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ABSTRACT
Streaming data-flow applications arise in many contexts where
each item in a data stream must be processed within a bounded
latency, or deadline, following its arrival. We consider applications
whose behavior is irregular, in the sense that the application may
reduce or amplify data volumes dynamically at various stages of its
computation. Our implementation target for these applications is
SIMD-capable processors such as GPUs. For such devices, organiz-
ing the computation so that a full-width SIMD vector of inputs can
be processed at once makes the most efficient use of the processor.
However, having parts of the computation wait while full vectors
of input accumulate may incur more latency than the application’s
deadline allows.

We present a novel approach to scheduling irregular streaming
applications with latency constraints on SIMD devices. After de-
scribing a model for executing such applications, we formalize the
objective of efficient processor utilization and the constraints asso-
ciated with bounded latency and adequate throughput to handle a
stream of items arriving at a fixed rate. We introduce a strategy, en-
forced waiting, to optimize the objective subject to the constraints.
We demonstrate empirically that, for a test application from bioin-
formatics, our strategy can effectively lower processor utilization
relative to to a baseline approach that cannot introduce waits in-
side the application pipeline. Finally, we characterize the region of
parameter space in which the new approach is likely to outperform
the baseline.

CCS CONCEPTS
•Computingmethodologies→Vector / streaming algorithms;
• Software and its engineering → Real-time schedulability;
• Theory of computation → Streaming models; • Computer
systems organization→ Pipeline computing.
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1 INTRODUCTION
Applications that process streams of data arising from physical pro-
cesses or instruments often must work under latency constraints.
For example, a monitoring program in a chemical plant or a self-
driving car might receive periodic readings from one or more sen-
sors and must take action promptly when those readings indicate a
problem or change in state. Similarly, an orbiting gamma-ray tele-
scope might process a stream of incoming photons and must alert
ground-based instruments when it detects a gamma-ray burst [6].
For such applications, it is desirable to guarantee that with high
confidence, the application will finish processing an incoming event
within a fixed deadline after its arrival.

Applications that process a data stream through a pipeline of
computational stages can be described abstractly by the stream-
ing data-flow (SDF) model [16]. When both the latency and data
volume of each stage in a pipeline are fixed a priori, it is a sim-
ple matter to compute the end-to-end latency of the pipeline and
determine whether it can meet a given deadline. However, many
streaming applications of interest, including those with latency
constraints, are irregular : even if the service time of an individual
computational stage is fixed, the volume of output generated from
a given amount of input to the stage is data-dependent and unpre-
dictable. Irregular streaming applications processing sensor data
arise in, e.g., network intrusion detection [22], biological sequence
comparison [1], decision cascades in machine learning [26], and
the aforementioned gamma-ray burst detection. For such applica-
tions, achieving bounded latency requires both careful attention to
pipeline design and a model of the application’s irregularity.

As the computational demands of streaming applications have
grown, these computations have targeted more powerful proces-
sors. A common feature of such processors – whether modern
general-purpose CPUs, GPUs, or even customized logic in an FPGA
– is support for fine-grained parallelism, in particular SIMD oper-
ations that can perform the same computation on multiple data
items at once. Prior work [9, 11, 21, 24] has described strategies
for mapping irregular computations, and particularly streaming
computations, to SIMD architectures to maximize their throughput;
such mappings address the problem of dynamically reallocating
work among SIMD lanes to efficiently use the full SIMD width of
the processor. However, such mappings pay no attention to latency
and cannot in general provide guarantees of meeting end-to-end
processing deadlines.

This work explores strategies for mapping latency-sensitive, ir-
regular streaming computations to SIMD processors. We describe
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an execution model for streaming applications on such devices
and consider how to implement these applications so as to achieve
bounded end-to-end latency while efficiently exploiting the SIMD
capability of the device. Specifically, we seek to meet a given latency
bound while minimizing the fraction of time that the application
must utilize the processor, which is tied to its ability to fill all SIMD
lanes as it executes. We propose to enforce waiting times at each
pipeline stage to accumulate inputs that can occupy more SIMD
lanes and describe how to choose these times to minimize processor
utilization. Finally, we compare our approach to a simpler, “mono-
lithic” strategy that enforces waiting time only at the beginning of
the pipeline. We show that adding waits internal to the pipeline can
result in improved utilization compared to the monolithic approach
while still incorporating the latency demands of the application.

The remainder of this work is organized as follows. Section 2
describes our application and device models. Section 3 discusses
related work. Section 4 describes how we add waits to the pipeline,
while Section 5 describes the monolithic strategy. Section 6 de-
scribes empirical assessment of the two strategies on a simulation
of a pipeline derived from computational biology, and Section 7
concludes and considers future work.

2 MODELS AND PERFORMANCE CRITERIA
We begin by describing an abstract model of irregular streaming ap-
plications and a system onwhich they are implemented. The system
has a SIMD processor and exhibits regular, predictable scheduling
behavior typically seen in real-time computation. We then describe
our latency constraint and performance objective, which can be
related to the application’s SIMD-lane occupancy.

2.1 Application Model
A streaming application is composed of a pipeline of 𝑁 compu-
tational stages, or nodes, connected by dataflow edges. Node 𝑛𝑖 ,
0 ≤ 𝑖 < 𝑁 , reads data items from its input edge and performs some
computation on each, producing zero or more items per input on
its output edge. Each edge is associated with a queue for items,
whose capacity is theoretically unbounded (though in practice we
will use only a small amount of queue space). When a node fires, it
consumes inputs and produces a variable, data-dependent number
of output items for each input item processed. With each node 𝑛𝑖 ,
we associate an average gain 𝑔𝑖 , which is the average number of
outputs produced per input. We define the total gain𝐺𝑖 into node 𝑖
as 𝐺𝑖 =

∏𝑖−1
𝑗=0𝐺 𝑗 .

Data arrives to the application as stream of items of unbounded
length. Items arrive regularly at a fixed rate of 𝜌0 per unit time (e.g.,
the polling rate of a sensor). We define 𝜏0 = 1

𝜌0
as the time between

consecutive item arrivals.

2.2 Implementation Model
An application is implemented on one single-threaded processor.
Each node is assigned a fixed 1

𝑁
fraction of processor time, which

it may utilize or yield as it chooses. We assume that nodes are
scheduled preemptively at a fine granularity so that when a node
wants to fire, it encounters negligible delay before it can do so.

The processor running the application has SIMD capabilities.
Each node 𝑛𝑖 can consume a vector of up to 𝑣 input items each

time it fires. These items are processed in parallel, requiring a fixed
service time 𝑡𝑖 for one input vector, whether it is full or not. (We
note that the service time 𝑡𝑖 is measured assuming that the node
uses only its assigned 1

𝑁
fraction of the processor while firing.)

2.3 Performance Criteria
The application must meet a latency criterion, in the form of a
deadline 𝐷 . If an item arrives at the head of the pipeline at time
𝑡 , all outputs associated with that item must exit the tail of the
pipeline by time 𝑡 + 𝐷 ; otherwise, we say that the item misses its
deadline. An application should ideally not miss its deadline for any
input; however, in the presence of stochastic application behavior,
we may only be able to achieve a low frequency of misses, rather
than guarantee absolutely that they do not occur.

To quantify an application’s efficiency, we say that a node is
active if it is firing or waiting otherwise. A waiting node yields its
processor time to the system until it is again ready to fire. Our per-
formance objective is to minimize the application’s active fraction
– the total time, over an entire stream of inputs, that any node is
active, divided by the total time that any node is either active or
waiting. A lower active fraction implies that the application yields
more of its available processor time, which could be used, e.g., to
support other applications running on the same system or to idle
the processor to save energy.

For SIMD processors in particular, an application’s active frac-
tion can be decreased by having nodes fire less often but with input
vectors closer to the maximum size 𝑣 . In a throughput-oriented
application, one can utilize the queues between nodes to straight-
forwardly schedule execution so as to ensure that essentially every
firing of a node consumes a full vector of 𝑣 inputs. However, when
an application has a deadline to meet, a node may not be able to
wait an arbitrarily long time for a full vector of input to accumulate
before firing. The more empty SIMD lanes in a typical firing, the
more firings (and hence, the more time spent active) are needed to
process a given number of inputs, and the higher the resulting active
fraction. To balance deadline and performance concerns, we will
insert bounded waiting times at various points in the application
so as to reduce the occurrence of empty SIMD lanes.

3 RELATEDWORK
Irregularity is a well-documented feature of applications running
on SIMD processors [7]. Overcoming irregularity to obtain high per-
formance requires some form of dynamic data-to-SIMD-lane remap-
ping [11, 12, 24]. Prior work on SIMD pipeline design and sched-
uling, including our own [9, 21] and numerous domain-specific
contributions, has focused on maximizing the throughput of these
applications. In contrast, our focus in this work is to explore the
impact of latency constraints on the design problems arising for
irregular streaming applications.

Much work over the past ten years addresses real-time schedul-
ing for SIMD devices, particularly GPUs. Implementations include
TimeGraph [15], GPUSync [10], and many others [8, 20, 23, 27].
The principal goal of these schedulers is to divide the GPU among
separate, competing tasks, including both real-time and non-real-
time work. In contrast, this work focuses on effectively scheduling
a single real-time pipeline composed of multiple cooperating parts.
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Reducing the pipeline’s active fraction frees up processor time that
a system-wide scheduler like those mentioned above could use to
support other tasks.

An important contribution of the prior work is to show that, even
on a GPU device, appropriate driver support could make feasible
a real-time scheduling loop supporting the model of Section 2.
However, Otterness et al. [19] provide a note of caution, showing
that effective real-time guarantees are limited by undocumented
or poorly specified device behaviors. For this reason, we chose to
initially develop and test strategies in simulation, as described in
Section 6, rather than attempt to build infrastructure running on
an actual GPU.

The work of Verner et al. [25], like our own, considers real-
time deadlines to be associated with data items to be processed, as
opposed to tying deadlines to compute tasks. However, that work
does not consider streams composed of multiple processing stages,
nor the case where those stages exhibit irregular dataflow.

In the presence of stochastic behavior, estimating the likely max-
imum time before an item exits the pipeline is an application of
queueing theory. In particular, the SIMD processing characteristic
of nodes corresponds to a queue with bulk or batch service, which
was first analyzed in [2] and later in [5]. While these works study a
single queue that is serviced in bulk, as in the approach of Section 5,
later results on networks of bulk queues [13, 14, 18] make strong
assumptions regarding temporal servicing behavior that seem a
poor fit to SIMD processors. In the present work, we introduce
model parameters to capture essential queueing behavior and then
select these parameters empirically; future work will explore more
theoretically sophisticated approaches.

4 USING ENFORCEDWAITS TO REDUCE
PROCESSOR UTILIZATION

We seek to lower an application’s active fraction by improving its
SIMD lane occupancy. Intuitively, since a full vector and a partial
vector of inputs to node 𝑛𝑖 require the same processing time 𝑡𝑖 , we
can increase occupancy by delaying 𝑛𝑖 ’s firing to allow more time
for inputs to accumulate – ideally until a full vector of 𝑣 inputs is
available. However, the permissible delay is limited by the need to
meet the deadline for end-to-end latency.

For simplicity of analysis, we add to each node 𝑛𝑖 a fixed delay
𝑤𝑖 . Each time node 𝑛𝑖 finishes firing, it waits exactly 𝑤𝑖 units of
time before firing again – regardless of how many or how few items
accumulate in its input queue during that time. (This means that
a node for which inputs accumulate slowly might sometimes fire
with an empty vector; for ease of analysis, we still charge such
firings as active time, though in practice they could be treated as
a vacation for the node.) Hence, the time between firings of 𝑛𝑖 is
now exactly 𝑡𝑖 +𝑤𝑖 .

The delays𝑤𝑖 are free design parameters, which we may choose
so as to optimize performance. In what follows, we formulate the
active fraction objective and execution constraints in terms of the
𝑤𝑖 ’s and the properties of the system, creating a constrained opti-
mization problem whose solution minimizes active fraction while
avoiding deadline misses.

4.1 Objective Function
Our goal is to minimize the application’s processor utilization,
measured as the fraction of its allocated processor time that it
spends executing the code of some node. Time not spent executing
a node is returned to the system for other applications to use.

Suppose the application processes a stream of 𝑋 input items. On
average, node 𝑛𝑖 of the application’s pipeline will receive a total of
𝑋𝐺𝑖 inputs over a period of 𝑋

𝜌0
cycles. Assuming that 𝑛𝑖 fires once

per 𝑡𝑖 +𝑤𝑖 cycles, and that at most 𝑣 inputs accumulate between
firings, the total number of firings by node 𝑛𝑖 needed to consume
all its input is ⌈

𝑋

𝜌0 (𝑡𝑖 +𝑤𝑖 )

⌉
.

Each of these firings requires active time 𝑡𝑖 , and each is followed
by a waiting time 𝑤𝑖 . Hence, the total active time to process the
entire stream is

𝑁−1∑
𝑖=0

⌈
𝑋

𝜌0 (𝑡𝑖 +𝑤𝑖 )

⌉
𝑡𝑖 ,

while the sum of active and waiting time is
𝑁−1∑
𝑖=0

⌈
𝑋

𝜌0 (𝑡𝑖 +𝑤𝑖 )

⌉
(𝑡𝑖 +𝑤𝑖 ).

In the limit of large 𝑋 , removing the ceilings in these expressions
has negligible impact. With this simplification, the second sum
reduces to 𝑁𝑋

𝜌0
, and the ratio of active to active-plus-waiting time

reduces to
1
𝑁

𝑁−1∑
𝑖=0

𝑡𝑖

𝑡𝑖 +𝑤𝑖
.

4.2 Constraints
To ensure that our pipeline can sustain an input arrival rate of 𝜌0, it
must be stable; that is, each node must fire often enough on average
to prevent its input queue growing without bound. For the initial
node 𝑛0, this constraint can be stated as

(𝑡0 +𝑤0)𝜌0 ≤ 𝑣,

since the node can consume up to 𝑣 inputs if available each 𝑡0 +𝑤0
cycles.

For 𝑖 > 0, node 𝑛𝑖 must fire often enough to consume output
from node 𝑛𝑖−1 as fast as it is produced. Hence, 𝑛𝑖 must consume at
least 𝑣𝑔𝑖−1 items in the time that node 𝑛𝑖−1 consumes 𝑣 items (and
so produces 𝑣𝑔𝑖−1 outputs):

(𝑡𝑖 +𝑤𝑖 )𝑔𝑖−1 ≤ 𝑡𝑖−1 +𝑤𝑖−1 .

The above constraints enforce sustainable average-case behav-
ior, in that they do not permit any queue to grow without bound
over time. To account for transient deviations from average-case
behavior, we will assume that the input queue for node 𝑛𝑖 attains
some maximum size 𝑏𝑖𝑣 while processing a stream. Under this
assumption, an input queued for node 𝑛𝑖 may not produce its cor-
responding outputs until 𝑏𝑖 firings of the node have elapsed, i.e.,
until 𝑏𝑖 (𝑡𝑖 +𝑤𝑖 ) cycles have elapsed. To meet our deadline 𝐷 , we
therefore require that

𝑁−1∑
𝑖=0

𝑏𝑖 (𝑡𝑖 +𝑤𝑖 ) ≤ 𝐷.
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Free variables: wait times𝑤0 . . .𝑤𝑁−1 ≥ 0.

min 𝑇 ( ®𝑤) = 1
𝑁

𝑁−1∑
𝑖=0

(
𝑡𝑖

𝑡𝑖 +𝑤𝑖

)
s.t.

(𝑡0 +𝑤0)𝜌0 ≤ 𝑣

(𝑡𝑖 +𝑤𝑖 )𝑔𝑖−1 ≤ 𝑡𝑖−1 +𝑤𝑖−1 for 1 ≤ 𝑖 < 𝑁∑
𝑖

𝑏𝑖 (𝑡𝑖 +𝑤𝑖 ) ≤ 𝐷

Figure 1: Optimization problemwith enforcedwaiting times
at each pipeline node.

Combining the above objective and constraints results in the opti-
mization problem of Figure 1. We address the question of how to
choose the parameters 𝑏𝑖 empirically in Section 6.

5 ALTERNATIVE: BATCH PROCESSING
WITH MONOLITHIC PIPELINE

The approach of the previous section assumes that it is possible
to allocate fractions of processor time to individual pipeline nodes
and to manage their execution behavior in detail. Suppose instead
that we have only a throughput-optimized implementation of the
pipeline, with no ability to wait between nodes. If the pipeline’s
average end-to-end latency for a single input is at most 1

𝜌0
, we

can pass items to the pipeline and process them individually as
they arrive. More generally, if the average end-to-end latency for
a block of 𝑀 inputs is at most 𝑀

𝜌0
, we can repeatedly accumulate

and process blocks of 𝑀 items. For large enough 𝑀 , processing
large quantities of input at once will likely make more efficient use
of the processor’s SIMD lanes than processing one item at a time.
In what follows, we refer to this approach as “monolithic,” since
it schedules the entire pipeline as a unit rather than controlling
delays for individual nodes.

While a larger block size 𝑀 is preferable for a throughput-
oriented pipeline, it also increases the time needed to accumulate
a block and the time to process all of its elements. Eventually, 𝑀
becomes too large to ensure that an arriving item will on average
be completely processed by its deadline, and the system becomes
unstable. Hence, 𝑀 is restricted by the application’s latency con-
straint.

As in the previous section, wemay attempt tominimize processor
utilization for the monolithic implementation through our choice of
𝑀 . If the application spends some of its time accumulating a block
of inputs after having finished the previous block, that additional
time may be yielded to the system, decreasing the application’s
active fraction.

We now describe how to tune this simpler monolithic strategy
to minimize active fraction. We will compare the performance to
this strategy to that of per-node enforced waits in Section 6.3.

Free variable: block size𝑀 > 0.

min
𝜌0𝑇 (𝑀)

𝑀
s.t.

𝑇 (𝑀) ≤ 𝑀

𝜌0

𝑏
𝑀

𝜌0
+𝑇 (𝑀) ≤ 𝐷

where

𝑇 (𝑀) =
∑
𝑖

⌈
𝑀𝐺𝑖

𝑣

⌉
𝑡𝑖

𝑇 (𝑀) = 𝑆 𝑇 (𝑀)

Figure 2: Optimization problem for monolithic approach.

5.1 Performance Objective and Constraints of
Monolithic Application

For a fixed block size 𝑀 , we may model the monolithic applica-
tion’s processor utilization as follows. A block of𝑀 inputs requires
total time 𝑀

𝜌0
to accumulate. During this time, the application first

processes some previously accumulated block of input, then waits
while the next block finishes accumulating.

The average-case active time to consume a block of𝑀 items is
simply

𝑇 (𝑀) =
∑
𝑖

⌈
𝑀𝐺𝑖

𝑣

⌉
𝑡𝑖 ,

that is, the time for each node to consume all its input, assuming that
each node produces the average amount of output per input. The

corresponding average-case active fraction is 𝜌0𝑇 (𝑀)
𝑀

. To ensure
that the pipeline is stable, we require that

𝑇 (𝑀) ≤ 𝑀

𝜌0
.

It remains to consider the constraint imposed by the per-item
deadline 𝐷 and the worst-case processing time 𝑇 (𝑀) incurred for
𝑀 items, which may exceed the average 𝑇 (𝑀). As for the previous
strategy, we introduce a multiplier 𝑏 to an input item’s waiting time
to reflect the possibility of a long equilibrium queue size, for which
a newly arrived item may find 𝑏 − 1 full blocks of𝑀 items ahead of
it in the queue. Such an item may wait for up to time 𝑏 𝑀

𝜌0
before

being processed by the pipeline; hence, we require

𝑏
𝑀

𝜌0
+𝑇 (𝑀) ≤ 𝐷.

We assume that 𝑇 (𝑀) ≤ 𝑆𝑇 (𝑀), where 𝑆 is a scale parameter. If
worst-case time arises because of occasional bursty behavior in the
data, we expect that as𝑀 becomes large, 𝑆 → 1 as local variations
in the input stream are averaged out. But 𝑆 may be larger if the
stream exhibits sustained non-average-case behavior over longer
stretches.

To summarize, Figure 2 describes the problem of minimizing
active fraction for the monolithic approach.
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6 EMPIRICAL INVESTIGATION OF
STRATEGIES

We empirically compared the behavior of the enforced waiting
and monolithic strategies in an irregular streaming pipeline. The
pipeline we used is drawn from an implementation of the NCBI
BLAST biosequence comparison tool [1] developed for theMercator
framework for irregular streaming applications on GPUs [9].

6.1 Application Description
The BLAST pipeline consists of four nodes, three of which produce
at most one output per input and one of which (stage 1) may expand
its input by a factor of up to 𝑢 = 16. Table 1 shows the service time
𝑡𝑖 (measured on an NVidia GTX 2080 GPU) and the average gain 𝑔𝑖
of each stage. Times and gains were measured on a comparison of
the human genome vs. a 64-kilobase microbial query sequence. The
assumed SIMD vector width for all stages was 𝑣 = 128, consistent
with the Mercator implementation.

The average gains 𝑔𝑖 do not completely describe the range of
behavior observed for the various pipeline stages. Rather than
gather a detailed empirical distribution of each gain, we assumed
that for each input, nodes 0, 2, and 3 produce one output with
probability 𝑔𝑖 or 0 otherwise. For node 2, we assumed that the
number of outputs per input is Poisson with mean 𝑔𝑖 , censored at
the upper limit 𝑢.

We considered a range of possible values for the input inter-
arrival time 𝜏0 = 1

𝜌0
and the deadline 𝐷 . 𝜏0 was varied from 1 to 100

cycles, while 𝐷 was varied from 2×104 to 3.5×105 cycles. Values of
𝐷 below 2 × 104 cycles resulted in no feasible (that is, substantially
miss-free) realizations of the pipeline by either approach tested,
while the upper limits for both parameters were chosen because
observed behavior was largely unchanged for larger values.

6.2 Applying the Strategies
For each of the enforced-wait and monolithic strategies, we imple-
mented the optimizations of Figures 1 and 2 in the AMPL solver
language. All pipeline parameters, as well as values for 𝜏0 and 𝐷 ,
were supplied as described above. Given these values, as well as
parameters describing the worst-case behavior of each pipeline
stage (𝑏𝑖 ’s for the enforced-waits strategy, or 𝑏 and 𝑆 for the mono-
lithic strategy), we inferred optimal values for the free variables
(𝑤𝑖 for the enforced-waits strategy, 𝑀 for the monolithic strategy)
using the BONMIN [3, 4, 17] open-source solver for non-linear
mixed-integer programs.

Node 𝑡𝑖 (cycles) 𝑔𝑖

0 287 0.379
1 955 1.920
2 402 0.0332
3 2753 N/A

Table 1: Properties of the NCBI BLAST streaming pipeline.
Gain for the final stage is omitted because it does not impact
the design choicesmade by optimization or the inferred cost
of the computation. For this application, we used 𝑣 = 128.

A crucial question in applying each strategy is how to choose
parameter values to adequately capture the worst-case behavior
of the pipeline. While it is possible in principle to estimate these
parameters from the known gain distributions using queueing the-
ory, such estimation is challenging for the enforced-waits model,
which represents a tandem network of bulk-service queues with
non-exponentially distributed service times. We instead took an
empirical approach as follows. We developed a discrete-event sim-
ulation of pipeline execution on the system described in Section 2.
The simulator is capable of processing a long stream of simulated in-
puts using either of our two strategies and determining how many
inputs, if any, incur a deadline miss. We began with optimistic
choices for for the worst-case parameters (𝑏𝑖 = ⌈𝑔𝑖 ⌉ and 𝑏 = 1,
𝑆 = 1, essentially asserting that the worst-case behavior closely
matches the average), then used the optimizer to implement each
strategy and checked how often the simulator reported deadline
misses over 100 runs with different random seeds. If frequent misses
were observed for any tested values of 𝐷 and 𝜏0, we raised one or
more parameters, re-optimized, and tried again. We note that the
active fractions measured in the simulator closely matched those
predicted by the optimizer for each approach and set of parameters
tested.

For the enforced-waits strategy, the following parameters re-
sulted in no misses in at least 95% of random trials for any com-
bination of 𝐷 and 𝜏0 tested, over simulated execution on streams
of 50000 inputs: 𝑏0 = 1, 𝑏1 = 3, 𝑏2 = 9, 𝑏3 = 6. For most (𝐷 ,𝜏0)
combinations, no misses were observed in at least 98% of random
trials, and the number of inputs incurring a miss was fewer than
1% of all inputs. Smaller values for the 𝑏 parameters empirically
incurred much more frequent deadline misses.

For the monolithic strategy, we observed no deadline misses
in simulation even with 𝑏 = 1, 𝑆 = 1. The likely explanation is
that, for large enough𝑀 , the throughput-oriented implementation
aggregates many node firings into the active time for each𝑀 inputs,
which tends to suppress occasional departures from average-case
behavior.

6.3 Performance Comparison
Figure 3 compares the optimized active fractions for the enforced-
wait and monolithic strategies on our BLAST pipeline. Qualitatively,
it is immediately evident that the two approaches exhibit comple-
mentary sensitivities – the enforced-wait strategy’s active fraction
is insensitive to 𝜏0 except at the smallest sizes but scales inversely
with 𝐷 , while the monolithic strategy is mostly insensitive to 𝐷 but
scales inversely with 𝜏0.

For the enforced-wait strategy, a longer deadline 𝐷 relaxes a
constraint on the times 𝑡𝑖 +𝑤𝑖 , so that the total time spent wait-
ing can rise, and hence the active fraction can become smaller, as
𝐷 rises. This behavior illustrates that enforced waiting can effec-
tively exploit “deadline slack” to insert waits that improve SIMD
occupancy and so improve processor utilization. In contrast, in the
monolithic strategy, raising 𝐷 allows the block size𝑀 to grow, but
the active fraction tends to a constant in the limit of large𝑀 . Hence,
the monolithic strategy’s ability to exploit additional deadline to
improve utilization is limited.
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Figure 3: Comparison of enforced-wait and monolithic
strategies on BLAST pipeline, illustrating complementary
sensitivities to 𝜏0 and 𝐷 in the two approaches.

The opposite picture emerges with respect to sensitivity to 𝜏0.
For the enforced-wait strategy, the average-case constraints on
𝑡𝑖 +𝑤𝑖 scale inversely with 𝜌0 and hence linearly with 𝜏0, so limiting
behavior emerges as 𝜏0 rises. In contrast, the expression for the
monolithic strategy’s active fraction scales linearly with 𝜌0 and
hence inversely with 𝜏0; hence, this strategy can better exploit
slower input arrival rates to improve utilization.

Qualitatively, then, we expect and observe that enforced waits
are more effective when the deadline is larger relative to the arrival
rate, while the monolithic strategy wins in the opposite case. Fig-
ure 4 quantifies this effect by plotting the difference between the
monolithic and enforced-waits active fractions. The enforced-waits
strategy decreased active fraction vs. the monolithic strategy over
a large portion of the arrival rate/deadline parameter space. The
difference is particularly large – at least 0.4 in absolute terms, or
several-fold better for enforced-waits – in the region of the fastest
arrival rates and sufficient deadline slack. Conversely, the mono-
lithic strategy dominates by a similar amount for slow arrivals and
little deadline slack.

Overall, the two approaches tested display complementary strengths.
As the rate of item arrival increases, the more complex enforced-
waits model is better able to effectively leverage any available gap
between total service time and deadline to improve SIMD processor
utilization. While neither strategy can absolutely guarantee that all
deadlines will be met in the face of stochastic behavior, enforced-
waits is more sensitive to stochastic changes in gain at each stage
than the monolithic approach, which tends to average together the
behavior of many vectors of inputs. It therefore proved empirically
more difficult to eliminate all misses with enforced-waits. However,

Figure 4: Difference between active fractions for the two
strategies (monolithic minus enforced-waits). Zero plane is
shown in black. Enforced waits outperform the monolithic
strategy in the region above the zero plane.

the frequency of misses can still be driven to a low level for moder-
ate values of the parameters 𝑏𝑖 that substantially lower processor
utilization.

7 CONCLUSION AND FUTUREWORK
Streaming applications with latency constraints and irregular data
flow are challenging to schedule effectively. For SIMD processors,
scheduling trades off the ability to use the processor efficiently, by
gathering data into full-width SIMD vectors, against the ability to
meet deadlines by processing inputs rapidly. We have shown how to
balance these concerns by introducing enforced waits at each node
of a streaming pipeline. Our approach can substantially reduce the
time that the application occupies the processor while respecting
latency requirements. We have demonstrated for a test application
that, for a broad range of arrival rates and deadlines, enforced waits
incur less processor utilization than a simpler strategy that treats
the pipeline as monolithic for scheduling purposes.

Future work will focus on better a priori modeling strategies
for departures from an application’s average behavior. Empirical
observation of a full pipeline’s execution would permit better mod-
eling of the distribution of service times for the monolithic model,
which should permit application of prior work on bulk-service
queues [2, 5] to derive reasonable values for the queue multiplier
𝑏 and/or directly estimate the time an item spends in the system.
The enforced-waits model has less supporting queueing theory,
but we will investigate approximations using better-understood
models such as (non-bulk) Jacksonian networks. We note that these
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models generally assume Poisson arrivals, which is a reasonable
generalization of the fixed arrival rate assumed in this work.

We will seek additional real-time streaming applications to im-
prove validation, including an implementation of the gamma-ray
burst detection application mentioned earlier. We will also investi-
gate how to realize our scheduling model on GPU devices, either
exactly (which will likely require driver modifications) or approxi-
mately by extending our timing model to accommodate cooperative
or otherwise more coarse-grained division of processor time be-
tween pipeline stages. Even if the closed architecture and hardware
limitations of GPUs prove resistant to such scheduling, many other
devices, including general-purpose multicores, increasingly offer
wide SIMD support and have much more developed system sched-
uling that could accommodate our approach.
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