
A Customizable Domain-Specific Memory-Centric
FPGA Overlay for Machine Learning Applications
Atiyehsadat Panahi∗, Suhail Balsalama∗, Ange-Thierry Ishimwe∗, Joel Mandebi Mbongue$, David Andrews∗

Department of Computer Science and Computer Engineering
∗University of Arkansas, $University of Florida

Fayetteville, Arkansas
{apanahi, sebasala, ai006}@uark.edu, jmandebimbongue@ufl.edu, dandrews@uark.edu

Abstract—This paper presents an overview and performance
analysis of a software-programmable domain-customizable
System-on-Chip (SoC) overlay for low-latency inferencing of
variable and low-precision Machine Learning (ML) networks
targeting Internet-of-Things (IoT) edge devices. The SoC includes
a 2-D processor array that can be customized at design time
for FPGA logic families. The overlay resolves historic issues
of poor designer productivity associated with traditional Field
Programmable Gate Array (FPGA) design flows without the
performance losses normally incurred by overlays. A standard
Instruction Set Architecture (ISA) allows different ML networks
to be quickly compiled and run on the overlay without the need
to resynthesize. Performance results are presented that show the
overlay achieves 1.3×-8.0× speedup over custom designs while
still allowing rapid changes to ML algorithms on the FPGA
through standard compilation.

Index Terms—FPGA, overlay, processor array, machine learn-
ing, SIMD, bit-serial, fixed-point, MLP, CNN, LSTM, GRU

I. INTRODUCTION

The explosive growth of the Internet-of-Things (IoT) is
changing how we must store and analyze data [1]. Processing
is moving out to where the data is produced, domain-specific
hardware accelerators are becoming ubiquitous infrastructure,
and latency is replacing throughput as the driving system
performance requirement. The machine learning algorithms
that are migrating out to the IoT edge are driving architects
to increase the capacity of on-chip fast memory to store
temporary results and reduce the memory transfer overhead.
Computational latency, as well as energy concerns, are be-
ing addressed through 2-D Single-Instruction-Multiple-Data
(SIMD) and systolic arrays of low-precision fixed-point Arith-
metic Logic Unis (ALUs) [2].

Field Programmable Gate Arrays (FPGAs) are in a unique
position to facilitate the transfer of Machine Learning (ML)
algorithms out into IoT edge devices. The malleability of
the compute fabric allows the creation of architectures to
match the diverse spectrum of lower precision ML network
topologies needed by the applications running at the IoT
edge. The maturation of High-Level Synthesis (HLS) tools and
increased numbers of diffused DSPs within the FPGAs have
opened new opportunities for non-hardware experts to quickly
translate algorithms into an FPGA-based hardware accelerator.

Despite these advantages, the historical barrier of poor
programmer productivity must be eliminated if FPGAs are

to gain universal acceptance within the broad programmer
community and serve as transparent IoT edge infrastructure
with other programmable components. From a programmer
productivity perspective, the debate between using HLS lan-
guages or traditional Hardware Description Languages (HDLs)
is moot. Either front-end language requires programmers to
understand low-level hardware design, use hardware-centric
CAD tools, and for even minor design changes, suffer through
the time-consuming synthesis, place, and route. FPGAs will
achieve full acceptance with other programmable IoT edge
components by programmers when they are abstracted under
familiar software development tools that remove the time-
consuming step of hardware synthesis.

This paper presents a new overlay architecture that brings
software levels of programmer productivity, code portability,
and reuse to the design of any neural network configuration
within the FPGA. The overlay contains a new Processor-In-
Memory (PIM) SIMD processor array architecture designed
to reduce communication latency and increase computational
concurrency for the low-precision fixed-point arithmetic used
in IoT edge devices. The contributions of this paper are:

• A System-on-Chip (SoC) design that includes a fully
programmable memory-centric overlay and Instruction
Set Architecture (ISA). The ISA allows the overlay to
be programmed to support reduced precision, low-latency
inferencing of any ML network.

• A new “elastic” memory-centric compute tile that can
be composed by scripts to form any size 2-D compute
array within the overlay for different FPGA devices. The
memory-centric architecture reduces both computation
and communication latencies with the 2-D array of mixed
variable and low-precision multiply-accumulate units.

• Performance analysis of standard MLP, CNN, LSTM, and
GRU benchmarks implemented on Xilinx Virtex-7 and
Ultrascale FPGAs. Run time results show the overlay
achieves competitive and even lower inference latencies
compared to custom FPGA-based accelerators.

II. PROCESSOR ARRAY ARCHITECTURE

Fig. 1(a) shows the block diagram of our SoC overlay
architecture with an expanded view of the processor array. The
processor array executes as a decoupled accelerator sequenced
by a standard processor within a larger SoC overlay. Sections

AXI BUS

MicroBlaze

Processor Array

DRAM

Instruction Sequencer

PE_Block
(0, x-1)

Controller

Tile (0, m-1)

PE_Block
(y-1, x-1)

PE_Block
(0, 0)

PE_Block
(y-1, 0)

North I/O (Serial/Parallel Converter)

SouthI/O (Serial/Parallel Converter)

W
es

t I
/O

 (S
er

ia
l/P

ar
al

le
l C

on
ve

rt
er

)

C
on

tro
lle

r

E
as

t I
/O

 (S
er

ia
l/P

ar
al

le
l C

on
ve

rt
er

)

PE_Block
(0, x-1)

Controller

Tile (0, 0)

PE_Block
(y-1, x-1)

PE_Block
(0, 0)

PE_Block
(y-1, 0)

PE_Block
(0, x-1)

Controller

Tile (n-1, 0)

PE_Block
(y-1, x-1)

PE_Block
(0, 0)

PE_Block
(y-1, 0)

PE_Block
(0, x-1)

Controller

Tile (n-1, m-
1)

PE_Block
(y-1, x-1)

PE_Block
(0, 0)

PE_Block
(y-1, 0)

(a)

PE1

PE5

PE9

PE2

PE6

PE10

PE3

PE7

PE11

PE4

PE8

PE12

(c)

PE13 PE14 PE15 PE16

PE-block
(Abstraction)

(d) (e)

.........

PE
1 R

eg File

PE
2 R

eg File

PE
16 R

eg File

.........

PE-block
(Structural Implementation)

PE
 R

eg File

R00

R0N-1

...

R10

R1N-1

(f)

Reg Files (BRAM)

R20

R2N-1

...

R10

R1N-1

...
..............

Rk0

RkN-1

...

R1

R2

Rk

R20

R2N-1

...

R10

R1N-1

...
..............

Rk0

RkN-1

...

R20

R2N-1

...

R10

R1N-1

...
..............

Rk0

RkN-1

...

R20

R2N-1

...
..............

Rk0

RkN-1

...

PE1 PE2 PE3 PE16

.........

1024 bits

16 bits

PE

(b)

Data out
(Instruction)

Address

Queue

Instruction BRAM

Fu
ll

In
te

rr
up

t

E
m

pt
y

In
te

rr
up

t

Add R1,R2,R3
A.Add R5,R2,R3

Mul R4,R5,R3
Sub R3,R1,R8

A.Mul R2,R1,R5
BNE R1,R0,Loop

Jump main

NOP or Scalar/Control
Instructions

ARP Instructions

Splitter

(b)

Fig. 1. PIM processor array.

of the application program to be executed on the processor
array are written, compiled, and linked as normal functions and
subroutines within the main program running on the standard
processor. The processor array uses the instruction format
of the controlling processor (MicroBlaze) and contains a
decoder that issues Micro-Operations (uops) that sequence the
Processing Elements (PEs) in the array. This allows programs
to be written and compiled for the processor array using a
standard compiler (such as for the MicroBlaze).

The overlay includes an Instruction Sequencer that
snoops instructions from the address range of the Instruction
BRAM (Fig. 1(b)). The sequencer places instructions for
the processor array into a queue and returns a NOP to the
MicroBlaze. The queue enables the Microblaze to prefetch
sequences of instructions for the processor array. This de-
coupling allows the MicroBlaze and the processor array to
asynchronously and concurrently continue execution. When
needed, the MicroBlaze and the processor array synchronize
through an interrupt-driven protocol.

A. Memory-Centric Configurable Processor Array

Fig. 1(a) shows how the processor array is configured as a
2-D SIMD array of m×n compute tiles. Each tile includes a
local controller. Fig 1(b) shows how each tile is configured as
an x×y array of PE-blocks. The m×n dimensions of compute
tiles and x × y dimensions of PE-blocks are parameters in a
build script. Designers can set these parameters to configure
and optimize the array for different use scenarios as well as
logic family-specific resource configurations and capacities.

The hierarchical organization of tiles, PE-blocks, and con-
trollers has been defined to localize signal fanouts. This eases
routing congestion and reduces clock and signal delays for

arrays that approach high per chip resource utilizations. The
tiles and PE-blocks are automatically created using the build
script within a default North-East-West-South (NEWS) inter-
connect network. This default network can be customized or
replaced by different domain-specific interconnects. In section
III-D, we show how communications latency affects end-to-
end inference latency for certain classes of neural networks
and can be reduced by replacing the (NEWS) network with
a binary reduction tree interconnect network.

B. PIM PE-block Architecture

Fig. 2(a) shows a typical configuration of BRAM-DSP
blocks configured to maximize throughput of streaming data.
Fig. 2(b) contrasts this configuration with the proposed PIM
architecture configured to reduce latency by forming groups
of ALUs with concurrent access to a block of common shared
local storage. Fig. 3 shows a 18kb BRAM configured as
16×1024 bits distributed memory. In our PIM architecture, the
width of a row sets the number of ALUs that can be connected
in parallel to one BRAM. Parallelism can be increased by
widening the row width of the BRAM. Designers can trade-off
ALU concurrency versus precision and local storage capacity
for different logic families.

Regardless of ALU precision or logic family, the processor
array’s decoder is made aware of the data-widths specified in
the application code and issues the necessary uops to sequence
the ALUs accordingly, transparently to the programmer. This
decouples algorithm optimization from hardware optimization
and supports the objective of bringing software levels of
productivity to FPGA hardware design. Conversely, changing
the data-widths in the high-level application, particularly when

DSP

DSP

DSP

DSP

(a)

B
R
A
M

PE

PE
PE

PE

PE

PE

PEPEPE

PE

BRAM

(b)

PE

PE
PE

PE

PEBRAM

BRAM PE

PEPEPE

PE BRAM

Fig. 2. (a) DSP-based method vs. (b) Proposed memory-centric method.

0
1

N-1
N

N+1

2N-1

R
0

31N
31N+1

32N-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16addrR#
PE#

R
1

R
31

alu_op

rs1_addr

rs2_addr

rd_addr

rs1_data
[0:15]

rs2_data
[0:15]

Serial
ALU 1

Serial
ALU 16

rd_data
[0:15]

rs1_data
[0]

rs1_data
[15]

rs2_data
[0]

rs2_data
[15]

rd_data
[0]

rd_data
[15]

Dual-Port 18k BRAM (16x1024 bits)

Fig. 3. Bit-serial ALUs.

dealing with low-precision widths, in traditional custom accel-
erator flows can require a resynthesis of the complete design.

1) Local Storage: Each ALU is provided with 1024 bits of
local storage. Dynamic typing based on the operand width is
used to set the iteration count, bit-width, and the number of
storage registers in the BRAM for a particular ALU bit-width.
This allows programmers to compile domain optimizations
that effectively scale resources to arithmetic precision.

2) Data Movement: Fig. 1(c) show the PEs configured
within a NEWS interconnect network. The sharing of a
memory block by multiple PEs eliminates the need to embed
an additional physical interconnect network. Inter-PE com-
munications are realized through rotating data (logical shifts)
in the BRAM (Fig. 1(f)). Moving data by logical shifts in
the BRAM eliminates the additional data paths and buffers
required to implement a separate interconnect network.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

We create the SoC system shown in Fig. 1 with 10k PEs
to serve as our base experimental hardware platform using
Vivado 2018.3 tools. The same code was run on the two
FPGAs (Virtex-7 and Virtex Ultra), informally validating the
overlay’s ability to support code portability and reuse. Along
with abstraction, code portability, and reuse are the corner-
stones necessary to achieve software levels of productivity.
Design goals for IoT edge devices are to reduce latencies and
not maximize peak throughput. The implemented benchmarks
were written in C, compiled, and linked with the overlay ISA.

B. Compilation, Code Portability, and Reuse

As shown in Table I, qualitatively, we were able to compile
and run all network types on our single processor array. This
validates that rapid changes to the network structure can be
realized through compilation without requiring CAD tools or
synthesis. Importantly, this also opens the use of these devices
to programmers with no hardware design expertise. The same
application code was then run on both FPGA devices, demon-
strating code portability and reuse. Finally, the latencies and
speedups show that enabling programmer productivity levels,
code portability, and reuse does not necessarily need to come
at the cost of reduced performance.

C. Performance Analysis

Column three in Table I shows the speedups achieved over
reported single network custom accelerators and an overlay
design. Column eight shows that the arithmetic operations in
the reported designs were instantiated in DSPs. Our processor
array implemented bit-serial circuits in the gates and used
no DSPs. Regardless of how arithmetic circuits are imple-
mented, latency degrades when the circuit is forced to idle,
waiting for operands. Incorporating BRAMs in the system’s
linear global address space outside of user logic IP limits
achievable bandwidth that then limits the number of DSPs
that can operate concurrently. This results in the serialization
of operations that could have been computed concurrently.
The structural definition of our PIM architecture matched
the memory bandwidth to the 10k bit-serial PEs. Table I
shows the processor-in-memory architecture with bit-serial
PEs delivers competitive performance with custom designs.
The precision of the operations can be lowered to match the
needs at the IoT edge in software by changing the data types
and recompiling. Programmers can change the design without
having to resynthesize, and the inference latency will scale
down as the precision is lowered.

D. Domain Customization

Ultimately, the computation/communication ratio deter-
mines the end-to-end inference latency seen by a user. Table
II breaks down the percentage of cycles spent in compu-
tations (Array Active Cycles) and communications (Internal
Data Movement and Weight Stall Cycles) within our overlay.
Consistent with results reported in [3], the MLP/LSTM/GRU
benchmarks are communication-bound. Without any loss to the
generality, a system designer targeting such communication-
bound networks may want to perform some additional domain
customizations to further reduce inference latency for their
applications. Amdahl’s law would point in the direction of the
communications subsystem. Table III shows how these data
movement cycles can be reduced by augmenting the NEWS
network with a binary tree reduction/interconnect network
along with the additional resources for a Virtex Ultra. These
customizations can be encapsulated in software macros as part
of a domain-specific library available to programmers. The
CNN network is not included in Table III as the Internal Data
Movement is a small portion of its total execution cycles.

TABLE I
IMPLEMENTATION RESULTS

Name Latency Speedup Data a LUTs FFs BRAMs DSPs Freq. FPGA Method
Format (MHz)

LSTM(1) (61, 250, 250, 250, 39) on TIMIT dataset
Guan [4] 390 ms FLP 32 198280 182646 1072 1176 150 Virtex-7 HLS

This 17.5 ms 22.2 FxP 32 138380 67801 313 0 130 Virtex-7
Work 11.4 ms 34.2 FxP 32 133890 56207 313 0 200 Virtex Ultra Overlay

LSTM(2) (64, 128, 128, 64) on CharRec dataset
Chang [5] 900 us FxP 16 7201 12960 16 50 142 Zynq HDL

This 395.9 us 2.3 FxP 16 138380 67801 313 0 130 Virtex-7
Work 257.1 us 3.5 FxP 16 133890 56207 313 0 200 Virtex Ultra Overlay

MLP (874, 100, 100) on MNIST dataset
SNN [6] 1.3 ms FxP 25 139562 175604 50 400 100 Virtex-7 HDL

This 0.5 ms 2.6 FxP 32 138380 67801 313 0 130 Virtex-7
Work 0.3 ms 4.3 FxP 32 133890 56207 313 0 200 Virtex Ultra Overlay

CNN SqueezeNet v1.1 on ImageNet dataset
CNN-Grinder [7] 70.5 ms FxP 8 34489 25036 97.5 172 100 Zynq HLS

Light-OPU [8] FxP 8 173522 241175 193.5 704 200 Kintex-7 Overlay
This 51.0 ms 1.3 FxP 8 138380 67801 313 0 130 Virtex-7

Work 33.1 ms 2.1 FxP 8 133890 56207 313 0 200 Virtex Ultra Overlay
GRU (39, 256, 200, 10) on DeepSpeech dataset

DeltaRNN [9] 26.4b ms FxP 16 261357 119260 768 457.5 125 Zynq-7000 HDL
This 3.3 ms 8.0 FxP 16 138380 67801 313 0 130 Virtex-7

Work 2.1 ms 12.5 FxP 16 133890 56207 313 0 200 Virtex Ultra Overlay
a FxP := fixed-point and FLP := floating-point.
b The reported latency is for a delta threshold of 0x00 [9], which is equivalent to what is implemented in the proposed design.

TABLE II
BREAKDOWN OF EXECUTION CYCLES

Operation LSTM(1) LSTM(2) MLP CNN GRU
Array Active Cyclesa 33.6% 23.9% 54.2% 84.1% 10.8%

Internal Data Movementb 37.8% 76.1% 45.8% 0.1% 27.6%
Weight Stall Cycles 28.6% 0%c 0%c 15.8% 61.6%

a Multiply-Accumulate (MAC) operations.
b NEWS operations.
c No data movement from DRAM to BRAM.

TABLE III
EFFECTS OF BINARY TREE INTERCONNECT

Benchmark Binary Tree add Binary Tree add
Linear shift Binary Tree shift
Execution Time

LSTM(1) (ms) 11.4 8.2
LSTM(2) (us) 257.1 123.8

MLP (ms) 0.3 0.2
GRU (ms) 2.1 1.2

Resource Utilization (10k PEs)
LUTs 133890 492937
FFs 56207 76501

BRAMs 313 313
DSPs 0 0

CONCLUSION

This paper presented a domain customizable processor-in-
memory overlay to enable programmers with no hardware
design expertise to program any type of machine learning
networks into FPGAs. The proposed overlay can be configured
through software to operate on different data-widths as well
as network configurations. The presented processor-in-memory

architecture matches memory bandwidth with large numbers
of ALUs. This allows inference latency to be reduced through
concurrency and reduced precision operations, which is es-
sential in user-facing and real-time IoT applications. Experi-
mental results showed that the proposed single processor array
achieved speedups over a range of custom network designs.

REFERENCES

[1] A. Ishfaq. “Discover Internet of Things editorial,” Discover Internet of
Things, 10.1007/s43926-021-00007-6, 2021.

[2] S. Basalama, A. Panahi, A. T. Ishimwe, and D. Andrews, “SPAR-2: A
SIMD Processor Array for Machine Learning in IoT Devices,” In 3rd
International Conference on Data Intelligence and Security (ICDIS), pp.
141–147, 2020.

[3] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, et
al., “In-datacenter performance analysis of a tensor processing unit,” In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 1–12, 2017.

[4] Y. Guan, Z. Yuan, G. Sun, and Cong, J., “FPGA-based accelerator for
long short-term memory recurrent neural networks,” In 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 629–
634), 2017.

[5] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neu-
ral networks hardware implementation on FPGA,” arXiv preprint
arXiv:1511.05552, 2015.

[6] W. uo, H. E. Yantir, M. E. Fouda, A. M. Eltawil, and K. N. Salama,
“Toward the Optimal Design and FPGA Implementation of Spiking
Neural Networks,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[7] P. G. Mousouliotis, and L. P. Petrou, “CNN-Grinder: From Algorithmic
to High-Level Synthesis Descriptions of CNNs for Low-end-low-cost
FPGA SoCs,” Microprocessors and Microsystems, vol. 102990, 2020.

[8] Y. Yu, T. Zhao, K. Wang, and L. He, “Light-OPU: An FPGA-
based Overlay Processor for Lightweight Convolutional Neural Net-
works,” In The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 122–132, 2020.

[9] C. Gao, D. Neil, E. Ceolini, S. C. Liu, and T. Delbruck, “DeltaRNN: A
power-efficient recurrent neural network accelerator,“ In Proceedings of
the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 21–30, 2018.

	Introduction
	Processor Array Architecture
	Memory-Centric Configurable Processor Array
	PIM PE-block Architecture
	Local Storage
	Data Movement

	Experimental Results
	Experimental Setup
	Compilation, Code Portability, and Reuse
	Performance Analysis
	Domain Customization

	References

