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UNCERTAINTY QUANTIFICATION FOR MARKOV RANDOM
FIELDS

PANAGIOTA BIRMPA* AND MARKOS A. KATSOULAKISY

Abstract. We present an information-based uncertainty quantification method for general
Markov Random Fields, also known as Markov Networks. Markov Random Fields (MRFs) are
structured, probabilistic graphical models over undirected graphs, and provide a fundamental unify-
ing modeling tool for statistical mechanics, probabilistic machine learning, and artificial intelligence.
Typically MRFs are complex and high-dimensional with nodes and edges (connections) built in a
modular fashion from simpler, low-dimensional probabilistic models and their local connections; in
turn, this modularity allows to incorporate available data to MRF's and efficiently simulate them by
leveraging their graph-theoretic structure. Learning graphical models from data and/or construct-
ing them from physical modeling and constraints necessarily involves uncertainties inherited from
data, modeling choices, or numerical approximations. These uncertainties in the MRF can be man-
ifested either in the graph structure or the probability distribution functions, and necessarily will
propagate in predictions for quantities of interest. Here we quantify such uncertainties using tight,
information-based bounds on the predictions of quantities of interest; these bounds take advantage
of the graphical structure of MRF's and are capable of handling the inherent high-dimensionality of
such graphical models. We demonstrate our methods in MRF's for medical diagnostics and statistical
mechanics models. In the latter, we develop uncertainty quantification bounds for finite-size effects
and phase diagrams, which constitute two of the typical predictions goals of statistical mechanics
modeling.

Key words. Markov Random Fields, Uncertainty Quantification, Information Theory, Proba-
bilistic Inequalities, Ising model, Long range interactions
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1. Introduction. Probabilistic graphical models (PGM) constitute one of the
fundamental tools for Probabilistic Machine Learning (ML) and Artificial Intelligence
(AI), allowing for systematic and scalable modeling of uncertainty, causality, domain
knowledge, and data assimilation, [38, 49, 36]. The main idea behind PGMs is to
represent complex models and associated learning processes using random variables
and their interdependence through a graph. We achieve it by constructing structured,
high-dimensional probabilistic models, involving many parameters, nodes, and edges,
from simpler ones with few parameters, nodes, and edges, thus allowing for distributed
probability computations, and by incorporating available data, exploiting graph-
theoretic model representations. PGMs are generally classified into Markov Random
Fields (MRF) defined over undirected graphs, and Bayesian Networks, defined over
Directed Acyclical Graphs [49] that represent conditional independencies between
random variables, as well as mixtures of those two classes, [36]. Furthermore, the
modeling flexibility of PGMs also allows to combine dynamics, data, and deep learning
in Hidden Markov Models [38, 50, 47], as well as in recent work brings together multi-
scale modeling, physical constraints, and neural networks, [69, 41, 30].

Although the term random field may also refer to continuously indexed processes
(e.g. gaussian random fields), in this paper MRFs refer to structured probabilis-
tic models defined on undirected graphs; such PGMs are also referred to as Markov
Networks. MRFs arise in statistical mechanics where interactions between particles
are usually bi-directional, or when there may be no inherent evidence for causality
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(directionality) and thus undirected graphs are the appropriate structure for such
probabilistic models, [38, 49, 71]. Other applications of MRF's include image segmen-
tation, image denoising [49, Sec. 4.2], text processing [64, 56], bioinformatics [61],
computer vision [45], Markov logic networks, [21], Gaussian Markov networks [49,
Sec. 7.3], artificial intelligence [36], and statistical mechanics [55, Sec. 19.4]. Over-
all, MRFs provide a fundamental unifying modeling tool for statistical mechanics,
probabilistic machine learning, and artificial intelligence, [3, 38].

Learning MRFs can be based on available data, e.g. for learning the graph we re-
fer to [49, 32, 43] for score-based methods, [55, 44] for independence tests on the graph,
while maximum likelihood or Bayesian methods can be used for parameter identifica-
tion, [49]. On the other hand, MRF's in statistical mechanics can be constructed from
physical modeling and related constraints, [68, 55]. Therefore, the learning stage of
MRF's necessarily involves uncertainties inherited from data, modeling choices, com-
promises on model complexity, or numerical approximations. These uncertainties in
the MRF can be manifested either in the graph structure or the probability distri-
bution functions, and necessarily will propagate through the graph structure and the
corresponding structured probabilistic model in the predictions for quantities of in-
terest (Qols). To understand and quantify the impact of such uncertainties on model
predictions, in this paper we present an information-based uncertainty quantification
(UQ) method for general MRFs.

Model Uncertainty in Probabilistic Models: In general probabilistic models,
uncertainties arising just from the fluctuations of the Qols, associated with a given
probabilistic model p, are referred to as aleatoric and occur when sampling p, [15].
They are handled by well-known tools, e.g. central limit theorems, concentration
inequalities, Bayesian posteriors, MCMC, generalized Polynomial Chaos, etc. In con-
trast to this more standard type of uncertainty quantification, in MRF's, due to the
learning process described earlier, we have model uncertainties (also known as epis-
temic), both in the structure (graph) and the probabilistic model itself-including
parametric ones.

Next, we briefly describe the information-theoretic formulation of model uncer-
tainty for general probabilistic models, without assuming any graphical model struc-
tures, see [39] for more details. To practically address model uncertainty, we typically
compromise by constructing a surrogate or approximation or baseline model p. We
construct families @ of (non-parametric) alternative models p to compare to p, while
the “true” model p*, which may be intractable or partly unknown, should belong
to Q; for this reason we can refer to Q as the ambiguity set, typically defined as a
neighborhood of alternative models around the baseline p:

(1.1) Q=0Q"={p:d(p,p) <n},
where 1 > 0 corresponds to the size of the ambiguity set and d = d(p,p) denotes a
probability metric or divergence. The next natural mathematical goal is to assess the
baseline model “compromise” and understand the resulting biases for Qols f when
we use p for predictions instead of the real model p* € Q. We define the predictive
uncertainty (or bias) for the Qol f when we use the baseline model p instead of any
alternative model p € Q (including the real one p*) as the two worst case scenarios:
(1.2) sup/inf {Epf — E,f}

peQn
where E;f denotes the expected value of the Qol f. Therefore, (1.2) provides a
robust performance guarantee for the predictions of the baseline model p for f within
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the ambiguity set Q7. This robust perspective for general probabilistic models p is
known in Operations Research as Distributionally Robust Optimization (DRO), e.g.
[35, 37]. While the definition (1.2) is rather natural and intuitive, it is not obvious
that it is practically computable since the neighborhood Q7 is infinite-dimensional.
However it becomes tractable if we use for metric d in (1.1) the Kullback-Leibler
(KL) divergence R(p||p). Accordingly, n is a measure of the confidence in KL we put
in the baseline model p. In recent work [15, 23, 39], it has been demonstrated that
(1.2) (an infinite dimensional optimization problem) is directly computable using the
variational formula (follows directly from the Donsker Varadhan variational principle,
23)):

1
(1.3) sup/inf {E;f — Epf} = £ inf {f log/eic(f*Epf)p(dx) + Q} .
pEQN c>0Lc C

In this formula we recognize two main ingredients: 7 is model uncertainty from (1.1)
while the Moment Generating Function (MGF) [e*“/p(dz) encodes the Qol f at
the baseline model p. In [23, 39] the authors have developed techniques to compute
(exactly or approximately via asymptotics [23]) as well as to provide explicitly upper
and lower bounds on (1.2) in terms of concentration inequalities [39]. Tightness, i.e
when the sup and inf in (1.2) are attained by an appropriate measure p have also been
studied in [39]. Finally, related UQ bounds have been derived for Markov processes
using variational principles and functional inequalities [6], and in rare events [2, 24].

Main results: The main thrust of our results here is to build on the aforementioned
perspective for information-based UQ), in order to develop UQ methods for MRFs,
and to address their specific UQ challenges. In particular, here we address both struc-
ture (graph) and probabilistic uncertainties—including parametric ones—using tight,
information-based bounds on the predictions of Qols; although these new UQ bounds
rely on (1.2), they specifically, (a) take advantage of the graphical structure of MRFs,
and (b) are capable of handling the inherent high-dimensionality of such graphical
models, i.e. there is a necessity for scalable UQ in the size of the system, namely the
number of nodes in MRFs such as in the thermodynamic limit of statistical mechanics
models.

Regarding the scalability issue, in [46] the authors tested various model uncer-
tainty metrics in defining d(p,p) in (1.1) such as the Hellinger distance and x? di-
vergence and inequalities, such as Csiszar-Kullback—Pinsker and the Hammersley-
Chapman-Robbins inequalities, [67], in order to bound the model bias with respect
of a Qol in the spirit of (1.3). It was shown that among these bounds the only one
that scales with the dimension of the model p is (1.3) and d(p, p) should be the KL
divergence.

Once we have settled to the use of the KL divergence for the aforementioned
scalability reasons, we turn our attention to the baseline MRF p, the ambiguity set
(1.1) and the corresponding alternative MRFs p. Based on the earlier discussion
on model uncertainty for MRFs arising from statistical learning of graph models
or physical modeling, we introduce a unifying perspective of three general types of
alternative models p, based on their relative structure to the baseline p: Type I MRF's
where the graph structures (nodes and edges) are identical to the baseline p and the
parameters of probability distributions are different, Type II where the nodes are the
same, but the edges and parameters are different. Finally, Type III where the nodes,
structure, and parameters are all different.

In general, MRFs satisfy the specific conditional independence properties dis-
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cussed in subsection 2.2. Contrary to Bayesian Networks, their distributions cannot
always be factorized by a product of local conditional distributions or local functions
over the graph. The celebrated Hammersley-Clifford Theorem, also known as Funda-
mental Theorem of Random Fields [49, 42, 55], guarantees such a factorization along
maximal cliques of the graph under the assumption that p > 0. Here, we make such an
assumption for both baseline and Type I-IIT MRFs. Consequently, the KL divergence
is finite without requiring absolute continuity with respect to p.

We take advantage of all the above and we study UQ problems by developing
a unified strategy for Type I and II MRFs while Type III is not covered here as
explained in Section 3. We focus on the two primary ingredients of (1.2), namely the
KL divergence and the MGF, and how they manifest themselves on MRFs. In KL
divergence, the factorization discussed earlier is a crucial tool for its simplification and
numerical calculation. It allows us to compare local discrepancies in parameters and
structure between the baseline p and alternative models. We call these discrepancies
excess factors of Type I-II given p. We develop a unifying method for computing
the excess factors by interrelating the maximal cliques of alternative MRFs and the
baseline MRF p. As for the MGF, the choice of Qols is determinant. We focus on
two different Qols; those that are involved in the models (e.g. sufficient statistics) as
well as characteristic functions defined on events of interest.

Regarding tightness of UQ bounds discussed earlier, we find specific distributions
that the derived UQ bounds for MRFs are attainable. In addition, we go beyond
that, and pose the question: Given a Qol and a baseline MRF p, what are the possible
associated undirected graphs such that the conditional independence properties implied
by the graphs are satisfied by the distributions? Such a question introduces the concept
of tightness at a graph level. There are cases where we can explicitly determine the
associated graphs and others (when the structure is different than the baseline) that
depend on the Qol. In the latter case, we give an example that points out a unifying
method to construct the right graph or at least, a set of possible graphs.

Demonstration of UQ for MRFs: We first demonstrate all the above concepts
and UQ methods in a fairly simple and low dimensional MRF example from medical
diagnostics. Subsequently, we implement our approach on several high-dimensional
statistical mechanics models as they are fundamental in ML [3, 38]. We develop
UQ bounds for finite size effects and phase diagrams, which constitute two of the
typical predictions goals of statistical mechanics modeling and both require scalable
UQ methods.

Specifically, we consider as a baseline model p an Ising-spin system with Kac-type
interactions, see [57]. Such a model combines sufficient complexity—since it is not a
mean field model-but it is still analytically fairly tractable to serve as a good bench-
mark problem for high-dimensional MRF. Alternative models p considered here are
1) Ising models with perturbed interaction potentials with respect to the baseline, 2)
models with truncated interactions to facilitate computational implementations, [68],
and 3) perturbations by a long-range interaction (even longer than a Kac interaction).
As we discuss in Section 6, these systems are typically defined in bounded domains
with boundary conditions being a given configuration outside of the domain. To have
a graph description of these systems, MRFs need to be modified to account for condi-
tioning a Gibbs distribution on an eliminated set of nodes identified as a configuration
defined outside of the domain by using reduced Markov Random Fields (rMRFSs) (see
[49]). Typical questions we address in these examples include the following: (i) How
to capture the phase diagram of a perturbed model through its comparison with the



UNCERTAINTY QUANTIFICATION FOR MARKOV RANDOM FIELDS 5

baseline phase diagram by bounding the model bias. (ii) How to truncate an in-
teraction so as the phase diagram of the baseline model and the truncated one are
close within a prescribed tolerance. Note that an extensive analysis on the intersec-
tion between other concepts and methods from statistical mechanics—also including
non-equilibrium statistical mechanics—and deep learning have been reviewed in [3].

Related methods: We note that existing general-purpose UQ & sensitivity analy-
sis methods, e.g., gradient and ANOVA-based methods, [63, 60, 29] cannot han-
dle UQ with model uncertainties, due to their inherently parametric nature, while
it is not clear how they can take advantage of the graphical, causal structure in
MRFs. Furthermore, there is earlier work on model uncertainty that represents miss-
ing physics with a stochastic noise but without the detailed structure of a graphical
model, [51, 65]. In our work, there is a natural structure embedded in the model
uncertainty, arising through the graph structure of the MRFs.

Sensitivity analysis has also a long history in statistical mechanics, known as
linear and nonlinear response theory, [59, 4], addressing the impact of small and
larger parametric perturbations respectively. These types of methods are covered by
our approach, as models with perturbed weights are clearly of Type I.

Furthermore, in contrast to these results, a key point in our work here, also
immediately clear from (1.3), is that the model perturbations we can consider are
not necessarily small. For instance, the parameter n in (1.3) does not need to be
small, allowing for global and non-parametric sensitivity analysis; the latter since
the KL divergence allows us to consider models outside a specific parametric family,
e.g. comparing statistical mechanics models with different potentials. Similarly, we
explicitly compute the UQ bounds for large perturbations in a medical diagnostics
example.

Sensitivity analysis in MRFs has been also studied in [14]. The authors tackle
fundamental questions such as bounding belief change between Markov networks with
the same structure but different parameter values. They propose a distance measure
and bound the relative change in probability queries by the relative change in parame-
ters (Type I). Global sensitivity in parameters has been studied in [17]. In particular,
the authors developed an algorithm that checks the robustness of a MAP configu-
ration i.e. the most likely configuration, in discrete probabilistic graphical models
under global perturbations. The present work goes beyond local or global parametric
sensitivity analysis that allows us to consider perturbations in both parameters and
edges of the graph of the MRF and examines their impact on the prediction of specific
Qols. Special cases of our results for mean field and nearest neighbor Ising models
were considered earlier in [46]. Finally, we note that parametric sensitivity analysis
for the other class of (directed) probabilistic graphical models, namely Bayesian Net-
works, was developed in [16] using similar tools to [14]. Parametric sensitivity analysis
based on mutual information for multi-scale partial differential equations and neural
networks informed by Bayesian Network priors was developed in [70] and [66]. Model
uncertainty quantification based on information theory inequalities in the spirit of
(1.3) were recently introduced for Bayesian Networks arising in chemical sciences,
[30].

This article is organized as follows: We start with some concepts from graph
theory to fix notation and then we give a brief background of MRFs/rMRFs (Sec-
tion 2). Supplementary background behind rMRFs is provided in the Appendix A.
We formally introduce the idea of graph interconnections, the impact on distributions
and alternative models in Section 3. The main results are presented in Section 4 and
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provide UQ bounds for rMRFs, preparing the ground for applications to statistical
mechanics models. In Section 5, we present a simple example from medical diagnos-
tics. Section 6 is devoted to UQ for finite size effects, scalability, and finally UQ for
phase diagrams for generic interactions and the Ising-Kac model. In the remaining
sections of the Appendix, we further discuss the Ising-Kac model, we provide the
technical background required for the UQ analysis of Section 6 (e.g Lebowitz-Penrose
(LP) limit), we include the proofs of the main results, and explicit calculations of the
UQ for medical diagnostics example and statistical mechanics.

2. Preliminaries.

2.1. Definitions from Graph Theory. We start with some notation and ter-
minology from graph theory. A graph is a data structure G consisting of a set of
nodes, V = {1,2,..., N} and a set of edges &, i.e. all pairs of nodes i,j € ¥V which
are connected by an edge, denoted by (7,7). An edge can be directed, denoted by
i — j or undirected, denoted by i — j. A graph is directed [resp. undirected] if
all the edges are directed [resp. undirected]. The nodes ¢,j € V are adjacent if and
only if (i,7) € £. The neighborhood of node i, denoted by AN is the set of nodes
which ¢ is adjacent. For sets of nodes A, B and C, C separates A from B, denoted
by {i € A} 1g {j € B} | {k : k € C}, if and only if when we remove all the nodes
in C there is no path connecting any node in A to any node in B. Lastly, if M C V,
the induced subgraph of G is defined as G[M] = (M, E’) where £’ includes all the
edges (i,7) € € such that i,j7 € M.

2.2. Conditional Independence Properties and MRFs. In this subsection,
we define three conditional independence properties that are necessary for MRF's.

Let G = (V,€) and let Y = {Yi}ml be a set of random variables that each one is
attached to a node and |V| denotes the cardinality of V.

e Pairwise Markov property (P): Any two non adjacent variables are conditionally
independent (CI) given the rest, i.e. a conditional joint can be written as a product
of conditional marginals; CI is denoted by Y; L Y; | {Yi : k #4,5},
e Local Markov property (L): Any variable Y; is conditionally independent of all
the others given its neighbors, that is ¥; L {Yy : k ¢ N;} | {Yi : k € Ni},
e Global Markov property (G): If A, B,C are sets of nodes then any two sets of
variables, Y4 = {Y; : i € A} and Yp = {Y; : i € B} are conditionally independent
given a separating set of variables Yo ={Y;:i€ C}, thatis Y4 L Yp | Y.

It is obvious that (G) implies (L) which implies (P).

DEFINITION 2.1. Let G = (V, &) be an undirected graph where V = {1,2,... N}
is the set of nodes and € is the set of edges. Let also consider a set of random variables
Y = (Yi)icy indexed by V where each Y; takes values on a finite set S. Their joint
probability distribution is denoted by p. We say that (Y,p) is a Markov Random
Field (MRF) iff (G) is satisfied.

As MRFs are defined on an undirected graph, it does not allow to use chain rule
of conditional probabilities and further describe the probability distribution p(y). A
factorization rule for MRFs (i.e. for undirected graphs and the conditional indepen-
dencies) is important and is provided by Hammersley and Clifford in their unpublished
work [42, 40]. To state their result, we need a few more definitions. Let G = (V, &)
be a graph and let ¢ C V.

(1) c¢is called clique if any pair of nodes in ¢ is connected by some edge.
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(i) c is called maximal clique if any superset ¢’ of ¢ (i.e ¢ D ¢) is not a clique
any more. The set of all maximal cliques of graph G is denoted by Cg.

Hammersley-Clifford Theorem A positive distribution p(y) > 0 satisfies one of
(P), (L) and (G) of an undirected graph G iff p parametrized by some parameters
w = {Wc}eee, can be represented as a product of clique potentials, i.e

(2.1) Py ) =ply | w) = s ] welye | wo)
ceCqg

where V. (y. | w¢) is a positive function defined on the random variables in clique c
and parametrized by some parameters w., and is called clique potential. Also Z(w)
is the partition function given by

(22) Z(W) = Z H \ch()’c | Wc)

y c€Cg

The theorem states that the set of all joint distributions on an undirected graph G
that can be factorized as in (2.1) is identical to the set of joint distributions that sat-
isfy the conditional independence properties, under the restriction of strictly positive
distributions.

Remark 2.2. Without the assumption of strict positiveness of the joint distribu-
tion p, the theorem is not valid. A counterexample has been obtained in [54].

Remark 2.3. The KL divergence or any other f-divergences between a baseline
MRF that is assumed nonnegative and alternative MRFs of Type II-III ( different
structure, see Introduction) could be infinite due to the loss of absolute continuity.
In that case, the Wasserstein metric or the I'-Divergence, [25], could potentially be
good alternatives for the KL divergence in defining (1.1). The implementation of
the Wasserstein metric or the I'-Divergence is still unexplored in the context of such
MRFs. For this purpose, the development of new methods constitutes an important
step towards comparing MRF's with different structures and nonnegative distributions.
In this article, we restrict our attention to the Hammersley-Clifford Theorem and we
assume strictly positive probability distributions.

Given a MRF (Y,p), a reduced Markov Random Field (rMRFs) is obtained by
conditioning p on some observation U = u with U C Y. Hence, the distribution
of the resulting rMRF has a reduced number of clique potentials. As we discuss
in Section 6, TMRFs are appropriate for formulating statistical mechanics models
defined on bounded domains with a given configuration outside of the domain in a
graph language. Next, we formally introduce rMRFs.

2.2.1. Reduced Markov Random Fields (rMRFs). Let Y = {Y;};cy be a
collection of random variables indexed by a set of nodes V of a graph G = (V,€),
taking values in some space YV = ®Y_;);. Let p = p(-|w) be a strictly positive joint
probability distribution of Y parametrized by w such that (Y, p(-|w)) is a MRF.

Let u be a context and M C V. If U = {Y; }iem with U = u, we construct the
corresponding tMRF as follows: let Z = {Y;};,cy\aq and q(z|w) be the probability
distribution factorized according to Proposition A.2 (the analogue of the Hammersley-
Clifford Theorem for rMRFs): ¢(z) = ¢(z|lw) = m [Teec, Yelul(ze | we). More
details on rMRF's are given in Appendix A.

The next two sections are presented for rMRFs as we can then recall formulas and the
main results directly in the UQ analysis of statistical mechanics models in Section 6.
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Their formulation and analysis hold for MRF's and when required, we will be providing
more details for their implementation to MRFs.

3. Mathematical Formulation of UQ on MRFs/rMRFs. Let ¢ be arMRF
constructed by learning from available data or from physical modeling and related con-
straints. Constructing such a model involves uncertainties either in the graph struc-
ture or the probability distribution functions, and necessarily will propagate through
the graph structure and the corresponding structured probabilistic model in the pre-
dictions for Qols. We quantify the impact of such uncertainties on model predictions
by constructing ambiguity sets such as (1.1) consisting of alternative rMRFs given by

(3.1) Q" = {rMRFs §: R({llq) <n},

where 17 > 0 corresponds to the size of the ambiguity set. The alternative models ¢
in (3.1) can be classified into: Type I MRFs where the graph structures (nodes and
edges) are identical to the baseline ¢ and the parameters of probability distributions
are different, Type II where the nodes are the same, but the edges and parameters
are different. Finally, Type III where the nodes, structure, and parameters are all
different. Next, we mathematically formulate the alternative models.

3.1. Alternative models. Let (G, w,p) and (G,W,p) be two MRFs with G =
(V,€) and G = (V,€) being the associated graphs, where V and V are the sets of
nodes and £ and £ are the sets of edges.

DEFINITION 3.1. (Q~,v~v,p') and (G, w,p) can have one of the following intercon-
nections:

Type I: V=V,E=E and W #w, or
Type II: V=V, EC€& andw #w or
Type III: VAV, E+4E and W # w.

From now on, we refer to the baseline model when we use the notation (G,w,p)
and without loss of generality we assume & C €. This assumption simplifies the
presentation of our approach but intuitively speaking, the fewer edges a rMRF has,
the more information it provides, since in a sparser graph, there are more conditional
independencies specified.

Based on that, we interrelate the maximal cliques of Type I-II models with those
of p. In particular, for Type I there is one to one correspondence between maximal
cliques. Changes on the set of edges of a Type II model lead to different sets of
maximal cliques and one needs to examine the nature of the new edges and their
impact on the maximal cliques of p. Finally, the new set of nodes of a Type III model
leads to a drastically new structure that makes such interrelation of maximal cliques
hard to achieve. Therefore, this case is not examined here.

Let u be a context and M ¢ VNV. For U = {Yi}iem with U = u, we
construct the corresponding rMRFs (Z,¢(-|w)) and (Z,{(-|w)) parametrized by w
and w respectively. Based on the structural classification Type I-I11I, the probability
distributions of ¢ are treated as follows:

Type I. Let B C Cg be the set of maximal cliques whose weights differ, i.e for each
¢ € B, w.# w,. The clique potentials of §(-|W) can be rewritten as

32 Wil = { el [l fwese) LEECE
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We call @.[u](- | W¢, w.) > 0 G-excess factor of type I relative to q on ¢ and is defined
on variables z. in clique ¢ € B. Cliques where no change on weights has occurred,
remain the same.

Type II. In this type, the class of maximal cliques Cg is different. The analysis
becomes more complicated and clique potentials need to be carefully considered. We
look into the nature of one or more new edges by categorizing it as one of the following
types: a new edge (i) can create a totally new maximal clique, see Figure 1, third
graph, (ii) can connect two or more already existing maximal cliques, see Figure 1,
second graph, and (iii) can enlarge an already existing maximal clique, see Figure 1,
forth graph. By adding more than one new edges, the new maximal cliques of G can

2 A 4 A 4 A 4 A

FiG. 1. (First) Baseline MRF model p demonstrated by graph G. (Second) Alternative
model p with the associated graph obtained by adding the yellow edge (4 — 7) and connecting
two mazimal cliques of p model, {3,4,6} and {3,6,7}, thus p has a new mazimal clique
{3,4,6,7}. (Third) Alternative model p with the associated graph obtained by adding the red
edge (6 —10) and thus p has a totally new mazimal clique {6,10}. (Forth) Alternative model
D with the associated graph obtained by adding the blue edge (5—10) and enlarging the already
existing clique, {5,8}, to {5,8,10}.

be obtained by a combination of (4), (i), and (iii). We introduce the following sets:

(33) By = {E S Cg~ \Cg 1 ¢ = U;cy, for ¢; € Cg}
Bc ={¢ € Cs\Cg : there exists ¢ € Cg s.t. ¢ C ¢}
Bhew = (Cg uUByu Bg)c

Then the clique potentials of § can be rewritten as:

I1., Ue,[ul(ze, | We,) @8 [u](zz | We, W) ,if &€ By,

- (i) - o
(3.6) alul(zs | o) = {  Lelul(ze | we) [u]((z: [ we, we) if ¢ € B,
Vzlu](zz | We) ,if & € Bhew
U, [u](z. | we) ,if ¢ € Cg

We call CD(a“),d)(am) > 0 g-excess factors of type II relative to q on ¢ defined on the
variables of ¢. In fact, the two functions play the role of the discrepancy at a dis-
tribution level when new maximal clique ¢ has been created by connecting existing
maximal cliques ¢; and by enlarging an existing maximal clique. When ¢ € By,
there is no need to express the clique potential through the potentials of ¢(- | w). For
simplicity, we assume that clique potentials on common maximal cliques between G
and G do not change. However, one can consider different potentials and in that case,
a term ® should be introduced similar to (ii) and (iii). For convenience, we establish



10 PANAGIOTA BIRMPA, MARKOS A. KATSOULAKIS

one last unifying terminology. We call

ceB
38)  oN(Z):= [] Pelul(Zs | wo) [ @ l(Zo) T @5 [u)((Ze) | o)
E€Buew EeBy éeBc

total G-excess factor of type I and II relative to q respectively. The total G-excess
factor of type I relative to ¢ captures all the parameters changes while the total g-
excess factor of type II relative to ¢ captures all the structural discrepancies. In
the case of MRF, we drop the context u from (3.7) and (3.8) and Z is replaced by
Y. Equations (3.3)-(3.8) are explicitly specified in medical diagnostics application
in Section 5 and its detailed analysis in Appendix D, and in statistical mechanics,
Section 6. In Type III, there exists the total g-excess factor of type III relative to
q. However, due to the high degree of discrepancies, we cannot interrelate maximal
cliques of Type III model with ¢, and by extension each ¢-excess factor cannot be
determined. The next results are straightforward but essential in our calculations. To
avoid heavy notation, we remind that ¢(-) = ¢(- | w) and ¢(-) = ¢(- | W).

Partition function of alternative models. Based on the above description of
alternative models, the partition function of ¢ is given in the next lemma.

LEMMA 3.2. Let (Z,q) be a rtMRF. Then for any alternative rMRF (Z,q) of Type
i with i = L 11 its partition function is expressed as:

(3.9) Za(W) = Bq[®4])Zu(w)

where ®i, are given by (3.7) and (3.8).

Proof. The proof is based on the method of interrelating the distribution ¢ and g,
utilizing the total g-excess factors relative to ¢ given by (3.7) and (3.8). The explicit
computation is provided in Appendix B.1. ]

Likelihood ratio. The following lemma provides the likelihood ratio between ¢ and
g and constitutes the key ingredient for the simplification of (4.2) and the UQ bounds
provided in (4.1).

LEMMA 3.3. Let (Z,q) be a rtMRF. Then for any alternative rMRF (Z,q) of Type
i with i = L 11, the corresponding likelihood ratio satisfies:

dq _ 2,
dg  E,[®i]

u

(3.10)

where @1 is given by (3.7) and (3.8).

The proof is omitted as the lemma is a direct consequence of the method of interre-
lating two distributions discussed above and Lemma 3.2. Note that both results hold
for MRFs denoted by (Y,p) and (Y, ), dropping the context u from ®! in (3.10).

3.2. KL divergence. As we see in Section 4, our UQ methods rely on the KL
divergence as means to measure “distance” between baseline and alternative MRFs.
The fact that it scales correctly with the dimension of the baseline model [23] as well
as the commonalities in parameters and structure between baseline and alternative
models combined with the Hammersley-Clifford Theorem allows the KL divergence
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to be expressed in a simplified and informative form. In particular, we show that
KL divergence (which is finite due to the positive probabilities ¢ and §) depends only
on the total g-excess factor relative to ¢ given by (3.7) and (3.8). To simplify the
notation, we omit the dependence of Z from r;, f and ®i,.

LEMMA 3.4. Let (Y,p%), (Y,p"V) be two MRFs defined over graphs G = (V,€)
and G = (V,é) respectively. Let u be a context and M C V. We consider the
corresponding TMRFs (Z,q),(Z, q).

a. If g is Type i, with i =1 or 11, then the KL divergence is given

N q 4. q
R(q||lq =E~[lo ]:E {lo }

(allq) q gq 1y gq

1
Eq[®},]

(3.11) = Eqllog @] — log B[] = Eq [®,log @] — log Eq[®),]
where @1 is defined in (3.7) and (3.8) accordingly.

b. If G is Type i, withi =1 or 11, then for any f satisfying (4.3), the KL divergence
is given by

Eq [Hl@h}

(3.12)  R(qlla) = CiEg[f] + E, []

—log B, [®L], ®},(Z) = Of(Z)+m(2)
Proof. a. We express the KL divergence as follows
- i 7,
R(qllq E-{log}]j} [log]
(@le) = £ |1og 2| = 5, | 105 ]

Then, we use Theorem 3.3 and we obtain (3.11). For b., we additionally recall (4.3).

Remark 3.5. As mentioned in Theorem 3.3, the result holds for MRFs denoted
by (Y,p) and (Y, p), dropping the context u from ;.

4. Main Results. In this section, we present a information-based UQ method
on the predictions for Qols for general MRFs/rMRFs by quantifying the model un-
certainty for MRFs/rMRFs arising from statistical learning of graph models or from
physical modeling. Our starting point is the Donsker-Varadhan variational principle
[22], which in turn implies the Gibbs Variational principle for the KL divergence (see
[15, 23]):

(4.1) sup { e (e R((ﬂqﬂ} < E5lf] < inf {/WR((M)]}

A>0 A T A>0 A

As mentioned earlier, we focus on KL divergence as it scales correctly with the di-
mension of the baseline model [23]. In the above inequality, ¢ is the baseline rMRF
and ¢ is an alternative model in the ambiguity set defined in (3.1). We note that at a
MRF point of view, (4.1) holds as well. Moreover, Ag (M) is the cumulant generating
function (CGF) computed with respect to p given by

(4.2) AL () :=log Eg[eM]

while f is a Qol. The class of Qol that we examine here as discussed in the next
subsection.

We take advantage of the total g-excess factors relative to ¢, likelihood ratio and
an explicit formula for KL divergence on MRFs/rMRFs (see Lemma 3.4) in Section 3
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as well as in handling of the inherent high-dimensionality of such graphical models
and we obtain tight and scalable, information-based bounds on the predictions for
Qols. Finally, we prove tightness of the UQ bounds, i.e. we prove that the bounds
are attainable by MRFs/rMRFs, we compute their probability distribution and we
develop a strategy to determine their associated graph structures.

4.1. Quantities of Interest. We primarily consider two classes of Qols f(Z).
The first has Qols that are expressed as a characteristic function on events of interest
such as (5.1) in the medical diagnostics example presented in Section 5. The second
class consists of Qols that are sufficient statistics for the models ¢ and ¢ and are also
present in the total g-excess factor of type I and II relative to g, i.e. we consider f(Z)
that satisfies

(4.3) f(Z)= é (log @4, (Z) + r:(Z)) , i=11L

for some non-zero constant C; = Ci(w, w,u) < 1 and a function x;(-) = ki(- | w, W, u)
that may depend on w, W, u, see also (3.12). Such a class covers observables involved
in finite size effects and phase diagrams for statistical mechanics models examined
later (e.g. averages of spins given by (6.12)). The CGF given by (4.2) is computable
for Qols in both classes.

4.2. UQ bounds. The next theorem is an UQ result on rMRFs that is obtained
by consolidating the total g-excess factors relative to ¢, likelihood ratio, KL divergence
and Qols. Part (a) provides the UQ bounds for a general Qol and hence we use such
bounds for Qols examined in the medical diagnostics application in Section 5. Part (b)
is particularly applicable for Qols satisfy (4.3), so they are exploited by the statistical
mechanics section.

THEOREM 4.1. Let (Y,p), (Y,D) be two MRFs defined over graphs G = (V, &)
and G = (V,&) respectively. Let u be a context and M C V. We consider the
corresponding TMRF's (Z,q),(Z,q). If q is of Type i, with i =1 or I, then
(a) for any Qol f(Z), the following bounds hold

1
X\

(44)  £B[f) < inf S {log B[] + E, [@),log @] — log B, [@}]}

1
Ey[}]
(b) for any Qol f(Z) that satisfies (4.3), the following bounds hold:

E, [k @}
Eq[ [P] | }

. 1 +Af i
. G < — _
(4.5) +E;(f] < e )1\2% )\{logEq[e ] —log E, [®L] +

where ®, is the total G-excess factor relative to q given by (3.7) and (3.8), ki and C;
are defined in (4.3). Note that when § is of Type I, Zy(W) = Zy(W).

The proof given in Appendix B.2 is based on Lemma 3.4 and the characterization of
the exponential integrals. An application to a single parameter exponential family is
given in Appendix B.2.

4.3. Tightness of UQ bounds for MRFs/rMRFs. Here, we prove that the
inequalities (4.4) and (4.5) are tight i.e. they become an equality for a suitable
model ¢ € Q" given by (3.1) standing for the worst case scenarios. The practical
interpretation of the tightness of UQ bounds is that these distributions are reasonable
as they belong to the ambiguity set in (3.1).
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THEOREM 4.2. Let (Z,q) be a rMRF defined in subsection 2.2.1 and f(Z) be a
Qol with finite MGF E, [6)‘f(z)] in a neighborhood of the origin. Then there exist 0 <
n+ < 0o such that for any n < ni there exist probability measures & = qT(n) € Qs
where Qy, is given in (3.1), such that (4.4) and (4.5) become an equality. Furthermore,
gt = ¢+ with

ertf

4.6 dgM* = ————d

(4.6) q By

and Ay being the unique solutions of R(¢*||q) = n. In particular, the total ¢ -excess
factor relative to q denoted by ®L, satisfies

@fl =M and C; = Ay, ki = 0 respectively.

Proof. See Appendix B.3.

The result holds also for MRF's. The corresponding quantities involved in the theorem
are denoted by p, p*+ and ®*.

Remark 4.3. For convenience we use its MRF version. Given a baseline MRF
(Y, p), its associated graph G and a Qol f, Theorem 4.2 guarantees the existence of
probability distributions p*+ such that (4.4) and (4.5) become an equality (this is not
an unlikely extreme case) and also specifies the distributions explicitly. However, it
does not imply how different the associated graphs of p* are, compared to the graph
associated to p or grossly speaking, if they are Type I or II. Depending on f, there
are cases where this can be determined. In fact, by recalling the Hammersley-Clifford
Theorem, we express

k
(4.7) dp)‘i - H U.(ye | we) ( !

5 ew o TL e ety wo)
(‘EC

CECg

where Z+ (A, w) = E,[e*+7]Z(w) is the partition function of p*+

We turn our attention to the product in (4.7). Each factor is defined on a maximal
clique of G apart from e*+/. We focus on f; Suppose that f is a Qol with domain
Dom(f) and cannot be written as a sum of more than two functions e.g. sample
average. If there is a maximal clique ¢y such that Dom(f) C co, then it turns out
that all clique potentials of p*+ and p are equal except V., = e*+f ¥, . and hence

1

9 W= Bz

ekif\IICO H Ve(ye | we)
H’_/c;éco

<o
The associated graphs of p*+ are apparently of Type I as no change on maximal cliques
occurs. If Dom(f) N ¢ # @ for more than two maximal cliques ¢, then the associated
graphs to p*+ have been changed and thus are Type II. An example is discussed in
subsection 5.1. On the other hand, if f can be expressed as a sum of some functions
f=>_, fi, then we may have more than one candidate graphs associated to p*+ either
Type I or II. In fact, the exponential can be factorized further (e.g. e/ = IL er=fiy,
giving rise to more than one ways of matching the clique potentials in the sense of
(4.8).

Remark 4.4. The parameter 1 in Theorem 4.2 is also called misspecification pa-
rameter, and can be thought of as a non-parametric “stress test” for the rMRF, and
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can be tuned by hand so one can explore how the level of uncertainty affects Qols.
Alternatively, n can be computed as the KL divergence from the available data (e.g
data used to construct the baseline model in Medical Diagnostics, Section 5) in the
form of a histogram or a KDE and thus subs for the distance of the baseline model
from the unknown true model, [30].

5. UQ for Medical Diagnostics. Let us introduce a simple example from
medical diagnostics. We exploit its simplicity and low dimensionality to demonstrate
MRF modeling with parameters and structure learned from data as well as the types
of uncertainties that arise naturally in MRF modeling.

Setup. Consider the problem of investigating interdependence (structure) and its
strength (parameters) between Smoking (S), Asthma (A), Lung cancer (L), and Cough
(C), [20]. It is assumed there are prior expert knowledge and data encoded by a
probabilistic model (distribution) p* defined on {S,C, L, A}. Due to limitations in
expert knowledge and data, the true distribution p* itself may be altogether unknown.
This, in turn, forces us to build a surrogate baseline model p, which therefore is
uncertain in ways we will specify next.

Baseline MRF. Let D = {d[1],...,d[N]} be a large collection of patient records
sampled from p*. Using a structure-learning algorithm on the data D (for instance,
greedy score-based structure search algorithm for log-linear models [49, 38]), a model
with the structure of G illustrated in Figure 2, (Left) is built, [20]. We assume that
the graph is undirected as the directionality associated with the variable dependencies
is not known (or is not expected). Subsequently, by parameter learning (for instance,
using maximum likelihood estimation [49]) the weights w become specified from the
available data. From now on the resulting model (G, w, p) is called the baseline model.

v/v\ vxv\

4 \ 4 4 \ 4
Fic. 2. (Left) MRF structure (Y,p) = ({S,C,L, A}, p) over G with joint probability
distribution p. S € {so,s1}, L € {lo,l1}, A € {ao,a1} and C € {co,c1}. For example, the
values so and s1 can be thought as smoking and non-smoking respectively, and so forth. The

random variables Y = {Y1,Y2,Ys,Ys} = {S,L, A,C} are accordingly attached to the nodes
inV ={1,...,4} with edges in € = {1 —2,2—3,2—4,3—4}. The class of mazimal cliques

is Cg = {{1,2},{2,3,4}}. (Right) A Type II model (_C’;,\?v,ﬁ) over Y = {S,C, L, A} with
joint probability distribution p. The associated graph is demonstrated by G = (V,g) with

E=EU{l—4}. The new edge is shown in red color.

As in [20], the joint probability distribution could be a log-linear model ([49], Sec-
tion 4.4) and thanks to Hammersley-Clifford Theorem, is factorized over the maximal
cliques with clique potentials U.(y. | w.) = ewele(ye)  w = {We}eecg, where f. is
often called feature.

Alternative models. Both learning steps can induce uncertainties in structure
and/or parameters on the baseline. Next, we model and quantify such uncertainties by
considering alternative models to the baseline of Type I and II: we focus on graphical
models that may have been obtained by learning structure and parameters from either
a different data set D = {d[1],...,d[N]} or the same data set D but with different
prior (expert) knowledge. We denote the corresponding alternative models (G, W, j)
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and assume they can be also represented by a MRF with p > 0 in the class of log-
linear models with clique potentials being given by ¥, (y.) = e?f «(¥¢) be the clique
potential. We consider the following Qols defined as:

(5.1) g(Y) =14, forany event of interest A C €.

For instance, A = {patient is smoker with asthma} = {w = (w1, ws, w3, wy) : w1 =
S0, W3 = ap}.

Type I. We consider the class of log-linear models p over G with weight change in
one maximal clique after learning weights from D. Let ¢ be the maximal clique that
a weight change occurred. If p; = p(B.) and a € [—1,1] (depends on p), then for any
event of interest A, the following holds:

(A)et +1 - p(A)> awee*™ = p; }

1 P
5.2 +p(A) < inf —<lo —
(5-2) i )_,\>o)\{ g( e“Wepr + 1 —pp eepr +1 —pr
where a € [—1,1] stands for the model uncertainty of alternative models of Type I
and w, is the weight on ¢ of p. The derivation of the UQ bounds in (5.2) is given in
Appendix D, while their demonstration as functions of the uncertainity parameter a
for any event of interest A with p(A) = 0.3 and when p; = 0.2 is given in Figure 3.

B(A)

Fic. 3. For any event of interest, A with p(A) = 0.3, the red dashed-dot and the blue
dashed curve are the upper bound and lower bound for p(A) provided in (5.2), computed as
functions of the weight change a.

Type II. We consider the class of log-linear models p over Gwithy =V, =EUe,
where the new edge e (e.g see Figure 2, (Right)) enlarges an already existing maximal
clique ¢ in the sense of the analysis in subsection 3.1 after structure-learning from D.
The model uncertainties lie in the binary function fg defined on ¢ and the new weight
wz. The binary function fz induces a set Bz = {(w,wa,ws,wy) : fg(wg) = 1}. The
set B; satisfies one of the following: Bz N B, = 0 or Bz N B, # (). For Bz N B, = 0,
if pr = p(Be), pi1 = p(Bz) and a € R, then for any event of interest A, the following
holds:

i ! p(A)e™ +1—p(A)
+p(A) < inf =< 1
pld) < A0 /\{ % (1 — (1 —elHa)we)py — (1 — e=we)py

wee™epr — (14 a)w.e(I T e py }

5.3 —
(53) 1—(1—eltawe)py — (1 —e~we)py
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The derivation of the UQ bounds in (5.3) is given in Appendix D while their demon-
stration for any event A with p(A4) = 0.3 as functions of the uncertainty parameters
a (when pr = 0.2, w. = 1.5 and p;;=0.7) and py; (when p; = 0.2, w. = 1.5, a = —0.2)
is given in Figure 4. Note that the case where Bz N B, # () is more complicated.
However, the KL divergence is still explicitly computable (see Remark D.1).

Fic. 4. A is an event of interest with p(A) = 0.3. (Left) For p1 = 0.2, w. = 1.5 and
a = —0.2, the red dash-dot and the blue dashed curves are the upper bound and lower bound
for p(A) provided in (5.3), computed as functions of pui. (Right) For pr = 0.2, w. = 1.5,
pir = 0.7, the red curve and the blue are the upper bound and lower bound for p(A), computed
as functions of the weight change a € [—2,2].

5.1. Tightness. Let g be the Qol given by (5.1). By applying Theorem 4.2,
there exist probability measures p* = p*(n) € Q7, where Q" is given in (3.1), such

. ertla d
= pAeEri—pa) P

and Ay being the unique solutions of R(p**|p) = 1. Depending on the event of
interest A, we can determine the graph associated with p*+. Specifically, if A = N;A;
where all A; are defined on the same maximal clique of G given in Figure 2, then the
graph associated with p**+ is G and hence both models are Type L. If at least two
A;, A; are defined on different maximal cliques, the associated graphs are different
than G, e.g. let A ={patient is smoker with asthma} = {w = (w1, we,ws3,wy) : w1 =
so,wz =ag} = {w:wy =59} N{w:ws = ag}. Since the total p*-excess factor relative
to p ®* = e*+14 cannot be further factorized, the new graph has the same set of
nodes with an extra edge 1 — 3, that is £ = £ U {1 — 3}. In that case, both models
are Type II.

that (4.4) becomes an equality and p* = p*+ are given by dp*+

6. UQ for Statistical Mechanics. Large-scale physical systems of interacting
particles such as gases, liquids, and solids, are at the core of statistical mechanics
and in particular of equilibrium statistical mechanics. The macroscopic properties
of a system can be understood through its underlying microscopic description which
fundamentally requires the microscopic states and an interaction between microscopic
constituents. Statistical mechanics models such as the Ising model are fundamental
in ML, especially energy-based probabilistic models (generally defined as (6.6)) such
as Boltzmann machines [38]. Furthermore, methods from equilibrium statistical me-
chanics combined with information theory can provide first insights into profound
cornerstones of deep learning. For example, although we use the KL divergence de-
fined in Lemma 3.4 for UQ, KL between an energy-based model and available data
equals to the difference between Gibbs and Helmholtz free energy and is a natural
“distance” to use for statistical learning. Note that both UQ and statistical learning
can be considered as dual concepts, [9]. A more extensive analysis on these ideas,
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and generally on the intersection between statistical mechanics—also including non-
equilibrium statistical mechanics—and deep learning have been reviewed in [3].

2R

Fic. 5. One-dimensional Ising spin lattice on A (light gray area with blue, red, and white
particles). The spin located at x € A (red particle) interacts only with spins located at y in
Bz (R) (blue particles) with strength of interaction J(x,y). The red spin does not interact
with the white ones as they are located at distance greater than R from x.

6.1. Ising Model. An illustrative example is the Ising model, where the space of
all microstates is the collection of all spin configurations on a bounded region A C Z¢:

Q= {£1}* = {oa = {oa(@)}rea  0a(@) € (+1,-1}}

as in Figure 5, [57, 49]. An interaction between spins can be short, long range or a
combination (such as Lennard-Jones potential, [58]), positive (ferromagnetism), etc,
[57, 31, 34]. Here we consider a d-dimensional Ising spin system on A with a generic
interaction J = {J(x,y) : x,y € A} satisfying three properties: for all z,y € A and
z € R?

(6.1) J(@x+z,y+2)=J(z,y) (translational invariance)
(6.2) J(@,y) = J(y,x) (symmetry)
(6.3) > 1J(0,7)] <00 (summability)

z#0

and an external field, h € R. Let R > 0 be the length of the range of interaction. For
z € Z% By(R) = {y € Z% : ||z — y||la < R} is the set of all spins that the spin located
at « interacts with and ||z — yllg := \/3¢_, |&; — :|2. For convenience, we denote
B} = Bu(R) \ z.

6.1.1. Boundary conditions. Boundary conditions are a fundamental concept
in statistical mechanics, [62]. For simplicity, let us assume that A is a hypercube.
We consider a system where particles not only interact with particles in A, but also
with particles “outside” of A. Let gac be a given fixed configuration of spins on

the complement of A denoted by A€, see Figure 10. The Hamiltonian energy of the
system is given by:

(6.4) HY M (oploae) = H M (oa) = D> > J(@,y)oa(z)oaly)
rEA yeAc

where

(6.5) HY"(op) z—fZZnyUA hZUA

TEA yeA TzEA
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The Gibbs measure with boundary condition gac is defined as
.
Zsne (3,8, n)©

where Z5,.(J, 8,h) =3, e=PH""(0al7a¢) ig the partition function.

(6.6) 18 sn(oa | oac) = —BH " (oaloac)

6.1.2. rMRF formulation. A system with configuration as boundary condi-
tions does not admit a MRF description. So, we describe the system using rMRFs.
The set of nodes is Z9, the set of edges can be constructed by looking at all (z,y)
such that ||z — y||lg < R and the context is u = &ac, which corresponds to a fixed
boundary condition. Then (JA,uﬁ sn(- | Gac)) is a tMRF with maximal cliques

cw={yeA:ye BiR} (spins in ¢, interact with all spins in ¢;). Let w = {w¢, }zen
with w., = (J.,,,h) and J., = {J(z,y) : y € ¢, }. We express each clique potential
as

(6.7) V., =exp{ foa(z) h—i-f Z J(x,y)oaly Z J(z,y)ac(y)
yEA yeA®
yEBa:,R ZJEB;é

Note that we may resume the full notation when we needed, that is ¥, = U, _[gac](o
w,, ) where o, is the Ising spin configuration defined on all y € ¢,.

6.2. UQ Formulation.

6.2.1. Alternative models. We consider models on a lattice with perturbed
interaction in the strength (Type I) and/or range (Type II) such as truncated or
long range interaction. Given J as in subsection 6.1, an interaction F(z,y) satisfying
(6.1)-(6.3) with length of range Ry, we say that J¥ = {JF(z,y) : 2,y € Z%} is a
perturbed interaction if
6.8)  J"(x,y) = J(@,9) Yz yu<r + F@ 0L yla<rr + F@ 9z y),> ke

We say that a perturbed interaction is Type I iff
(6.9) R = R and supp(F) = {(z.3) : [lr — ylla < Rr}.
We say that a perturbed interaction is Type II iff
(6.10) R = Rp and supp(F) = {(z,y) : |z — ylla > Rr}.

The rMRF formulation of the system with JF goes similarly as in subsection 6.1.2.
Note that the graph representation simplifies a possible complexity of J, F' and JE
as we connect nodes z,y according to the range of J, F and J¥ and assign the
corresponding strengths J(x,y), F(x,y) and JF (z,7).

6.2.2. Total gr-excess factor relative to ga.

LEMMA 6.1. Let JF be defined in subsection 6.2.1 with support given by (6.9) or
(6.10), and qa(:) = :u?,ﬁ,h(' | Gac), Gals) = u?l, ﬁfz(' | Gac) be the corresponding
Gibbs measures defined in (6.6). The total ga-excess factor for i = 1,11 is given by

L (oa —exp{ ZO'A (h—h)-i-% Z F(z,y)oa(y)

TEA yeAiLNA

(6.11) + ) Fa,y)oac(y) }

yeALNAe
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where for each v € A, AL = B,(R) and Al = B,(R)¢, with B,(R)® being the
complement of By, (R).

The proof is straightforward (see Appendix E.2). Both (h — h) and F(z,y) in the
total ga-excess factor relative to ga point out how different the external fields and
interactions are respectively, as the latter satisfies F(z,y) = J (z,y) — J(z,y).

6.2.3. Quantities of Interest. The use of phase diagrams is central in physics
and material science. A phase diagram is defined as a graphical representation of
equilibrium states under different thermodynamic parameters such as external field
h, temperature T" and pressure P. It is typically computed in the thermodynamic limit
(i.e a limiting process with A * Z? such that the ratio between inter-atomic distances
and macroscopic lengths vanishes), [57]. Equilibrium states are characterized by order
parameters such as magnetization. For that, we consider the following observable

(6.12) o) IA\ > oalx)

T€EA

where |A| stands for the volume of a hypercube A C Z¢. As A invades the whole
74, the expectation of m(oa) yields the magnetization Other Qols could also be
con51dered e.g. correlation functions v(oa) = |A|2 Y owen Dyen oa(T)oaly).

6.2.4. Cumulant Generating Function. Let A be a hypercube in Z¢. Given
a configuration g aec, the baseline model is an Ising model with interaction J defined in
subsection 6.1. We compute the cumulant generating function defined by (4.2) w.r.t
the baseline model ga (the computation is given in (E.3)):

(6.13) Agsitamiea)(EN) = BIAI (PA 55080) = P 5(0a0)

where Ph%, 5 stands for the thermodynamic pressure, [57], defined as

_ Z(Ja/Bahya'AC)
Ph%B”](O'Ac) = T

6.2.5. KL Divergence. Here we utilize Lemma 3.4 and specify the KL diver-
gence in terms of x; and ®, as involved in (3.12) when the alternative models are
Ising models with a perturbed interaction J¥ defined in subsection 6.2.1. Then we
bound it by using Lemma 6.3. Before that, we use a well-established tool in statistical
mechanics referred to as norm-|| - ||1, [62] to alternatively bound the KL divergence.
After all, we conclude that our UQ approach gives a narrower area (i.e the area be-
tween the upper and lower UQ bound) provided by Theorem 4.1 and thus smaller
uncertainty, see Figure 6.

Norm-|| - ||1: Let ‘PZ’%L (ox) be the following quantity:

(6.14)

30 y)os(@)oa(y) X ={z.y} x#y,
@Z%N (ox) = —Boa(@) (h + ZyijRmAc J(@,y)ae (y)) , X = {z}

0 ,otherwise

imi h,3,J%
and similarly we define @' (ox). Then,

(6.15) BHIM(oaloac) = > @R (ox)
X:XNA#D
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Also, ﬁHjFﬁ(aAh?Ac) is defined similarly. Then the norm-|| - ||; of @Z%AC @Z%AC
is defined as

h,B,J h , h,B, h,B,
(6.16) R e P N T S Ll I
05X

T JF
where @527 — LA~ qup, @k oI (ox) = OR%T (ox)| for X € Z°.

A,Gac A,Gac
LEMMA 6.2. Let F be an interaction satisfying (6.1)-(6.3) with support given by
(6.9) or (6.10), then

R(allaa) < 21A[| @K% — k2T < 28|A | h— k| + > [F(0,2)
z#0

Proof. See Appendix E.1. O

Let us turn to our approach developed in Section 4. We recall the total ga-excess
factor relative to ga from subsection 6.2.2 as well as the quantities from Section 4.1,
and we express log @} (0a) = Ci|Alm(oa) + ki(oa) with

(6.17)
Cr=B(h—h) <1, ri(oa)=8) oalz) (; > F(a@y)JA(y)) + BF(Algac)
€A yEALNA
where F(Aloac) = ca ZyeA;mAv F(z,y)oa-(y). We bound ki(oa)as
(6.18) 0 < ki(oa) < BlA] < + 2R||aXA||> Z |F'(z,v)]
#0

where we use the next lemma.

LEMMA 6.3. Let L and OA be the side and the boundary of the hypercube A
respectively with L >> Rp. Then, for any interaction F = {F(x,y) : =,y € 79}
satisfying (6.1)-(6.3) and range Rp, the following holds:

(7) If the support of F' is given by (6.9), then

> > F(z,y) < ReloA] D |F(0,2)].
TEA yGAC x#0

UEBH‘ Rp

(it) If the support of F is given by (6.10), then

> F(z,y) < Re|A] D F(0,2)]

TEA yeAc z#0

Proof. The bounds are straightforward once we split the sum as follows:

Y. D Flay= Z Z )+ Y Y Fla,y) < RelAl

TEA yeA© ) :L’Eé yEA®C
erRF dzst(azA )<Rp EBi i dist(z,A°)>Rp

where dist(x, A°) = inf{||z — y| : y € A°}. Note that when L << Rp, both (i) and
(ii) are bounded by Rp[A[>7, o [F(0,2)]. d
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6.3. UQ for finite-size effects and boundary conditions. Having computed
all the ingredients needed for the analysis of subsections 3.2, 4.1 and 4.2 under the
above statistical mechanics formulation through rMRF's, we capture the behavior of
m(oa) given in (6.12) with respect to the perturbed model ga. The analysis from now
on refers to models of Type I. Although Type IT models can be worked on similarly, one
example of Type II is discussed in Appendix F. To get the UQ bounds for Ej, [m(oa)],
for f(Z) = |Alm(oa) we can either apply (4.1) using the crude bound in Lemma 6.2:

PhiéﬁJ*PhAﬂJ 8
: ; < i s " ol (jh -
(6.19) +E;, [m(oa)] < )1\2%{ VG —|—2)\(|h h|—|—]:)}

or Theorem 4.1 :

1 PhiABJ —Pilsa B |OA]
(6.20)+E;, [m(oa)] < - inf { Chs + X}' (1 —I—RF) }

T 1—B(h—h)r>0 A B Al

with A being the boundary of the hypercube A and F := 3~ _,[F(0,2)| which is
bounded due to the property (6.3) and Rrp = R.

Furthermore, inequality (6.20) implies a new UQ formula for systems with a
fixed configuration outside of the domain that here is considered as a Dirichlet-type
boundary condition. In particular it allows us to quantify the effect of the boundary
conditions on JA on the Qols, as can be seen more clearly when h = h. Note, the
term % in (6.20) comes from a more careful bound on the KL divergence using

Lemma 6.3 while this term has been eliminated in (6.19) due to the relative crudeness
of the bound of KL in Lemma 6.2, see also Fig. 6.

6.4. UQ for Phase Diagrams. Here we capture the phase diagram of the
perturbed model §a looking at the magnetization defined in subsection 6.2.3. We
study the limit of the bounds obtained in subsection 6.3. The high-dimensionality of
statistical mechanics models requires scalable bounds at the thermodynamic limit.
In fact, the MGF and the KL divergence scale correctly with the size of the system
|A| (all are multiplied by |A| see (6.13), Lemma 6.2 and (6.18)). Let M (J¥, 3, k) be
the limit as A " Z? of Eg, [m(ca)]. Then the limit A~ Z% of (6.20):

(Phi%,ﬁ,.]_Phﬂ,J) 3 }

N3 3

g s 1 ]
(621) iM(J 7/8ah) < m ;\I;%{

with lima _sza P2 5 = Phg.3 by Theorem 2.3.3.1 in [57] and lima sz 'fﬁl' = 0, while

in the limit of (6.19) the thermodynamic pressure is only replaced by its limit Py g 3.
The bounds for the 8 # 8 can be adjusted similarly.

6.5. Ising-Kac Model. Here we consider an Ising-spin model with a Kac-type
interaction as a baseline model. Such a model combines sufficient complexity—since it
is not a mean field model —but it is still analytically fairly tractable to serve as a good
benchmark problem for high-dimensional rMRF. We illustrate the uncertainty area
of the phase diagram for both (6.21) and the limit of (6.19). when the alternative
models are a Kac perturbation and a truncated Kac interaction.

An TIsing-spin model with a Kac-type interaction behaves like a mean field (or
Van der Waals model in gas lattice) in the limit with the convexity of free energy
emerging naturally in the limit, contrary to mean field or Curie-Weiss models where
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Maxwell’s equal area law is required to refine the non-convex free energy (double well
shape), [57]. Such a discrepancy comes from the fact that each spin interacts with
all particles in the same way and independently. The idea of Kac was to keep such
a picture on large regions but relatively small compared to the range of interaction.
Then, the thermodynamically incorrect of the free energy (i.e. the non-convex free
energy) on these large regions looks refined at the scale of interaction. Therefore,
the system contains a two-scale behavior that was carried out by introducing a small
parameter v > 0 known as Kac scaling. As we suppose that an Ising spin model is
endowed by such an interaction, the model has overall three scales: the lattice spacing
is 1, the range of interaction is v~! while the size of the system is much larger than
~~! and all are well-separated, contrary to the mean field model where the range of
interaction is the same as the size of the system. Next, we formally introduce the
model.

6.6. Mathematical Background of Ising-Kac Model. A Kac-type interac-
tion is defined as

(6.22) Jy(@,y) =4I (v, vy), @y €z

where v is a positive parameter sufficiently small and J is a non-negative (ferromag-
netic interaction), even, symmetric function (i.e J(r,7’) = J(r’,r) for every r,7’ € R%),
translational invariant (i.e J(r,7') = J(r' + a,r + a) for every r,7’ € R? and a € R?)
function such that J(r) = 0 for all |r| > 1, [, J(r)dr = J and J € C*(R?). The use
of J., stands for the collection of J,(z,y), that is J, = {J,(z,y) }zaxze. Asy becomes
smaller, more particles are included in a spin neighborhood with y~! diameter and
while the strength of the interactions becomes weaker.

Let A be a bounded, Pﬂgg—measurable region, with L >> y~1 (see Appendix C.1),
B > 0 be the inverse temperature, h € R be the external magnetic field and Gac be a
given configuration on its complement (see Figure 5 with R = vy~ 1).

Hamiltonian energy. The Hamiltonian energy of a spin configuration oa given

OAc:
_ 1 _
HyM(oa [ oac) = —5 > L@ yoa@oaly) = D Jy(@,y)oa(@)aac(y)
EESTISVAN TEA,
yEA®
(6.23) —h Z oa(z), Hamiltonian enery.
TEA

Finite volume Gibbs measure. The Gibbs measure given a fixed boundary con-
dition o ac is defined as follows:
(6.24)
1 J.h _
Ay (] = _ —BH: " (oa;0Ac) fini .
" Opc) = ———————€ s , nite volume Gibbs measure
J,ﬁ,h( ‘ ) ZﬁAc (J7/B7 h)
where Zz . (J, 8, h) is the normalization (partition function). To simplify the notation,
we shall often drop ~ and the given configuration in the complement of A from

the Gibbs measure, resuming the full notation when needed, and therefore we write
Jh _  &ac,h
HEA = Hg ALy
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Thermodynamic pressure. The thermodynamic pressure for the Ising-Kac model
Ay s
denoted by P; EVRE defined as

B log Z5,.(J, 8, h)
6.25 PR (Gac) 1= —2 20 7
( ) J,ﬂ,h( A ) B|A|

Its Lebowitz-Penrose (LP) limit (i.e lim,_,o ima »za) py g,n is given by

(6.26)

pypni=— inf {—hm+¢yp0(m)} ¢3,8,n(m) = {jm2 - hm} - lI(m)
. me[—1,1] o ’ e 2 B

(see also Appendix C.4 for further discussion). The rMRF formulation of such a

model and its perturbations considered next is structured analogously to the ones in

subsection 6.1.2 and for that we omit it.

——— Magnetization (J = 1)

Magnetization (7% = 1.1)
Magnetization (7% = 0.9) |
I - [l-Upper Bound
|| - I1-Lower bound

Fic. 6. The curves in blue, magenta and dark yellow color are the magnetizations of
the Ising model with Kac interaction at inverse temperature 8 = 8 = 1.1, h = h, and total
strength 7 =1, J¥ = 1.1 (a = 0.1) and 0.9 (a = —0.1) (validation) respectively. The black
dashed-dot curves are the UQ upper and lower bounds provided by Corollary 6.5 and viewed
as functions of h € [—2,2]. The gray area depicts the size of the uncertainty region. The light
blue dashed-dot curves are the UQ upper and lower bounds obtained using norm-|| - ||1. The
uncertainty area of the phase diagram in grey color is significantly better than the uncertainty
area between the light blue dashed-dot curves. This comes from the fact that the difference

between the limit of (6.19) and (6.21) lies on the term g}' which is multiplied by 2.

6.6.1. Phase Diagram of Perturbed Kac model. Let define a perturbation
of a Kac potential.

DEFINITION 6.4. Let F, be an even function satisfying (6.1)-(6.3) and (6.22) with
length of range v~ ! and F := [p, F(r)dr. We define

(6.27) jf(amy) = Jy(z,y) + Fy(z,y), such that F =aJ, a€[—1,1]

The parameter a represents the percentage of increase or decrease of the total strength
of interaction J* := [p, J¥(r)dr = (1+a)J.

COROLLARY 6.5. Let JE be the interaction giwen in Definition 6.4. Then, for
v > 0 small enough, the UQ bounds (6.19) and (6.20) hold for Rr = R = vy~ and
F = l|a|J. The thermodynamic pressure Pfﬁ’zyh is given in (6.25). Let M(jF,ﬁjl)
be the LP-limit of Eg,[m(ca)]. Then, the UQ bounds (6.21) and LP-limit of (6.19)
hold with the LP-limit of Pfﬁ’:yh being py.p.n given in (6.26).
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Remark 6.6. (6.19) represents crude bounds as norm-|| - ||; (subsection 6.2.5) has
been used, while (6.20) obtained by Theorem 4.1, includes more detail. The difference

1 —1]04[ .

is illustrated in Figure 6. Furthermore, even if there is a v+ in the term 2+ N

(6.19), the order of the LP-limit makes it vanish as L — oo.

Validation. Given (3, h, J and a tolerance 1 > 0, we can construct with the use
of norm-|| - [|; and Lemma 6.2 a class of models such that Q) := {ga : 28aJ < n}.
This is subclass of Q7 defined in (1.1) with the KL divergence in place of d. In
Figure 6, § = 1.1 and J = 1 while the external field h varies from —2 and 2. The
positive parameter 7 = 0.1 and the perturbed model with 10% decrease (a = —0.1)
of the total strength (magnetization in magenta color) is in Qf ; as demonstrated in
dark yellow color.

Fic. 7. (Left) The red curve is a Kac interaction and the blue curve is a truncation of it.
The two curves coincide at all v with |r| < 1—e€. The embedded picture demonstrates the two
interactions at the microscopic level. The red particle located at the site x € A C Z? interacts
with the particles in the blue and the light red through J..The particle interacts only with the

particles in the blue area through j;" with range y~'(1 — €). (Right) The red curve is an
example of Kac interaction (piecewise constant) with J(r) = 11 (r) and the blue curve is

a perturbation given by G(r) = %1T>% (r),for some a > 0.

6.6.2. Phase diagram of Truncated Potential. From a computational point
of view, macroscopic properties of high dimensional systems can be studied through
simulation models where one can consider an appropriate truncated interaction which
can reduce the computational overhead associated with the interaction [68, Chapter 3].
In our context, a truncated interaction can be thought of as: The support of the
interaction J is [—1,1] as in Fig. 7. J is cut off at 1 — ¢ and —1 + € for some
parameter € € [—1,1]. Then the resulting interaction is called truncated interaction of
J and its support is [—14¢,1 — €] of length 2¢. The introduced parameter ¢ quantifies
the impact of the truncation of the interaction J. Moreover, Fig 8 quantifies how
the uncertainty area becomes smaller as € becomes smaller (and hence the truncated
interaction tends to be the original J). We mathematically define such an interaction
as follows:

DEFINITION 6.7. Let 0 < e < 1. We define the truncated interaction as

=g [ JO,r) | <1-c¢
(6.28) J70,r) = { 0 , otherwise

The truncated model can be viewed as Type II. However, to be consistent with the
assumption & C € in Definition 3.1, we view it as perturbed interaction of Type I
arising from the subtraction of J (also explains the notation J~7 in (6.28)) on regions
of radius greater than 1 — € as illustrated in Figure 7.
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f=11,e=000 B=11e=005 f=1L1c=001

Fi1G. 8. The three graphs demonstrate the uncertainty area in gray color for different
values of €. In all graphs, the blue solid line is the magnetization of d-sing model with Kac

interaction at inverse temperature 5 = 1.1, ||J||ec = 1 and h = h. The black dashed-dot

curves are the upper and lower bound of magnetization of the truncated interaction J,
viewed as functions of h. (Left) e = 0.09. (Center) e = 0.05. (Right) e = 0.01.

COROLLARY 6.8. Let J~7 be the interaction given in Definition 6.7. Then, for
0 < e <1andvy > 0 small enough, the UQ bounds (6.19) and (6.20) hold for
R_j=~""1 and F < ¢€||J||oc. The thermodynamic pressure Pfﬁ’:yh is given in (6.25).
Let M(J¥,B,h) be the LP-limit of Eg\[m(oa)]. Then, the UQ bounds (6.21) and
LP-limit of (6.19) hold with the limit of Pfﬁ’?h being py p.n given by (6.26).

Remark 6.9. Given 3, ||J]|o0, we can choose € = ¢(f,||J||s) sufficiently small.
Consequently, the phase diagram of the two models are close to each other as the
uncertainty area is very small (Figure 8). The parameter e quantifies the length of
the area that one cuts off the initial interaction.

The same methods are applicable to other perturbations, e.g. the very long range in
Appendix F and perturbations in ”contexts” /configuration as boundary conditions.

Conclusion and future work. In this article, we developed an information-
based uncertainty quantification method for Markov Random Fields/rMRFs. We
considered a surrogate (baseline) MRF/rMRF constructed by physical modeling or
by learning structure and parameters from data, and we quantify uncertainties inher-
ited from data, modeling choices, or numerical approximations, that are also propa-
gated in predictions for Qols. Our UQ method quantifies uncertainties not only in
parameters but also in structure as well as is capable in handling of the inherent high-
dimensionality of systems that admit a MRF/rMRF formulation. This was achieved
by obtaining tight and scalable, information-based bounds on the predictions for Qols.

We demonstrated our UQ method in an example from medical diagnostics as
well as several high dimensional equilibrium statistical mechanics models defined on
bounded domains with suitable boundary conditions. We aim to extend the developed
approach to non-equilibrium statistical mechanics systems [58] also arising in ML [3].
Furthermore, motivated by [30] we plan to develop robust uncertainty quantification
for Bayesian networks defined on Directed Acyclical Graphs.

Acknowledgments: The research of M. K. was partially supported by the NSF
HDR TRIPODS CISE-1934846. The research of P. B. and M. K., was partially
supported by the Air Force Office of Scientific Research (AFOSR) under the grant
FA-9550-18-1-0214.

Appendix A. Reduced Markov Random Fields (rMRFs). Let Y =
{Y:}icy be a MRF indexed by a set of nodes V (finite or infinite) of a graph G.
Let us consider M C V. Let also U = {Y;};cam and u be an assignment to them,
namely U = u. If Z := {Y;};ey\ a1, how does the underlying graph corresponding
to Z | U = u look like? Can the conditional probability p(z | U = u) still keep a
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product structure/factorization as the joint distribution given in (2.1)? To answer the
questions, we need a special class of MRF which is called reduced Markov Random
Fields (rMRFs).

/v
/‘l' /N | Vai PanN
L " /v W L 4 L’ 4 L "4
o= o
\ Vad Vel
L " 4 L " 4

Fic. 9. The set of nodes is V = {1,---,10} and M = {4,9}. Left: Y = {Y:}i%;
with joint distribution p is a MRF over G. The set of maxzimal cliques is given by Cg =
{{13 2}7 {23 3}7 {33 4,6, }7 {3a 6, 7}3 {47 2, 6}) {57 8}3 {87 9, 10}} Right: Z = {)/’L}lGV\M with
joint distribution q is the corresponding rMRF over G' with U = {Y4,Ys} and u = {ua,ug}.
The rMRF is demonstrated by removing the node 4 and 9 (faded nodes) from the graph G.
Cu = {{37 4,6, 7}7 {47 9, 6}a {8> 9, 10}} while Cp = {{L 2}7 {27 3}7 {57 8}}

DEFINITION A.l. Let’Y = {Y;};cv be a collection of random variables indexed by
a set of nodes V (finite or infinite) of a graph G. If (Y,p) is a MRF, u a context,
M CV and U = {Y;}icm, we define as reduced Markov Random Field, a MRF
Z = {Yi}iev\m indexed by the set of nodes V\ M of the subgraph G[V\ M| with joint
distribution Q such that

(A1) 4(2) = QZ =2) == p(z | U = ).

Therefore, Z | U = u could be thought as a induced subgraph of G with set of nodes
V \ M, that is eliminating any node corresponding to random variables U and any
edge adjacent to them. Furthermore, according to Definition A.1, Z is clearly MRF
and therefore the conditional probability p(z | U = u) is expected to have a product
structure. All the above are summarized in the following proposition:

PROPOSITION A.2. LetY be a MRF with probability distribution p > 0 parametrized
by some parameters w = {W}cec, given in (2.1) and let U,Z be defined as in the
beginning of the subsection. Then, q parametrized by w is expressed as

(4.2) (@) = (x| U = ww) = 5 [T Welultae | wo)
u ceCg

where for every c € Cg

(A.3) U ul(z. | we) := V(2 ue | We)

Moreover, Zy(w) is given by
(A4) Za(w) =Y ] Pelul(ze | we)
Y ceCg

We refer to [49] and [55] for further discussion about MRFs, rMRFs and the proof
of the Hammersley-Clifford Theorem and Propostion A.2.
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A.1. Partition of the class of maximal cliques. We further investigate the
structure of the class of all maximal cliques. Precisely, we collect ¢ € Cg such that
UNY, # (. This leads to partition the set of maximal cliques Cg = Cy U Cy with

(A.5) Cu={c:UNY.#0} and Cp={c:UNY,. =0}

(see example shown in Figure 9). On top of that, the partition of Cg makes the joint
distributions ¢ take the form

(A.6) q(z) = Py [u](z H‘If (ve |we) [ Pelul(ze | we)
ceCy ceCu
Appendix B. Proofs of the main results.

B.1. Proof of Lemma 3.2. In the following computation we use either (3.2)
for type I or (3.6) for type II:

ZH‘I’ 2 | We)
—ZH\I} Zc‘wc (I)l()
:ZCI)‘ H\IJ 1(z¢ | we)
! Z. | W, 71
™) 2 () [T weledze | we) 75

= Zu(W)Ey[®y(2)]

B.2. Proof of Theorem 4.1. We are mostly based on the proof of the charac-
terization of the exponential integrals (see, e.g. [22]). Let the probability measure R
be defined by

dR/dq = ¢! | E,[f(Z)].

Note that R(g||g) < oo, since ¢,§ > 0. Thus,
(B.1)  —R(dlla) + E5lf(Z)] = —R(@|IR) + log Ey[e! @] < log E,[e/ ).
where for the last inequality we use that R(g||R) > 0 and R(¢||R) = 0 iff § = R [22,
Lemma 1.4.1]. For part a., we combine (3.11) of Lemma 3.4 and (B.1) and we get

1
B[]

u

E4[f(Z)] < log Eqle!®)] + Eq [®ylog @] — log E,[,]

By replacing f(Z) to £\f(Z), we obtain

1
Eq[ D3]

1 . . .
£E,lf(2) < 5 {10g By ] + = B, [@l10g 8] — log £,[@}] |

By optimizing over A > 0 (see [15] and [53]), the following tight estimates are obtained:

1

: ]‘ ﬁ:Af(Z)
~ < — [

E, [, log &', — log E,[®',] }

Part b. is proved similarly, utilizing (3.12) instead of (3.11).
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ExXAMPLE B.1. (Single-parameter exponential families) This is a straightforward
example and a simple illustration of the ideas in the proof of part b., Theorem .1,
giving us insights on how well the ideas work together with a rearranging argument.
The simplicity of this example arises from the fact that the exponential family is single
parametric and therefore the structural part is not present. The probability density
function of a random variable X with range R(X), is given by

pe(x) — P@(X _ l’) _ 69¢(w)—F(9)

taken with respect to some measure dv where F(0) = log [ @ y(dx) and ¢(x) is
a real-valued function also known as sufficient statistic. Suppose a second probability
density function of the same single-parameter exponential family associated with ¢

PP (x) = PUHS(X = z) = e(0TO@)=F(0+C)

for some { < 1. One may want to investigate how sensitive the model is in such a
change in 6 by ¢ with respect to (X) as means to bound Epe+c[p(X)] or to find the
error in replacing the first distribution by the ”perturbed” one and phrased as bound
Eporc[p(X)] — Epe[d(X)]. The second exponential family is apparently a perturba-
tion on parameters by ¢, so we can think of the model as Type I. In addition, after
employing UQ bounds, the cumulant generating function and KL divergence are the
two main ingredients to compute: for any X\ > 0,

A%, (\) = log Epo[e* )] = F(6 + \) — F(6)
R(P**¢||P%) = (Eposc[¢(X)] — log Epo[e¢?N)]

The above expression for KL divergence comes from the calculation of expressing F(60+
A) in terms of F(0) and for that every term is computed with respect to P?. By
substituting the quantities to the UQ bounds and by doing a delicate rearrangement of
terms that is feasible because the Qol is a sufficient statistic for the model, we get

1 . [F(O+X—F()
+Epo+c[p(X)] < 1—¢ )I\I;fo{ A

+ ilog Epo [e@(X)]}

B.3. Proof of Theorem 4.2. The existence and the explicit form of the dis-
tribution ¢* relies on [39], Theorem 2. Consequently, given a Qol f, we identify the
total g-excess factor relative to ¢ explicitly, that is ®X = e*+f. However, the new
element is that by utilizing the Hammersley-Clifford Theorem, ¢* defined on Z are
rMRFs, lie in the class Q7 and the total G-excess factor relative to ¢ is explicitly
determined.

Appendix C. Coarse-Graining, Kac and Hamiltonian Estimates.

Fic. 10. One-dimensional Ising spin lattice on A (white spins) with configuration bound-
ary conditions on the complement of A denoted as gac (black spins).
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C.1. Coarse-graining. We divide R? into cubes of side | = v~ /2. We denote
by P]g(z the partition of R?. Namely, for every i € IZ% we set

(C.1) Li={reR': iy <r,<ix+lLk=1,...,d}
(rx and iy being the k-th coordinate of r and 7). Then we call
(C.2) P = (L, i €1z%),

the collection of all the above cubes.

DEFINITION C.1 ([57]). (1) A function f(r) is Pﬂgd) -measurable, if it is constant
in each cube I, ,, i € IZ.

(2) A region A C R? is ng -measurable, if it can be written as a union of cubes

of P]}(Q (or its characteristic is 73]1({(2 -measurable).
(3) Any A C Z2 can be identified as a union of cubes with length 1.
(4) The size of each cube is given by

(C.3) Lyl = [ =19 = 7/

for every i € IZ%. For notational simplicity, we drop v from L, ;

For any bounded region A Pﬂg{ld)—measumble, we denote A := ANZE Hence,
L =1,nZ%.

C.2. Coarse-grained Interaction. We introduce a new interaction j,y which
describes the interaction between cubes. More precisely, for every i,j € IZ% with
1 # j, we consider

(C.4) 1G.9)= 7w 2 3 haw).

zel; yel;

and for i = j, we define

(C5) T, (ir) = m D IPACE)

z€l; x€l;,
y#x

LemMmA C.2. For fized and small v > 0, for any x € I; and anyy €1, 4,5 € 174
with i # j, we have

(C.6) |y (@, y) = T 6, )| < AT E DT [|oo Loy <2y
Also, for any i € 1Z¢ and any x,y € I;, we have

(C.7) Ty (@, y) = I3 (6, )] < 7)1 ]loe
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Proof. Let x € I; and any y € I;, i,j € IZ¢ with i # j, we have

\Mw%MwWWM@T%ZZ%%W

zel; wel;

S # Z Z ‘J’y(xay) - J’Y<Z7w)|

zel;, welj

1
< e SN AUDI sz =y — 2 + w]Ljp_yych

zel; wel;
1 _
< W|I|27d”DJHOO’y’y 1/21\aj—y|§'y_1
=" 2D ooy <y
We prove (C.7) similarly. d

C.3. Coarse-grained Hamiltonian Energy. In this section we analyze the
Hamiltonian energy by using the new interaction defined in (C.4) and the estimates
in Lemma C.2. We start by introducing some notation: for any r € R?%, we define the
following quantity as block spin configuration:

() o) = S o)

z€l,

so that
Oy = L / oD )dr!
1] /1,

-1/
Let A C RY be Plgg -measurable region. We denote by Mg 7 all Pﬂgd) -measurable
functions on A with values in

1

1———,1}
~—d/2

s 1
(C9> M('Y ) = {—1’—1+m7,

~1/
For any bounded P]gg -measurable region A and ma € /\/lg 7

grained Hamiltonian energy

, we define as coarse-

H:y],h(mAQmAﬂ) ::/Ad)ﬁ’h(mA(r))erri/A/AJW(TvT')[mA(T)*mA(r’)Pdrdr’
Jr%/A/CJ,Y(T,T’)[mA(r)—mAc(r')]erdr'

1
—7/ Iy (ry 7 ymac (r')2drdr’
2 Ja Jae

1
(C.10) _,_7/ I(ma(r))dr
B Ja
where
1—m 1-m 14m 1+m
11 I = — 1 — 1
(C11) R

with ¢35, (m) being given in (6.26). We recall that J = [, J(r)dr.
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LEMMA C.3. Let A be any bounded Pﬂgg -measurable region A, then there ezists a
constant C' > 0 such that the following estimate holds:

_ = —1/2 —1/2
(C.12) H ) (0a5080) — HY (0 300 < ClARY?,
where 0271/2) and 62;1/2) are defined in (C.8).

C.4. Estimates for the thermodynamic pressure of an Ising-Kac model.
We recall that
_ lOg ZE'IC (J7 67 h)

Pign(oac): BIA]

J,8,h

and

DI gh = — 1[nf11{ hm + ¢3.50(m)}

If e(y) = /2 4 ~4/2]og 41, then the following bounds hold: there exist constants
¢, ¢’ > 0 such that

-1

(C.13) Pﬁé:yh(c?m) <pypn-+ (CPYL + ce(’y)) , Upper Bound

Let m* be the minimizer of ¢y g 5, then py g5 = —dy 5.n(m*), then

(C.14)
—1

PJé[;?h(&Ac) > pJ“B’h—‘QSJ’B’h([m*]»Y)_¢J’5’h(m*)‘_CE(’Y)_C/’YT, Lower Bound

where [m*], is the value in (C.9) closest to m*.

C.5. Limit as A  Z% and then v — 0. By using the estimates for the
hamiltonian energy given in (C.12), (C.13) and (C.14) we can prove that

(C.15) hm_s)gpAlgn P 3 A 7 (Gac) < p3gn
Y
(C.16) ll{yn_}(r)lf Ah}% P 3 5. 1 (Gae) > p3 g

and therefore if Py's ;, := lima 74 Pfé?h, then

~—0

(C.17) lim Py’ S g.n = PIBh = —mei[rif1 1]{fhan ¢3,8,0(m)}.

Hence, the thermodynamic pressure converges to the mean field pressure at the LP-
limit, namely

lim lim P =

=0 A 774 38, h ~ PIph
where py g5, is defined in (6.26). The convexity properties are provided by the limit
as A 7 Z% and then preserved by v — 0.
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C.6. Thermodynamics of an Ising-spin model with a Kac potential. It is
shown that when v > 0 is sufficiently small, the phase diagram of an Ising-spin model
with a Kac potential is close to the phase diagram of a mean field model. Precisely,
in [13, 11] (see also [57]) it is proved that for d > 2, if h # 0 then there exists a unique
DLR measure, [58]. If A = 0 there is a critical value of inverse temperature S.(y) > 0
such that for any 8 < S.(7), there exists one DLR measure while for 8 > 5.(v) there
are at least two distinct DLR measures ui . Finally, there is an absence of phase
transition when v is kept small (for more details see [57, 58] and references therein).

Appendix D. Detailed Analysis of Medical Diagnostics.

D.1. Baseline model. Let us consider the undirected graph in Figure 2, [20]
denoted by G. The class of maximal cliques is Cg = {{1, 2}, {2, 3,4}}. The distri-
bution defined over the graph is a log-linear model with clique potentials given by

U.(y. | w.) = e¥efee) where all the weights w,, and the binary functions f. are
known. For example, for ¢ = {1,2}, wy; 93 = 1.5 and

1, e {(s1,11), (s1,10), (s0,!
Foo (Viiay) = y{2y € {(s1,01), (s1,10), (80, 10)}
0 ,yq2y €{(s0,01)}

Each binary function f. induces a set B, = {(w1,ws,ws,wyq) : fe(w.) = 1}. For
example, By gy = {w wii2y € {(81,0), (51,10), (so,lo)}}. We compare predictions
between the baseline and alternatives of Type I and II (see Section D.2) for the
following Qols:

9(Y) =14, forany event of interest A C .

For instance, A = {patient is smoker with asthma} = {w = (w1, ws, w3, wyq) : w1 =
S0, W3 = ag}.

D.2. Alternative models.

D.2.1. Type 1. First, we consider the class of log-linear models p over G with
weight change in one maximal clique. Let ¢ be the maximal clique that a weight
change occurred. Then the clique potential is given by

To(ye) = eWefe(ye)

The weight after increasing or decreasing by 100a% equals to w. = (1 + a)w,., where
a € [—1,1] stands for the model uncertainty of alternative models of Type I and w,
is the weight on ¢ of the baseline model p. For example, for {1,2}, the corresponding
clique potential is expressed as

‘i’{1,2}<}’{1,2} | Wi10}) = ePa fua e

= ‘1’{1,2}(}’{1,2} | W{1,2})‘I’{1,2} (Y{l,z} | V~V{1,2})

with

D121 (Y(1,2y [ Wi 2y) = R
since we consider the simplest case where f{l,Q}(y{Lg}) = fu,21(yq1,2y) as well as
the fact that wy; 9y — w12y = —0.2wyy2). Note that B = {c}, where B defined in
subsection 3.1.
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Derivation of (5.2): We compute all the quantities involved in (4.4) explicitly. Let
us start with the cumulant generating function:

AJ(N) = log By[e?] =log | > e Mp(y) + ) e*pl(y)
yeA y¢A

= log (¢*p(4) +1 - p(A))
It is straightforward to see that

dp @ gowefe

dp E,[®1] etwepr+ 1 —pp

(D.1)
and we now go through the computation of E,[®1]:
E @' =Y d'(y)p(y) =) _ e/ 0)p(y,)
y

y
Z eawcfc(YC)p(y) + Z eawcfc(YC)p(y)
yEB. y¢&Be.

=e™epr+1—pr.

Similarly, we prove that
(D.2) E,[®'log '] = aw.e"<pr
Overall, by recalling (3.11) the KL divergence equals to

aw.e*"epr

R(pllp) = cep +1— 1

—log (e*pr + 1 — pr)

D.2.2. Type II. We consider the class of log-linear models p over G with V =V,
€ = EUe, where e is a new edge (for example, see Figure 2, (Right)). We assume that
the edge e enlarges an already existing maximal clique in the sense of the analysis in
subsection 3.1. The model uncertainties arising from structure-learning from either
a new data set D and Jor different prior knowledge; see for example Figure 2 (Right)
lie in the binary function fg defined on ¢ and the new weight wz, where ¢ is the
enlargement of an existing maximal clique ¢. The weight w; can also be expressed
with respect to w.: wz = (1 4+ a)w,.. This time a € R, not necessarily in [—1,1] as
before (e.g w. = 1.5 and wz = 5). Then the corresponding clique potential is given
by

\I’e(y(’z) _ eﬁlafa(}'é) — e(1+a)wcfé(Ye)

The binary function fz induces a set Bz = {(w1,ws,ws,wyq) : f;(w;) = 1}. For
example, Let G # G (also Cg # Cg) and w # w. Intuitively, a change on the set of
edges can be thought of as structure-learning from either a new data set D and/or
different prior knowledge; see for example Figure 2, (Right) where only one new edge
has been added.

The set B; satisfies one of the following: Bz N B. = ) or Bz N B, # ). Note that
Bc = {¢} and By = Byew = 0 with Bc, By and By,eq are defined in subsection 3.1.

Derivation of (5.3): The cumulant generating function is the same as in the deriva-
tion of (5.2). Let us compute the expected value of the total p-excess factor of type
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II relative to p with respect to p:

(I)II Z (I)II (y) = Z e(1+a)wcfé_wcf0p(y)
y
- Z el Gp(y) 4 Y eltaweSemweep(yy 4 37 pltaneefemvefp(y)

yE€B. y€E€B: y¢BCUBg

(D.3)= eI T Wepy 4 e™epr + 1 — pr — pir.
We split the sum into the three sums since B. N Bz = (). Similarly, we prove that
(D.4) E, [0 log @) = —wee e pr + (1 + a)we D %epy
Overall, by recalling (3.11) the KL divergence equals to

*wceiwcpI + (1 + a)wce(1+a)wcpﬂ
eta)weny 4 e~wepr + 1 — pp — ppp

R(ﬁ”p) = —log (*wceiwcpl + (1 + a)wce(1+a)wcpll)

Remark D.1. If B, N Bz # (), then we need to split the sum of (D.3) as follows:
Let U = B. N Bg, then

B [0 =Y ol (y)p(y) = Y elttaruelemuelep(y)

y y
= Z eawcf«;(}’c)p(y) + Z e(1+a)wcf6_wcft2p(y) + Z e(1+a)wcf6—wcfcp(y)
yEBAU yEB:\U yeu
-+ Z e(1+a)wcf€‘._wcft:p(y)
y¢B.UB:

= eI (pry — p(U)) + e (p1 — p(U)) + €**p(U) + 1 — pr — pur + p(U).
Note that pr, pir and p(U) are computable as p is known.
Appendix E. Analysis of UQ for Statistical Mechanics.
E.1. Proof of Lemma 6.2. It is not difficult to show (see also Proposition
I1.1.2 and Lemma I1.2.2C in [62]) that
|log Zs pe (3, B, h) — og Zs oo (3F, B, 1)| < B H* " (0aloac) — HY " (0al5ac) |0
(E.1) < |A[|@RAT — ph BT

A,oac A, oac

which in turn gives

JF
(E-2) R(dallas) < 2|Al1@R71. — X7 |

AGpc A, Gac
since
R(dallaa) = 8 (Eqs [ (0a]0ae)] = Bys [ (0al050)])
+10g Zsc (3, B, h) — log Z . (I, 8, 1)
A straightforward bound yields that

h,B, h s
1S55I — SN < g | R — b+ Y [F(0,2)]
z#0



UNCERTAINTY QUANTIFICATION FOR MARKOV RANDOM FIELDS 35

E.2. Proof of Lemma 6.2.2. It is a straightforward computation after sub-
tracting the hamiltonian energies with interaction J and

jF(xa y) = J(xay)lﬂmfdeSR + F(m7y)1||zfy\|d§R7 Type Ia

and
I (@,y) = J(@,9)ja—yju<r + F@,9) 1o —y|,>r, Type Il
E.2.1. Cumulant generating function for f(Z) = |A|m(oa).
AQA |Alm(oa) (i)‘) = log EQA [eMA‘ﬁ Saca (TA(Q:)]
1 J.n
=log| =————— Y erXecacal@)—BH (oaloac)
(Framn s
_ IOg (6)\ Z:):GA O’A(ZE)—BHJ,’I(O'Alo'AC)> — log Z&Ac (J, 5, h)
A
(E.3) i=log Zs . (J, B,h £ =) —log Z5,.(J, 5, h)

B

Then by using the definition of the thermodynamic pressure in (6.25), we get:

1

A, A,
(E4) EAQAJAlm o) (i)\) B <Ph:|:g,ﬁ,«] - Ph,B?J)

Appendix F. Phase diagram of a long range perturbation.

F.1. Thermodynamics of a long range perturbation of 1-dimensional
Kac model. There is a significant number of works in the literature studying the
phase diagram of one-dimensional ferromagnetic Ising model with long range inter-
actions of the form 1/r* with k indicating the decay of interaction and k < 2. For
k < 2, the occurrence of phase transition has been proved (see [26, 27, 28]). For k = 2,
the existence of a spontaneous magnetization at low temperature is proved in [33].
The establishment of the existence of phase transition, proving the discontinuity of
the magnetization at a critical point, also known as Thouless effect, was proved by
Aizenman et al in [1]. In [12], the authors study the phase diagram of the system
with interaction defined in (F.1) with F' given in Definition F.1 as illustrated in the
right graph of Figure 7. Precisely, they have shown that there is a critical value of
the inverse temperature depending on a and ~y sufficiently small such that the system
exhibits phase transition.

F.1.1. Phase diagram of a long range perturbation. We consider a one
dimensional ferromagnetic Ising spin system with interactions that correspond to a
1/7? long range perturbation of the usual Kac model, see the right picture of Figure 7.

DEFINITION F.1. Let JE¥(z,y) = 7d1|x—y\<ﬁ (i.e. a special case of Kac-type

)

interaction where in fact ngc(x, y) is piecewise constant interaction). Then we define

= Jpve 0< |z —yl < (2y)7!
F.1 JE () =2 1 ’ .
(F-1) 7 (@) {F<x,y> oyl > (@)

with F(xz,y) = ey for some number a € (0,00), Figure 7 (right).

Ily
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The range of the perturbation F' is clearly Type II. We derive the UQ bounds as
follows:

log <I>0_AC on) =0 Z oa(x (ﬁ —h+ % Z F(z,y)oa(y)

TEA yeAIINA
(F:2) + Y Fayeay)
yeAlINAe

then C'' := B(h — h) and
1 _
=BY oa@(3 Y Fawmeaw)+ Y Floy)oa®)
TEA yeAIINA yeAlINAe
We bound 11 based on the following;:
> > Fw)<IAl Y RO =11 Y
TEA ye AUNA yeAl yeAII

5 < C7lA]

(F.3)
AII

for some constant C' arises from ZyeA})I y%~< 0o. Then ki < 2C+|A| and the UQ
bounds for long range perturbation with S(h — h) < 1 are

A
(F4)  +E; [m(oa)] < ! inf bisa P +Bs0
. an T\ O = m -~
TSI =17 8(h — h) A>0 A/B bt
In the LP-limit we get
1 Pp+2 3.3 — Ph,BJ
F.5 M@JI* B < ——— inf B
(F.5) M@I",8,h) < = B0 h) A% Vi
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