
GT-STORM: Taming Sample, Communication, and Memory
Complexities in Decentralized Non-Convex Learning

Xin Zhang
Department of Statistics
Iowa State University
Ames, IA 50011, U.S.A
xinzhang@iastate.edu

Jia Liu
Dept. of Electrical and Computer Engineering

The Ohio State University
Columbus, OH 43210, U.S.A

liu@ece.osu.edu

Zhengyuan Zhu
Department of Statistics
Iowa State University
Ames, IA 50011, U.S.A
zhuz@iastate.edu

Elizabeth Serena Bentley
Air Force Research Laboratory

Information Directorate
Rome, NY, 13441, U.S.A

elizabeth.bentley.3@us.af.mil

ABSTRACT
Decentralized nonconvex optimization has received increasing at-
tention in recent years in machine learning due to its advantages
in system robustness, data privacy, and implementation simplic-
ity. However, three fundamental challenges in designing decen-
tralized optimization algorithms are how to reduce their sample,
communication, and memory complexities. In this paper, we pro-
pose a gradient-tracking-based stochastic recursive momentum
(GT-STORM) algorithm for e�ciently solving nonconvex optimiza-
tion problems. We show that to reach an n2-stationary solution, the
total number of sample evaluations of our algorithm is $̃ (<1/2n�3)
and the number of communication rounds is $̃ (<�1/2n�3), which
improve the $ (n�4) costs of sample evaluations and communica-
tions for the existing decentralized stochastic gradient algorithms.
We conduct extensive experiments with a variety of learning mod-
els, including non-convex logistical regression and convolutional
neural networks, to verify our theoretical �ndings. Collectively, our
results contribute to the state of the art of theories and algorithms
for decentralized network optimization.

CCS CONCEPTS
•Computingmethodologies!Machine learning;Distributed
algorithms.

KEYWORDS
Network consensus optimization, decentralized learning, commu-
nication complexity, sample complexity, memory complexity.
ACM Reference Format:
Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley. 2021.
GT-STORM: Taming Sample, Communication, and Memory Complexities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MobiHoc ’21, July 26–29, 2021, Shanghai, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8558-9/21/07.
https://doi.org/10.1145/3466772.3467056

in Decentralized Non-Convex Learning. In The Twenty-second International
Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing (MobiHoc ’21), July 26–29, 2021,
Shanghai, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3466772.3467056

1 INTRODUCTION
In recent years, machine learning has witnessed enormous success
in many areas, including image processing, natural language pro-
cessing, online recommender systems, just to name a few. From
a mathematical perspective, training machine learning models
amounts to solving an optimization problem. However, with the
rapidly increasing dataset sizes and the high dimensionality and
the non-convex hardness of the training problem (e.g., due to the
use of deep neural networks), training large-scale machine learn-
ing models by a single centralized machine has become ine�cient
and unscalable. To address the e�ciency and scalability challenges,
an e�ective approach is to leverage decentralized computational
resources in a computing network, which could follow a parameter
server (PS)-worker architecture [7, 28, 47] or fully decentralized
peer-to-peer network structure [19, 25]. Also, thanks to the robust-
ness to single-point-of-failure, data privacy, and implementation
simplicity, decentralized learning over computing networks has at-
tracted increasing interest recently, and has been applied in various
science and engineering areas (including dictionary learning [5],
multi-agent systems [3, 44], multi-task learning [35, 42], informa-
tion retrieval [1], energy allocation [14], etc.).

In the fast growing literature of decentralized learning over net-
works, a classical approach is the so-called network consensus
optimization, which traces its roots to the seminal work by Tsit-
siklis in 1984 [34]. Recently, network consensus optimization has
gained a lot of renewed interest owing to the elegant decentral-
ized subgradient descent method (DSGD) proposed by Nedic and
Ozdaglar [25], which has been applied in decentralized learning
due to its simple algorithmic structure and good convergence per-
formance. In network-consensus-based decentralized learning, a set
of geographically distributed computing nodes collaborate to train
a common learning model. Each node holds a local dataset that
may be too large to be sent to a centralized location due to network
communication limits, or cannot be shared due to privacy/security

MobiHoc ’21, July 26–29, 2021, Shanghai, China Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley

risks. A distinctive feature of network-consensus-baed decentral-
ized learning is that there is a lack of a dedicated PS. As a result,
each node has to exchange information with its local neighbors to
reach a consensus on a global optimal learning model.

Despite its growing signi�cance in practice, the design of high-
performance network-consensus-based decentralized learning faces
three fundamental con�icting complexities, namely sample, com-
munication, and memory complexities. First, due to the high dimen-
sionality of most deep learning models, it is impossible to leverage
beyond �rst-order (stochastic) gradient information to compute the
update direction in each iteration. The variability of a stochastic
gradient is strongly in�uenced by the number of training samples
in its mini-batch. However, the more training samples in a mini-
batch, the higher computational cost of the stochastic gradient.
Second, by using fewer training samples in each iteration to trade
for a lower computational cost, the resulting stochastic gradient
unavoidably has a larger variance, which further leads to more iter-
ations (hence communication rounds) to reach a certain training
accuracy (i.e., slower convergence). The low communication e�-
ciency is particularly problematic in many wireless edge networks,
where the communication links could be low-speed and highly
unreliable. Lastly, in many mobile edge-computing environments,
the mobile devices could be severely limited by hardware resources
(e.g., CPU/GPU, memory) and they cannot a�ord reserving a large
memory space to run a very sophisticated decentralized learning
algorithm that has too many intermediate variables.

Due to the above fundamental trade-o� between sample, com-
munication, and computing resource costs, the notions of sample,
communication, and memory complexities (to be formally de�ned
in Section 2) become three of the most important measures in
assessing the performances of decentralized learning algorithms.
However, in the literature, most existing works have achieved low
complexities in some of these measures, but not all (see Section 2
for in-depth discussions). The limitations of these existing works
motivate to ask the following question: Could we design a decentral-
ized learning algorithm that strikes a good balance between sample,
communication, and memory complexities? In this paper, we answer
the above question positively by proposing a new GT-STORM al-
gorithm (gradient-tracking-based stochastic recursive momentum)
that achieves low sample, communication, and memory complexi-
ties. Our main results and contributions are summarized as follows:

• Unlike existing approaches, our proposed GT-STORM algorithm
adopts a new estimator, which is updated with a consensus mix-
ing of the neighboring estimators of the last iteration, which helps
improve the global gradient estimation. Our method achieves
the nice features of previous works [6, 9, 20, 33] while avoiding
their pitfalls. To some extent, our GT-STORM algorithm can be
viewed as an indirect way of integrating the stochastic gradient,
variance reduction, and gradient tracking methods.

• We provide a detailed convergence analysis and complexity anal-
ysis. Under some mild assumptions and parameter conditions,
our algorithm enjoys an $̃ ()�2/3) convergence rate. Note that
this rate is much faster than the rate of $ ()�1/2) for the classic
decentralized stochastic algorithms, e.g., DSGD [13], PSGD [19]
and GNSD [20]. Also, we show that to reach an n2-stationary

solution, the total number of sample evaluations of our algorithm
is $̃ (<1/2n�3) and the communication round is $̃ (<�1/2n�3).

• We conduct extensive experiments to examine the performance
of our algorithm, including both a non-convex logistic regression
model on the LibSVM datasets and convolutional neural net-
work models on MNIST and CIFAR-10 datasets. Our experiments
show that the our algorithm outperforms two state-of-the-art
decentralized learning algorithms [19, 20]. These experiments
corroborate our theoretical results.
The rest of the paper is organized as follows. In Section 2, we

�rst provide the preliminaries of network consensus optimization
and discuss related works with a focus on sample, communication,
and memory complexities. In Section 3, we present our proposed
GT-STORM algorithm, as well as its communication, sample, and
memory complexity analysis. We provide numerical results in Sec-
tion 4 to verify the theoretical results of our GT-STORM algorithm.
Lastly in Section 5, we provide concluding remarks.

2 PRELIMINARIES AND RELATEDWORK
To facilitate our technical discussions, in Section 2.1, we �rst provide
an overview on network consensus optimization and formally de-
�ne the notions of sample, communication, and memory complexi-
ties of decentralized optimization algorithms for network consensus
optimization. Then, in Section 2.2, we �rst review centralized sto-
chastic �rst-order optimization algorithms for solving non-convex
learning problems from a historical perspective and with a focus on
sample, communication, and memory complexities. Here, we intro-
duce several acceleration techniques that motivate our GT-STORM
algorithmic design. Lastly, we review the recent developments of
optimization algorithms for decentralized learning and compare
them with our work.

2.1 Network Consensus Optimization
As mentioned in Section 1, in decentralized learning, there are a set
of geographically distributed computing nodes forming a network.
In this paper, we represent such a networked by an undirected con-
nected network G = (N ,L), where N and L are the sets of nodes
and edges, respectively, with |N | =<. Each node can communicate
with their neighbors via the edges in L. The goal of decentralized
learning is to use the nodes to distributively and collaboratively
solve a network-wide optimization problem as follows:

min
x2R?

5 (x) = min
x2R?

1
<

<’
8=1

58 (x), (1)

where each local objective function 58 (x) , EZ⇠D8
58 (x; Z) is only

observable to node 8 and not necessarily convex. Here, D8 repre-
sents the distribution of the dataset at node 8 , and 58 (x; Z) represents
a loss function that evaluates the discrepancy between the learning
model’s output and the ground truth of a training sample Z . To
solve Problem (1) in a decentralized fashion, a common approach
is to rewrite Problem (1) in the following equivalent form:

Minimize
1
<

<’
8=1

58 (x8) (2)

subject to x8 = x9 , 8(8, 9) 2 L,

GT-STORM: Taming Complexities in Decentralized Non-Convex Learning MobiHoc ’21, July 26–29, 2021, Shanghai, China

where x , [x>1 , · · · , x><]> and x8 is an introduced local copy at
node 8 . In Problem (2), the constraints ensure that the local copies
at all nodes are equal to each other, hence the term “consensus.”
Thus, Problems (1) and (2) share the same solutions. The main goal
of network consensus optimization is to design an algorithm to
attain an n2-stationary point x de�ned as follows:

��� 1
<

<’
8=1

r58 (x̄)
���2

| {z }
Global gradient magnitude

+ 1
<

<’
8=1

kx8 � x̄k2

| {z }
Consensus error

 n2, (3)

where x̄ , 1
<

Õ<
8=1 x8 denotes the global average across all nodes.

Di�erent from the traditional n2-stationary point in centralized
optimization problems, the metric in Eq. (3) has two terms: the �rst
term is the gradient magnitude for the (non-convex) global objective
and the second term is the average consensus error of all local copies.
To date, many decentralized algorithms have been developed to
compute the n2-stationary point (see Section 2.2). However, most
of these algorithms su�er limitations in sample, communication,
and memory complexities. In what follows, we formally state the
de�nitions of sample, communication, and memory complexities
used in the literature (see, e.g., [32]):

D��������� 1 (S����� C���������). The sample complexity is
de�ned as the total number of the incremental �rst-order oracle (IFO)
calls required across all the nodes to �nd an n2-stationary point de�ned
in Eq. (3), where one IFO call evaluates a pair of (58 (x; Z),r58 (x; Z))
on a sample Z ⇠ D8 and parameter x 2 R? at node 8 .

D��������� 2 (C������������ C���������). The communi-
cation complexity is de�ned as the total rounds of communications
required to �nd an n2-stationary point de�ned in Eq. (3), where each
node can send and receive a ?-dimensional vector with its neighboring
nodes in one communication round.

D��������� 3 (M����� C���������). The memory complexity
is de�ned as total dimensionality of all intermediate variables in the
algorithm run by a node to �nd an n2-stationary point in Eq. (3).

To make sense of these three complexity metrics, consider the
standard centralized gradient descent (GD) method as an example.
Note that the GD algorithm has an $ (1/)) convergence rate for
non-convex optimization, which suggests $ (n�2) communication
complexity. Also, it takes a full gradient evaluation in each iteration,
i.e., $ (=) per-iteration sample complexity, where = is the total
number of samples. This implies $ (=n�2) sample complexity to
converge to an n2-stationary point. Hence, the sample complexity
of GD is high if the dataset size = is large.

In contrast, consider the classical stochastic gradient descent
(SGD) algorithm that is widely used in machine learning. The basic
idea of SGD is to lower the gradient evaluation cost by using only
a mini-batch of samples in each iteration. However, due to the sam-
ple randomness in mini-batches, the convergence rate of SGD for
non-convex optimization is reduced to $ (1/

p
)) [2, 12, 45]. Thus,

to reach an n2-stationary point x with kr5 (x)k2  n2, SGD has
$ (n�4) sample complexity, which could be either higher or lower
than the $ (=n�2) sample complexity of the GD method, depend-
ing on the relationship between = and n . Also, for ?-dimensional

problems, both GD and SGD have memory complexity ? , since they
only need a ?-dimensional vector to store (stochastic) gradients.

2.2 Related Work
1) Centralized First-Order Methods with Low Complexities:
Now, we review several state-of-the-art low-complexity centralized
stochastic �rst-order methods that are related to our GT-STORM
algorithm. To reduce the overall sample and communication com-
plexities of the standard GD and SGD algorithms, a natural ap-
proach is variance reduction. Earlier works following this approach
include SVRG [15, 29], SAGA [8] and SCSG [18]. These algorithms
has an overall sample complexity of $ (= + =2/3n�2). A more re-
cent variance reduction method is the stochastic path-integrated
di�erential estimator (SPIDER) [11], which is based on the SARAH
gradient estimator developed by Nguyen et al. [27]. SPIDER fur-
ther lowers the sample complexity to $ (= + p

=n�2), which attains
the ⌦(p=n�2) theoretical lower bound for �nding an n2-stationary
point for = = $ (n�4). More recently, to improve the small step-size
$ (n!�1) in SPIDER, a variant called SpiderBoost was proposed
in [36], which allows a larger constant step-size$ (!�1) while keep-
ing the same $ (= + p

=n�2) sample complexity. It should be noted,
however, that the signi�cantly improved sample complexity of SPI-
DER/SpiderBoost is due to a restrictive assumption that a universal
Lipschitz smoothness constant exists for all local objectives 5 (·; Z8)
88 . This means that the objectives are “similar” and there are no
“outliers” in the training samples. Meanwhile, to obtain the optimal
communication complexity, SpiderBoost require a (nearly) full gra-
dient every

p
= iterations and a mini-batch of stochastic gradient

evaluation with batch size
p
= in each iteration.

To overcome the above limitations, a hybrid stochastic gradient
descent (Hybrid-SGD) method is recently proposed in [33], where a
convex combination of the SARAH estimator [27] and an unbiased
stochastic gradient is used as the gradient estimator. The Hybrid-
SGD method relaxes the universal Lipschitz constant assumption
in SpiderBoost to an average Lipschitz smoothness assumption.
Moreover, it only requires two samples to evaluate the gradient per
iteration. As a result, Hybrid-SGD has a $ (n�3) sample complexity
that is independent of dataset size. Although Hybrid-SGD is for
centralized optimization, the interesting ideas therein motivate our
GT-STORM approach for decentralized learning following a similar
token. Interestingly, we show that in decentralized settings, our GT-
STORMmethod can further improve the gradient evaluation to only
one sample per iteration, while not degrading the communication
complexity order. Lastly, we remark that all algorithms above have
memory complexity at least 2? for ?-dimensional problems. In
contrast, GT-STORM enjoys a memory complexity of ? .

2) Decentralized Optimization Algorithms: In the literature,
many decentralized learning optimization algorithms have been
proposed to solve Problem (1), e.g., �rst-ordermethods [9, 25, 30, 39],
prime-dual methods [23, 31], Newton-type methods [10, 22] (see
in [4, 24] for comprehensive surveys). In this paper, we consider
decentralized �rst-order methods for the non-convex network con-
sensus optimization in (2). In the literature, the convergence rate
of the well-known decentralized gradient descent (DGD) algorithm
[25] was studied in [41], which showed that DGD with a constant
step-size converges with an $ (1/)) rate to a step-size-dependent

MobiHoc ’21, July 26–29, 2021, Shanghai, China Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley

error ball around a stationary point. Later, a gradient tracking (GT)
method was proposed in [9] to �nd an n2-stationary point with
an $ (1/)) convergence rate under constant step-sizes. However,
these methods require a full gradient evaluation per iteration, which
yields$ (=n�2) sample complexity. To reduce the per-iteration sam-
ple complexity, stochastic gradients are adopted in the decentralized
optimization (e.g., DSGD [13], PSGD [19], GNSD [20]). Due to the
randomness in stochastic gradients, the convergence rate is reduced
to $ (1/

p
)). Thus, the sample and communication complexities

of these stochastic methods are $ (n�4) and $ (<�1n�4), two or-
ders of magnitude higher than their deterministic counterparts. To
overcome the limitations in stochastic methods, a natural idea is to
use variance reduction techniques similar to those for centralized
optimization to reduce the sample and communication complexities
for non-convex network consensus optimization. So far, existing
works on the decentralized stochastic variance reduction methods
include DSA [21], di�usion-AVRG [40] and GT-SAGA [38] etc., all
of which focus on convex problems. To our knowledge, the decen-
tralized gradient estimation and tracking (D-GET) algorithm in [32]
is the only work for non-convex optimization. D-GET integrates the
decentralized gradient tracking [20] and the SpiderBoost gradient
estimator [36] to obtain $ (<= +<p

=n�2) dataset-size-dependent
sample complexity and $ (n�2) communication complexity. Recall
that the sample and communication complexities of GT-STORM
are $ (<1/2n�3) and $ (<�1/2n�3), respectively. Thus, if dataset
size = = ⌦(n�2), D-GET has a higher sample complexity than GT-
STORM. As an example, when n = 10�2, = is on the order of 104,
which is common in modern machine learning datasets. Also, the
memory complexity of D-GET is 2? as opposed to the ? memory
complexity of GT-STORM. This implies a huge saving with GT-
STORM if ? is large (e.g., ? ⇡ 106 in many deep learning models).

3 A GRADIENT-TRACKING STOCHASTIC
RECURSIVE MOMENTUM ALGORITHM

In this section, we introduce our gradient-tracking-based stochastic
recursive momentum (GT-STORM) algorithm for solving Problem
(2) in Section 3.1. Then, we will state the main theoretical results
and their proofs in Sections 3.2 and 3.3, respectively.

3.1 The GT-STORM Algorithm
In the literature, a standard starting point to solve Problem (2) is to
reformulate the problem as [25]:

Minimize
1
<

<’
8=1

58 (x8) (4)

subject to (W ⌦ I?)x = x,

where I? denotes the ?-dimensional identity matrix, the operator
⌦ denotes the Kronecker product, andW 2 R<⇥< is often referred
to as the consensus matrix. We let [W]8 9 represent the element in
the 8-th row and the 9-th column in W. For Problems (4) and (2) to
be equivalent,W should satisfy the following properties:
(a) Doubly Stochastic:

Õ<
8=1 [W]8 9 =

Õ<
9=1 [W]8 9 = 1.

(b) Symmetric: [W]8 9 = [W] 98 , 88, 9 2 N .
(c) Network-De�ned Sparsity Pattern: [W]8 9 > 0 if (8, 9) 2 L;

otherwise [W]8 9 = 0, 88, 9 2 N .

The above properties imply that the eigenvalues of W are real
and can be sorted as �1 < _<  · · ·  _2 < _1 = 1. We de-
�ne the second-largest eigenvalue in magnitude of W as _ ,
max{|_2 |, |_< |} for the further notation convenience. It can be seen
later that _ plays an important role in the step-size selection and
the algorithm’s convergence rate.

As mentioned in Section 2.1, our GT-STORM algorithm is in-
spired by the GT method [9, 26] for reducing consensus error and
the recursive variance reduction (VR) methods [11, 36] developed
for centralized optimization. Speci�cally, in the centralized GT
method, an estimator y is introduced to track the global gradient:

yC = WyC�1 + gC � gC�1, (5)

where gC is the gradient estimation in the C th iteration. Meanwhile,
to reduce the stochastic error, a gradient estimator v in VR methods
is updated recursively based on a double-loop structure as follows:

vC = vC�1 + r5 (xC ; ZC) � r5 (xC�1; ZC), if mod(C,@) < 0, (6)

where r5 (x; Z) is the stochastic gradient dependent on parameter x
and a data sample Z , and @ is the number of the inner loop iterations.
On the other hand, if mod(C,@) = 0, vC takes a full gradient. Note
that these two estimators have a similar structure: Both are recur-
sively updating the previous estimation based on the di�erence
of the gradient estimations between two consecutive iterations
(i.e., momentum). However, they are also quite di�erent due to
the double-loop structure in (6) and it is unclear how to integrate
them. This motivates us to consider the following question: Could
we somehow “integrate” these two methods to develop a new decen-
tralized gradient estimator to track the global gradient and reduce
the stochastic error at the same time? Unfortunately, the GT and
VR estimators can not be combined straightforwardly. The major
challenge lies in the structural di�erence in the outer loop iteration
(i.e., mod(C,@) = 0), where the VR estimator requires a full gradient
and does not follow the recursive updating structure.

Surprisingly, in this paper, we show that there exists an “indirect”
way to achieve the salient features of both GT and VR. Our approach
is to abandon the double-loop structure of VR and pursue a single-
loop structure. Yet, this single-loop structure should still be able
to reduce the variance and consistently track the global gradient.
Speci�cally, we introduce a parameter VC 2 [0, 1] in the recursive
update and integrate it with a consensus step as follows:

v8,C =VC
’

9 2N8
[W]8 9v9,C�1+r58 (x8,C ; Z8,C)�VCr58 (x8,C�1; Z8,C),(7)

where x8,C , v8,C and Z8,C are the parameter, gradient estimator, and
random sample in the C th iteration at node 8 , respectively. Note that
the estimator reduces to the classical stochastic gradient estimator
when VC = 0. On the other hand, if we set VC = 1, the estimator
becomes the (stochastic) gradient tracking estimator based on a sin-
gle sample (implying low sample complexity). Then, the key to the
success of our GT-STORM design lies in meticulously choosing pa-
rameter VC to mimic the gradient estimator technique in centralized
optimization [6, 33]. Lastly, the local parameters can be updated by
the conventional decentralized stochastic gradient descent step:

x8,C+1 =
’

9 2N8
[W]8 9x9,C � [Cv8,C , (8)

where [C is the step-size in iteration C . To summarize, we state our
algorithm in Algorithm 1 as follows.

GT-STORM: Taming Complexities in Decentralized Non-Convex Learning MobiHoc ’21, July 26–29, 2021, Shanghai, China

Algorithm 1: Gradient-Tracking-based Stochastic Recursive Mo-
mentum Algorithm (GT-STORM).

Initialization:
1. Choose) > 0 and let C = 1. Set x8,0 = x0 at node 8 . Calculate

v8,0 = r58 (x8,0; Z8,0) at node 8 .
Main Loop:
2. In the C-th iteration, each node sends x8,C�1 and local gradient

estimator v8,C�1 to its neighbors. Meanwhile, upon the reception
of all neighbors’ information, each node performs the following:
a) Update local parameter: x8,C =

Õ
9 2N8

[W]8 9x9,C�1�[C�1v8,C�1.
b) Update local gradient estimator: v8,C = VC

Õ
9 2N8

[W]8 9v9,C�1
+r58 (x8,C ; Z8,C) � VCr58 (x8,C�1; Z8,C).

3. Stop if C >) ; otherwise, let C C + 1 and go to Step 2.

Two remarks for Algorithm 1 are in order. First, thanks to the
single-loop structure, GT-STORM is easier to implement compared
to the low-sample-complexity D-GET [32] method, which has in a
double-loop structure. Second, GT-STORM only requires ? memory
space due to the use of only one intermediate vector v at each node.
In contrast, the memory complexity of D-GET is 2? (cf. y and v in
[32]). This 50% saving is huge particularly for deep learning models,
where the number of parameters could be in the range of millions.

3.2 Main Theoretical Results
In this section, we will establish the complexity properties of the
proposed GT-STORM algorithm. For better readability, we state
the main theorem and its corollary in this section and provide the
intermediate lemmas in Section 3.3. We start with the following
assumptions on the global and local objectives:

A��������� 1. The objective function 5 (x) = 1
<

Õ<
8=1 58 (x) with

58 (x) = EZ⇠D8
58 (x; Z) satis�es the following assumptions:

(a) Boundedness from below: There exists a �nite lower bound
5 ⇤ = infx 5 (G) > �1;

(b) !-average smoothness: 58 (·; Z8) is !-average smooth on R? , i.e.,
there exists a positive constant !, such that EZ⇠D8

[kr58 (x; Z)�
r58 (y; Z)k2] !2kx�yk2,8x, y 2 R? , 8 2 [<];

(c) Bounded variance: There exists a constant f � 0 such that
EZ⇠D8

[kr58 (x; Z) � r58 (x)k2]  f2,8x 2 R? , 8 2 [<];
(d) Bounded gradient: There exists a constant ⌧ � 0 such that

EZ⇠D8
[kr58 (x; Z)k2]  ⌧2,8x 2 R? , 8 2 [<].

In the above assumptions, (a) and (c) are standard in the stochas-
tic non-convex optimization literature; (b) is an expected Lipschitz
smoothness condition over the data distribution, which implies
the conventional global Lipschitz smoothness [12] by the Jensen’s
inequality. Note that (b) is weaker than the individual Lipschitz
smoothness in [11, 32, 36]: if there exists an outlier data sample, then
the individual objective function might have a very large smooth-
ness parameter while the average smoothness can still be small; (d)
is equivalent to the Lipschitz continuity assumption, which is also
commonly used for non-convex stochastic algorithms [16, 17, 46]
and is essential for analyzing the decentralized gradient descent
method [13, 39, 41].1

1Note that under Assumption (b), as long as the parameter x is bounded, (d) is satis�ed.

For convenience, in the subsequent analysis, we de�ne W̃ =
W⌦ I<, g8,C = r58 (x8,C), u8,C = r58 (x8,C ; Z8,C),w8,C = r58 (x8,C ; Z8,C) �
r58 (x8,C�1; Z8,C) and aC = [a>1,C , · · · , a><,C]> and āC = 1

<
Õ<
8=1 a8,C , for

a 2 {x, u,w, v, g}. Then, the algorithm can be compactly rewritten
in the following matrix-vector form:

xC = W̃xC�1 � [C�1vC�1, (9)

vC = VCW̃vC�1 + VCwC + (1 � VC)uC . (10)

Furthermore, since 1>W = 1>, we have x̄C = x̄C�1 � [C�1v̄C�1,
v̄C = VC v̄C�1 + VC w̄C + (1 � VC)ūC . We �rst state the convergence
result for Algorithm 1 as follows:

T������ 1. Under Assumption 1 and with the positive constants
20 and 21 satisfying 1� (1+21)_2� 1

20
> 0, if we set [C = g/(l +C)1/3

and VC+1 = 1�d[2C , with g > 0,l � max{2, g3/min{:31 ,:32 ,:33}} and
d = 2/(3g3) +32!2, then we have the following result for Algorithm 1:

min
C 2 [)]

E[kr5 (x̄C)k2] +
1
<
E[kxC � 1 ⌦ x̄C k2]

 2(5 (x̄0) � 5 (x̄⇤))
g () + 1)2/3

+ 220E[kv0 � 1 ⌦ v̄0k2]
<g () + 1)2/3

+ (l � 1)f2

16<!2g2 () + 1)2/3
+ d2f2 ln(l +) � 1)

8<!2 () + 1)2/3

+
12(1 + 1

21
)20g1/3⌧2d2

(l � 1)1/3 () + 1)2/3
+$

⇣ 23l

g) 5/3

⌘
, (11)

where 23 = max{1,l/(<g2), g4/3/l1/3, g ln(l +))/<}, and the con-
stants :1, :2 and :3 are:

:1 = 1/
⇣
2! + 32(1 + 1

21
)20!2

⌘
, (12)

:2 =
⇣
1 � (1 + 21)_2

⌘
/
⇣
1 + 1

21
+ 1
20

⌘
, (13)

:3 =

s⇣
1 � (1 + 21)_2 �

1
20

⌘
/
⇣ 2
3g3

+ 2!2 + 1
220

⌘
. (14)

In Theorem 1, 20 and 21 are two constants depending on the
network topology, which in turn will a�ect the step-size and con-
vergence: with a sparse network, i.e., _ is close to but not exactly one
(recall that _ = max{|_2 |, |_< |}). In order for 1� (1+21)_2 � 1

20
> 0

to hold, 20 needs to be large and 21 needs be close to zero, which
leads to small :1, :2 and :3 . Note that the step-size [C is of the order
$ (C�1/3), which is larger than the $ (C�1/2) order for the classical
decentralized SGD algorithms. With this larger step-size, the con-
vergence rate is $ (C�2/3) and faster than the rate $ (C�1/2) for the
decentralized SGD algorithms. Based on Theorem 1, we have the
sample and communication complexity results for Algorithm 1:

C�������� 2. Under the conditions in Theorem 1, if g = $ (<1/3)
and l = $ (<4/3), then to achieve an n2-stationary solution, the total
communication rounds are on the order of $̃ (<�1/2n�3) and the total
samples evaluated across the network is on the order of $̃ (<1/2n�3).

3.3 Proofs of the Theoretical Results
Due to space limitation, we provide a proof sketch for Theorem 1
here and relegate the details to the appendices. First, we bound the
error of gradient estimator E[kvC � gC k2] as follows:

MobiHoc ’21, July 26–29, 2021, Shanghai, China Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley

L���� 1 (E���� �� G������� E��������). Under Assumption 1
and with vC de�ned in (10), it holds thatE[kv̄C�ḡC k2]  V2C E[kv̄C�1�
ḡC�1k2] + 2V2C !2

< E[kxC � xC�1k2] + 2(1�VC)2f2

< .

It can be seen that the upper bound depends on the error in
the previous step with a factor V2C . This will be helpful when we
construct a potential function. Then, according to the algorithm
updates (9)–(10), we show the following descent inequality:

L���� 2 (D������ L����). Under Assumption 1, Algorithm 1

satis�es: E[5 (x̄C+1)]�E[5 (x̄C)]  �[C
2 E[kr5 (x̄C)k2]� ([C2 � ![2C

2)⇥
E[kv̄C k2] + [CE[kv̄C � ḡC k2] + !2[C

< E[kxC � 1 ⌦ x̄C k2].
We remark that the right-hand-side (RHS) of the above inequality

contains the consensus error of local parameters
Õ)
C=0 E[kxC �

1 ⌦ x̄C k2], which makes the analysis more di�cult than that of
the centralized optimization. Next, we prove the contraction of
iterations in the following lemma, which is useful in analyzing our
decentralized gradient tracking algorithm.

L���� 3 (I������� C����������). The following contraction
properties of the iterates produced by Algorithm 1 hold:

kxC+1 � 1 ⌦ x̄C+1k2  (1 + 21)_2kxC � 1 ⌦ x̄C k2

+ (1 + 1
21

)[2C kvC � 1 ⌦ v̄C k2, (15)

kvC+1 � 1 ⌦ v̄C+1k2  (1 + 21)V2C+1_2kvC � 1 ⌦ v̄C k2

+ 2(1 + 1
21

)
�
V2C+1kwC+1k2 + (1 � VC+1)2kuC+1k2

�
, (16)

where 21 is a positive constant. Additionally, we have

kxC+1 � xC k2  8k (xC � 1 ⌦ x̄C)k2

+ 4[2C kvC � 1 ⌦ v̄C k2 + 4[2C<kv̄C k2 . (17)

Finally, we de�ne a potential function in (18), based on which
we prove the convergence bound:

L���� 4. (Convergence of Potential Function) De�ne the following
potential function:

�C = E[5 (x̄C) +
1

32!2[C�1
kḡC � v̄C k2 +

20
<[C�1

kxC � 1 ⌦ x̄C k2

+ 20
<

kvC � 1 ⌦ v̄C k2], (18)

where 20 is a positive constant. Under Assumption 1, if we set [C =
g/(l + C)1/3 and VC+1 = 1� d[2C , where g, l � 2, d = 2/(3g3) + 32!2
are three constants, then it holds that:

�C+1 � �C  � [C
2
E[kr5 (x̄C)k2] +

d2f2[3C
16<!2

+ 2(1 + 1
21

)20⌧2d2[4C

� 20⇠1
<[C

[kxC � 1 ⌦ x̄C k2] �
20⇠2
<

E[kvC � 1 ⌦ v̄C k2]

� ⇠3[C
4

E[kv̄C k2], (19)

where⇠1,⇠2, and⇠3 are constants:⇠1 = 1� (1+21)_2� 1
220 �16(1+

1
21
)!2[C �

⇣
2
3g3 + !2

20

⌘
[2C , ⇠2 = 1 � (1 + 21)_2 � (1 + 1

21
)[C � [C

420 �
8(1 + 1

21
)!2[2C , and ⇠3 = 1 � 2![C � 32(1 + 1

21
)20!2[C .

Finally, by properly selecting the parameters, constants ⇠1, ⇠2
and ⇠3 can be made non-negative, which leads to Theorem 1.

4 EXPERIMENTAL RESULTS
In this section, we conduct experiments using several non-convex
machine learning problems to evaluate the performance of our
method. In particular, we compare our algorithm with the following
state-of-art single-loop algorithms:
• DSGD [13, 25, 39]: Each node performs: x8,C+1 =

Õ
9 2N8

[W]8 9x9,C�
[r58 (x8,C ; Z8,C), where the stochastic gradient r58 (x8,C ; Z8,C) cor-
responds to random sample Z8,C . Then, each node exchanges the
local parameter x8,C with its neighbors.

• GNSD [20]: Each node keeps two variables x8,C and y8,C . The local
parameter x8,C is updated as x8,C+1=

Õ
9 2N8

[W]8 9x9,C �[y8,C and
the tracked gradient y8,C is updated as y8,C+1=

Õ
9 2N8

[W]8 9y9,C +
r58 (x8,C+1; Z8,C+1)�r58 (x8,C ; Z8,C) .

Here, we compare with the above two classes of stochastic algo-
rithms because they all employ a single-loop structure and do not
require full gradient evaluations. We note that it is hard to have
a direct and fair comparison with D-GET [32] numerically, since
D-GET uses full gradients and has a double-loop structure.

Network Model: The communication graph G is generated by
the Erd•os-Rènyi graph with di�erent edge connectivity probability
?2 and number of nodes<. We set< = 10 and choose the edge
connectivity probability as ?2 = 0.5. The consensusmatrix is chosen
as W = I � 2

3_max (L) L, where L is the Laplacian matrix of G, and
_max (L) denotes the largest eigenvalue of L.

1) Non-convex logistic regression: In our �rst experiment, we
consider the binary logistic regression problem with a non-convex
regularizer [33, 36, 37]:

min
x2R3

� 1
<=

<’
8=1

=’
9=1

[~8 9 log
� 1
1 + 4�x>Z8 9

�
+

(1 � ~8 9) log
� 4�x

>Z8 9

1 + 4�x>Z8 9
�
] + U

3’
8=1

x28
1 + x28

, (20)

where the label ~8 9 2 {0, 1}, the feature Z8 9 2 R3 and U = 0.1.
1-a) Datasets: We consider three commonly used binary classi�-

cation datasets from LibSVM: 090, A2E1.18=0A~ and 8 92==1. The 090
dataset has 32561 samples and 123 features, the A2E1.18=0A~ dataset
has 20242 samples and 47236 features, and the 8 92==1 dataset has
49990 samples and 22 features. We evenly divide the dataset into<
sub-datasets corresponding to the< nodes.

1-b) Parameters: For all algorithms, we set the batch size as one
and the initial step-size [0 is tuned by searching over the grid
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}. For DSGD and GNSD, the step-size
is set to [C = [0/

p
1 + 0.1C , which is on the order of $ (C�1/2) fol-

lowing the state-of-the-art theoretical result [20]. For GT-STORM,
the step-size is set as [C = [0/ 3p1 + 0.1C , which is on the order
of $ (C�1/3) as speci�ed in our theoretical result. In addition, we
choose the parameter d for GT-STORM as 1/[20 , so that V1 = 0 in
the �rst step.

1-c) Results: We �rst compare the convergence rates of the algo-
rithms. We adopt the consensus loss de�ned in the left-hand-side
(LHS) of (3) as the criterion. After tuning, the best initial step-sizes
are 0.1, 0.5 and 0.2 for 090, 8 92==1 and A2E1.18=0A~, respectively.
The results are shown in Figs. 1–3. It can be seen that our algorithm

GT-STORM: Taming Complexities in Decentralized Non-Convex Learning MobiHoc ’21, July 26–29, 2021, Shanghai, China

Figure 1: Non-convex logistic
regression on LibSVM: a9a.

Figure 2: Non-convex logistic
regression on LibSVM: ijcnn1.

Figure 3: Non-convex logistic
regression on LibSVM: rcv1.

Figure 4: Non-convex logistic
regression: The e�ect of d .

Figure 5: Non-convex logistic
regression: The e�ect of ?2 .

Figure 6: Non-convex logistic
regression: The e�ect of<.

Figure 7: CNN experimental
results on MNIST dataset.

Figure 8: CNN experimental
results on CIFAR-10 dataset.

has a better performance: for the 090 and A2E1.18=0A~ datasets, all
algorithms reach almost the same accuracy but our algorithm has
a faster speed; for the 8 92==1 dataset, our algorithm outperforms
other methods in terms of both speed and accuracy.

Next, we examine the e�ect of the parameter d on our algorithm.
We focus on the 090 dataset and �x the initial step-size as [0 =
0.1. We choose d from {10�1, 100, 101, 102}. Note that d = 102 is
corresponding to the case d =1/[20 . The results are shown in Fig. 4. It
can be seen that the case d =101 has the best performance, which is
followed by the case d = 102 . Also, as d decreases, the convergence
speed becomes slower (see the cases d =10�1 and 100).

In addition, we examine the e�ect of the network topology. We
�rst �x the number of workers as< = 10 and change the the edge
connectivity probability ?2 from 0.35 to 0.9.Note that with a smaller
?2 , the network becomes sparser. We set [0 = 0.1 and d = 102 .
The results are shown in Fig. 5. Under di�erent ?2 -values, our
algorithm has a similar performance in terms of convergence speed
and accuracy. But with a larger ?2 -values i.e., a denser network,
the convergence speed slightly increases (see the zoom-in view in
Fig. 6. Then, we �x the the edge connectivity probability ?2 = 0.5
but change the number of workers< from 10 to 50. We show the
results in Fig. 6. It can be seen that withmore workers, the algorithm
converges faster and reaches a better accuracy.

2) Convolutional neural networks We use all three algo-
rithms to train a convolutional neural network (CNN) model for
image classi�cation on MNIST and CIFAR-10 datasets. We adopt
the same network topology as in the previous experiment. We use a
non-identically distributed data partition strategy: the 8th machine
can access the data with the 8th label. We �x the initial step-size as
[0 = 0.01 for all three algorithms and the remaining settings are
the same as in the previous experiment.

2-a) Learning Models: For MNIST, the adopted CNN model has
two convolutional layers (�rst of size 1 ⇥ 16 ⇥ 5 and then of size
16 ⇥ 32 ⇥ 5), each of which is followed by a max-pooling layer with
size 2 ⇥ 2, and then a fully connected layer. The ReLU activation is
used for the two convolutional layers and the “softmax” activation
is applied at the output layer. The batch size is 64 for the CNN
training on MNIST. For CIFAR-10, we apply the CNN model with
two convolutional layers (�rst of size 3 ⇥ 6 ⇥ 5 and then of size
6 ⇥ 16 ⇥ 5). Each of the convolutional layers is followed by a max-
pooling layer of size 2 ⇥ 2, and then three fully connected layers.
The ReLU activation is used for the two convolutional layers and
the �rst two fully connected layers, and the “softmax” activation is
applied at the output layer. The batch size is chosen as 128 for the
CNN training on CIFAR-10.

2-b) Results: Fig. 7 illustrates the testing accuracy of di�erent
algorithms versus iterations on MNIST and CIFAR-10 datasets. It
can be seen from Fig. 7 that on the MNIST dataset, GNSD and GT-
STORM have similar performance, but our GT-STORM maintains
a faster speed and a better prediction accuracy. Compared with
DSGD, our GT-STORM can gain about 10% more accuracy. On
the CIFAR-10 dataset (see Fig. 8), the performances of DSGD and
GNSD deteriorate, while GT-STORM can achieve a better accuracy.
Speci�cally, the accuracy of GT-STORM is around 15% higher than
that of GNSD and 25% higher than that of DSGD.

5 CONCLUSION
In this paper, we proposed a gradient-tracking-based stochastic
recursive momentum (GT-STORM) algorithm for decentralized
non-convex optimization, which enjoys low sample, communica-
tion, and memory complexities. Our algorithm fuses the gradient
tracking estimator and the variance reduction estimator and has a
simple single-loop structure. Thus, it is more practical compared to

MobiHoc ’21, July 26–29, 2021, Shanghai, China Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley

existing works (e.g. GT-SAGA/SVRG and D-GET) in the literature.
We have also conducted extensive numerical studies to verify the
performance of our method, including non-convex logistic regres-
sion and neural networks. The numerical results show that our
method outperforms the state-of-the-art methods when training
on the large datasets. Our results in this work contribute to the
increasingly important �eld of decentralized network training.

ACKNOWLEDGMENTS
J. Liu’s work is supported in part by NSF grants CAREER CNS-
2110259, ECCS-1818791, CCF-2110252, TRIPODSCCF-1934884, ONR
grant N00014-17-1-2417, AFRL grant FA8750-18-1-0107, and aGoogle
Faculty Research Award. Z. Zhu’s work is supported in part by NSF
Grant TRIPODS CCF-1934884. DISTRIBUTION STATEMENT A:
Approved for Public Release; distribution unlimited AFRL-2020-
0026 on 06 Aug 2020. Other requests shall be referred to AFRL/RIT
525 Brooks Rd Rome, NY 13441.

REFERENCES
[1] Kamal Ali and Wijnand Van Stam. 2004. TiVo: Making show recommendations

using a distributed collaborative �ltering architecture. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining.
394–401.

[2] Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018. Optimization methods for
large-scale machine learning. Siam Review 60, 2 (2018), 223–311.

[3] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. 2012. An overview
of recent progress in the study of distributed multi-agent coordination. IEEE
Transactions on Industrial informatics 9, 1 (2012), 427–438.

[4] Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai, Xinwei Zhang, and Songtao Lu.
2020. Distributed Learning in the Non-Convex World: From Batch to Streaming
Data, and Beyond. arXiv preprint arXiv:2001.04786 (2020).

[5] Jianshu Chen, Zaid J Tow�c, and Ali H Sayed. 2014. Dictionary learning over
distributed models. IEEE Transactions on Signal Processing 63, 4 (2014), 1001–1016.

[6] Ashok Cutkosky and Francesco Orabona. 2019. Momentum-based variance
reduction in non-convex SGD. In Advances in Neural Information Processing
Systems. 15210–15219.

[7] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012. Large
scale distributed deep networks. In Advances in neural information processing
systems. 1223–1231.

[8] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. 2014. SAGA: A fast
incremental gradient method with support for non-strongly convex composite
objectives. In Advances in neural information processing systems. 1646–1654.

[9] Paolo Di Lorenzo and Gesualdo Scutari. 2016. Next: In-network nonconvex opti-
mization. IEEE Transactions on Signal and Information Processing over Networks 2,
2 (2016), 120–136.

[10] Mark Eisen, Aryan Mokhtari, and Alejandro Ribeiro. 2017. Decentralized quasi-
newton methods. IEEE Transactions on Signal Processing 65, 10 (2017), 2613–2628.

[11] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. 2018. Spider:
Near-optimal non-convex optimization via stochastic path-integrated di�erential
estimator. In Advances in Neural Information Processing Systems. 689–699.

[12] Saeed Ghadimi and Guanghui Lan. 2013. Stochastic �rst-and zeroth-order meth-
ods for nonconvex stochastic programming. SIAM Journal on Optimization 23, 4
(2013), 2341–2368.

[13] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. 2017. Col-
laborative deep learning in �xed topology networks. In Advances in Neural
Information Processing Systems. 5904–5914.

[14] Zhanhong Jiang, Kushal Mukherjee, and Soumik Sarkar. 2018. On Consensus-
Disagreement Tradeo� in Distributed Optimization. In 2018 Annual American
Control Conference (ACC). IEEE, 571–576.

[15] Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in neural information processing
systems. 315–323.

[16] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi.
2019. Error feedback �xes SignSGD and other gradient compression schemes.
arXiv preprint arXiv:1901.09847 (2019).

[17] Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. 2019. Decentralized
stochastic optimization and gossip algorithms with compressed communication.
arXiv preprint arXiv:1902.00340 (2019).

[18] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. 2017. Non-convex �nite-
sum optimization via scsg methods. In Advances in Neural Information Processing
Systems. 2348–2358.

[19] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
2017. Can decentralized algorithms outperform centralized algorithms? A case
study for decentralized parallel stochastic gradient descent. In Advances in Neural
Information Processing Systems. 5330–5340.

[20] Songtao Lu, Xinwei Zhang, Haoran Sun, and Mingyi Hong. 2019. GNSD: A
gradient-tracking based nonconvex stochastic algorithm for decentralized opti-
mization. In 2019 IEEE Data Science Workshop, DSW 2019. Institute of Electrical
and Electronics Engineers Inc., 315–321.

[21] Aryan Mokhtari and Alejandro Ribeiro. 2016. DSA: Decentralized double sto-
chastic averaging gradient algorithm. The Journal of Machine Learning Research
17, 1 (2016), 2165–2199.

[22] AryanMokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro. 2016. A decentralized
second-order method with exact linear convergence rate for consensus optimiza-
tion. IEEE Transactions on Signal and Information Processing over Networks 2, 4
(2016), 507–522.

[23] Joao FC Mota, Joao MF Xavier, Pedro MQ Aguiar, and Markus Püschel. 2013.
D-ADMM: A communication-e�cient distributed algorithm for separable opti-
mization. IEEE Transactions on Signal Processing 61, 10 (2013), 2718–2723.

[24] Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. 2018. Network topology
and communication-computation tradeo�s in decentralized optimization. Proc.
IEEE 106, 5 (2018), 953–976.

[25] Angelia Nedic and Asuman Ozdaglar. 2009. Distributed subgradient methods for
multi-agent optimization. IEEE Trans. Automat. Control 54, 1 (2009), 48.

[26] Angelia Nedich, Alex Olshevsky, and Wei Shi. 2016. A geometrically convergent
method for distributed optimization over time-varying graphs. In 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, 1023–1029.

[27] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takác. 2017. SARAH: A
novel method for machine learning problems using stochastic recursive gradient.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 2613–2621.

[28] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693–701.

[29] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola.
2016. Stochastic variance reduction for nonconvex optimization. In International
conference on machine learning. 314–323.

[30] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. 2015. Extra: An exact �rst-
order algorithm for decentralized consensus optimization. SIAM Journal on
Optimization 25, 2 (2015), 944–966.

[31] Haoran Sun and Mingyi Hong. 2019. Distributed non-convex �rst-order opti-
mization and information processing: Lower complexity bounds and rate optimal
algorithms. IEEE Transactions on Signal processing 67, 22 (2019), 5912–5928.

[32] Haoran Sun, Songtao Lu, and Mingyi Hong. 2019. Improving the sample and
communication complexity for decentralized non-convex optimization: A joint
gradient estimation and tracking approach. ICML 2020 (2019).

[33] Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and LamMNguyen. 2019. Hybrid
Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization.
arXiv preprint arXiv:1905.05920 (2019).

[34] John Nikolas Tsitsiklis. 1984. Problems in decentralized decision making and
computation. Technical Report. Massachusetts Inst of Tech Cambridge Lab for
Information and Decision Systems.

[35] Weiran Wang, Jialei Wang, Mladen Kolar, and Nathan Srebro. 2018. Dis-
tributed stochastic multi-task learning with graph regularization. arXiv preprint
arXiv:1802.03830 (2018).

[36] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. 2019. SpiderBoost
and Momentum: Faster Variance Reduction Algorithms. In Advances in Neural
Information Processing Systems. 2403–2413.

[37] ZheWang, Yi Zhou, Yingbin Liang, and Guanghui Lan. 2018. Cubic regularization
with momentum for nonconvex optimization. arXiv preprint arXiv:1810.03763
(2018).

[38] Ran Xin, UsmanAKhan, and Soummya Kar. 2019. Variance-reduced decentralized
stochastic optimization with gradient tracking. arXiv preprint arXiv:1909.11774
(2019).

[39] Kun Yuan, Qing Ling, and Wotao Yin. 2016. On the convergence of decentralized
gradient descent. SIAM Journal on Optimization 26, 3 (2016), 1835–1854.

[40] Kun Yuan, Bicheng Ying, Jiageng Liu, and Ali H Sayed. 2018. Variance-reduced
stochastic learning by networked agents under random reshu�ing. IEEE Trans-
actions on Signal Processing 67, 2 (2018), 351–366.

[41] Jinshan Zeng andWotao Yin. 2018. On nonconvex decentralized gradient descent.
IEEE Transactions on signal processing 66, 11 (2018), 2834–2848.

[42] Xin Zhang, Jia Liu, and Zhengyuan Zhu. 2019. Distributed Linear Model Cluster-
ing over Networks: A Tree-Based Fused-Lasso ADMM Approach. arXiv preprint
arXiv:1905.11549 (2019).

[43] Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth S. Bentley. 2020. GT-STORM:
Taming Sample, Communication, and Memory Complexities in Decentralized

GT-STORM: Taming Complexities in Decentralized Non-Convex Learning MobiHoc ’21, July 26–29, 2021, Shanghai, China

Non-Convex Learning. https://kevinliu-osu-ece.github.io/publications/GT-
STORM_TR.pdf

[44] Ke Zhou and Stergios I Roumeliotis. 2011. Multirobot active target tracking with
combinations of relative observations. IEEE Transactions on Robotics 27, 4 (2011),
678–695.

[45] Pan Zhou, Xiaotong Yuan, and Jiashi Feng. 2018. New insight into hybrid sto-
chastic gradient descent: Beyond with-replacement sampling and convexity. In
Advances in Neural Information Processing Systems. 1234–1243.

[46] Yi Zhou, Yingbin Liang, and Huishuai Zhang. 2018. Generalization error bounds
with probabilistic guarantee for sgd in nonconvex optimization. arXiv preprint
arXiv:1802.06903 (2018).

[47] Martin Zinkevich, MarkusWeimer, Lihong Li, and Alex J Smola. 2010. Parallelized
stochastic gradient descent. In Advances in neural information processing systems.
2595–2603.

A PROOF OF MAIN RESULTS
Due to space limitation, we provide key proof steps of the key
lemmas and theorems in this appendix. We refer readers to [43] for
the complete proofs.

A.1 Proof for Lemma 1
Recall that v̄C = VC (v̄C�1+w̄C)+(1�VC)ūC . Then, with some algebraic
derivations, we can show that: kv̄C � ḡC k2 = kVC (v̄C�1 + w̄C) + (1�
VC)ūC�ḡC k2+2hv̄C�1�ḡC�1, VC (w̄C�ḡC +ḡC�1)+(1�VC) (ūC�ḡC)i. Note
that EZC [w̄C] = ḡC � ḡC�1 and EZC [ūC] = ḡC . Taking expectation
with respect to ZC , we have:

EZC [kv̄C � ḡC k2]  V2C kv̄C�1 � ḡC�1k2

+
2V2C !

2

<
EZC [kxC � xC�1k2] +

2(1 � VC)2f2
<

.

Then, taking the full expectation leads to the stated result in Lemma 1.
This completes the proof.

A.2 Proof for Lemma 2
From the !-smoothness of 5 , we can show that: 5 (x̄C+1)  5 (x̄C)�
[C
2 kr5 (x̄C)k2� ([C2 � ![2C

2)kv̄C k2 +[C kv̄C �ḡC k2+ !2[C
< kxC �1 ⌦ x̄C k2,

where ḡC = 1
<

Õ<
8=1 g8,C and g8,C = r58 (x8,C). Taking the full ex-

pectation on the above inequality yields: E[5 (x̄C+1)]�E[5 (x̄C)] 
�[C2 E[kr5 (x̄C)k2]�(

[C
2 �

![2C
2)E[kv̄C k2]+[CE[kv̄C�ḡC k2]+!

2[C
< E[kxC�

1⌦ x̄C k2]. This completes the proof.

A.3 Proof for Lemma 3
First for the iterate xC , we have the following contraction:

kW̃xC �1 ⌦ x̄C k2= kW̃(xC �1⌦ x̄C)k2 _2kxC �1⌦ x̄C k2, (21)

This is because xC � 1 ⌦ x̄C is orthogonal to 1, which is the eigen-
vector corresponding to the largest eigenvalue of W̃, and _ =
max{|_2 |, |_< |}. Since x̄C+1 = x̄C � [C v̄C , we can then show that:

kxC+1 � 1 ⌦ x̄C+1k2 = kW̃xC � [CvC � 1 ⌦ (x̄C � [C v̄C)k2

 (1 + 21)_2kxC � 1 ⌦ x̄C k2 + (1 + 1
21

)[2C kvC � 1 ⌦ v̄C k2 . (22)

Similarly to (22), we can also show that:

kvC+1�1⌦ v̄C+1k2  (1+21)V2C+1_2kvC �1⌦ v̄C k2

+2(1+ 1
21

)
�
V2C+1kwC+1k2+(1�VC+1)2kuC+1k2

�
.

Lastly, according to the update in (8), it follows that

kxC+1 � xC k2 = kW̃xC � [CvC � xC k2

(0)
 8k (xC � 1 ⌦ x̄C)k2 + 4[2C kvC � 1 ⌦ v̄C k2 + 4[2C<kv̄C k2, (23)

where (0) is due to kW̃ � Ik  2 and the proof is complete.

A.4 Proof for Lemma 4
First, with [C = g/(l + C)1/3, we can show that:

1
[C

� 1
[C�1

=
1
g

�
(l + C) 1

3 � (l + C � 1) 1
3
�
 2

2
3

3g3
g2

(l + C) 2
3
 2

3g3
[C .

Next, we prove the following three contraction relationships:
i) For E[kv̄C � ḡC k2], we have:

1
[C

E[kv̄C+1�ḡC+1k2]�
1

[C�1
E[kv̄C �ḡC k2]

�32[C!2E[kv̄C �ḡC k2]+
2V2C+1!

2

<[C
E[kxC+1�xC k2]+

2d2f2[3C
<

. (24)

ii) For E[kxC � 1 ⌦ x̄C k2], we have:
1
[C

E[kxC+1�1⌦ x̄C+1k2]�
1

[C�1
E[kxC �1⌦ x̄C k2] 

⇣(1+21)_2�1
[C

+

2
3g3

[C
⌘
[kxC �1⌦ x̄C k2]+(1+

1
21

)[CE[kvC�1⌦ v̄C k2] . (25)

iii) For E[kvC �1 ⌦ v̄C k2], with Lemma 3, we have:

E[kvC+1 � 1 ⌦ v̄C+1k2 � E[kvC � 1 ⌦ v̄C k2]


�
(1 + 21)V2C+1_2 � 1

�
E[kvC � 1 ⌦ v̄C k2]

+ 2(1 + 1
21

)
�
V2C+1!

2E[kxC+1 � xC k2] +<⌧2d2[4C
�

(26)

Using the result from Lemma 2, we have

E[5 (x̄C+1)]�E[5 (x̄C)] �
[C
2
E[kr5 (x̄C)k2]� (

[C
2
�
![2C
2

)E[kv̄C k2]

+[CE[kv̄C �ḡC k2]+
!2[C
<

E[kxC �1⌦ x̄C k2] . (27)

Then, with the result in i), we have:

E[5 (x̄C+1)+
1

32!2[C
kḡC+1�v̄C+1k2]�E[5 (x̄C)+

1
32!2[C�1

kḡC �v̄C k2]

� [C
2
E[kr5 (x̄C)k2]� (

[C
2
�
![2C
2

)E[kv̄C k2]+
V2C+1

16<[C
E[kxC+1�xC k2]

+ !
2[C
<

E[kxC �1 ⌦ x̄C k2]+
d2f2[3C
16<!2

. (28)

Next, with the results in ii) and iii), we can show that

E[1
[C

kxC+1�1⌦ x̄C+1k2+kvC+1�1⌦ v̄C+1k2]

�E[1
[C�1

kxC �1⌦ x̄C k2+kvC �1 ⌦ v̄C k2]

�
⇣ 1� (1+21)_2

[C
� 2[C
3g3

⌘
E[kxC �1 ⌦ x̄C k2]

�
⇣
1� (1+21)V2C+1_2� (1 +

1
21

)[C
⌘
E[kvC �1 ⌦ v̄C k2]

+2(1+ 1
21

)V2C+1!2E[kxC+1�xC k2]+2(1+
1
21

)<⌧2d2[4C . (29)

MobiHoc ’21, July 26–29, 2021, Shanghai, China Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley

Thus, for the de�ned potential function in Lemma 4, its di�eren-
tial can be bounded as:

�C+1��C
(0)
 �[C

2
E[kr5 (x̄C)k2]+

d2f2[3C
16<!2

+2(1+ 1
21

)20⌧2d2[4C

�
⇣
1� (1+21)_2�

1
220

�16(1+ 1
21

)!2[C �
2[2C
3g3

�
!2[2C
20

⌘
⇥ 20
<[C

E[kxC �1⌦ x̄C k2]�
⇣
1� (1+21)_2� (1+

1
21

)[C �
[C
420

�8(1+ 1
21

)!2[2C
⌘
⇥ 20
<
E[kvC �1⌦ v̄C k2]

�
⇣
1�2![C �32(1+

1
21

)20!2[C
⌘
⇥ [C

4
E[kv̄C k2] . (30)

where (a) follows from plugging the result for kxC+1 � xC k2 from
Lemma 3 and VC+1 < 1.

A.5 Proof for Theorem 1
From Lemma 4, we have:

)’
C=0

[C
2
E[kr5 (x̄C)k2] �0��)+1+

)’
C=0

d2f2[3C
16<!2

+
)’
C=0

2(1+ 1
21

)20⌧2d2[4C �
)’
C=0

20⇠1
<[C

E[kxC �1⌦ x̄C k2]

�
)’
C=0

20⇠2
<

E[kvC �1⌦ v̄C k2]�
)’
C=0

⇠3[C
4

E[kv̄C k2] . (31)

Noting from [C = g/(l + C)1/3 and g � 2, we have:
)’
C=0

[3C =
)’
C=0

g

l + C

π)�1

�1

g

l + C
3C  g ln(l +) � 1), (32)

)’
C=0

[4C =
)’
C=0

⇣ g

l + C

⌘ 4
3 

π)�1

�1

⇣ g

l + C

⌘ 4
3
3C  3g4/3

(l � 1)1/3
. (33)

Since [C is decreasing, we have that:

[)
2

)’
C=0

E[kr5 (x̄C)k2]+
1
<
E[kxC �1⌦ x̄C k2]

�0��)+1+
gd2f2 ln(l+) �1)

16<!2

+6(1+ 1
21

)20⌧2d2
g4/3

(l�1)1/3
�

)’
C=0

220⇠1�[2C
2<[C

E[kxC �1⌦ x̄C k2]

�
)’
C=0

20⇠2
<

E[kvC �1⌦ v̄C k2]�
)’
C=0

⇠3[C
4

E[kv̄C k2] . (34)

Now, we show that by properly choosing [C , 21, and 20, ⇠1 �
[2/220, ⇠2 and ⇠3 can be made non-negative. Note that:

⇠1=1� (1+21)_2�
1
220

�16(1+ 1
21

)!2[C �
⇣ 2
3g3

+ !
2

20

⌘
[2C , (35)

⇠2=1� (1+21)_2� (1+
1
21

)[C �
[C
420

�8(1+ 1
21

)!2[2C , (36)

⇠3=1�2![C �32(1+
1
21

)20!2[C . (37)

In order to have ⇠3 � 0, we have:

[C  1/
⇣
2! + 32(1 + 1

21
)20!2

⌘
:= :1 . (38)

With (38), it follows that⇠2 � 1� (1+21)_2� (1+ 1
21
)[C � [C

220 . Thus,

⇠2 � 0 if we set [C 
⇣
1� (1+21)_2

⌘
/
⇣
1+ 1

21
+ 1

220

⌘
:= :2. For⇠1 �

[2/220, it follows from (38) that⇠1� [2

220 � 1� (1+21)_2� 1
20
�
⇣

2
3g3 +

2!2+1
220

⌘
[2C . By choosing[C 

q
(1 � (1 + 21)_2 � 1

20
)/(2

3g3 +
2!2+1
220) :=

:3, and 0 < 1 � (1 + 21)_2 � 3
420 , we have ⇠1 � [2/220 � 0. To sum-

marize, we need to set [C  min{:1,:2,:3}. Since [C is decreasing
and [0 = g/l1/3, it implies that l � (g/min{:1,:2,:3})3 .

With the above parameter setting, we have:

[)
2

)’
C=0

E[kr5 (x̄C)k2] +
1
<
E[kxC � 1 ⌦ x̄C k2]  �0 � �)+1

+ gd2f2 ln(l +) � 1)
16<!2

+ 6(1 + 1
21

)20⌧2d2
g4/3

(l � 1)1/3
. (39)

Multiplying both sides of the inequality by 2/[) () + 1), we have:

1
) +1

)’
C=0

E[kr5 (x̄C)k2]+
1
<
E[kxC �1⌦ x̄C k2]

 2(�0��)+1)
[) () +1)

+ gd
2f2 ln(l+) �1)
8<!2[) () +1)

+
12(1+ 1

21
)20g4/3⌧2d2

(l�1)1/3[) () +1)
. (40)

Next, noting that �0  E[5 (x̄0)+ f2

32<!2[�1
+20
< kv0�1⌦v̄0k2], we

have �)+1 �E[5 (x̄)+1)+ 20
<[)

kx)+1�1x̄)+1k2+20
< kv)+1�1⌦v̄)+1k2] �

5 (x̄⇤). , it follows that

1
) +1

)’
C=0

E[kr5 (x̄C)k2]+
1
<
E[kxC �1⌦ x̄C k2] 

2(5 (x̄0)� 5 (x̄⇤))
[) () +1)

+ 220E[kv0�1⌦ v̄0k2]
<[) () +1)

+ (l�1)f2
16<!2g[) () +1)

+ gd
2f2 ln(l+) �1)
8<!2[) () +1)

+12(1+ 1
21

)20
g4/3⌧2d2

(l�1)1/3[) () +1)
.

Since [) = g/(l +))1/3, we have:

min
C 2 [)]

E[kr5 (x̄C)k2]+
1
<
E[kxC �1⌦ x̄C k2]

 2(5 (x̄0)� 5 (x̄⇤))
g () +1)2/3

+ 220E[kv0�1⌦ v̄0k2]
<g () +1)2/3

+ (l�1)f2

16<!2g2 () +1)2/3
+ d2f2 ln(l+) �1)

8<!2 () +1)2/3

+
12(1+ 1

21
)20g1/3⌧2d2

(l�1)1/3 () +1)2/3
+$

⇣ 23l

g) 5/3

⌘
.

where the Big-$ follows from (l+))1/3�()+1)1/3  (l�1) ()+1)�2/3/3
and 23=max{1, (l�1)/(<g2), g4/3/l1/3, g ln(l+) � 1)/<}.

