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Explainable and trustworthy artificial intelligence
for correctable modeling in chemical sciences

Jinchao Feng'*, Joshua L. Lansford?*, Markos A. Katsoulakis>', Dionisios G. Vlachos***

Data science has primarily focused on big data, but for many physics, chemistry, and engineering applications,
data are often small, correlated and, thus, low dimensional, and sourced from both computations and experiments
with various levels of noise. Typical statistics and machine learning methods do not work for these cases. Expert
knowledge is essential, but a systematic framework for incorporating it into physics-based models under uncertainty
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is lacking. Here, we develop a mathematical and computational framework for probabilistic artificial intelligence
(Al)-based predictive modeling combining data, expert knowledge, multiscale models, and information theory
through uncertainty quantification and probabilistic graphical models (PGMs). We apply PGMs to chemistry
specifically and develop predictive guarantees for PGMs generally. Our proposed framework, combining Al and
uncertainty quantification, provides explainable results leading to correctable and, eventually, trustworthy models.
The proposed framework is demonstrated on a microkinetic model of the oxygen reduction reaction.

INTRODUCTION

Models in the chemical and physical sciences have led to both new
understanding and new discoveries (1) including new materials (2, 3).
Physics-based models span orders of magnitude in length and time,
ranging from quantum mechanics (4) to chemical plants (5), and
naturally capture physics-based constraints (6-8). Combining models
across scales, known as multiscale modeling (9), is necessary when
chemical properties are determined at the quantum level, but most
experiments and relevant applications exist at the macroscale, such
as in heterogeneous catalysis. At the core of model development lies
the question of accuracy of a physics-based model. Going beyond
sensitivity analysis (10, 11), there has been growing interest in
quantifying uncertainty, resulting from correlations in parameters
(12, 13) along with other sources of error arising in predicting new
materials (14). In addition to ensuring trustworthiness, error quan-
tification can enable model correctability (15, 16). Still, uncertainty
is an afterthought in actual physics-based model development. Cur-
rently, a model is first built deterministically without systematically
accounting for the effect of both modeling errors and lack, or
sparseness, of data.

Modeling uncertain data has experienced tremendous advances
in data science (17-20); however, the corresponding models are
empirical, can fail without guarantee, and can violate conservation
laws and constraints. Current approaches for handling data based
on physical laws and chemical theory are, in a sense, not truly prob-
abilistic and require correlations and causal relationships to be known
a priori. With the increasing size of chemistry datasets, it is almost
impossible to apply traditional methods of model development to
systems with many sources of interacting error. Global sensitivity
techniques, such as Sobol indices, attribute model variance to model
variables and their interaction (hereafter called “parametric uncer-
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tainty”) (21). However, there are few methods that work beyond first-
order interactions or quantify the importance of missing physics or
submodels rather than parameters (hereafter called “model uncer-
tainty”) (22). Methods that do exist model missing physics as sto-
chastic noise that has no structure (23, 24). Therefore, there is a need
to develop methods that both attribute interaction error directly to
model inputs and provide predictive guarantees and, by doing this,
to make models correctable and eventually trustworthy for predictions
and design tasks.

Here, we address these issues by incorporating error and uncer-
tainty directly into the design of a model. First, we introduce the use
of Bayesian networks (20), a class of probabilistic graphical models
(PGM:s) (25), common in probabilistic artificial intelligence (AI) (26),
to integrate simultaneously and systematically physics- and chemistry-
based models, data, and expert knowledge. This framework is termed
C-PGM (chemistry-PGM). Second, we derive global uncertainty in-
dices that quantify model uncertainty stemming from different physics
submodels and datasets. This framework generates predictive “worst-
case” guarantees for Bayesian networks while handling correlations and
causations in heterogeneous data for both parametric and model un-
certainties and is based on recent work in robust methods for quan-
tifying probabilistic model uncertainty (27, 28). Our proposed
framework, combining AT and uncertainty quantification (UQ), sys-
tematically apportions and quantifies uncertainty to create interpre-
table and correctable models; this is performed through assimilation of
data and/or improvement of physical models to enable trustworthy Al
for chemical sciences. We reduce the complexity of the nondeter-
ministic polynomial time (NP)-hard problem of learning a PGM
by leveraging expert knowledge of the underlying chemistry. We de-
monstrate this framework in the prediction of the optimal reaction
rate and oxygen binding energy for the oxygen reduction reaction
(ORR) using the volcano model. While UQ has been applied to de-
terministic volcano-based models in general (29), and the ORR model
specifically (30), prior methods have been limited both by the physics
model’s underlying structure and, importantly, the lack in interpret-
ability of uncertainty in predictions in terms of modeling decisions and
available data in different model components. We demonstrate that
about half of the model uncertainty stems from density functional
theory (DFT) uncertainty, comparable error from lack of sufficient
number and quality of experimental data and from correlations in
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parameters (~20% each), and the remaining (~10%) from the solvation
model. This analysis provides a blueprint for prioritizing model
components toward correctability and improved trustworthiness
by underscoring the need foremost of more accurate electronic
structure calculations and secondary by better experiments. We illus-
trate model correctability with an example.

RESULTS

Physics model for the ORR and the deterministic volcano
Hydrogen fuel cells can nearly double the efficiency of internal com-
bustion engines and leave behind almost no emissions, especially if
environmentally low footprint H; is available (31). Furthermore, the
hydrogen fuel cell is a mature technology that produces electricity
via the hydrogen oxidation reaction at the anode and the ORR at the
cathode (Fig. 1B); polymer electrolyte membrane fuel cells for this
type of reaction are commercially available (32). Because of the high
cost of platinum (Pt) catalyst and stability problems of other mate-
rials in an acidic electrolyte, recent focus has been on developing
alkaline electrolytes. This technology, while extremely promising,
results in slower reaction rates (by ~2 orders of magnitude com-
pared to a Pt/acidic electrolyte) and thus bigger devices (33, 34).
Overcoming slower rates with stable materials requires discovery of
new, multicomponent catalysts, e.g., core-shell alloys.

The ORR depends on the formation of surface hydroperoxyl
(OOHY¥), from molecular oxygen (O3), and of water (H,0), from
surface hydroxide (OH¥) (35). The complete mechanism (7, 36, 37)
involves four electron steps (Fig. 1A) and is described in detail in
section S1. Among these, reactions R1 and R4 are slow (7). Acceler-
ation of the ORR then translates into finding materials that speed
up the slower of the two reactions, R1 and R4. An approach to find new
materials entails generation of an activity model (Fig. 1C) as a function
of descriptor(s) that can be estimated quickly using DFT calculations
(9). This is known as the deterministic volcano (Sabatier’s principle)
and has been the key model for discovery of new materials.

A

(9]

Next, we discuss the human workflow in constructing the volca-
no curve. First, we use a physics equilibrium model to compute the
rate r from the minimum free energy of reactions R1 and R4 (7, 38),
such that

min{-AG;,~AGs}

r=e kT (1)

where kg is the Boltzmann constant and T is the temperature. Instead
of Eq. 1, one could use a more elaborate model, such as a mean-field
microkinetic (detailed reaction mechanism) or a kinetic Monte Carlo
model, which is a more complex multiscale model. Such models impose
conservation laws (mass conservation and catalyst site balance) and are
selected on the basis of expert knowledge. The Gibbs free energy AG;
of the ith species is calculated from the electronic energy (Epgr) and
includes the zero-point energy, temperature effects, and an explicit
solvation energy (Esoly) in water, as detailed in Methods. This calcu-
lation entails, again, physics-based models (statistical mechanics here)
and expert knowledge, e.g., in selecting a solvation model and sta-
tistical mechanics models. See section S1 for an explanation of the
equilibrium model and resulting formula in Eq. 1.

The free energies AG; and AG, are computed as linear combina-
tions of the free energies of species, while accounting for stoichiom-
etry (a constraint), and are regressed versus AGo (the descriptor);
see data in Fig. 1C. Typically, only two to three data points for coin-
age metals (Ag, Au, and Cu) on the right leg of the volcano are re-
gressed, especially if experimental data (instead of DFT data) are
used (data corresponding to dotted lines are not observed in most
experiments). The intersection of the two lines (Fig. 1C) determines
the maximum of the volcano curve and provides optimal material
properties, i.e., the AGy; AG, can then be matched to values of
multicomponent materials to obtain materials closer to the tip of
the volcano. This “human workflow” (Fig. 1D) provides a blueprint
of the deterministic overall model that relies exclusively on expert
knowledge in design and various physical submodels (called also
components) for estimation of several key quantities.
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Fig. 1. Fuel cell schematic with workflow and DFT data for estimating the optimal rate and properties of best materials. (A) Key reaction steps (R1 to R4) in hydrogen
fuel cells. R1, solvated O, forms adsorbed OOH*; R2, OOH* forms adsorbed surface oxygen O* and solvated H,0; R3, O* forms adsorbed OH¥; R4, H,O forms and regener-
ates the free catalyst site. Asterisk (¥) represents an unoccupied metal site or an adsorbed species; H" and e™ refer to proton and electron, respectively. (B) Schematic of a
hydrogen fuel cell. (C) Negative changes in Gibbs energies (—~AG; and —AG,) for reactions R1 (blue) and R4 (red) on the close packed (111/0001) surface of face-centered
(fcc) and hexagonal close-packed (hcp) metals for the most stable sites of OOH*, OH*, and O* computed (specifically for this work) via DFT (circles) and linear regressions

(lines). The optimal oxygen free energy A Gy is the intersection of the two lines. The min{ — AG;, — AGg}, indicated by the solid lines, determines the rate, estimated using

Eq. 1. The optimal rate occurs at A G;,. (D) Deterministic “human” workflow for obtaining the optimal formation energy of surface oxygen and the rate of the ORR.
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Probabilistic Al for chemistry and the probabilistic volcano
Here, we develop a probabilistic Al-based workflow that augments
the human workflow (in Fig. 1D) to create a probabilistic volcano.
The mathematical tool we use to formulate the probabilistic volcano
is the PGM. PGMs represent a learning process in terms of random
variables, depicted as vertices of the graphs, which explicitly model
their interdependence in terms of a graph. This interdependence
stems from (i) one variable influencing others, called causality,
depicted by arrows (directed edges); and (ii) correlations among
variables, depicted by simple (undirected) edges between vertices
(see below). PGMs are defined as the parameterized conditional
probability distribution (CPD) and for Bayesian networks are de-
fined such that

P(X|0) = [TP(Xi|Pax,Oxpa, ) with CPD:P(X;| Pay,
=1
Ox|pay)>i = 1,...om )

Pax;={Xj..., Xim} C {Xi..., Xi,} denotes the parents of the random
variable X;, and 0 = {Ox; | puxi}”;= 1 are the parameters of each CPD,
P(X; | Pax;, Oxipaxi)- Uppercase “P” indicates a stochastic model or
submodel. A key concept in PGMs is that the random variables are
conditionally independent. This concept is central to constructing
complex probability models with many parameters and variables,
enabling distributed probability computations by “divide and con-
quer” using graph-theoretic model representations. By combining

the conditional probabilities in Eq. 2, we find the joint probability
distribution of all random variables X. A detailed formalism for the
construction of the PGM is given in section S4.

Structure learning of graphical models is, in general, an NP-hard
problem (39, 40) if one considers the combinatorial nature in con-
necting a large number of vertices. We overcome this challenge by
constraining the directed acyclic graph (DAG) (41), representing
the probabilistic ORR volcano (Fig. 2A), using domain knowledge
that includes multiscale, multiphysics models discussed above, expert
knowledge, and heterogeneous data (experimental and DFT) along
with their statistical analysis.

First, statistical analysis of data finds hidden correlations or lack
thereof between variables and is also central to building the PGM. In
this example, statistical analysis of the computed formation free energy
data of O*, OOH¥, and OH* indicates correlations among data, i.e.,
connections between vertices (Fig. 2A). Specifically, AGoon and
AGoy are correlated with AGo. The correlation coefficients of AGo
with —AG; and —AG, are —0.95 and 0.91, respectively; see section S4
for notes on statistical independent tests used. Reaction free energies
AG, and AG; are linear combinations of AGoon and AGoy, respec-
tively; we use the reaction free energies as dependent vertices, as the
reaction rate depends directly on AG; and AG,. Subsequently, we
choose AGg as the independent node (descriptor) because, of all the
surface intermediates, it has the fewest degrees of freedom (and there-
fore local minima) on any given potential energy surface for faster
quantum calculations. The selection of the descriptor, which is
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Fig. 2. Construction of the PGM. (A) PGM (Eq. 3) for the ORR that combines heterogeneous data, expert knowledge, and physical models; causal relationships are de-
picted by arrows. The PGM P is a Gaussian Bayesian network where the CPDs are selected to be Gaussians [solid lines as histogram approximations in (B) to (E)]. The PGM
is built as follows: We construct AGo o) as a random variable from the quantum data for the oxygen binding energy; we include statistical correlations between AGo o)
and AG;/ AG4 (Fig. 1C) as a random error in correlation (B); (C to E) we model different kinds of errors in the AG's, given expert knowledge; we include these random vari-
ables into the PGM and build the causal relationships (directed edges/arrows) between the corresponding random variables (AG's); we obtain a prediction for the optimal

oxygen binding energy (A G*o) and optimal reaction rate (r*) using physical modeling, e.g., AG; corresponds to the value where AG; and AG, are equal in the determinis-
tic case. This entire figure captures the (probabilistic) “Al workflow” that augments the human workflow.
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another example of expert knowledge in our C-PGM, establishes
causal relationship (direction of influence) represented by directed
edges from AGg to AG and AG;. Expert knowledge is also leveraged
to assign relevant errors () to vertices and directed edges. Figure 2A
(colored circles) depicts the multiple uncertainties (random variables)
o modeled in each CPD of the PGM and how these (causally) influ-
ence the uncertainty of each vertex. All these causal relationships
are modeled by a DAG in Fig. 2A and the Bayesian network in Eq. 3.
Causality simplifies the construction and UQ analysis of the PGM.
Last, the lack of an edge between AG, and AG, (Fig. 2A) is found
from conditional independence tests on the DFT data. By eliminat-
ing graph edges of uncorrelated parts of the graph, the constrained
DAG is profoundly simpler. A complete, step-by-step discussion of
the structure learning of the ORR C-PGM is included in section S4.1.

The C-PGM structure contains information from expert knowl-
edge, causalities, physics (physical models, conservation laws, and
other constraints), correlations of data, parameters, and hierarchical
priors (priors of a prior) in model learning (13, 25). The physical
meaning and estimation of these uncertainties are discussed below.
Overall, the model for the ORR C-PGM becomes

[Tt P(A Gi| A Goorr), ®cis Osi> Weis ©di ) [ [j=iese,d) P(@51)

(3)
P(A Gorm)| 050, 0e0, 040, A Go) [ Tk=ts,e.0 P(0k0)

where AGo (prr) indicates a calculated value from DFT and all other
AG values represent the “true value” given errors. Lowercase “p” in-
dicates probability densities that are assumed here to be Gaussian,
thus rendering the C-PGM (Eq. 3) into a Gaussian Bayesian net-
work (25). Note that this PGM is used as part of an optimization
scheme where AGo (ppr) is formulated as a random variable given
any value of the true AGg and distribution of errors for AGo. Lever-
aging the human-based (deterministic) workflow in Fig. 1D, the
ORR is modeled as a stochastic optimization problem such that

A Gy, = argmaxag, [ Ep[ min{-AG,—A Gg}|A Go]] (4)

where A G, corresponds to the optimal oxygen binding energy that
maximizes the reaction rate r*. It is convenient to compute kg1 In

(r),
kg TIn(r") == maxag, [ Ep[min{-AG1,—AG4}|AGo]]  (5)

For the rest of this paper, A G and kgT'In (r*) are considered as
the Qols (quantities of interest) that need to be optimized.

Model uncertainty, guarantees, nonparametric sensitivity,
and contributions to model error for interacting variables
Model uncertainty arises from multiple sources, such as use of sparse
data in Fig. 1C, hidden correlations between vertices in the graph,
simplified statistics models (linear regression between free energies
in Fig. 1C and Gaussian approximations of errors; Fig. 2, B to E),
and uncertainty in different model components and variables. These
include errors in experimental data (®,), DFT data (@), solvation
energies (), and regressions (correlations) used to determine the
optimum AG*O (); correlation error is accentuated by the small
data available especially on the right leg of the volcano. Experimental
errors (0,) in AGo and AGop can be found by repeated measurements
in the same laboratory and between different laboratories. Repeated
calorimetry and temperature-programmed desorption measurements
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for the dissociative adsorption enthalpy of O, in the same and dif-
ferent labs provide a distribution of errors for AGo. The distribution
of DFT errors (®0,) is computed by comparing experimental and
calculated (DFT) data across various metals. The mean value and
SD of errors are provided in table S1 along with a detailed description
of how errors were calculated in Methods and section S3. In Fig. 2A,
the “parent vertex” is determined by the direction of the arrow such
that ,; is a parent of AG; (the child). These additional uncertainties
from multiple sources are shown in Fig. 2 (B to E) and are combined
to build the PGM model P.

When building the C-PGM model P, “model uncertainties” arise
from the sparsity and quality of the available data in different com-
ponents of the model, the accuracy of the physics-based submodels,
and the knowledge regarding the probability distribution of the errors
(Fig. 2, B to E). Consequently, the mean value of min{ — AG}, — AGy}
with respect to P is itself uncertain since the probabilistic model P is
uncertain. For this reason, we consider P as a baseline C-PGM model,
i.e., a reasonable but inexact “compromise.” Here, we take P to be a
Gaussian Bayesian network (see Fig. 2, B to E), where the error
probability distribution function for each component of the model
is approximated as a normal distribution and is built using the nominal
datasets and submodels discussed above. We isolate model uncer-
tainty in each component (CPD) of the entire model (Eq. 3), in contrast
to the more standard parametric (aleatoric) uncertainty already in-
cluded in the stochasticity of P itself. We mathematically represent
model uncertainty through alternative (to P) models Q that include
the “true” unknown model Q*. As examples, models Q can differ from
P by (i) replacing one or more CPDs in Eq. 3 by more accurate,
possibly non-Gaussian CPDs that represent better the data in Fig. 2
(B to E), (ii) more accurate multiscale physics models, and (iii) larger
and more accurate datasets. Quantifying the impact of model un-
certainties on predicting the Qol using P, instead of better alternative
models Q, is discussed next. Overall, developing the mathematical
tools to enable identification of the components of a PGM that need
improvement is critical to correct the baseline model P with mini-
mal resources.

Each model Q is associated with its own model misspecification
parameter 1 that quantifies how far an alternative model Q is from the
baseline model P via the Kullback-Leibler (KL) divergence of Q to
P, R(QIIP). We use the KL divergence due to its chain rule properties that
allow us to isolate the impact of individual model uncertainties of
CPDs in Eq. 2 on the Qols in Fig. 2, see sections S6 and S7. To isolate
and rank the impact of each individual CPD model misspecification
(1), we consider the set of all PGMs Q that are identical to the entire
PGM P except at the Ith component CPD (for dependence on the
Ith parents) and less than 1; in KL divergence from the baseline
CPD P(X; | Paxj) while maintaining the same parents Payx;. We
refer to this family, denoted by D", as the “ambiguity set” for the Ith
CPD of the PGM P (see section S6 for its mathematical definition).
Given the set of PGM’s D", we develop model uncertainty guaran-
tees ﬁ(QoI,P;n;) for the Qol in Eq. 6 as the two worst-case scenarios
for all possible models Q in D" with respect to the baseline P

J7(Qol, P;n;) = (max/min) gepn [ EQ(Qol) —Ep(Qol) ] (6)

For a given 1, the model uncertainty guarantees to describe the
maximum (worst case) expected bias when only one part of the
model in the PGM, P(X; | Pay;), is perturbed within n; therefore,
they measure the impact of model uncertainty in any component
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(CPD) of the PGM on the Qol. Since 1; are not necessarily small, the
method is also nonperturbative, i.e., it is suitable for both small and
large model perturbations.

Equation 6 can be also viewed as a nonparametric model sensi-
tivity analysis for PGMs since it involves an infinite dimensional family
of model perturbations D" of the baseline model P. This family can
consider the sparsity of data by addition of new or higher-quality data,
e.g., higher-level DFT data, alternative densities to the Gaussians
in Fig. 2 (B to E), e.g., richer parametric families or kernel-based
CPDs, or more accurate submodels. All these are large, nonpara-
metric perturbations to the baseline P model. For these reasons,
Eq. 7 allows one to interpret, reevaluate, and improve the baseline
model by comparing the contributions of each CPD to the overall
uncertainty of the Qols through the (model uncertainty) ranking index

Ranking Index = Relative contribution to total model
J;(Qol, P;n)
%;J7(QoL P;n;) (7)

For more details, see theorem 1 in section S6 where we show that
for Gaussian Bayesian networks, the ratios in Eq. 7 are computable.

We can use two strategies regarding ;. First, n; can by tuned “by
hand” to explore how levels of uncertainty in each component of
the model, P(X; | Payj), affect the Qols. This approach is termed a
stress test in analogy to finance where in the absence of sufficient
data, models are subjected to various plausible or extreme scenari-
os. Second, instead of treating 1; as a constant, we can estimate 1; as
the “distance” between available data from the unknown real model
and our baseline PGM P; we refer to such /s as data based, in con-
trast to stress tests (see section S8). For example, the data can be
represented by a histogram or a kernel density estimator (KDE) ap-
proximation (42). In this sense, the contribution to model uncer-
tainty from any error source is both a function of its variance and
how far away the error is from the baseline, e.g., the Gaussian CPDs
in Fig. 2 (B to E).

Given the error distributions and their Gaussian representation
in PGM model P, the expected value of min{ — AGy, — AG4} | AGo
(black curve) in Fig. 3A is obtained. The color bar in Fig. 3A indi-
cates how likely a reaction rate occurs with given AGo for model P
(aleatoric uncertainty). The gray dashed lines in Fig. 3A correspond
to the two extreme scenarios (derived in section S5) for all possible
models Q by considering uncertainty in all components. We high-

uncertainty =

>

Mean
== = = Bound with combined uncertainty

E IMin{-AG,,~AG )|AG ] (eV)

05 1 15 2 25 3
AG, [eV]

light in Fig. 3B the expected value (black line) and the extremes
(gray dashed lines) when only the DFT error in AGy is considered.
All n values here are data based and determine what models Q are
considered in construction of the bounds; only PGMs that have a
KL divergence that is less than or equal to 1 from the baseline are
considered. The red, orange, and green lines indicate potential Qols
that can be computed; here, we focus on the uncertainty in the rate
(y axis; difference between red lines) and the variability of optimal
oxygen binding energy (x axis; difference between orange lines) as a
proxy of materials selection; see section S7 for more details.

Using the model uncertainty guarantees (Eq. 6), we quantify the
uncertainty and its impact on model predictions beyond the estab-
lished parametric uncertainty; again, all n/s are data based. By
sourcing the impact of each submodel and/or data, Eq. 7 reveals
what data, measurement, and computation should be improved.
The error in the optimal reaction rate (Fig. 4A) stems from a nearly
equal contribution of submodels, specifically by solvation (30%),
experiment (18%), DFT (33%), and parameter correlation (18%).
The uncertainty in the optimal oxygen free energy variability (Fig. 4B),
i.e., the materials prediction, stems from solvation (6%), experi-
ment (8%), DFT (48%), and parameter correlation (37%). Different
Qols are influenced to a different degree by different submodels. In
both Qols, the DFT error stands as the most influential. The cor-
relation between O*, OOH*, and OH* is the next most important
component regarding materials prediction, whereas solvation is the
second ranked component regarding reaction rate. Such predictions
are nonintuitive. While previous work found that parametric-based
microscale uncertainties can be dampened in multiscale models (43),
the results of this work will generalize to any models where fine-
scale simulations (such as DFT) are sparse or the macroscale Qols
can be made proportional to the microscale properties. In the next
section, we show that Eq. 6 and the resulting Fig. 4 can also be de-
ployed to improve the baseline (purely Gaussian) model P.

Model correctability enabled by model UQ

Model uncertainty due to any submodel or dataset, quantified by n;
and Eq. 6, can be reduced by picking a better submodel or dataset than
the original baseline model P;. Obviously, those CPDs that exhibit
larger relative predictive uncertainty in Eq. 6 should be prioritized
and corrected. In our case study, reducing the DFT error requires to
further develop DFT functional and methods, a long-standing pur-
sue not addressed here. Here, we illustrate how to carry out such

B
N 1H Mean
o = = == Bound with nd4=0A9987
(DO 0.8 —= W~
4
=, 06
Q
T o4t
L'); 7
4 0.2f 7
|
S
E,
Wy, /
e 3 ; ; ; | I
0 05 1 15 2 25 3

AG, (eV)

Fig. 3. Parametric and model uncertainty. (A) Parametric versus model uncertainty: Contour plot of the probability distribution of min{ — AG;, — AGg} as a function of
AGg; the black curve is the mean (expected) value Ep[min{—A G;,—A G4}|A Go] for the baseline ORR PGM P in Fig. 2. The gray dashed lines are the extreme bounds (guar-
antees) with combined model uncertainty, and the color indicates likelihood; see section S5 for more details. (B) Model uncertainty guarantees given by the predictive
uncertainty (model sensitivity indices) (gray dashed lines) for the Qol min{ — AG;, — AG4} | AGo when only the uncertainty of DFT in AG, is considered.
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model correctability through an example that is feasible to do. Spe-
cifically, we consider the model consisting of the data used to con-
struct the volcano and its statistical representation as this is the second
most influential parameter in materials prediction. We performed
additional DFT calculations on core-shell bimetallics to create an
expanded dataset compared to that in Fig. 1C (see Fig. 5A). By doing
this, we compute the model sensitivity indices J; for the new model
using theorem 1 and equation S58. More details and derivations are
included in Methods.

Figure 5B shows the reduction of model uncertainty guarantees,
defined as Eq. 6, which are due to the variance of error and the esti-
mated model misspecification parameter in the correlation between
DFT-calculated values of AG, and AGo, when more data (bimetallics)
are added. With bimetallic data included, the correlation coefficients
of AGo with —AG; and —AGj, are —0.95 and 0.95, respectively. The
uncertainty is reduced both due to improved correlation and re-
duced SE in the regression coefficients as a result of more data.
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\[>
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Experiment: 2%
AG,
. 8%
Correlation: _——

AG,
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\
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DISCUSSION

Here, we introduce PGM for chemistry to embed uncertainty into
the design of a model. The approach provides a blueprint to system-
atically integrate desperate components of a model ranging from
heterogeneous data (experimental and DFT) to expert knowledge
to physics/chemistry models and constraints to correlations among
data and causality between variables. Instead of a deterministic
model, a probabilistic ensemble of models is created. Furthermore,
the model uncertainty and sensitivity indices derived herein provide
guarantees on model prediction to systematically identify the most
influential model components causing predictive uncertainty and
ultimately ensure trustworthiness of predictions. Overall, our pro-
posed mathematical framework combines probabilistic Al and UQ
to provide explainable results, leading to correctable and, eventually,
trustworthy models. We illustrate this framework for a volcano-
kinetic model for the ORR. We propagate both parametric and
model uncertainty from several, small sets of input data to model
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Fig. 4. Ranking indices for optimal rate and optimal oxygen binding energy in each ORR PGM submodel. Rankings for the model uncertainties in kgT In (r*) (A) and

AG; variability (B). See section S7 for more details.
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predictions. We establish model error bounds on the ORR volcano
to assess maximum and minimum rates given the binding energy of
atomic oxygen as the primary descriptor. We assess the impact of
these errors via model sensitivity indices, which quantify the percent
error from uncertainty contributed by each variable to the predicted
maximum ORR rate and the oxygen binding energy corresponding
to that rate. The greatest contribution to errors (ordered from greatest
to least) in the PGM-based ORR volcano in predicting materials
arises from error in DFT calculations and correlations of OOH*
and OH* binding energies with O* binding energies. Different from
the materials, the reaction rates depend mainly on errors associated
with DFT and solvation, yet experimental error and correlations are
relatively large as well, i.e., a more equidistribution of error is ob-
served and improved accuracy of all components is needed to size
electrochemical devices. Improving the accuracy of DFT method and
the quality and quantity of data can pave the way for more accu-
rate models for finding new catalysts.

METHODS
DFT calculations
We study adsorption on the close-packed (111 and 0001) transition
metal surfaces. We select the lowest energy site of O* and OH* for
comparison with experiments to determine errors, which are sum-
marized in table S1. We build the correlations for bimetallics from
the lowest energy sites on the (111) and (0001) surfaces of the face-
centered (fcc) and hexagonal close-packed (hcp) metals, respectively.
Vacuum phase DFT setup
We calculated binding energies and vibrational frequencies using the
Vienna ab initio Simulation Package version 5.4 with the projector-
augmented wave method (44). We use the Revised Perdew-Burke-
Ernzerhof (RPBE) density functional (45) with D3 dispersion corrections
(46). Simulation methods include use of spin-polarized calculations
for gas-phase speciesand ferromagnetic metals, a 3 x 3 x 1 Monkhorst-
Pack k-point sampling grid (47) for all slab calculations, and a 400-eV
plane wave cutoff. Electronic energy convergence was set to 10~* eV for
the energy minimization step and 10~® eV for frequency calculations.
For calculations of gas-phase species, the supercell size was
10 x 10 x 10 A. A Brillouin zone was sampled at the gamma point;
a 0.005 eV/A force cutoff was used in geometry optimizations. For
slab calculations, the force cutoff was set to 0.02 eV/A with 20 A of
vacuum space. Adsorbate energies were calculated for OOH*, OH*,
and O* on the most stable close-packed surface for fcc and hep metals.
The periodic cell consisted of four layers with 16 metal atoms in
each layer; the bottom two layers were fixed at their bulk values,
determined using a 15 x 15 x 15 k-point grid with the tetrahedron
method and Blochl corrections. Bulk metal lattice constants were
pre-optimized with DFT using the Birch-Murnaghan equation of
state (48). Zero-point energies are calculated for each adsorbate-
surface combination and for all gas species. All input files were created
using the Atomic Simulation Environment (49).
Solvation phase DFT setup
We emulate explicit solvation calculations from previous work (38)
except that, here, we vary the number of water layers. Two to five
layers of water were placed above a Pt(111) surface in a honeycomb
pattern to simulate the aqueous phase above the surface. The double
layer of water molecules was found to adequately capture water bind-
ing energies on Pt(111) and H bonds at the surface (50). We deter-
mined solvation energies for O* by placing it in an fcc hollow site on

Feng et al., Sci. Adv. 2020; 6 : eabc3204 14 October 2020

the water-covered surface. For OH* and OOH?¥, solvation energies
were determined by replacing a water molecule on the surface with
the respective species to determine solvation energies. Other than
the choice of functional, the DFT setup was identical to that in the
vacuum except that nine Pt atoms were included in each layer to
accommodate the honeycomb water structure, the k-point sampling
was increased to 4 x 4 x 1, and the plane wave cutoff was increased to
450 eV. To provide initial geometries, the Perdew-Burke-Ernzerhof
(PBE) functional (51) was used for all solvation calculations. Solvation
energy calculations on Pt(111) using the PBE functional do not cause
inconsistencies with the use of the RPBE functional for vacuum
phase calculations. Granda-Marulanda et al. (52) showed that on sev-
eral 111 and 0001 surfaces, the average difference in OH* solvation
using the PBE and RPBE functionals with dispersion corrections
was 0.03 eV; the SDs using these functionals were similar at 0.08 and
0.11 eV, respectively. Rather than changes in solvation across differ-
ent surfaces, we investigate the variance in solvation energy associ-
ated with the number of explicit water layers used. Because energies
from PBE and RPBE are correlated, the variance in solvation energy
with respect to number of water layers is expected to be similar.
Temperature effects

Temperature effects at 298 K were calculated using statistical ther-
modynamics in combination with the harmonic and ideal gas ap-
proximations (53). Both heat capacity and entropy effects were
included in calculating Gibbs free energies used in the volcano curves.
Entropy was removed when comparing to experimental enthalpies
as discussed in section S3.

Deriving model sensitivity indices

Using robust and scalable UQ methods for general probabilistic
models (27, 28, 54) as a starting point, we define “ambiguity sets”
around a baseline model P and “predictive uncertainty for Qols.”
Although the definitions of predictive uncertainty (section S6) and
model sensitivity indices (Eq. 6) are natural and rather intuitive, it
is not obvious that they are practically computable. A key mathe-
matical finding for PGMs, demonstrated in theorem S1, is that that
the guarantees J;(Qol, P;n;) can be computed exactly using a varia-
tional formula for the KL divergence and the chain rule for the KL
divergence; the latter point also justifies the use of the KL divergence
in defining the nonparametric formulation of the model sensitivity
indices. In the case where P is a Gaussian Bayesian network (G), the
ranking indices in Eq. 7 are computed using Eq. 9.

Selecting new high-quality data or improved physical model

for model correctability

Given a baseline model P and the sparse dataset for each submodel

sampled from an unknown model Q, we can build an improved

baseline model P for our ORR model following the steps below.
Step 1: Find suitable data-based n/’s:

n = R(QXi|Pay,) IP(Xi| Pay,)) (8)
where Q is the surrogate model given by the KDE/histogram, using
egs. S94 and S95.

Step 2: Calculate the model uncertainty guarantees for a given
Qol using eq. S58 (or eq. S60 for the general PGM)

J;(QolL P;m)) for all PGM vertices [
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Step 3: Select the I* component X+ of the PGM with the worst
guarantees ];(QOI,P;m*) (highest values).

Step 4: Reduce ];(QOI,P;m*) based on eq. S58. For QoI(X) = min
{ = AGy, — AG4} | AGo, we have that

JHQOLPiny) = tinfeo| Llogle™™ Pr(dar)+|  (9)

where Fj(wp) = Ep,,, [ QoI]-Ep[Qol]. For the I* component(s) of
the PGM, we seek the most useful additional data, namely the data
that tightens (reduces) the guarantees in Eq. 9. Note that the guar-
antees consist of two parts: the moment generating function (MGF)
and the model misspecification parameter 1. Therefore, adding infor-
mative data can reduce the MGF in Eq. 9 (and, thus, the uncertainty
guarantees ]f.(QoL P;1;)); since the MGF includes all moments, and,
in particular, the variance (27), additional data can improve model
P and reduce the model misspecification n (see section S8).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/42/eabc3204/DC1
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