
A Year of Automated Anomaly Detection in a

Datacenter

Rufaida Ahmed

School of Computing

University of Utah

Salt Lake City, UT, USA

rufida94@cs.utah.edu

Joseph Porter

School of Computing

University of Utah

Salt Lake City, UT, USA

jporter@cs.utah.edu

Abubaker Abdelmutalab

School of Computing

University of Utah

Salt Lake City, UT, USA

abubaker@cs.utah.edu

Robert Ricci

School of Computing

University of Utah

Salt Lake City, UT, USA

ricci@cs.utah.edu

Abstract—Anomaly detection based on Machine Learning can
be a powerful tool for understanding the behavior of large,
complex computer systems in the wild. The set of anomalies
seen, however, can change over time: as the system evolves, is
put to different uses, and encounters different workloads, both
its ‘typical’ behavior and the anomalies that it encounters can
change as well. This naturally raises two questions: how effective
is automated anomaly detection in this setting, and how much
does anomalous behavior change over time?

In this paper, we examine these question for a dataset taken
from a system that manages the lifecycle of servers in datacenters.
We look at logs from one year of operation of a datacenter of
about 500 servers. Applying state-of-the art techniques for finding
anomalous events, we find that there are a ‘core’ set of anomaly
patterns that persist over the entire period studied, but that in to
track the evolution of the system, we must re-train the detector
periodically. Working with the administrators of this system, we
find that, despite these changes in patterns, they still contain
actionable insights.

I. INTRODUCTION

A key task for administrators of large computer facilities is

understanding the steady-state operation of their facilities and

reacting to any anomalies that might occur. The sequences of

events that actually take place in “normal” operation may or

may not align with administrators’ intuition about the behavior

of the facility and its users; having a full understanding is

important to effective system administration. Exceptions to

normal sequences may indicate problems with the facility’s

hardware, software, or configuration and may require admin-

istrator attention. Such exceptions could also signal new uses

or emergent behaviors that administrators should be aware of.

Understanding “normal” and anomalous behavior is not

always straightforward. Events from these types of systems

are typically collected in logfiles [8], and simply looking for

“errors” in these logfiles is not always informative [4]. Some

“errors” may be benign: they might correspond to ways in

which the facility is used that were not anticipated by software

writers, or they may represent transient states that the system

is able to recover from itself. On the flip-side, some sequences

that are not explicitly flagged in logs as “errors” may be quite

worrying, such as increased frequency of certain operations or

cessation of others. The examination of logfiles for anomalies

and errors is thus a ripe area for machine learning and data

mining [8], [15], [5].

In this paper, we apply the technique of anomaly detec-

tion by invariant mining [14], [13] to the administration of

CloudLab [9], a facility used by thousands of researchers and

educators in computer science. CloudLab collects extensive

logfiles regarding the provisioning of the servers under its

control; as we lay out in more detail in Section III, the dataset

used for this paper covers a year of operation of 583 servers,

comprising a total of 15,018,235 log entries. Invariant mining

looks at the relationships between frequencies of entries in

these logfiles, finding patterns that describe typical operation

(“invariants”) and log sequences that “violate” those invariants

and are thus anomalous. Our goal is to look at the following

questions to find whether invariant mining is a useful technique

to aid administrators in this setting:

1) Does invariant mining successfully create discriminators

capable of distinguishing “normal” behavior from anoma-

lous behavior?

2) Do the invariants found provide information that is inter-

pretable by the administrators of these systems?

3) Do the set of invariants change over time, and if so, how

much?

In Section II, we cover related work on analyzing system

logfiles and mining them for anomalies. In Section III, we

describe the facility from which our dataset comes and the

dataset itself. Section IV explains how we use invariant mining

on this dataset, Section V goes through our findings from this

analysis, and Section VI concludes and suggests future work.

II. RELATED WORK

The high risk posed by compromised systems, anomalies,

and security threats has led to substantial interest in analyzing

system logs to debug system failures and perform root cause

analysis.

Moreover, Machine Learning (ML) and data mining tech-

niques have been used widely to monitor large scale systems

for the purpose of anomaly detection and system diagnosis.

Several statistical and machine-learning models have been

proposed to analyze the behavior of systems and detect failures

or problem by deeply analyzing systems logs and other sources

of data. In this section, we discuss the most closely related

efforts in the area of anomaly detection and log file analysis.

A. Anomaly Detection

There are some generic methods that use system logs for

anomaly detection. Typically, this is done by using a log parser

to parse the unstructured log entries into a structured form [7]

that can be analyzed and modeled by different machine

learning techniques. These machine learning techniques are

divided into supervised and unsupervised methods.

For supervised methods, labels are required to complete the

analysis and perform anomaly detection. The simplest labels

for this use would be “normal” and “anomalous”. In practice,

however, it is usually hard to obtain labeled data in log

files: system logs commonly contain hundreds of thousands to

millions of entries, making manual labeling by administrators

too time-consuming. Additionally, because anomalies are, by

definition, rare, it is not practical to use small subsets of system

logs for training, since this would risk including too few, or

even zero, anomalies.

Related work in the area of anomaly detection in systems

goes back several decades. For example, Bates et al. [3]

proposed an event definition language that allow programs

to generate logs with deep semantics information, such as

hierarchical relationships between events. However, this ap-

proach requires access to the source code. Some more recent

methods [5] perform anomaly detection on log files without re-

quiring hand-crafted features or pre-processing of data. These

work on raw text data and output a score for each log entry,

which enables the systems administrator to classify the log

entry as either anomalous or normal. Baseman [2] proposes

a framework that performs anomaly detection by combining

graph analysis, relational learning and kernel density esti-

mation. Moreover, it presents a novel event block detection

algorithm that extracts related syslog messages from the log

files. The proposed methods analyze individual messages

rather than event blocks which limit the application scope.

Furthermore, Baseman [1] introduced Interpretable and Inter-

active Classifier-Adjusted Density Estimation with Temporal

components (iCADET). This framework utilizes random forest

classifiers to explain the labeling of certain points as likely

anomalous. This technique is more suitable for smaller scale

data.

There are also some open source solutions for log files in-

spection and anomaly detection. For example, Project Scorpio
1 connects to streaming sources and uses unsupervised ma-

chine learning methods to generate a prediction of anomalous

log entries.

B. Logfile Analysis

Other research efforts have specifically targeted logfile

analysis for anomaly detection. For example, DeepLog [8]

proposes a deep neural network model utilizing Long Short-

Term Memory (LSTM). This model allows DeepLog to train

a model unsupervised based on the log pattern and report an

anomaly when log patterns deviate from the expected result by

the trained model. Several other approaches based in machine

1https://github.com/AICoE/log-anomaly-detector

learning have been proposed for different systems. Many of

these are rule-based approaches, which limits them to specific

application and requires domain knowledge. For example, M.

Cinque [6], performs a change in the logging mechanism

itself, which requires both effort and domain knowledge to

implement the change to the logging system first. Other kinds

of tool rely on comparing anomalous logs against normal ones,

such as [15]. A limitation of such tools such tools is the fact

that it is hard to detect new kind of anomalies that the model

has not been exposed to before. Because our goal in this work

is to study how anomalies change over time, it is important

that we be able to find anomalies that were not seen during

earlier periods.

Furthermore, some methods were developed to reduce the

size of the log files and thus reducing the effort needed

for analysis. For example, LSTM, which have been recently

used for log analysis purposes in data centers. T. Yang and

V. Agrawal. [19] introduced a framework that highlights the

messages it deems to be the most important text in the failed

log messages, making it less tedious for the human operator

or even automated software to analyze the cause behind the

failures.

Invariant mining [14] is a general approach that does not

rely on the nature of the data or require any significant domain

knowledge and unlike rule/keyword based log analysis tools

the rules are easier to update when components are upgraded

or changed as they usually tend to do. Our work builds on this

work, which we give an overview of in Section IV-A. Lou et

al. [14] applied invariant mining to two case studies, Hadoop

and CloudDB (a structured data storage service developed by

Microsoft). The testing environment was setup specifically for

the purposes of this research. In contrast, our our work uses

real-life data from a time span of one year, giving us the

opportunity to gain a better understanding of the nature of

anomalies and the benefits of using invariant mining to detect

anomalies in real datacenter systems.

III. DATASET

In this section, we describe the dataset. We talk about

CloudLab2, the facility our logfiles come from. In addition

to describing the contents of the logs themselves, we also

cover the process we used to prepare the data for analysis. The

dataset used for this paper is available with DOI 10.5281/zen-

odo.4073861.

A. CloudLab

CloudLab [9] is a facility that serves the computer systems

research community. It operates as an environment in which

researchers can build their own clouds: it provisions resources

at a “bare metal” level, enabling its users to see, control,

and modify portions of the cloud software stack including

virtualization, networking, and storage. It has approximately

5,00 users around the world who have, to date, run 150,000

experiments on it. CloudLab has three main clusters; the data

2https://cloudlab.us/

that we use for this paper comes from its cluster at the

University of Utah [17].

We chose CloudLab for this study because we have access

to both its logfiles, which are collected centrally, and its ad-

ministrators, who can help us interpret our results and evaluate

their utility. While CloudLab is a unique facility in terms of

the specific features it offers to users, its basic functionality of

managing the provisioning of servers, interaction with users

via a web interface, etc. has much in common with other

facilities and should lead to generalizable results.

In this paper, we focus on CloudLab’s node booting process:

the automated process of booting servers into various operating

systems for user experiments, utility tasks (such as re-imaging

local hard drives), and general system administration. Though

a conceptually simple task, this process involves interactions

between firmware and BIOS on the servers themselves, stan-

dard network protocols such as DHCP and TFTP, and a num-

ber of services that CloudLab runs to track server state [16]

and inform servers what their next actions should be. There

is substantial emergent complexity in this system and large

amounts of parallelism that are difficult to control. As a result,

failures to boot are not uncommon, and the CloudLab code

includes many measures to detect and automatically recover

from common failure modes. Because of the way CloudLab

allocates resources, it is common for a server to be part of

several experiments in a single day in sequence, and thus to go

through this boot process every few hours. It is also common

for some servers to be allocated to an individual experiment

for long periods of time, meaning that they may not reboot

for a period of days or weeks.

B. Data Collection

CloudLab log data is collected, processed and stored using

the ELK (Elasticsearch3, Logstash4, Kibana5) stack. In our

configuration, the ElasticSearch cluster is composed of five

data nodes and one client node that also serves the Kibana

frontend. As is common with the ELK stack, we have Filebeat6

aggregate and forward logs from the main CloudLab servers

to be processed by Logstash and stored in the ElasticSearch

cluster.

The logfiles that we collect come from a mix of standard

server software, such as Apache, ISC DHCPD, and tftpd;

and custom software that has been developed for CloudLab

and other related testbeds [18], [11]. Overall, we collect on

average 350,000 logs entries per hour (though only a subset

of those is used in this analysis.)

C. Parsing and Cleaning

To be used for data mining and machine learning, log

messages must be individually identified and parameters,

etc. parsed out; the relatively unstructured text found in the

logfiles must be converted into structured data. For invariant

3https://github.com/elastic/elasticsearch
4https://github.com/elastic/logstash
5https://github.com/elastic/kibana
6https://github.com/elastic/beats

mining in particular, each log message must be assigned a

corresponding event ID, (also called a log key) that indicates

the message type. These event IDs are matched to specific

patterns, where the pattern represents the constant parts of the

message and the variable parameters that the message contains.

To get this information, we process each message against a

set of Grok [10] patterns. While this log parsing method is

sometimes automated [7], [20], [12], our initial attempts to use

these automated systems did not produce satisfactory results;

thus, we created the Grok patterns by hand to ensure accuracy

and to further explore our data. Lists of patterns are consumed

by a script to automatically generate a LogStash configuration

file to process messages, and we version these patterns: each

entry in Elasticsearch is tagged with the version number of

the pattern set, so that when we add or change patterns, we

can re-parse all stored log entries.

An interesting aspect of processing logfiles is that some-

times mapping is required between different identifiers for

the same entity. One way this manifests in the CloudLab

data is that in some logfiles, machines are identified by their

“node ID”, the primary identifier CloudLab uses to track

its resources. In others this information is not available. For

example, in DHCP logs, initial requests are identified only by

their MAC address. As part of our parsing process in Logstash,

we use mapping tables to augment records with all identifiers

for the node to make it easier to relate entries with each other.

With the data processed and stored using our ELK stack,

the data must be collected and formed into data files before

applying invariant mining. Data files were created using a

script that generated ElasticSearch queries based on selected

node type, node range, date range and log types. Each entry

from the resulting query had its message and event ID written

to an output file along with its assigned session ID. The session

ID is formed from the node ID and date to delineate chunks

of log entries into sessions, where each session represents a

24 hour period for a particular node.

To provide clean datasets, some data had to be excluded

because of inconsistencies or errors. As a result of abnormal

node ID formats and deformed log messages, some log entries

were not correctly matched with a pattern and any such entry

was excluded from generated data sets. Additionally, each

message has two timestamps; one from the machine time

which contains the message and another assigned by Logbeat

at its collection time. In some cases, the two timestamps

differed significantly, with Logbeat retrieving the log months

after the machine timestamp. Such occurrences had to be

excluded from datasets to ensure that the date used to form

session IDs were accurate.

D. Resulting Dataset

For the purposes of this paper, the dataset was formed from

logfiles of all CloudLab nodes of the types m400 and m510,

and was gathered from January 1 to December 31 of 2019.

The resulting dataset contains over 15 million log entries for

those 583 nodes and forms 51,375 sessions.

The dataset we use for this paper is formed from four

specific logfiles, each of which has its own set of message

patterns. All of these logfiles record events related to the

process of provisioning and booting nodes. Typically, a reboot

of a node is initiated by the CloudLab server in response to a

user starting or ending an experiment, though users can reboot

nodes themselves either intentionally or as a side effect of a

kernel crash on the node.

• reboot is a log that contains the system’s high-level

“intent” with respect to rebooting nodes; that is, when

a node is intentionally rebooted, an entry is created in

this logfile.

• stated reports the status of an internal state machine

used in some CloudLab processes [16]. Each state (such

as BOOTING) has a set of expected successor states (such

as DHCP, RELOADING, etc.) and some states have timeouts

associated with them. CloudLab uses this state machine

to detect and attempt to recover from certain kinds of

faults.

• bootinfo is a CloudLab-specific daemon that is used

to inform nodes of what they should boot next (eg.

boot into a special memory-based filesystem used for

re-imaging, boot from a partition on the disk, etc.) The

first-stage bootloader contacts this service, so it provides

information that a node has reached a certain point in the

boot process and gives context regarding what the node

is booting.

• dhcpd records DHCP events from the server’s perspec-

tive. Because nodes contact the DHCP sever at multiple

points during the boot process (from the PXE ROM,

OS initialization, etc.), this provides fairly fine-grained

information regarding nodes’ progress through the boot

process.

To parse these log files, we used 48 unique log patterns with

bootinfo and stated having the most unique patterns, with

25 and 15 respectively.

IV. ANALYSIS METHODOLOGY

We took the dataset described in Section III and applied in-

variant mining [14] to find what constitutes “normal” behavior

for the CloudLab provisioning process, and to find deviations

from this normal. In addition to mining invariants for specific

time periods, we also develop a method for examining how

they change over time so that we can understand if the steady-

state behavior of the facility changes or not.

As mentioned before, manual inspection of log files is

infeasible due to the system’s large scale and high complexity.

Moreover, the software that manages this system is updated

frequently, which makes it impractical to rely on rule-based

log analysis solutions. Since invariant mining does not utilize

constant rules, does not require labels for training, and does

not depend on the domain knowledge of system admins, it

is more appropriate for use with regularly-revised, large-scale

systems.

A. Invariant Mining

The idea behind invariant mining [14] is that what we

consider to be normal behavior can be learned by mining

the log files to discover the inherent linear characteristics of

the program workflow. Any log entry that does not match

the workflow will be considered anomalous. This method can

be used to automatically define rules for anomalies and thus

automatically detect them. The linear invariants reflect the

properties of execution path and so a violation of an invariant

can often reflect the physical meaning of the system problem

which makes it a superior diagnostic tool for human operators.

The input that we provide to the invariant miner is a set

of sessions (described in Section III-C), with each session

containing a count of how many times each log key occurred

during the session. The miner looks for sets of keys that

typically occur with linear relations and outputs these ratios.

For example, the miner might discover that each message

indicating that a server has begun rebooting is typically paired

with a message indicating a successful boot. Or, it might find

that a message indicating that a server has begun PXE booting

typically matches with two DHCP requests: one from the PXE

ROM, and another from the OS once the server has booted

into the OS.

Each ratio is called an invariant, and log sessions that do not

follow this relation are said to violate the invariant; sessions

that contain violations are said to be anomalous. Once we have

this set of invariants, finding anomalies is straightforward: to

check an individual session, we simply count occurrences of

log keys and check whether they violate any invariants.

The invariant miner has a simple data model in that it just

looks for integer ratios in the counts of event occurrences.

Advantages of this approach include the fact that it does not

require the semantic information that would be required to

truly match up specific events, and that these ratios stay the

same (under normal conditions) no matter how many boot

cycles are observed in a given window. What it gives up in

return is that while it can identify the presence of an anomaly,

the invariant miner but itself cannot point to specific log mes-

sages that caused this anomaly. For example, if the anomaly

detector finds that there are more “started booting” messages

in a session than “successfully booted” ones (violating the

expected one-to-to ratio), it can flag an anomaly, but finding

which boot attempt failed requires additional processing or

manual inspection.

For this paper, half of the data set is used as a training

dataset and the other half is used as a test dataset.

B. Comparison Across Time

To analyze change over time, we divided the data from

year 2019 into four quarters (January–March, April–June,

etc.) and trained the invariant miner with each quarter’s data

independently. We then compared the sets of invariants found

in each quarter. These results were used to study how usable

the invariants are (that is, whether administrators found them

accurate and actionable), which invariants are persistent over

the year, etc. We also compare the number of invariants

violated in each quarter and analyze the reasons behind the

difference in invariants violations between the quarters. Since

the persistent violations occur in different time periods through

the year, we highlight them as the most persistent violations.

C. Implementation

Our implementation is based on loglizer [13] by the

Logpai team7. The original tool’s invariant mining output was

not sufficient by itself to list all invariants and sessions that

violated them, so modified the source code to produce the

needed information. This information included the mapping

between the numbering of event types and the actual Event

IDs in our log files. It also included the number of violations

for each invariant, which sessions violated which invariants

and which sessions are completely “clean.”

We also wrote a post processing program to map the

arbitrary session numbering used internally by loglizer to

the original session IDs from the log files. It also maps the

event in the invariants to its original text format to make it

easier for human interpretation.

We programmed our data parser to output log files in

the same format needed by the invariant miner. The most

important feature in the obtained log files is to group log events

according to their types. These logs groups are formed into

session which contain all log entries for a particular server

in a single day. The invariant miner counts the number of

occurrences for each type, this count is used to find the ratio

for occurrences for multiple event types and thus finding the

needed invariants.

V. FINDINGS

We now return to the main motivating questions for this

paper: Is invariant mining accurate at finding actual anomalies

in this dataset? Are the invariants it finds meaningful to

administrators? Are the set of anomalies fairly constant over

time, or do they vary? We start by looking at the invariants

themselves.

A. Invariants Found

In the invariant mining process, log messages are grouped

together according to a set of parameters that correspond to

the same event type. The invariant miner then utilizes the event

types and their frequencies to produce invariants such as the

following:

(11, 29): [1.0, -1.0]

(17, 18): [1.0, -1.0]

(1, 65): [-4.0, 1.0]

The first invariant corresponds to two event types, 11 and

29, and the ratio of their occurrences in a normal session

is 1 : 1.8 When this ratio is not satisfied the invariant is

considered violated and an anomaly is reported. The second

7https://github.com/logpai/loglizer
8One part of the ratio is always shown as negative, as the miner is solving

equations of the form a · x+ b · y = 0. Which part is positive and which is
negative is arbitrary.

invariant shows another pair of event types that appear in a

one-to-one ratio in normal sessions, and the third reports a

one-to-four ratio.

Mapping the event IDs to actual log messages, a set of

example invariants are shown in Figure 1. Each shows a pair

of log lines that are expected to appear in a one-to-one ratio

in a “normal” session.

In our dataset, the miner found an invariant space dimension

of 16 in the first quarter, meaning that it found 16 unique

invariants. For the second quarter of the year, the invariant

miner produced 17 different invariants. For the third quarter,

the result was 13 invariants. And for the last quarter of the

year, the result was 19 different invariants. Table I shows the

total number of sessions and percentage of anomalies for each

quarter in both the training data set and test data set.

B. Usefulness and Interpretability

We found that while some invariants were “useful”, not all

were. Here, we define “useful” by three criteria.

First, they must be non-trivial in the sense that it is possible

to violate them. In some cases, the invariant miner found two

types of log entries that are produced by the same function

in the same program. In this case, it is nearly impossible to

see one message without the other: the program would have

to hang or crash within a few lines of code. No violations of

this type were found in this dataset. We found six distinct

invariants of this type. They are easy to identify, because

they are never violated, and do not affect the accuracy of the

anomaly detection.

Second, an invariant must be sensible. We evaluate this by

looking at the expected ratio produced by the miner. While

most invariants have ratios such as 1 : 1 or 2 : 1 that would

be expected from a system of this type, the miner found some

“invariants” with ratios as high as 311, 785 : 1. The highest-

ratio event that, by manual inspection, appeared sensible was

1 : 7. This corresponds to the number of times that one of the

processes will retry apparent failures before giving up. Over

the full year, the miner found 14 “invariants” with ratios of

15 : 1 or higher. We find it highly likely that “violations” of

these represent false identification of anomalies. Fortunately,

they are easy to filter out, since there is a large gap between

the largest “sensible” ratio (7 : 1) and the smallest “insensible”

ratio (15 : 1); we can simply filter out invariants with ratios

above 10 : 1. We speculate that these false invariants were

found due to a few highly-anomalous nodes that had behavior

that persisted over multiple sessions. For example, one node

was stuck in a “boot loop” for months, unnoticed by the

operators. This resulted in many thousands of spurious DHCP

messages intermingled with a few messages of other types.

These sessions tended to be flagged as anomalous due to

violating other invariants.

Third, invariants must be interpretable, meaning that ad-

ministrators are able to understand, in a general sense, what

the reasons behind a violation are or what the consequences

of it might be. This is a much harder criterion to evaluate

quantitatively, so we examine it qualitatively. The pattern that

Invariant 1: Ratio: [’1.0’, ’ -1.0’]

<DATE> <TIME> <NODE_ID>: in PXEWAIT, sending PXEWAKEUP

<DATE> <TIME> boss bootinfo[<PID>]: <IP>: SEND: query bootinfo

Invariant 2: Ratio [’1.0’, ’ -1.0’]

<DATE> <TIME> [<PID>]: <NODE_ID>: RESET done, bootwhat returns NORMALv2

<DATE> <TIME> [<PID>]: <NODE_ID>: Clearing reload info

Invariant 3: Ratio: [’-1.0’, ’ 1.0’]

<DATE> <TIME> <NODE_ID>: ssh reboot returned 255

<DATE> <TIME> <NODE_ID>: waiting 30s for reboot

Fig. 1. Example invariants found by the invariant miner

Dataset
Jan-Mar Apr-Jun Jul-Sep Oct-Dec

sessions anomalies sessions anomalies sessions anomalies sessions anomalies

Training dataset 5220 3.8% 5713 4.4% 6154 2.7% 8600 4.7%

Test dataset 5220 3.1% 5713 5.0% 6154 1.9% 8601 4.8%

TABLE I
NUMBER OF SESSIONS AND PERCENTAGE OF ANOMALIES FOUND PER QUARTER IN OUR DATASET.

we find among the most interpretable invariants is that they

follow one or more of the following properties:

• They involve entries that appear in more than one logfile.

In other words, to detect the invariant, it is necessary

to correlate information across logfiles. This provides

significant value to administrators, who tend to inspect

a single log file at a time.

• There is a clear way to match events. That is, it is

possible, either through timing or unique identifiers, to

confirm that one event is in some way a response to or

consequence of the other. Note that the invariant-based

anomaly detector does not produce such a matching itself,

but this can generally be done by additional processing

or manual inspection.

• They are asynchronous operations: an operation on a node

is started by one process; the node performs some actions

that are not directly in the logfiles, may take a variable

amount of time, and may fail; and the success or failure

of those actions are observed by a different process.

An example of invariant that meets all of these criteria would

be one that relates a log message indicating that a node is to

be rebooted with one that logs a successful DHCP response to

the node later, after the node has shut down, made it through

BIOS, and the NIC’s boot ROM, etc. We found five invariants

that we deemed highly interpretable by these criteria: some of

these are discussed in more detail in the following subsections.

C. Accuracy of Anomaly Detection

In order to assess the accuracy of anomaly detection us-

ing invariant mining, we compared the labels produced by

the invariant-based detector with labels assigned by humans.

To do this without requiring undue operator effort, we ran

the invariant miner on the dataset described in Section III

and labeled sessions according to the invariants found. We

then created five sets, each containing ten sessions that the

invariants had labeled as “normal” and ten that it had labeled

as “anomalous”. After correcting for a few invariants with

“insensible” ratios, the base rate of “normal” sessions in the

dataset we gave to administrators was 56%. Each set was given

to a different administrator of the CloudLab testbed, who was

asked to label each session. The administrators were told that

their set contained a mix of normal and anomalous sessions,

but were not told how many there were of each, and were not

given a definition of “anomalous”; the intention behind this

methodology was to see how well the precise ratios found by

the invariant mining process match up with human intuition.

In our evaluation, we consider a “normal” label as negative

result and an anomalous label as positive results. Therefore, a

false negative refers to an incorrect labeling by the classifier

for a truly positive results and a false positive refers to an

incorrect labeling by the classifier for a truly negative result.

The accuracy of the invariant miner was reasonable: it cor-

rectly labeled 70% of sessions identified by the administrators

as normal, and 73% of the sessions labeled as anomalous. This

gives us an overall false positive rate of 30% and false negative

rate of 27%. The overall precision obtained is 0.7087, recall

is 0.7300 and the F1-score is 0.7192.

There were two other interesting findings from this portion

of our study.

First, we found that the administrators made a distinction

between behavior that indicated a problem with the system

and unusual user behavior. One example of this in our context

is that most boot sequences are initiated by the system in

response to higher-level user requests, such as the start or

termination of experiments. These kinds of sessions have

telltale log entries indicating the start of the process. If users

shut down or reboot machines themselves (eg. by running

shutdown on the machine itself), these telltale log entries are

absent, and there may be log entries indicating an unexpected

shutdown. Most administrators independently came up with

need to periodically re-train anomaly detectors, as they become

stale over time. In this paper, we have used fixed time periods

for sessions (24 hours) and re-training periods (3 months); as

future work, we intend to investigate other values, including

using sliding windows for sessions.

ACKNOWLEDGMENTS

We thank the Cloudlab administrators for access to the

data and help interpreting it; in particular, we thank Mike

Hibler, Gary Wong, David Johnson, and Aleksander Maricq

for manually labeling sessions. We also thank Vivek Srikumar

for his help selecting and interpreting ML techniques, and to

the anonymous MLCS reviewers whose comments helped to

improve the paper. We also thank Ali Ibrahim. This material

is based upon work supported by the National Science Foun-

dation under Grant Nos. 1743363 and 1801446.

REFERENCES

[1] E. Baseman, S. Blanchard, N. DeBardeleben, A. Bonnie, and A. Morrow.
Interpretable anomaly detection for monitoring of high performance
computing systems. In Outlier Definition, Detection, and Description on

Demand Workshop at ACM SIGKDD. San Francisco (Aug 2016), 2016.
[2] E. Baseman, S. Blanchard, Z. Li, and S. Fu. Relational synthesis of

text and numeric data for anomaly detection on computing system logs.
In 2016 15th IEEE International Conference on Machine Learning and

Applications (ICMLA), pages 882–885. IEEE, 2016.
[3] P. C. Bates and J. C. Wileden. High-level debugging of distributed

systems: The behavioral abstraction approach. Journal of systems and

software, 3(4):255–264, 1983.
[4] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols. Recurrent neural

network attention mechanisms for interpretable system log anomaly
detection. In Proceedings of the First workshop on Machine Learning

for Computing Systems, June 2018.
[5] S. Bursic, A. D’Amelio, and V. Cuculo. Anomaly detection from log

files using unsupervised deep learning, 09 2019.
[6] M. Cinque, D. Cotroneo, and A. Pecchia. Event logs for the analysis

of software failures: A rule-based approach. IEEE Transactions on

Software Engineering, 39(6):806–821, 2012.
[7] M. Du and F. Li. Spell: Streaming parsing of system event logs. In

Proceedings of 16th IEEE International Conference on Data Mining

(IEEE ICDM), Dec. 2016.
[8] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection

and diagnosis from system logs through deep learning. In Proceedings

of 24th ACM Conference on Computer and Communications Security

(CCS), Oct. 2017.
[9] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra. The design and operation of CloudLab. In Proceedings of

the USENIX Annual Technical Conference (ATC), July 2019.
[10] Elastic Co. Grok filter plugin (documentation). https://www.elastic.

co/guide/en/logstash/current/plugins-filters-grok.html. Retrieved March
2020.

[11] Flux Research Group, University of Utah. Emulab source code. https:
//gitlab.flux.utah.edu/emulab/emulab-devel. Retrieved March 2020.

[12] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. An evaluation study on
log parsing and its use in log mining. In Proceedings of the IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
June 2016.

[13] S. He, J. Zhu, P. He, and M. R. Lyu. Experience report: System log
analysis for anomaly detection. In 27th IEEE International Symposium

on Software Reliability Engineering (ISSRE), Oct. 2016.
[14] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants from

console logs for system problem detection. In USENIX Annual Technical

Conference, pages 1–14, 2010.
[15] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis

of systems logs to diagnose performance problems. In Presented as

part of the 9th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 12), pages 353–366, 2012.

[16] M. Newbold. Reliability and state machines in an advanced network
testbed. Master’s thesis, University of Utah, 2004.

[17] The CloudLab Team. Cloudlab hardware (documentation). https://
docs.cloudlab.us/hardware.html#(part. cloudlab-utah). Retrieved March
2020.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental
environment for distributed systems and networks. In Proceedings of the

USENIX Symposium on Operating System Design and Implementation

(OSDI). USENIX, Dec. 2002.
[19] T. Yang and V. Agrawal. Log file anomaly detection. Technical report,

Stanford, 2016.
[20] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu. Tools

and benchmarks for automated log parsing. In Proceedings of the

International Conference on Software Engineering (ICSE), May 2019.

