch queries based on selected
node type, node range, date range and log types. Each entry
from the resulting query had its message and event ID written
to an output file along with its assigned session ID. The session
ID is formed from the node ID and date to delineate chunks
of log entries into sessions, where each session represents a
24 hour period for a particular node.

To provide clean datasets, some data had to be excluded
because of inconsistencies or errors. As a result of abnormal
node ID formats and deformed log messages, some log entries
were not correctly matched with a pattern and any such entry
was excluded from generated data sets. Additionally, each
message has two timestamps; one from the machine time
which contains the message and another assigned by Logbeat
at its collection time. In some cases, the two timestamps
differed significantly, with Logbeat retrieving the log months
after the machine timestamp. Such occurrences had to be
excluded from datasets to ensure that the date used to form
session IDs were accurate.

D. Resulting Dataset

For the purposes of this paper, the dataset was formed from
logfiles of all CloudLab nodes of the types m400 and m510,
and was gathered from January 1 to December 31 of 2019.
The resulting dataset contains over 15 million log entries for
those 583 nodes and forms 51,375 sessions.



The dataset we use for this paper is formed from four
specific logfiles, each of which has its own set of message
patterns. All of these logfiles record events related to the
process of provisioning and booting nodes. Typically, a reboot
of a node is initiated by the CloudLab server in response to a
user starting or ending an experiment, though users can reboot
nodes themselves either intentionally or as a side effect of a
kernel crash on the node.

e reboot is a log that contains the system’s high-level
“intent” with respect to rebooting nodes; that is, when
a node is intentionally rebooted, an entry is created in
this logfile.

e stated reports the status of an internal state machine
used in some CloudLab processes [16]. Each state (such
as BOOTING) has a set of expected successor states (such
as DHCP, RELOADING, etc.) and some states have timeouts
associated with them. CloudLab uses this state machine
to detect and attempt to recover from certain kinds of
faults.

e bootinfo is a CloudLab-specific daemon that is used
to inform nodes of what they should boot next (eg.
boot into a special memory-based filesystem used for
re-imaging, boot from a partition on the disk, etc.) The
first-stage bootloader contacts this service, so it provides
information that a node has reached a certain point in the
boot process and gives context regarding what the node
is booting.

o dhcpd records DHCP events from the server’s perspec-
tive. Because nodes contact the DHCP sever at multiple
points during the boot process (from the PXE ROM,
OS initialization, etc.), this provides fairly fine-grained
information regarding nodes’ progress through the boot
process.

To parse these log files, we used 48 unique log patterns with
bootinfo and stated having the most unique patterns, with
25 and 15 respectively.

IV. ANALYSIS METHODOLOGY

We took the dataset described in Section III and applied in-
variant mining [14] to find what constitutes “normal” behavior
for the CloudLab provisioning process, and to find deviations
from this normal. In addition to mining invariants for specific
time periods, we also develop a method for examining how
they change over time so that we can understand if the steady-
state behavior of the facility changes or not.

As mentioned before, manual inspection of log files is
infeasible due to the system’s large scale and high complexity.
Moreover, the software that manages this system is updated
frequently, which makes it impractical to rely on rule-based
log analysis solutions. Since invariant mining does not utilize
constant rules, does not require labels for training, and does
not depend on the domain knowledge of system admins, it
is more appropriate for use with regularly-revised, large-scale
systems.

A. Invariant Mining

The idea behind invariant mining [14] is that what we
consider to be normal behavior can be learned by mining
the log files to discover the inherent linear characteristics of
the program workflow. Any log entry that does not match
the workflow will be considered anomalous. This method can
be used to automatically define rules for anomalies and thus
automatically detect them. The linear invariants reflect the
properties of execution path and so a violation of an invariant
can often reflect the physical meaning of the system problem
which makes it a superior diagnostic tool for human operators.

The input that we provide to the invariant miner is a set
of sessions (described in Section III-C), with each session
containing a count of how many times each log key occurred
during the session. The miner looks for sets of keys that
typically occur with linear relations and outputs these ratios.
For example, the miner might discover that each message
indicating that a server has begun rebooting is typically paired
with a message indicating a successful boot. Or, it might find
that a message indicating that a server has begun PXE booting
typically matches with two DHCP requests: one from the PXE
ROM, and another from the OS once the server has booted
into the OS.

Each ratio is called an invariant, and log sessions that do not
follow this relation are said to violate the invariant; sessions
that contain violations are said to be anomalous. Once we have
this set of invariants, finding anomalies is straightforward: to
check an individual session, we simply count occurrences of
log keys and check whether they violate any invariants.

The invariant miner has a simple data model in that it just
looks for integer ratios in the counts of event occurrences.
Advantages of this approach include the fact that it does not
require the semantic information that would be required to
truly match up specific events, and that these ratios stay the
same (under normal conditions) no matter how many boot
cycles are observed in a given window. What it gives up in
return is that while it can identify the presence of an anomaly,
the invariant miner but itself cannot point to specific log mes-
sages that caused this anomaly. For example, if the anomaly
detector finds that there are more “started booting” messages
in a session than “successfully booted” ones (violating the
expected one-to-to ratio), it can flag an anomaly, but finding
which boot attempt failed requires additional processing or
manual inspection.

For this paper, half of the data set is used as a training
dataset and the other half is used as a test dataset.

B. Comparison Across Time

To analyze change over time, we divided the data from
year 2019 into four quarters (January—March, April-June,
etc.) and trained the invariant miner with each quarter’s data
independently. We then compared the sets of invariants found
in each quarter. These results were used to study how usable
the invariants are (that is, whether administrators found them
accurate and actionable), which invariants are persistent over
the year, etc. We also compare the number of invariants



violated in each quarter and analyze the reasons behind the
difference in invariants violations between the quarters. Since
the persistent violations occur in different time periods through
the year, we highlight them as the most persistent violations.

C. Implementation

Our implementation is based on loglizer [13] by the
Logpai team’. The original tool’s invariant mining output was
not sufficient by itself to list all invariants and sessions that
violated them, so modified the source code to produce the
needed information. This information included the mapping
between the numbering of event types and the actual Event
IDs in our log files. It also included the number of violations
for each invariant, which sessions violated which invariants
and which sessions are completely “clean.”

We also wrote a post processing program to map the
arbitrary session numbering used internally by loglizer to
the original session IDs from the log files. It also maps the
event in the invariants to its original text format to make it
easier for human interpretation.

We programmed our data parser to output log files in
the same format needed by the invariant miner. The most
important feature in the obtained log files is to group log events
according to their types. These logs groups are formed into
session which contain all log entries for a particular server
in a single day. The invariant miner counts the number of
occurrences for each type, this count is used to find the ratio
for occurrences for multiple event types and thus finding the
needed invariants.

V. FINDINGS

We now return to the main motivating questions for this
paper: Is invariant mining accurate at finding actual anomalies
in this dataset? Are the invariants it finds meaningful to
administrators? Are the set of anomalies fairly constant over
time, or do they vary? We start by looking at the invariants
themselves.

A. Invariants Found

In the invariant mining process, log messages are grouped
together according to a set of parameters that correspond to
the same event type. The invariant miner then utilizes the event
types and their frequencies to produce invariants such as the
following:

(11, 29): [ 1.0, -1.0]
(17, 18): [ 1.0, -1.0]
(1, 65): [-4.0, 1.0]

The first invariant corresponds to two event types, 11 and
29, and the ratio of their occurrences in a normal session
is 1 : 1.8 When this ratio is not satisfied the invariant is
considered violated and an anomaly is reported. The second
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80ne part of the ratio is always shown as negative, as the miner is solving
equations of the form a - x 4+ b - y = 0. Which part is positive and which is
negative is arbitrary.

invariant shows another pair of event types that appear in a
one-to-one ratio in normal sessions, and the third reports a
one-to-four ratio.

Mapping the event IDs to actual log messages, a set of
example invariants are shown in Figure 1. Each shows a pair
of log lines that are expected to appear in a one-to-one ratio
in a “normal” session.

In our dataset, the miner found an invariant space dimension
of 16 in the first quarter, meaning that it found 16 unique
invariants. For the second quarter of the year, the invariant
miner produced 17 different invariants. For the third quarter,
the result was 13 invariants. And for the last quarter of the
year, the result was 19 different invariants. Table I shows the
total number of sessions and percentage of anomalies for each
quarter in both the training data set and test data set.

B. Usefulness and Interpretability

We found that while some invariants were “useful”, not all
were. Here, we define “useful” by three criteria.

First, they must be non-trivial in the sense that it is possible
to violate them. In some cases, the invariant miner found two
types of log entries that are produced by the same function
in the same program. In this case, it is nearly impossible to
see one message without the other: the program would have
to hang or crash within a few lines of code. No violations of
this type were found in this dataset. We found six distinct
invariants of this type. They are easy to identify, because
they are never violated, and do not affect the accuracy of the
anomaly detection.

Second, an invariant must be sensible. We evaluate this by
looking at the expected ratio produced by the miner. While
most invariants have ratios such as 1 : 1 or 2 : 1 that would
be expected from a system of this type, the miner found some
“invariants” with ratios as high as 311,785 : 1. The highest-
ratio event that, by manual inspection, appeared sensible was
1 : 7. This corresponds to the number of times that one of the
processes will retry apparent failures before giving up. Over
the full year, the miner found 14 “invariants” with ratios of
15 : 1 or higher. We find it highly likely that “violations” of
these represent false identification of anomalies. Fortunately,
they are easy to filter out, since there is a large gap between
the largest “sensible” ratio (7 : 1) and the smallest “insensible”
ratio (15 : 1); we can simply filter out invariants with ratios
above 10 : 1. We speculate that these false invariants were
found due to a few highly-anomalous nodes that had behavior
that persisted over multiple sessions. For example, one node
was stuck in a “boot loop” for months, unnoticed by the
operators. This resulted in many thousands of spurious DHCP
messages intermingled with a few messages of other types.
These sessions tended to be flagged as anomalous due to
violating other invariants.

Third, invariants must be interpretable, meaning that ad-
ministrators are able to understand, in a general sense, what
the reasons behind a violation are or what the consequences
of it might be. This is a much harder criterion to evaluate
quantitatively, so we examine it qualitatively. The pattern that



Invariant 1:

Ratio: [’1.0°,

> -1.0"]

<DATE> <TIME> <NODE_ID>: in PXEWAIT, sending PXEWAKEUP
<DATE> <TIME> boss bootinfo[<PID>]: <IP>: SEND: query bootinfo

Invariant 2:

Ratio [’1.07, ’ -1.07]

<DATE> <TIME> [<PID>]: <NODE_ID>: RESET done, bootwhat returns NORMALv2
<DATE> <TIME> [<PID>]: <NODE_ID>: Clearing reload info

Invariant 3:
<DATE> <TIME> <NODE_ID>:

Ratio: [’-1.0’, ’

1.0°]
ssh reboot returned 255

<DATE> <TIME> <NODE_ID>: waiting 30s for reboot

Fig. 1. Example invariants found by the invariant miner

NUMBER OF SESSIONS AND PERCENTAGE OF ANOMALIES FOUND PER QUARTER IN OUR DATASET.

Dataset Jan-Mar Apr-Jun Jul-Sep Oct-Dec
sessions | anomalies | sessions | anomalies | sessions | anomalies | sessions | anomalies
Training dataset | 5220 3.8% 5713 4.4% 6154 2.7% 8600 4.7%
Test dataset 5220 3.1% 5713 5.0% 6154 1.9% 8601 4.8%
TABLE 1

we find among the most interpretable invariants is that they
follow one or more of the following properties:

« They involve entries that appear in more than one logfile.
In other words, to detect the invariant, it is necessary
to correlate information across logfiles. This provides
significant value to administrators, who tend to inspect
a single log file at a time.

o There is a clear way to match events. That is, it is
possible, either through timing or unique identifiers, to
confirm that one event is in some way a response to or
consequence of the other. Note that the invariant-based
anomaly detector does not produce such a matching itself,
but this can generally be done by additional processing
or manual inspection.

« They are asynchronous operations: an operation on a node
is started by one process; the node performs some actions
that are not directly in the logfiles, may take a variable
amount of time, and may fail; and the success or failure
of those actions are observed by a different process.

An example of invariant that meets all of these criteria would
be one that relates a log message indicating that a node is to
be rebooted with one that logs a successful DHCP response to
the node later, after the node has shut down, made it through
BIOS, and the NIC’s boot ROM, etc. We found five invariants
that we deemed highly interpretable by these criteria: some of
these are discussed in more detail in the following subsections.

C. Accuracy of Anomaly Detection

In order to assess the accuracy of anomaly detection us-
ing invariant mining, we compared the labels produced by
the invariant-based detector with labels assigned by humans.
To do this without requiring undue operator effort, we ran
the invariant miner on the dataset described in Section III
and labeled sessions according to the invariants found. We
then created five sets, each containing ten sessions that the

invariants had labeled as “normal” and ten that it had labeled
as “anomalous”. After correcting for a few invariants with
“insensible” ratios, the base rate of “normal” sessions in the
dataset we gave to administrators was 56%. Each set was given
to a different administrator of the CloudLab testbed, who was
asked to label each session. The administrators were told that
their set contained a mix of normal and anomalous sessions,
but were not told how many there were of each, and were not
given a definition of “anomalous”; the intention behind this
methodology was to see how well the precise ratios found by
the invariant mining process match up with human intuition.

In our evaluation, we consider a “normal” label as negative
result and an anomalous label as positive results. Therefore, a
false negative refers to an incorrect labeling by the classifier
for a truly positive results and a false positive refers to an
incorrect labeling by the classifier for a truly negative result.
The accuracy of the invariant miner was reasonable: it cor-
rectly labeled 70% of sessions identified by the administrators
as normal, and 73% of the sessions labeled as anomalous. This
gives us an overall false positive rate of 30% and false negative
rate of 27%. The overall precision obtained is 0.7087, recall
is 0.7300 and the F1-score is 0.7192.

There were two other interesting findings from this portion
of our study.

First, we found that the administrators made a distinction
between behavior that indicated a problem with the system
and unusual user behavior. One example of this in our context
is that most boot sequences are initiated by the system in
response to higher-level user requests, such as the start or
termination of experiments. These kinds of sessions have
telltale log entries indicating the start of the process. If users
shut down or reboot machines themselves (eg. by running
shutdown on the machine itself), these telltale log entries are
absent, and there may be log entries indicating an unexpected
shutdown. Most administrators independently came up with



Number of invariants for quarterly
data
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JAN-MAR APR-JUN JUL-SEP OCT-DEC

number of common invariants with next quarter
number of unique invariants compared with next quarter
number of unique invariants compared with previous quarter

number of common invariants with previous quarter

Fig. 2. Comparison of number of invariants throughout one year. Note that
the first quarter has no preceding quarter, and the last has no succeeding one.

this third label, which, in terms of frequency, is anomalous,
but is likely to not require administrator intervention. For the
purposes of the calculations above, we considered these to
be anomalous, but it suggests the potential for future work to
distinguish known-benign classes of anomalies from those that
might require intervention.

Our second finding was that the sessions that were mis-
labeled by invariants tended to fit very specific patterns. One
of the biggest discrepancies was a single server that exhibited
the same anomalous behavior (according to the administrator)
over three different days, but was labeled as normal according
to the invariants. Nearly all the rest of false positives were
caused by a single set of three related invariants, that caused
sessions identified as normal by the administrators to be
flagged as anomalous by the detector. This seems to suggest
that relatively simple heuristics could be used to greatly
improve the accuracy rates, and suggests an avenue for future
work.

D. Evolution of Invariants Over Time

First, we compared the invariants through the four quarters
of the year 2019 using the number of unique invariants in
the current quarter compared to the previous quarter and
next quarter. We also used the number of shared invariants
between quarters as a measure for the evolution of invariants.
In our study of the invariants, we focus more on the persistent
invariants through quarters as they are the most meaningful
invariants.

Figure 2 shows the comparison between the number of
invariants obtained through the year. From quarter to quarter,
we see that approximately half of the invariants change; that
is, the number of invariants that each quarter has in common
with its neighboring quarters is about half of the total number
of invariants for the quarter. This points out the need to
periodically re-train the anomaly detector.

When comparing the invariants across all quarters, we
find that we have 6 core invariants that persist through the
year. This means that in most cases, when Figure 2 shows
invariants in common with the previous and/or next quarters,
it is referring to this set. As with most useful invariants that we
find, these all occur with ratio 1 : 1. Two of these invariants

have to do with using ssh to “gracefully” reboot nodes. (One
of these can be seen as Invariant 3 in Figure 1.) These two
often cause false positives; they are two of the three associated
with false positives (as determined by human administrators)
above. Another pair (such as Invariant 2 from Figure 1) have
to do with CloudLab’s disk imaging process: they show the
state transitions that are supposed to occur when the imaging
process finishes and the node boots into its new image. The
fifth invariant is a trivial one as defined in Section V-B: it
documents a node requesting information from the bootinfo
process and the reply that is sent out.

The sixth (Invariant 1 from Figure 1) is the most interesting:
it contains one message from the reboot log, and another
from bootinfo. The former indicates that the CloudLab
software has decided to reboot a node, and the latter indicates
that the node has reached an important point, several steps
into the boot process. This is interesting not only because
it crosses multiple log files, but because the point identified
comes after several other log messages (such as ones from
dhcpd) would normally be seen. This strongly suggests two
things: (1) Nodes that CloudLab decides to reboot do normally
come up, which is expected (2) The lack of earlier invariants
from the dhcpd log suggests that it is not terribly uncommon
for nodes to fail early in the boot process and require power
cycling by the CloudLab control software. If the sequence
“reboot, DHCP, PXE, bootinfo” (the *normal’ boot sequence)
were dominant, we would expect to see invariants for the
“reboot, DHCP” part of the sequence. This lack suggests that
CloudLab not infrequently times out waiting for the DHCP
message and power cycles the node. The fact that the “reboot,
bootinfo” invariant does exist implies that when this power
cycle occurs, the node does eventually reach the “bootinfo”
stage, suggesting that these kinds of failures are transient. This
understanding meshes well with our findings in Section V-C,
in which we found that there are a significant number of
abnormal occurrences that are dealt with automatically by
CloudLab and do not require operator intervention.

VI. CONCLUSION AND FUTURE WORK

We find that invariant mining is fairly accurate on our real-
world dataset, agreeing with the “anomaly” labels assigned by
system administrators more than 70% of the time. The patterns
of these inaccuracies suggest that simple heuristics, or occa-
sional manual pruning of invariants, may substantially improve
accuracy. Applying such heuristics is a topic for future work.
We found that, in contrast to the binary nature of classification
performed by most anomaly detection, administrators naturally
and independently arrived at a trinary system of classification.
This classification system subdivides anomalous events into
those that require human attention, and those that, while rare,
are in some sense “expected” and do not require additional
attention. Building this distinction into anomaly detection is
likely to be another fruitful avenue for future work.

We also found that anomaly rates vary substantially between
quarters (from 1.9% to 5%), and that the set of invariants that
describes these anomalies varies as well. This points to the



need to periodically re-train anomaly detectors, as they become
stale over time. In this paper, we have used fixed time periods
for sessions (24 hours) and re-training periods (3 months); as
future work, we intend to investigate other values, including
using sliding windows for sessions.
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