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ABSTRACT

Federated learning (FL) is a distributed machine learning architecture that leverages
a large number of workers to jointly learn a model with decentralized data. FL has
received increasing attention in recent years thanks to its data privacy protection,
communication efficiency and a linear speedup for convergence in training (i.e.,
convergence performance increases linearly with respect to the number of workers).
However, existing studies on linear speedup for convergence are only limited to
the assumptions of i.i.d. datasets across workers and/or full worker participation,
both of which rarely hold in practice. So far, it remains an open question whether
or not the linear speedup for convergence is achievable under non-i.i.d. datasets
with partial worker participation in FL. In this paper, we show that the answer
is affirmative. Specifically, we show that the federated averaging (FedAvg) algo-
rithm (with two-sided learning rates) on non-i.i.d. datasets in non-convex settings
achieves a convergence rate O( 1√

mKT
+ 1

T ) for full worker participation and a

convergence rate O(
√
K√
nT

+ 1
T ) for partial worker participation, where K is the

number of local steps, T is the number of total communication rounds, m is the
total worker number and n is the worker number in one communication round if for
partial worker participation. Our results also reveal that the local steps in FL could
help the convergence and show that the maximum number of local steps can be
improved to T/m in full worker participation. We conduct extensive experiments
on MNIST and CIFAR-10 to verify our theoretical results.

1 INTRODUCTION

Federated Learning (FL) is a distributed machine learning paradigm that leverages a large number
of workers to collaboratively learn a model with decentralized data under the coordination of a
centralized server. Formally, the goal of FL is to solve an optimization problem, which can be
decomposed as:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

Fi(x),

where Fi(x) , Eξi∼Di
[Fi(x, ξi)] is the local (non-convex) loss function associated with a local data

distribution Di and m is the number of workers. FL allows a large number of workers (such as edge
devices) to participate flexibly without sharing data, which helps protect data privacy. However, it
also introduces two unique challenges unseen in traditional distributed learning algorithms that are
used typically for large data centers:

• Non-independent-identically-distributed (non-i.i.d.) datasets across workers (data hetero-
geneity): In conventional distributed learning in data centers, the distribution for each worker’s
local dataset can usually be assumed to be i.i.d., i.e., Di = D, ∀i ∈ {1, ...,m}. Unfortunately,
this assumption rarely holds for FL since data are generated locally at the workers based on their
circumstances, i.e., Di 6= Dj , for i 6= j. It will be seen later that the non-i.i.d assumption imposes
significant challenges in algorithm design for FL and their performance analysis.
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• Time-varying partial worker participation (systems non-stationarity): With the flexibility for
workers’ participation in many scenarios (particularly in mobile edge computing), workers may
randomly join or leave the FL system at will, thus rendering the active worker set stochastic and
time-varying across communication rounds. Hence, it is often infeasible to wait for all workers’
responses as in traditional distributed learning, since inactive workers or stragglers will significantly
slow down the whole training process. As a result, only a subset of the workers may be chosen by
the server in each communication round, i.e., partial worker participation.

In recent years, the Federated Averaging method (FedAvg) and its variants (McMahan et al., 2016;
Li et al., 2018; Hsu et al., 2019; Karimireddy et al., 2019; Wang et al., 2019a) have emerged as a
prevailing approach for FL. Similar to the traditional distributed learning, FedAvg leverages local
computation at each worker and employs a centralized parameter server to aggregate and update the
model parameters. The unique feature of FedAvg is that each worker runs multiple local stochastic
gradient descent (SGD) steps rather than just one step as in traditional distributed learning between
two consecutive communication rounds. For i.i.d. datasets and the full worker participation setting,
Stich (2018) and Yu et al. (2019b) proposed two variants of FedAvg that achieve a convergence
rate of O(mKT + 1√

mKT
) with a bounded gradient assumption for both strongly convex and non-

convex problems, where m is the number of workers, K is the local update steps, and T is the total
communication rounds. Wang & Joshi (2018) and Stich & Karimireddy (2019) further proposed
improved FedAvg algorithms to achieve an O(mT + 1√

mKT
) convergence rate without bounded

gradient assumption. Notably, for a sufficiently large T , the above rates become O( 1√
mKT

)1, which
implies a linear speedup with respect to the number of workers.2 This linear speedup is highly
desirable for an FL algorithm because the algorithm is able to effectively leverage the massive
parallelism in a large FL system. However, with non-i.i.d. datasets and partial worker participation in
FL, a fundamental open question arises: Can we still achieve the same linear speedup for convergence,
i.e., O( 1√

mKT
), with non-i.i.d. datasets and under either full or partial worker participation?

In this paper, we show the answer to the above question is affirmative. Specifically, we show that a
generalized FedAvg with two-sided learning rates achieves linear convergence speedup with non-i.i.d.
datasets and under full/partial worker participation. We highlight our contributions as follows:

• For non-convex problems, we show that the convergence rate of the FedAvg algorithm on non-i.i.d.
dataset areO( 1√

mKT
+ 1
T ) andO(

√
K√
nT

+ 1
T ) for full and partial worker participation, respectively,

where n is the size of the partially participating worker set. This indicates that our proposed
algorithm achieves a linear speedup for convergence rate for a sufficiently large T . When reduced
to the i.i.d. case, our convergence rate is O( 1

TK + 1√
mKT

), which is also better than previous
works. We summarize the convergence rate comparisons for both i.i.d. and non-i.i.d. cases in
Table 1. It is worth noting that our proof does not require the bounded gradient assumption. We
note that the SCAFFOLD algorithm (Karimireddy et al., 2019) also achieves the linear speedup
but extra variance reduction operations are required, which lead to higher communication costs
and implementation complexity. By contrast, we do not have such extra requirements in this paper.

• In order to achieve a linear speedup, i.e., a convergence rate O( 1√
mKT

), we show that the number

of local updatesK can be as large as T/m, which improves the T 1/3/m result previously shown in
Yu et al. (2019a) and Karimireddy et al. (2019). As shown later in the communication complexity
comparison in Table 1, a larger number of local steps implies relatively fewer communication
rounds, thus less communication overhead. Interestingly, our results also indicate that the number
of local updates K does not hurt but rather help the convergence with a proper learning rates choice
in full worker participation. This overcomes the limitation as suggested in Li et al. (2019b) that
local SGD steps might slow down the convergence (O(KT ) for strongly convex case). This result
also reveals new insights on the relationship between the number of local steps and learning rate.

1This rate also matches the convergence rate order of parallel SGD in conventional distributed learning.
2To attain ε accuracy for an algorithm, it needs to take O( 1

ε2
) steps with a convergence rate O( 1√

T
), while

needing O( 1
mε2

) steps if the convergence rate is O( 1√
mT

) (the hidden constant in Big-O is the same). In this
sense, one achieves a linear speedup with respect to the number of workers.
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Table 1: Convergence rates of optimization methods for FL.

Dataset Algorithm6 Convexity7 Partial Convergence Communication
Worker Rate complexity

IID

Stich1 SC × O(mKT + 1√
mKT

) O(mKε + 1
mKε2 )

Yu1 NC × O(mKT + 1√
mKT

) O(mKε + 1
mKε2 )

Wang NC × O(mT + 1√
mKT

) O(mε + 1
mKε2 )

Stich2 NC × O(mT + 1√
mKT

) O(mε + 1
mKε2 )

This paper NC ! O( 1
TK + 1√

mKT
) O( 1

Kε + 1
mKε2 )

NON-
IID

Khaled 1 C × O(mT + 1√
mT

) O(mε + 1
mKε2 )

Yu22 NC × O( m
TK + 1√

mKT
) O( mKε + 1

mKε2 )

Li SC X O(KT ) O(Kε )
Karimireddy 3 NC X O( 1

T 2/3 + M√
SKT

) O( 1
ε3/2

+ M
SKε2 )

Karimireddy 4 NC X O( 1
T + 1√

mKT
) O( 1

ε + 1
mKε2 )

This paper5 NC " O( 1
T + 1√

mKT
) O( 1

ε + 1
mKε2 )

1 Full gradients are used for each worker.
2 Local momentum is used at each worker.
3 A FedAvg algorithm with two-sided learning rates. M2 = O(1) +O(KS(1− S

m )). S = m (S = n)
for full (partial) worker participation.

4 The SCAFFOLD algorithm in Karimireddy et al. (2019) for non-convex case.
5 The convergence rate becomes O( 1

T +
√
K√
nT

) under partial worker participation.
6 Shorthand notation for references: Stich1 := Stich (2018), Yu2 := Yu et al. (2019b), Wang:= Wang &

Joshi (2018), Stich2:= Stich & Karimireddy (2019); Khaled:= Khaled et al. (2019b), Yu2:=Yu et al.
(2019a), Li:= Li et al. (2019b), and Karimireddy:= Karimireddy et al. (2019).

7 Shorthand notation for convexity: SC: Strongly Convex, C: Convex, and NC: Non-Convex.

Notation. In this paper, we let m be the total number of workers and St be the set of active workers
for the t-th communication round with size |St| = n for some n ∈ (0,m]. 3 We use K to denote
the number of local steps per communication round at each worker. We let T be the number of
total communication rounds. In addition, we use boldface to denote matrices/vectors. We let [·]it,k
represent the parameter of k-th local step in the i-th worker after the t-th communication. We use
‖·‖2 to denote the `2-norm. For a natural number m, we use [m] to represent the set {1, · · · ,m}.
The rest of the paper is organized as follows. In Section 2, we review the literature to put our work in
comparative perspectives. Section 3 presents the convergence analysis for our proposed algorithm.
Section 4 discusses the implication of the convergence rate analysis. Section 5 presents numerical
results and Section 6 concludes this paper. Due to space limitation, the details of all proofs and some
experiments are provided in the supplementary material.

2 RELATED WORK

The federated averaging (FedAvg) algorithm was first proposed by McMahan et al. (2016) for FL as
a heuristic to improve communication efficiency and data privacy. Since then, this work has sparked
many follow-ups that focus on FL with i.i.d. datasets and full worker participation (also known as
LocalSGD (Stich, 2018; Yu et al., 2019b; Wang & Joshi, 2018; Stich & Karimireddy, 2019; Lin
et al., 2018; Khaled et al., 2019a; Zhou & Cong, 2017)). Under these two assumptions, most of the
theoretical works can achieve a linear speedup for convergence, i.e., O( 1√

mKT
) for a sufficiently

large T , matching the rate of the parallel SGD. In addition, LocalSGD is empirically shown to be
communication-efficient and enjoys better generalization performance (Lin et al., 2018). For a
comprehensive introduction to FL, we refer readers to Li et al. (2019a) and Kairouz et al. (2019).

3For simplicity and ease of presentation in this paper, we let |St| = n. We note that this is not a restrictive
condition and our proofs and results still hold for |St| ≥ n, which can be easily satisfied in practice.
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Algorithm 1 A Generalized FedAvg Algorithm with Two-Sided Learning Rates.

Initialize x0

for t = 0, · · · , T − 1 do
The server samples a subset St of workers with |St| = n.
for each worker i ∈ St in parallel do
xit,0 = xt
for k = 0, · · · ,K − 1 do

Compute an unbiased estimate git,k = ∇Fi(xit,k, ξit,k) of ∇Fi(xit,k).
Local worker update: xit,k+1 = xit,k − ηLgit,k.

end for
Let ∆i

t = xit,K − xit,0 = −ηL
∑K−1
k=0 git,k. Send ∆i

t to the server.
end for
At Server:

Receive ∆i
t, i ∈ S.

Let ∆t = 1
|S|
∑
i∈S ∆i

t.
Server Update: xt+1 = xt + η∆t.
Broadcasting xt+1 to workers.

end for

For non-i.i.d. datasets, many works (Sattler et al., 2019; Zhao et al., 2018; Li et al., 2018; Wang et al.,
2019a; Karimireddy et al., 2019; Huang et al., 2018; Jeong et al., 2018) heuristically demonstrated
the performance of FedAvg and its variants. On convergence rate with full worker participation, many
works (Stich et al., 2018; Yu et al., 2019a; Wang & Joshi, 2018; Karimireddy et al., 2019; Reddi et al.,
2020) can achieve linear speedup, but their convergence rate bounds could be improved as shown
in this paper. On convergence rate with partial worker participation, Li et al. (2019b) showed that
the original FedAvg can achieve O(K/T ) for strongly convex functions, which suggests that local
SGD steps slow down the convergence in the original FedAvg. Karimireddy et al. (2019) analyzed a
generalized FedAvg with two-sided learning rates under strongly convex, convex and non-convex
cases. However, as shown in Table 1, none of them indicates that linear speedup is achievable
with non-i.i.d. datasets under partial worker participation. Note that the SCAFFOLD algorithm
(Karimireddy et al., 2019) can achieve linear speedup but extra variance reduction operations are
required, which lead to higher communication costs and implementation complexity. In this paper,
we show that this linear speedup can be achieved without any extra requirements. For more detailed
comparisons and other algorithmic variants in FL and decentralized settings, we refer readers to
Kairouz et al. (2019).

3 LINEAR SPEEDUP OF THE GENERALIZED FEDAVG WITH TWO-SIDED
LEARNING RATES FOR NON-IID DATASETS

In this paper, we consider a FedAvg algorithm with two-sided learning rates as shown in Algorithm 1,
which is generalized from previous works (Karimireddy et al., 2019; Reddi et al., 2020). Here,
workers perform multiple SGD steps using a worker optimizer to minimize the local loss on its own
dataset, while the server aggregates and updates the global model using another gradient-based server
optimizer based on the returned parameters. Specifically, between two consecutive communication
rounds, each worker performs K SGD steps with the worker’s local learning rate ηL. We assume an
unbiased estimator in each step, which is denoted by git,k = ∇Fi(xit,k, ξit,k), where ξit,k is a random
local data sample for k-th steps after t-th communication round at worker i. Then, each worker sends
the accumulative parameter difference ∆i

t to the server. On the server side, the server aggregates all
available ∆i

t-values and updates the model parameters with a global learning rate η. The FedAvg
algorithm with two-sided learning rates provides a natural way to decouple the learning of workers
and server, thus utilizing different learning rate schedules for workers and the server. The original
FedAvg can be viewed as a special case of this framework with server-side learning rate being one.

In what follows, we show that a linear speedup for convergence is achievable by the generalized
FedAvg for non-convex functions on non-i.i.d. datasets. We first state our assumptions as follows.
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Assumption 1. (L-Lipschitz Continuous Gradient) There exists a constant L > 0, such that
‖∇Fi(x)−∇Fi(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd, and i ∈ [m].
Assumption 2. (Unbiased Local Gradient Estimator) Let ξit be a random local data sample in the
t-th step at the i-th worker. The local gradient estimator is unbiased, i.e., E[∇Fi(xt, ξit)] = ∇Fi(xt),
∀i ∈ [m], where the expectation is over all local datasets samples.
Assumption 3. (Bounded Local and Global Variance) There exist two constants σL > 0 and σG > 0,
such that the variance of each local gradient estimator is bounded by E[‖∇Fi(xt, ξit)−∇Fi(xt)‖2] ≤
σ2
L, ∀i ∈ [m], and the global variability of the local gradient of the cost function is bounded by
‖∇Fi(xt)−∇f(xt)‖2 ≤ σ2

G, ∀i ∈ [m], ∀t.

The first two assumptions are standard in non-convex optimization (Ghadimi & Lan, 2013; Bottou
et al., 2018). For Assumption 3, the bounded local variance is also a standard assumption. We use a
universal bound σG to quantify the heterogeneity of the non-i.i.d. datasets among different workers.
In particular, σG = 0 corresponds to i.i.d. datasets. This assumption is also used in other works for
FL under non-i.i.d. datasets (Reddi et al., 2020; Yu et al., 2019b; Wang et al., 2019b) as well as in
decentralized optimization (Kairouz et al., 2019). It is worth noting that we do not require a bounded
gradient assumption, which is often assumed in FL optimization analysis.

3.1 CONVERGENCE ANALYSIS FOR FULL WORKER PARTICIPATION

In this subsection, we first analyze the convergence rate of the generalized FedAvg with two-sided
learning rates under full worker participation, for which we have the following result:
Theorem 1. Let constant local and global learning rates ηL and η be chosen as such that ηL ≤ 1

8LK

and ηηL ≤ 1
KL . Under Assumptions 1–3 and with full worker participation, the sequence of outputs

{xk} generated by Algorithm 1 satisfies:

min
t∈[T ]

E[‖∇f(xt)‖22] ≤ f0 − f∗
cηηLKT

+ Φ,

where Φ , 1
c [LηηL2m σ2

L +
5Kη2LL

2

2 (σ2
L + 6Kσ2

G)], c is a constant, f0 , f(x0), f∗ , f(x∗) and the
expectation is over the local dataset samples among workers.

Remark 1. The convergence bound contains two parts: a vanishing term f0−f∗
cηηLKT

as T increases and
a constant term Φ whose size depends on the problem instance parameters and is independent of T .
The vanishing term’s decay rate matches that of the typical SGD methods.

Remark 2. The first part of Φ (i.e., LηηL2m σ2
L) is due to the local stochastic gradients at each worker,

which shrinks at rate 1
m as m increases. The cumulative variance of the K local steps contributes to

the second term in Φ (i.e., 5Kη2LL
2

2 (σ2
L + 6Kσ2

G)), which is independent of m and largely affected
by the data heterogeneity. To make the second part small, an inverse relationship between the local
learning rate and local steps should be satisfied, i.e., ηL = O( 1

K ). Specifically, note that the global
and local variances are quadratically and linearly amplified by K. This requires a sufficiently small
ηL to offset the variance between two successive communication rounds to make the second term in
Φ small. This is consistent with the observation in strongly convex FL that a decaying learning rate is
needed for FL to converge under non-i.i.d. datasets even if full gradients used in each worker (Li
et al., 2019b). However, we note that our explicit inverse relationship between ηL and K in the above
is new. Intuitively, the K local steps with a sufficiently small ηL can be viewed as one SGD step with
a large learning rate.

With Theorem 1, we immediately have the following convergence rate for the generalized FedAvg
algorithm with a proper choice of two-sided learning rates:

Corollary 1. Let ηL = 1√
TKL

and η =
√
Km. The convergence rate of the generalized FedAvg

algorithm under full worker participation is mint∈[T ] E[‖∇f(xt)‖22] = O
(

1√
mKT

+ 1
T

)
.

Remark 3. The generalized FedAvg algorithm with two-sided learning rates can achieve a linear
speedup for non-i.i.d. datasets, i.e., a O( 1√

mKT
) convergence rate as long as T ≥ mK. Although

many works have achieved this convergence rate asymptotically, we improve the maximum number
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of local steps K to T/m, which is significantly better than the state-of-art bounds such as T 1/3/m
shown in (Karimireddy et al., 2019; Yu et al., 2019a; Kairouz et al., 2019). Note that a larger number
of local steps implies relatively fewer communication rounds, thus less communication overhead.
See also the communication complexity comparison in Table 1. For example, when T = 106 and
m = 100 (as used in (Kairouz et al., 2019)), the local steps in our algorithm is K ≤ T/m = 104.
However, K ≤ T 1/3

m = 1 means that no extra local steps can be taken to reduce communication costs.

Remark 4. When degenerated to the i.i.d. case (σG = 0), the convergence rate becomes O( 1
TK +

1√
mKT

), which has a better first term in the bound compared with previous work as shown in Table 1.

3.2 CONVERGENCE ANALYSIS FOR PARTIAL WORKER PARTICIPATION

Partial worker participation in each communication round may be more practical than full worker
participation due to many physical limitations of FL in practice (e.g., excessive delays because of too
many devices to poll, malfunctioning devices, etc.). Partial worker participation can also accelerate
the training by neglecting stragglers. We consider two sampling strategies proposed by Li et al.
(2018) and Li et al. (2019b). Let St be the participating worker index set at communication round
t with |St| = n, ∀t, for some n ∈ (0,m]. St is randomly and independently selected either with
replacement (Strategy 1) or without replacement (Strategy 2) sequentially according to the sampling
probabilities pi, ∀i ∈ [m]. For each member in St, we pick a worker from the entire set [m] uniformly
at random with probability pi = 1

m , ∀i ∈ [m]. That is, selection likelihood for anyone worker i ∈ St
is p = n

m . Then we have the following results:

Theorem 2. Under Assumptions 1–3 with partial worker participation, the sequence of outputs
{xk} generated by Algorithm 1 with constant learning rates η and ηL satisfies:

min
t∈[T ]

E[‖∇f(xt)‖22] ≤ f0 − f∗
cηηLKT

+ Φ,

where f0 = f(x0), f∗ = f(x∗), and the expectation is over the local dataset samples among workers.

For sampling Strategy 1, let η and ηL be chosen as such that ηL ≤ 1
8LK , ηηLKL < n−1

n and
30K2η2LL

2 − LηηL
n (90K3L2η2L + 3K) < 1. It then holds that:

Φ ,
1

c

[
LηηL

2n
σ2
L +

3LKηηL
2n

σ2
G + (

5Kη2LL
2

2
+

15K2ηη3LL
3

2n
)(σ2

L + 6Kσ2
G)

]
.

For sampling Strategy 2, let η and ηL be chosen as such that ηL ≤ 1
8LK , ηηLKL ≤ n(m−1)

m(n−1) and
10K2η2LL

2 − LηηL m−n
n(m−1) (90K3η2LL

2 + 3K) < 1. It then holds that:

Φ ,
1

c

[
LηηL

2n
σ2
L+3LKηηL

m− n
2n(m− 1)

σ2
G+

(
5Kη2LL

2

2
+15K2ηη3LL

3 m− n
2n(m− 1)

)
(σ2
L+6Kσ2

G)

]
.

From Theorem 2, we immediately have the following convergence rate for the generalized FedAvg
algorithm with a proper choice of two-sided learning rates:

Corollary 2. Let ηL = 1√
TKL

and η =
√
Kn. The convergence rate of the generalized FedAvg

algorithm under partial worker participation and both sampling strategies are:

min
t∈[T ]

E‖∇f(xt)‖22 ≤ O
( √

K√
nT

+
1

T

)
.

Remark 5. The convergence rate bound for partial worker participation has the same structure but
with a larger variance term. This implies that the partial worker participation through the uniform
sampling does not result in fundamental changes in convergence (in order sense) except for an
amplified variance due to fewer workers participating and random sampling. The intuition is that
the uniform sampling (with/without replacement) for worker selection yields a good approximation
of the entire worker distribution in expectation, which reduces the risk of distribution deviation due
to the partial worker participation. As shown in Section 5, the distribution deviation due to fewer
worker participation could render the training unstable, especially in highly non-i.i.d. cases.
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Remark 6. The generalized FedAvg with partial worker participation under non-i.i.d. datasets can
still achieve a linear speedup O(

√
K√
nT

) with proper learning rate settings as shown in Corollary 2. In
addition, when degenerated to i.i.d. case (σG = 0), the convergence rate becomes O( 1

TK + 1√
nKT

).

Remark 7. Here, we let |St| = n only for ease of presentation and better readability. We note that
this is not a restrictive condition. We can show that |St| = n can be relaxed to |St| ≥ n, ∀t ∈ [T ] and
the same convergence rate still holds. In fact, our full proof in Appendix A.2 is for |St| ≥ n.

4 DISCUSSION

In light of above results, in what follows, we discuss several insights from the convergence analysis:

Convergence Rate: We show that the generalized FedAvg algorithm with two-sided learning rates
can achieve a linear speedup, i.e., an O( 1√

mKT
) convergence rate with a proper choice of hyper-

parameters. Thus, it works well in large FL systems, where massive parallelism can be leveraged to
accelerate training. The key challenge in convergence analysis stems from the different local loss
functions (also called “model drift” in the literature) among workers due to the non-i.i.d. datasets and
local steps. As shown above, we obtain a convergence bound for the generalized FedAvg method
containing a vanishing term and a constant term (the constant term is similar to that of SGD). In
contrast, the constant term in SGD is only due to the local variance. Note that, similar to SGD,
the iterations do not diminish the constant term. The local variance σ2

L (randomness of stochastic
gradients), global variability σ2

G (non-i.i.d. datasets), and the number of local steps K (amplification
factor) all contribute to the constant term, but the total global variability in K local steps dominates
the term. When the local learning rate ηL is set to an inverse relationship with respect to the number
of local steps K, the constant term is controllable. An intuitive explanation is that the K small local
steps can be approximately viewed as one large step in conventional SGD. So this speedup and the
more allowed local steps can be largely attributed to the two-sided learning rates setting.

Number of Local Steps: Besides the result that the maximum number of local steps is improved
to K ≤ T/m, we also show that the local steps could help the convergence with the proper hyper-
parameter choices, which supports previous numerical results (McMahan et al., 2016; Stich, 2018;
Lin et al., 2018) and is verified in different models with different non-i.i.d. degree datasets in Section 5.
However, there are other results showing the local steps slow down the convergence (Li et al., 2019b).
We believe that whether local steps help or hurt the convergence in FL worths further investigations.

Number of Workers: We show that the convergence rate improves substantially as the the number
of workers in each communication round increases. This is consistent with the results for i.i.d. cases
in Stich (2018). For i.i.d. datasets, more workers means more data samples and thus less variance
and better performance. For non-i.i.d. datasets, having more workers implies that the distribution
of the sampled workers is a better approximation for the distribution of all workers. This is also
empirically observed in Section 5. On the other hand, the sampling strategy plays an important role
in non-i.i.d. case as well. Here, we adopt the uniform sampling (with/without replacement) to enlist
workers to participate in FL. Intuitively, the distribution of the sampled workers’ collective datasets
under uniform sampling yields a good approximation of the overall data distribution in expectation.

Note that, in this paper, we assume that every worker is available to participate once being enlisted.
However, this may not always be feasible. In practice, the workers need to be in certain states in order
to be able to participate in FL (e.g., in charging or idle states, etc. (Eichner et al., 2019)). Therefore,
care must be taken in sampling and enlisting workers in practice. We believe that the joint design
of sampling schemes and the generalized FedAvg algorithm will have a significant impact on the
convergence, which needs further investigations.

5 NUMERICAL RESULTS

We perform extensive experiments to verify our theoretical results. We use three models: logistic
regression (LR), a fully-connected neural network with two hidden layers (2NN) and a convolu-
tion neural network (CNN) with the non-i.i.d. version of MNIST (LeCun et al., 1998) and one
ResNet model with CIFAR-10 (Krizhevsky et al., 2009). Due to space limitation, we relegate some
experimental results in the supplementary material.
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(a) Impact of non-i.i.d. datasets.
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Figure 1: Training loss (top) and test accuracy (bottom) for the 2NN model with hyper-parameters
setting: local learning rate 0.1, global learning rate 1.0: (a) worker number 100, local steps 5 epochs;
(b) local steps 5 epochs; (c) 5 digits in each worker’s dataset.

In this section, we elaborate the results under non-i.i.d. MNIST datasets for the 2NN. We distribute
the MNIST dataset among m = 100 workers randomly and evenly in a digit-based manner such that
the local dataset for each worker contains only a certain class of digits. The number of digits in each
worker’s dataset represents the non-i.i.d. degree. For digits_10, each worker has training/testing
samples with ten digits from 0 to 9, which is essentially an i.i.d. case. For digits_1, each worker has
samples only associated with one digit, which leads to highly non-i.i.d. datasets among workers. For
partial worker participation, we set the number of workers n = 10 in each communication round.

Impact of non-i.i.d. datasets: As shown in Figure 1(a), for the 2NN model with full worker
participation, the top-row figures are for training loss versus communication round and the bottom-
row are for test accuracy versus communication round. We can see that the generalized FedAvg
algorithm converges under non-i.i.d. datasets with a proper learning rate choice in both cases. For
five digits (digits_5) in each worker’s dataset with full (partial) worker participation in Figure 1(a),
the generalized FedAvg algorithm achieves a convergence speed comparable to that of the i.i.d. case
(digits_10). Another key observation is that non-i.i.d. datasets slow down the convergence under the
same learning rate settings for both cases. The higher the non-i.i.d. degree, the slower the convergence
speed. As the non-i.i.d. degree increases (from case digits_10 to case digits_1), it is obvious that
the training loss is increasing and test accuracy is decreasing. This trend is more obvious from the
zigzagging curves for partial worker participation. These two observations can also be verified for
other models as shown in the supplementary material, which confirms our theoretical analysis.

Impact of worker number: As shown in Figure 1(b), we compare the training loss and test accuracy
between full worker participation n = 100 and partial worker participation n = 10 with the same
hyper-parameters. Compared with full worker participation, partial worker participation introduces
another source of randomness, which leads to zigzagging convergence curves and slower convergence.
This problem is more prominent for highly non-i.i.d. datasets. For full worker participation, it can
neutralize the the system heterogeneity in each communication round. However, it might not be
able to neutralize the gaps among different workers for partial worker participation. That is, the
datasets’ distribution does not approximate the overall distribution well. Specifically, it is not unlikely
that the digits in these datasets among all active workers are only a proper subset of the total 10
digits in the original MNIST dataset, especially with highly non-i.i.d. datasets. This trend is also
obvious for complex models and complicated datasets as shown in the supplementary material. The
sampling strategy here is random sampling with equal probability without replacement. In practice,
however, the actual sampling of the workers in FL could be more complex, which requires further
investigations.
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Impact of local steps: One open question of FL is that whether the local steps help the convergence
or not. In Figure 1(c), we show that the local steps could help the convergence for both full and
partial worker participation. These results verify our theoretical analysis. However, Li et al. (2019b)
showed that the local steps may hurt the convergence, which was demonstrated under unbalanced
non-i.i.d. MNIST datasets. We believe that this may be due to the combined effect of unbalanced
datasets and local steps rather than just the use of local steps only.

Table 2: Comparison with SCAFFOLD.

Dataset IID or
Non-IID

Worker
selected Model

SCAFFOLD This paper

# of Round Communication
cost (MB)

Wall-clock
time (s) # of Round Communication

cost (MB)
Wall-clock

time (s)

MNIST

IID

n = 10
Logistic 3 0.36 0.32 3 0.18 0.22

2NN 3 9.12 0.88 3 4.56 0.56
CNN 3 26.64 2.23 3 13.32 1.57

n = 100

Logistic 5 0.60 0.53 5 0.30 0.42
2NN 5 15.20 1.51 8 12.16 1.49
CNN 1 8.88 0.79 1 4.44 0.50

Non-IID

n = 10
Logistic 14 1.68 1.48 14 0.84 1.16

2NN 14 42.55 4.23 14 21.28 2.46
CNN 14 124.34 11.12 10 44.41 4.92

n = 100
Logistic 7 0.84 0.72 11 0.66 0.91

2NN 7 21.28 2.11 17 25.84 3.16
CNN 17 150.98 13.50 7 31.08 3.51

CIFAR-10 IID n = 10 Resnet18 56 9548.07 583.24 44 3751.03 256.63
Non-IID n = 10 Resnet18 52 8866.06 539.50 61 5200.29 358.22

Bandwidth = 20MB/s.

Comparison with SCAFFOLD: Lastly, we compare with the SCAFFOLD algorithm (Karimireddy
et al., 2019) since it also achieves the same linear speedup effect under non-i.i.d. datasets. We
compare communication rounds, total communication load, and estimated wall-clock time under the
same settings to achieve certain test accuracy, and the results are reported in Table 2. The non-i.i.d.
dataset is digits_2 and the i.i.d. dataset is digits_10. The learning rates are ηL = 0.1, η = 1.0,
and number of local steps K is 5 epochs. We set the target accuracy ε = 95% for MNIST and
ε = 75% for CIFAR-10. Note that the total training time contains two parts: i) the computation
time for training the local model at each worker and ii) the communication time for information
exchanges between the workers and the server. We assume the bandwidth 20 MB/s for both uplink
and downlink connections. For MNIST datasets, we can see that our algorithm is similar to or
outperforms SCAFFOLD. This is because the numbers of communication rounds of both algorithms
are relatively small for such simple tasks. For non-i.i.d. CIFAR-10, the SCAFFOLD algorithm takes
slightly fewer number of communication rounds than our FedAvg algorithm to achieve ε = 75%
thanks to its variance reduction. However, it takes more than 1.5 times of communication cost and
wall-clock time compared to those of our FedAvg algorithm. Due to space limitation, we relegate the
results of time proportions for computation and communication to Appendix B (see Figure 7).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the convergence of a generlized FedAvg algorithm with two-sided learning
rates on non-i.i.d. datasets for general non-convex optimization. We proved that the generalized
FedAvg algorithm achieves a linear speedup for convergence under full and partial worker participa-
tion. We showed that the local steps in FL could help the convergence and we improve the maximum
number of local steps to T/m. While our work sheds light on theoretical understanding of FL, it
also opens the doors to many new interesting questions in FL, such as how to sample optimally in
partial worker participation, and how to deal with active participant sets that are both time-varying
and size-varying across communication rounds. We hope that the insights and proof techniques in
this paper can pave the way for many new research directions in the aforementioned areas.
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A APPENDIX I: PROOFS

In this section, we give the proofs in detail for full and partial worker participation in Section A.1 and
Section A.2, respectively.

A.1 PROOF OF THEOREM 1

Theorem 1. Let constant local and global learning rates ηL and η be chosen as such that ηL ≤ 1
8LK

and ηηL ≤ 1
KL . Under Assumptions 1–3 and with full worker participation, the sequence of outputs

{xk} generated by Algorithm 1 satisfies:

min
t∈[T ]

E[‖∇f(xt)‖22] ≤ f0 − f∗
cηηLKT

+ Φ,

where Φ , 1
c [LηηL2m σ2

L +
5Kη2LL

2

2 (σ2
L + 6Kσ2

G)], c is a constant, f0 , f(x0), f∗ , f(x∗) and the
expectation is over the local dataset samples among workers.

Proof. For convenience, we define ∆̄t , 1
m

∑m
i=1 ∆i

t. Under full device participation (i.e., St =

[m]), it is clear that ∆t = 1
m

∑m
i=1 ∆i

t = ∆̄t.

Due to the smoothness in Assumption 1, taking expectation of f(xt+1) over the randomness at
communication round t, we have:

Et[f(xt+1)] ≤ f(xt) +
〈
∇f(xt),Et[xt+1 − xt]

〉
+
L

2
Et[‖xt+1 − xt‖2]

= f(xt)+
〈
∇f(xt),Et[η∆̄t + ηηLK∇f(xt)− ηηLK∇f(xt)]

〉
+
L

2
η2Et[‖∆̄t‖2]

= f(xt)−ηηLK‖∇f(xt)‖2+η
〈
∇f(xt),Et[∆̄t+ηLK∇f(xt)]

〉︸ ︷︷ ︸
A1

+
L

2
η2 Et[‖∆̄t‖2]︸ ︷︷ ︸

A2

.

(1)

Note that the term A1 in (1) can be bounded as follows:

A1 =
〈
∇f(xt),Et[∆̄t + ηLK∇f(xt)]

〉
=

〈
∇f(xt),Et

[
− 1

m

m∑
i=1

K−1∑
k=0

ηLg
i
t,k + ηLK∇f(xt)

]〉

=

〈
∇f(xt),Et

[
− 1

m

m∑
i=1

K−1∑
k=0

ηL∇Fi(xit,k) + ηLK
1

m

m∑
i=1

∇Fi(xt)
]〉

=

〈√
ηLK∇f(xt),−

√
ηL

m
√
K

Et
m∑
i=1

K−1∑
k=0

(∇Fi(xit,k)−∇Fi(xt))
〉

(a1)
=
ηLK

2
‖∇f(xt)‖2+

ηL
2Km2

Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)−∇Fi(xt)
∥∥∥∥2− ηL

2Km2
Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2
(a2)

≤ ηLK

2
‖∇f(xt)‖2+

ηL
2m

m∑
i=1

K−1∑
k=0

Et‖∇Fi(xit,k)−∇Fi(xt)‖2−
ηL

2Km2
Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2
(a3)

≤ ηLK

2
‖∇f(xt)‖2 +

ηLL
2

2m

m∑
i=1

K−1∑
k=0

Et‖xit,k − xt‖2 −
ηL

2Km2
Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2
(a4)

≤ηLK(
1

2
+15K2η2LL

2)‖∇f(xt)‖2+
5K2η3LL

2

2
(σ2
L+6Kσ2

G)− ηL
2Km2

Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2,
(2)
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where (a1) follows from that
〈
x,y

〉
= 1

2 [‖x‖2 + ‖y‖2 − ‖x − y‖2] for x =
√
ηLK∇f(xt) and

y = −
√
ηL

m
√
K

∑m
i=1

∑K−1
k=0 (∇Fi(xit,k) − ∇Fi(xt)), (a2) is due to that E[‖x1 + · · · + xn‖2] ≤

nE[‖x1‖2 + · · ·+ ‖xn‖2] , (a3) is due to Assumption 1 and (a4) follows from Lemma 2.

The term A2 in (1) can be bounded as:

A2 = Et[‖∆̄t‖2]

= Et
[∥∥∥∥ 1

m

m∑
i=1

∆i
t

∥∥∥∥2]

≤ 1

m2
Et
[∥∥∥∥ m∑

i=1

∆i
t

∥∥∥∥2]

=
η2L
m2

Et
[∥∥∥∥ m∑

i=1

K−1∑
k=0

git,k

∥∥∥∥2]
(a5)
=

η2L
m2

Et
[∥∥∥∥ m∑

i=1

K−1∑
k=0

(git,k −∇Fi(xit,k))

∥∥∥∥2]+
η2L
m2

Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2
(a6)

≤ Kη2L
m

σ2
L +

η2L
m2

Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2, (3)

where (a5) follows from the fact that E[‖x‖2] = E[‖x − E[x]‖2] + ‖E[x]‖2] and (a6) is due
to the bounded variance assumption in Assumption 3 and the fact that E[‖x1 + · · · + xn‖2] =

E[‖x1‖2 + · · ·+ ‖xn‖2] if x
′

is are independent with zero mean and E[git,j ] = ∇Fi(xit,j).

Substituting the inequalities in (2) of A1 and (3) of A2 into inequality (1), we have:

Et[f(xt+1)] ≤ f(xt)−ηηLK‖∇f(xt)‖2+η < ∇f(xt),Et[∆̄t+ηLK∇f(xt)] >︸ ︷︷ ︸
A1

+
L

2
η2 Et[‖∆̄t‖2]︸ ︷︷ ︸

A2

≤ f(xt)− ηηLK(
1

2
− 15K2η2LL

2)‖∇f(xt)‖2 +
LKη2η2L

2m
σ2
L

+
5ηK2η3LL

2

2
(σ2
L + 6Kσ2

G)− (
ηηL

2Km2
− Lη2η2L

2m2
)Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2
(a7)

≤ f(xt)−ηηLK(
1

2
−5K2η2LL

2)‖∇f(xt)‖2+
LKη2η2L

2m
σ2
L+

5ηK2η3LL
2

2
(σ2
L+6Kσ2

G)

(a8)

≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2m
σ2
L +

5ηK2η3LL
2

2
(σ2
L + 6Kσ2

G),

where (a7) follows from ( ηηL
2Km2 − Lη2η2L

2m2 ) ≥ 0 if ηηL ≤ 1
KL , (a8) holds because there exists a

constant c > 0 satisfying ( 1
2 − 15K2η2LL

2) > c > 0 if ηL < 1√
30KL

.

Rearranging and summing from t = 0, · · · , T − 1, we have:

T−1∑
t=0

cηηLKE[∇f(xt)] ≤ f(x0)− f(xT ) + T (ηηLK)

[
LηηL
2m

σ2
L +

5Kη2LL
2

2
(σ2
L + 6Kσ2

G)

]
which implies,

min
t∈[T ]

E‖∇f(xt)‖22 ≤
f0 − f∗
cηηLKT

+ Φ,

where Φ = 1
c [LηηL2m σ2

L +
5Kη2LL

2

2 (σ2
L + 6Kσ2

G)]. This completes the proof.
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A.2 PROOF OF THEOREM 2

Theorem 2. Under Assumptions 1–3 with partial worker participation, the sequence of outputs
{xk} generated by Algorithm 1 with constant learning rates η and ηL satisfies:

min
t∈[T ]

E[‖∇f(xt)‖22] ≤ f0 − f∗
cηηLKT

+ Φ,

where f0 = f(x0), f∗ = f(x∗), and the expectation is over the local dataset samples among workers.

For sampling Strategy 1, let η and ηL be chosen as such that ηL ≤ 1
8LK , ηηLKL < n−1

n and
30K2η2LL

2 − LηηL
n (90K3L2η2L + 3K) < 1. It then holds that:

Φ ,
1

c

[
LηηL

2n
σ2
L +

3LKηηL
2n

σ2
G + (

5Kη2LL
2

2
+

15K2ηη3LL
3

2n
)(σ2

L + 6Kσ2
G)

]
.

For sampling Strategy 2, let η and ηL be chosen as such that ηL ≤ 1
8LK , ηηLKL ≤ n(m−1)

m(n−1) and
10K2η2LL

2 − LηηL m−n
n(m−1) (90K3η2LL

2 + 3K) < 1. It then holds that:

Φ ,
1

c

[
LηηL

2n
σ2
L+3LKηηL

m− n
2n(m− 1)

σ2
G+

(
5Kη2LL

2

2
+15K2ηη3LL

3 m− n
2n(m− 1)

)
(σ2
L+6Kσ2

G)

]
.

Proof. Let ∆̄t be defined the same as in the proof of Theorem 1. Under partial device participation,
note that ∆̄t 6= ∆t (recall that ∆̄t , 1

m

∑m
i=1 ∆i

t, ∆t = 1
n

∑
i∈St

∆i
t, and |St| = n). The random-

ness for partial worker participation contains two parts: the random sampling and the stochastic
gradient. We still use Et[·] to represent the expectation with respect to both types of randomness.

Due to the smoothness assumption in Assumption 1, taking expectation of f(xt+1) over the random-
ness at communication round t:

Et[f(xt+1)] ≤ f(xt) +
〈
∇f(xt),Et[xt+1 − xt]

〉
+
L

2
Et[‖xt+1 − xt‖2]

= f(xt) +
〈
∇f(xt),Et[η∆t + ηηLK∇f(xt)− ηηLK∇f(xt)]

〉
+
L

2
η2Et[‖∆t‖2]

= f(xt)−ηηLK‖∇f(xt)‖2+η
〈
∇f(xt),Et[∆t+ηLK∇f(xt)]

〉︸ ︷︷ ︸
A
′
1

+
L

2
η2 Et[‖∆t‖2]︸ ︷︷ ︸

A
′
2

(4)

The term A
′

1 in (4) can be bounded as follows: Since ESt
[A
′

1] = A1 due to Lemma 1 for both
sampling strategies, we have the same bound as in inequality 2 for A

′

1:

A
′

1 ≤ ηLK(
1

2
+ 15K2η2LL

2)‖∇f(xt)‖2 +
5K2η3LL

2

2
(σ2
L + 6Kσ2

G)

− ηL
2Km2

Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2, (5)

For strategy 1: We can bound A
′

2 in (4) as follows.

Note St is an index set (multiset) for independent sampling (equal probability) with replacement in
which some elements may have the same value. Suppose St = {l1, . . . , ln}.

A
′

2 = Et[‖∆t‖2]

= Et
[∥∥∥∥ 1

n

∑
i∈St

∆i
t

∥∥∥∥2]
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=
1

n2
Et
[∥∥∥∥∑

i∈St

∆i
t

∥∥∥∥2]

=
1

n2
Et
[∥∥∥∥ n∑

z=1

∆lz
t

∥∥∥∥2]
(b1)
=

η2L
n2

Et
[∥∥∥∥ n∑

z=1

K−1∑
j=0

[glzt,j −∇Flz (xlzt,j)]

∥∥∥∥2]+
η2L
n2

Et
[∥∥∥∥ n∑

z=1

K−1∑
j=0

∇Flz (xlzt,j)

∥∥∥∥2]
(b2)

≤ Kη2L
n

σ2
L +

η2L
n2

Et
[∥∥∥∥ n∑

z=1

K−1∑
j=0

∇Flz (xlzt,j)

∥∥∥∥2],
where (b1) follows from the fact that E[‖x‖2] = E[‖x− E[x]‖2] + ‖E[x]‖2] and (b2) is due to the
bounded variance assumption 3 and E[‖x1 + · · ·+ xn‖2] ≤ nE[‖x1‖2 + · · ·+ ‖xn‖2].

By letting ti =
∑K−1
j=0 ∇Fi(xit,j), we have:

Et
[∥∥∥∥ n∑

z=1

K−1∑
j=0

∇Flz (xlzt,j)

∥∥∥∥2 = Et
[∥∥∥∥ n∑

z=1

tlz

∥∥∥∥2]

= Et
[ n∑
z=1

‖tlz‖2 +
∑

i6=j;li,lj∈St

〈
tli , tlj

〉]
(b3)
= Et

[
n‖tl1‖2 + n(n− 1)

〈
tl1 , tl2

〉]
=

n

m

m∑
i=1

‖ti‖2 +
n(n− 1)

m2

∑
i,j∈[m]

〈
ti, tj

〉
=

n

m

m∑
i=1

‖ti‖2 +
n(n− 1)

m2
‖
m∑
i=1

ti‖2,

where (b3) is due to the independent sampling with replacement.

So we can bound A
′

2 as follows.

A
′

2 = Et[‖∆t‖2]

≤ Kη2L
n

σ2
L +

η2L
mn

m∑
i=1

Et‖ti‖2 +
(n− 1)η2L
m2n

Et
∥∥∥∥ m∑
i=1

ti

∥∥∥∥2, (6)

For ti, we have:

m∑
i=1

Et‖ti‖2 =
m∑
i=1

Et
∥∥∥∥K−1∑
j=0

∇Fi(xit,j)−∇Fi(xt) +∇Fi(xt)−∇f(xt) +∇f(xt)

∥∥∥∥2
(b4)

≤ 3KL2
m∑
i=1

K−1∑
j=0

Et‖xit,j − xt‖2 + 3mK2σ2
G + 3mK2‖∇f(xt)‖2

(b5)

≤ 15mK3L2η2L(σ2
L+6Kσ2

G)+(90mK4L2η2L + 3mK2)‖∇f(xt)‖2+3mK2σ2
G,
(7)

where (b4) is due to the fact that E[‖x1 + · · ·+ xn‖2] ≤ nE[‖x1‖2 + · · ·+ ‖xn‖2] , Assumptions 3
and 1, and (b5) follows from Lemma 2.

Substituting the inequalities in ( 5) of A
′

1 and ( 6) of A
′

2 into inequality (4), we have:
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Et[f(xt+1)] ≤ f(xt)−ηηLK‖∇f(xt)‖2+η
〈
∇f(xt),Et[∆t+ηLK∇f(xt)]

〉︸ ︷︷ ︸
A
′
1

+
L

2
η2 Et[‖∆t‖2]︸ ︷︷ ︸

A
′
2

≤ f(xt)− ηηLK(
1

2
− 15K2η2LL

2)‖∇f(xt)‖2 +
5ηK2η3LL

2

2
(σ2
L + 6Kσ2

G)

+

[
(n− 1)Lη2η2L

2m2n
− ηηL

2Km2

]
Et
∥∥∥∥ m∑
i=1

ti

∥∥∥∥2+
LKη2η2L

2n
σ2
L+

Lη2η2L
2mn

m∑
i=1

Et‖ti‖2

(b6)

≤ f(xt)− ηηLK(
1

2
− 15K2η2LL

2)‖∇f(xt)‖2 +
5ηK2η3LL

2

2
(σ2
L + 6Kσ2

G)

+
LKη2η2L

2n
σ2
L +

Lη2η2L
2mn

m∑
i=1

Et‖ti‖2

(b7)

≤ f(xt)− ηηLK(
1

2
− 15K2η2LL

2 − LηηL
2n

(90K3L2η2L + 3K))‖∇f(xt)‖2

+

[
5ηK2η3LL

2

2
+

15K3L3η2η4L
2n

]
(σ2
L+6Kσ2

G)+
LKη2η2L

2n
σ2
L+

3K2Lη2η2L
2n

σ2
G

(b8)

≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2n
σ2
L +

3K2Lη2η2L
2n

σ2
G

+ ηηLK

[
5Kη2LL

2

2
+

15K2η3LηL
3

2n

]
(σ2
L + 6Kσ2

G), (8)

where (b6) follows from (n−1)Lη2η2L
2m2n − ηηL

2Km2 ≤ 0 if ηηLKL ≤ n−1
n , (b7)is due to inequality (7) and

(b8) holds since there exists a constant c > 0 such that [ 12−15K2η2LL
2− LηηL

2n (90K3L2η2L+3K)] >

c > 0 if 30K2η2LL
2 − LηηL

n (90K3L2η2L + 3K) < 1.

Note that the requirement of |St| = n can be relaxed to |St| ≥ n. With pt ≥ n workers in t-th
communication round, 8 is

Et[f(xt+1)] ≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2pt
σ2
L +

3KLη2η2L
2pt

σ2
G

+ ηηLK

[
5Kη2LL

2

2
+

15Kη3LηL
3

2pt

]
(σ2
L + 6Kσ2

G)

≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2n
σ2
L +

3K2Lη2η2L
2n

σ2
G

+ ηηLK

[
5Kη2LL

2

2
+

15K2η3LηL
3

2n

]
(σ2
L + 6Kσ2

G).

That is, the same convergence rate can be guaranteed if at least n workers in each communication
round (no need to be exactly n).

Rearranging and summing from t = 0, · · · , T − 1, we have the convergence for partial device
participation with sampling strategy 1 as follows:

min
t∈[T ]

E[‖∇f(xt)‖22] ≤ f0 − f∗
cηηLKT

+ Φ,

where Φ = 1
c

[
LηηL
2n σ2

L + 3KLηηL
2n σ2

G + (
5Kη2LL

2

2 +
15K2ηη3LL

3

2n )(σ2
L + 6Kσ2

G)
]

and c is a constant.

For strategy 2: Under the strategy of independent sampling with equal probability without replace-
ment. We bound A

′

2 as follows.

A
′

2 = Et[‖∆t‖2]

= Et
[∥∥∥∥ 1

n

∑
i∈St

∆i
t

∥∥∥∥2]

16



Published as a conference paper at ICLR 2021

=
1

n2
Et
[∥∥∥∥∑

i∈St

∆i
t

∥∥∥∥2]

=
1

n2
Et
[∥∥∥∥ m∑

i=1

I{i ∈ St}∆i
t

∥∥∥∥2]

=
η2L
n2

Et
[∥∥∥∥ m∑

i=1

I{i ∈ St}
K−1∑
j=0

[git,j−∇Fi(xit,j)]
∥∥∥∥2]+

η2L
n2

Et
[∥∥∥∥ m∑

i=1

I{i ∈ St}
K−1∑
j=0

∇Fi(xit,j)]
∥∥∥∥2]

=
η2L
n2

Et
[∥∥∥∥ m∑

i=1

P{i ∈ St}
K−1∑
j=0

[git,j −∇Fi(xit,j)]
∥∥∥∥2 +

η2L
n2

∥∥∥∥ m∑
i=1

I{i ∈ St}
K−1∑
j=0

∇Fi(xit,j)
∥∥∥∥2]

(b9)
=

η2L
nm

Et
[ m∑
i=1

K−1∑
j=0

∥∥∥∥git,j −∇Fi(xit,j)∥∥∥∥2]+
η2L
n2

Et
[∥∥∥∥ m∑

i=1

I{i ∈ St}
K−1∑
j=0

∇Fi(xit,j)
∥∥∥∥2]

(b10)

≤ Kη2L
n

σ2
L +

η2L
n2

∥∥∥∥ m∑
i=1

P{i ∈ St}
K−1∑
j=0

∇Fi(xit,j)
∥∥∥∥2, (9)

where (b9) is due to the fact that E[‖x1 + · · · + xn‖2] = E[‖x1‖2 + · · · + ‖xn‖2] if x
′

is are
independent with zero mean, xi = git,j −∇Fi(xit,j) is independent random variable with mean zero,
and P{i ∈ St} = n

m . (b10) is due to bounded variance assumption in Assumption 3

Substituting the inequalities in (5) of A
′

1 and (9) of A
′

2 into inequality (4), we have:

Et[f(xt+1)]≤f(xt)−ηηLK‖∇f(xt)‖2+η
〈
∇f(xt),Et[∆t+ηLK∇f(xt)]

〉︸ ︷︷ ︸
A
′
1

+
L

2
η2 Et[‖∆t‖2]︸ ︷︷ ︸

A
′
2

≤ ∇f(xt)− ηηLK(
1

2
− 15K2η2LL

2)‖∇f(xt)‖2 +
LKη2η2L

2n
σ2
L +

5ηK2η3LL
2

2
(σ2
L + 6Kσ2

G)

+
Lη2η2L

2n2
Et
∥∥∥∥ m∑
i=1

P{i ∈ St}
K−1∑
j=0

∇Fi(xit,j)
∥∥∥∥2 − ηηL

2Km2
Et
∥∥∥∥ m∑
i=1

K−1∑
k=0

∇Fi(xit,k)

∥∥∥∥2︸ ︷︷ ︸
A
′
3

.

Then we bound A
′

3 as follows.

By letting ti =
∑K−1
j=0 ∇Fi(xit,j), we have:

m∑
i=1

Et‖ti‖2 ≤ 15mK3L2η2L(σ2
L + 6Kσ2

G) + (90mK4L2η2L + 3mK2)‖∇f(xt)‖2 + 3mK2σ2
G.

It then follows that

‖
m∑
i=1

ti‖2 =
∑
i∈[m]

‖ti‖2 +
∑
i6=j

< ti, tj >

(b11)
=

∑
i∈[m]

m‖ti‖2 −
1

2

∑
i6=j

‖ti − tj‖2

‖
m∑
i=1

P{i ∈ St}ti‖2 =
∑
i∈[m]

P{i ∈ St}‖ti‖2 +
∑
i6=j

P{i, j ∈ St} < ti, tj >

(b12)
=

n

m

∑
i∈[m]

‖ti‖2 +
n(n− 1)

m(m− 1)

∑
i6=j

< ti, tj >
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(b13)
=

n2

m

∑
i∈[m]

‖ti‖2 −
n(n− 1)

2m(m− 1)

∑
i6=j

‖ti − tj‖2,

where (b11) and (b13) are due to the fact that
〈
x,y

〉
= 1

2 [‖x‖2+‖y‖2−‖x−y‖2] ≤ 1
2 [‖x‖2+‖y‖2],

(b12) follows from the fact that P{i ∈ St} = n
m and P{i, j ∈ St} = n(n−1)

m(m−1) . Therefore, we have

A
′

3 =
Lη2η2L

2n2
‖
m∑
i=1

P{i ∈ St}
K−1∑
j=0

∇Fi(xit,j)]‖2 −
ηηL

2Km2
‖
m∑
i=1

K−1∑
k=0

∇Fi(xit,k)‖2

= (
Lη2η2L

2m
− ηηL

2Km
)
m∑
i=1

‖ti‖2 + (
ηηL

4Km2
− Lη2η2L(n− 1)

4mn(m− 1)
)
∑
i6=j

‖ti − tj‖2

(b14)
= (

Lη2η2L
2m

− Lη2η2L(n− 1)

2n(m− 1)
)
m∑
i=1

‖ti‖2 − (
ηηL

2Km2
− Lη2η2L(n− 1)

2mn(m− 1)
)‖
∑
i∈[m]

ti‖2

(b15)

≤ (
Lη2η2L

2m
− Lη2η2L(n− 1)

2n(m− 1)
)
m∑
i=1

‖ti‖2

= Lη2η2L
m− n

2mn(m− 1)

m∑
i=1

‖ti‖2,

where (b14) follows from the fact that ‖
∑
i∈[m] ti‖2 =

∑
i∈[m]m‖ti‖2 −

1
2

∑
i6=j ‖ti − tj‖2, and

(b15) is due to the fact that ( ηηL
2Km2 − Lη2η2L(n−1)

2mn(m−1) ) ≥ 0 if ηηLKL ≤ n(m−1)
m(n−1) .

Then we have

Et[f(xt+1)] ≤ f(xt)−ηηLK(
1

2
−15K2η2LL

2−LηηL
m− n

2n(m− 1)
(90K3η2LL

2+3K))‖∇f(xt)‖2

+
LKη2η2L

2n
σ2
L + 3K2Lη2η2L

m− n
2n(m− 1)

σ2
G

+ ηηLK(
5Kη2LL

2

2
+ 15Kηη3LL

3 m− n
2n(m− 1)

)(σ2
L + 6Kσ2

G)

(b16)

≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2n
σ2
L + 3KLη2η2L

m− n
2n(m− 1)

σ2
G

+ ηηLK(
5Kη2LL

2

2
+ 15K2ηη3LL

3 m− n
2n(m− 1)

)(σ2
L + 6Kσ2

G), (10)

where (b16) holds because there exists a constant c > 0 satisfying ( 1
2 − 5K2η2LL

2 −
LηηL

m−n
2n(m−1) (90K3η2LL

2 + 3K)) > c > 0 if 10K2η2LL
2−LηηL m−n

n(m−1) (90K3η2LL
2 + 3K) < 1.

Note that the requirement of |St| = n can be relaxed to |St| ≥ n. With pt ≥ n workers in t-th
communication round, 10 is

Et[f(xt+1)] ≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2pt
σ2
L + 3KLη2η2L

m− pt
2pt(m− 1)

σ2
G

+ ηηLK(
5Kη2LL

2

2
+ 15K2ηη3LL

3 m− pt
2pt(m− 1)

)(σ2
L + 6Kσ2

G)

≤ f(xt)− cηηLK‖∇f(xt)‖2 +
LKη2η2L

2n
σ2
L + 3KLη2η2L

m− n
2n(m− 1)

σ2
G

+ ηηLK(
5Kη2LL

2

2
+ 15K2ηη3LL

3 m− n
2n(m− 1)

)(σ2
L + 6Kσ2

G)

That is, the same convergence rate can be guaranteed if at least n workers in each communication
round (no need to be exactly n).
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Rearranging and summing from t = 0, · · · , T − 1, we have the convergence for partial device
participation with sampling strategy 2 as follows:

min
t∈[T ]

E[‖∇f(xt)‖22] ≤ f0 − f∗
cηηLKT

+ Φ,

where Φ = 1
c

[
LηηL
2n σ2

L + 3KLηηL
m−n

2n(m−1)σ
2
G + (

5Kη2LL
2

2 + 15K2ηη3LL
3 m−n
2n(m−1) )(σ

2
L + 6Kσ2

G)
]

and c is a constant. This completes the proof.

A.2.1 KEY LEMMAS

Lemma 1 (Unbiased Sampling). For strategies 1 and 2, the estimator ∆t is unbiased, i.e.,

ESt
[∆t] = ∆̄t.

Proof of Lemma 1.
Let St = {t1, · · · , tn} with size n. Both for sampling strategies 1 and 2, each sampling distribution
is identical. Then we have:

ESt
[∆t] =

1

n
ESt

[
∑
ti∈St

∆ti
t ] =

1

n
ESt

[
n∑
i=1

∆ti
t ] = ESt

[∆t1
t ] =

1

m

m∑
i=1

∆i
t = ∆̄t.

A.3 AUXILIARY LEMMAS

Lemma 2 (Lemma 4 in Reddi et al. (2020)). For any step-size satisfying ηL ≤ 1
8LK , we can have

the following results:

1

m

m∑
i=1

E[‖xit,k − xt‖2] ≤ 5Kη2L(σ2
L + 6Kσ2

G) + 30K2η2L‖∇f(xt)‖2.

Proof. In order for this paper to be self-contained, we restate the proof of Lemma 4 in (Reddi et al.,
2020) here.

For any worker i ∈ [m] and k ∈ [K], we have:

E[‖xit,k − xt‖2] = E[‖xit,k−1 − xt − ηLgtt,k−1‖2]

≤E[‖xit,k−1−xt−ηL(gtt,k−1−∇Fi(xit,k−1)+∇Fi(xit,k−1)−∇Fi(xt)+∇Fi(xt)−∇f(xt)+∇f(xt))‖2]

≤ (1 +
1

2K − 1
)E[‖xit,k−1 − xt‖2] + E[‖ηL(gtt,k−1 −∇Fi(xit,k−1))‖2]

+6KE[‖ηL(∇Fi(xit,k−1)−∇Fi(xt))‖2]+6KE[‖ηL(∇Fi(xt)−∇f(xt)))‖2]+6K‖ηL∇f(xt)‖2

≤(1+
1

2K−1
)E[‖xit,k−1−xt‖2]+η2Lσ

2
L+6Kη2LL

2E[‖xit,k−1−xt‖2]+6Kη2Lσ
2
G+6K‖ηL∇f(xt)‖2

= (1 +
1

2K − 1
+ 6Kη2LL

2)E[‖xit,k−1 − xt‖2] + η2Lσ
2
L + 6Kη2Lσ

2
G + 6K‖ηL∇f(xt)‖2

≤ (1 +
1

K − 1
)E[‖xit,k−1 − xt‖2] + η2Lσ

2
L + 6Kη2Lσ

2
G + 6K‖ηL∇f(xt)‖2

Unrolling the recursion, we get:

1

m

m∑
i=1

E[‖xit,k − xt‖2] ≤
k−1∑
p=0

(1 +
1

K − 1
)p[η2Lσ

2
L + 6Kσ2

G + 6Kη2L‖ηL∇f(xt))‖2]

≤ (K − 1)[(1 +
1

K − 1
)K − 1][η2Lσ

2
L + 6Kσ2

G + 6Kη2L‖ηL∇f(xt))‖2]

≤ 5Kη2L(σ2
L + 6Kσ2

G) + 30K2η2L‖∇f(xt)‖2

This completes the proof.
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B APPENDIX II: EXPERIMENTS

We provide the full detail of the experiments. We uses non-i.i.d. versions for MNIST and CIFAR-10,
which are described as follows:

B.1 MNIST

We study image classification of handwritten digits 0-9 in MNIST and modify the MNIST dataset to
a non-i.i.d. version.

To impose statistical heterogeneity, we split the data based on the digits (p) they contain in their
dataset. We distribute the data to m = 100 workers such that each worker contains only a certain
class of digits with the same number of training/test samples. For example, for p = 1, each worker
only has training/testing samples with one digit, which causes heterogeneity among different workers.
For p = 10, each worker has samples with 10 digits, which is essentially i.i.d. case. In this way, we
can use the digits in worker’s local dataset to represent the non-i.i.d. degree qualitatively. In each
communication round, 100 workers run K epochs locally in parallel and then the server samples n
workers for aggregation and update. We make a grid-search experiments for the hyper-parameters as
shown in Table 3.

Table 3: Hyper-parameters Tuning.

Server Learning Rate η ∈ {1, 10}
Client Learning Rate ηL ∈ {0.001, 0.01, 0.1}

Local Epochs K ∈ {1, 5, 10}
Clients Partition Number n ∈ {10, 50, 100}

Non-i.i.d. Degree p ∈ {1, 2, 5, 10}

We run three models: multinomial logistic regression, fully-connected network with two hidden
layers (2NN) (two 200 neurons hidden layers with ReLU followed by an output layer), convolutional
neural network (CNN), as shown in Table 4. The results are shown in Figures 2, 3 and 4.

Table 4: CNN Architecture for MNIST.

Layer Type Size
Convolution + ReLu 5× 5× 32

Max Pooling 2× 2
Convolution + ReLu 5× 5× 64

Max Pooling 2× 2
Fully Connected + ReLU 1024× 512

Fully Connected 512× 10

B.2 CIFAR-10

Unless stated otherwise, we use the following default parameter setting: the server learning rate and
client learning rate are set to η = 1.0 and ηL = 0.1, respectively. The local epochs is set to K = 10.
The total number of clients is set to 100, and the clients partition number is set to n = 10. We use the
same strategy to distribute the data over clients as suggested in McMahan et al. (2016). For the i.i.d.
setting, we evenly partition all the training data among all clients, i.e., each client observes 500 data;
for the non-i.i.d. setting, we first sort the training data by label, then divide all the training data into
200 shards of size 250, and randomly assign two shards to each client. For the CIFAR-10 dataset, we
train our classifier with the ResNet model. The results are shown in Figure 5 and Figure 6.

B.3 DISCUSSION

Impact of non-i.i.d. datasets: Figure 2 shows the results of training loss (top) and test accuracy
(bottom) for three models under different non-i.i.d. datasets with full and partial worker participation
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(c) CNN

Figure 2: Training loss (top) and test accuracy (bottom) for three models on MNIST with hyperpa-
rameters setting: local learning rate 0.1, global learning rate 1.0, local steps 5 epochs.
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(c) CNN

Figure 3: Training loss (top) and test accuracy (bottom) for three models on MNIST with hyperpa-
rameters setting: local learning rate 0.1, global learning rate 1.0, worker number 100.

on MNIST. We can see that the FedAvg algorithm converges under non-i.i.d. datasets with a proper
learning rate choice in these cases. We believe that the major challenge in FL is the non-i.i.d. datasets.
For these datasets with a lower degree of non-i.i.d., the FedAvg algorithm can achieve a good result
compared with the i.i.d. case. For example, when the local dataset in each worker has five digits
(p = 5) with full (partial) worker participation, the FedAvg algorithm achieves a convergence speed
comparable with that of the i.i.d. case (p = 10). This result can be observed in Figure 2 for all three
models. As the degree of non-i.i.d. datasets increases, its negative impact on the convergence is
becoming more obvious. The higher the degree of non-i.i.d., the slower the convergence speed. As
the non-i.i.d. degree increases (from case p = 10 to case p = 1), it is obvious that the training loss is
increasing and test accuracy is decreasing. For these with high degree of non-i.i.d., the convergence
curves oscillate and are highly unstable. This trend is more obvious for complex models such for
CNN in Figure 2(c).

Impact of worker number: For full worker participation, the server can have an accurate estimation
of the system heterogeneity after receiving the updates for all workers and neutralize this heterogeneity
in each communication round. However, partial worker participation introduces another source
of randomness, which leads to zigzagging convergence curves and slower convergence. In each
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(c) CNN

Figure 4: Training loss (top) and test accuracy (bottom) for three models on MNIST with hyperpa-
rameters setting: local learning rate 0.1, global learning rate 1.0, worker number 10.
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Figure 5: Test accuracy with respect to worker number on CIFAR-10 dataset.
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Figure 6: Test accuracy with respect to different local steps on CIFAR-10 dataset.

communication round, the server can only receive a subset of workers based on the sampling strategy.
So the server could only have a coarse estimation of the system heterogeneity and might not be
able to neutralize the heterogeneity among different workers for partial worker participation. This
problem is more prominent for highly non-i.i.d. datasets. It is not unlikely that the digits in these
datasets among all active workers are only a proper subset of the total 10 digits in the original MNIST
dataset, especially with highly non-i.i.d. datasets. For example, for p = 1 with 10 workers in each
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communication round, it is highly likely that the datasets formed by these ten workers only includes
certain small number of digits (say, 4 or 5) rather than total 10 digits. But for p = 5, it is the
opposite, that is, the digits in these datasets among these 10 workers are highly likely to be 10. So in
each communication round, the server can mitigate system heterogeneity since it covers the training
samples with all 10 digits. This trend is more obvious for complex models and datasets given the
dramatic drop of test accuracy in the result of CIFAR-10 in Figure 5.

The sample strategy here is random sampling with equal probability without replacement. In practice,
the workers need to be in certain states in order to be able to participate in FL (e.g., in charging or idle
states, etc.(Eichner et al., 2019)). Therefore, care must be taken in sampling and enlisting workers in
practice. We believe that the joint design of sampling schemes, number of workers and the FedAvg
algorithm will have a significant impact on the convergence, which needs further investigations.

Impact of local steps: Figure 3 and Figure 4 shows the results of training loss (top) and test accuracy
(bottom) for three models under different local steps with full and partial worker participation
respectively. Figure 6 shows the impact of local steps in CIFAR-10. One open question of FL is
that whether the local steps help the convergence or not. Li et al. (2019b) showed a convergence
rate O(KT ), i.e., the local steps may hurt the convergence for full and partial worker participation.
In this two figures, we can see that local steps could help the convergence for both full and partial
worker participation. However, it only has a slight effect on the convergence compared to the effects
of non-i.i.d. datasets and number of workers.

Comparison with SCAFFOLD: We compare SCAFFOLD (Karimireddy et al., 2019) with the
generalized FedAVg algorithm in this paper in terms of communication rounds, total communication
overloads and estimated wall-clock time to achieve certain test accuracy in Table 2. We run the
experiments using the same GPU (NVIDIA V100) to ensure the same conditions. Here, we give a
specific comparison for these two algorithms under exact condition. Note that we divide the total
training time to two parts: the computation time when the worker trains the local model and the
communication time when information exchanges between the worker and server. We only compare
the computation time and communication time with a fixed bandwidth 20MB/s for both uploading
and downloading connections. As shown in Figure 7, to achieve ε = 75%, SCAFFOLD performs
less communication round due to the variance reduction techniques. That is, it spends less time
on computation. However, it needs to communicates as twice as the FedAvg since the control
variate to perform variance reduction in each worker needs to update in each round. In this way, the
communication time would be largely prolonged.

0 100 200 300 400 500 600
Time (s)

This paper

SCAFFOLD

Computation time
Communication time

Figure 7: Wall-clock time to achieve test accuracy ε = 75% on CIFAR-10 dataset.
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