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Abstract

New results suggest strong limits to the feasibility of ob-

ject classification from human brain activity evoked by im-

age stimuli, as measured through EEG. Considerable prior

work suffers from a confound between the stimulus class

and the time since the start of the experiment. A prior at-

tempt to avoid this confound using randomized trials was

unable to achieve results above chance in a statistically sig-

nificant fashion when the data sets were of the same size as

the original experiments. Here, we attempt object classifi-

cation from EEG using an array of methods that are rep-

resentative of the state-of-the-art, with a far larger (20×)

dataset of randomized EEG trials, 1,000 stimulus presenta-

tions of each of forty classes, all from a single subject. To

our knowledge, this is the largest such EEG data-collection

effort from a single subject and is at the bounds of feasi-

bility. We obtain classification accuracy that is marginally

above chance and above chance in a statistically significant

fashion, and further assess how accuracy depends on the

classifier used, the amount of training data used, and the

number of classes. Reaching the limits of data collection

with only marginally above-chance performance suggests

that the prevailing literature substantially exaggerates the

feasibility of object classification from EEG.

1. Introduction

There has been considerable recent interest in applying

deep learning to electroencephalography (EEG). Two re-

cent survey papers [7, 33] collectively contain 372 refer-

ences. Much of this work attempts to classify human brain

activity evoked from visual stimuli. A recent CVPR oral

[35] claims to decode one of forty object classes when sub-

jects view images from ImageNet [9] with 82.9% accu-

racy. Considerable follow-on work uses the same dataset

[5, 10, 11, 12, 13, 15, 16, 17, 19, 21, 25, 26, 27, 28, 29,

30, 43, 46, 47, 48, 49], often claiming even higher accu-

racy. Li et al. [22] demonstrate that this classification ac-

curacy is severely overinflated due to flawed experimental

design. All stimuli of the same class were presented to sub-

jects as a single block (Fig. 1a). Further, training and test

samples were taken from the same block. Because all EEG

data contain long-term temporal correlations that are unre-

lated to stimulus processing and their design confounded

block-effects with class label, Spampinato et al. [35] were

classifying these long-term temporal patterns, not the stim-

ulus class. Because the training and test samples were taken

in close temporal proximity from the same block, the tem-

poral correlations in the EEG introduced label leakage be-

tween the training and test data sets. When the experiment

of Spampinato et al. [35] is repeated with randomized trials,

where stimuli of different classes are randomly intermixed,

classification accuracy drops to chance [22].

Another recent paper [8] attempts to remedy the short-

comings of a block design by recording two different ses-

sions for the same subject, each organized as a block de-

sign, one to be used as training data and one to be used as

test data. However, both sessions used the same stimulus

presentation order (Fig. 1b). Li et al. [22] demonstrate that

classification accuracy can even be severely inflated with

such a cross-session design that employs the same stim-

ulus presentation order in both sessions due to the same

long-term transients that are unrelated to stimulus process-

ing. While an analysis of training and test sets coming from

different sessions with the same stimulus presentation or-

der yields lower accuracy than an analysis where they come

from the same session, accuracy drops to chance when the

two sessions have different stimulus presentation order.

All this prior work is fundamentally flawed due to im-

proper experimental design. Essentially, the EEG signal en-

codes a clock and any experimental design where stimulus

class correlates with time since beginning of experiment al-

lows classifying the clock instead of the stimuli. This means

that all data collected in this fashion is irreparably contami-

nated.

Li et al. [22] attempted to replicate the experiment of

Spampinato et al. [35] six times with nine different classi-

fiers, including the LSTM employed by them, with random-

ized trials (Fig. 1c) instead of a block design. All attempts

failed, yielding chance performance.

Given that considerable prior work suffers from this



(a)

class 
1 im

age 3

class 
1 im

age 4

class 
1 im

age 2

class 
2 im

age 1

class 
2 im

age 2

class 
2 im

age 3

class 
2 im

age 4

training test training test

class 
1 im

age 1

(b)

class 
1 im

age 3

class 
1 im

age 4

class 
1 im

age 2

class 
2 im

age 1

class 
2 im

age 2

class 
2 im

age 3

class 
2 im

age 4

later class 
1 im

age 2

class 
1 im

age 4

class 
1 im

age 3

class 
2 im

age 1

class 
2 im

age 2

class 
2 im

age 3

class 
2 im

age 4

training test

class 
1 im

age 1

class 
1 im

age 1

(c)

class 
19 im

age 23 tra
ining

class 
14 im

age 6 tra
ining

class 
3 im

age 14 te
st

class 
1 im

age 4 tra
ining

class 
29 im

age 11 te
st

class 
14 im

age 3 tra
ining

class 
7 im

age 15 te
st

class 
27 im

age 4 tra
ining

Figure 1. Stimulus presentation order and training/test splits em-

ployed by (a) Spampinato et al. [35], (b) Cudlenco et al. [8], and

(c) randomized trials. (a) and (b) confound stimulus class with

time since beginning of experiment.

block confound, here, we sought to systematically re-assess

the performance of state-of-the-art approaches to object

classification from EEG, using a large EEG dataset that

does not suffer from this confound. Specifically, we ask

the following seven questions:

1. Is it possible to decode object class from EEG data

recorded from subjects viewing image stimuli with ran-

domized stimulus presentation order?

2. If so, how many distinct classes can one decode?

3. If so, how much training data is needed?

4. If so, which classification architectures that are cur-

rently standard in the literature allow such decoding?

5. Does the inclusion of EEG data contaminated with ar-

tifacts (e.g. from subject movement and tightening of

facial muscles) limit the decoding ability?

6. Does use of a classification method that lacks inherent

ability to model temporal variation in the EEG signal

limit decoding ability?

7. Can one perform such decoding across subjects?

To answer these questions, we collected EEG recordings

from 40,000 stimulus presentations to a single subject (and

reanalyze data from Li et al. [22] for cross-subject clas-

sification). To our knowledge, this is by far the largest

recording effort of its kind. Moreover, we argue that col-

lecting such a large corpus is at the bounds of feasibility; it

is infeasible to collect any appreciably larger corpus. With

this corpus we achieve a modest ability to decode stimu-

lus classes with accuracy above chance in a statistically sig-

nificant fashion. By using a greedy method to determine

the most discriminable n classes for 2 ≤ n ≤ 40, and de-

termining the classification accuracy for each such set, we

show that forty classes is at the limit of feasibility. Further,

by repeating the experiments with successively larger frac-

tions of the dataset, we determine that at least half of this

large dataset is needed to achieve this accuracy. Finally,

we show that two architectures previously claimed to yield

high accuracy on this kind of task, namely the LSTM archi-

tecture evaluated in Spampinato et al. [35], and the LSTM

architecture [35] and the EEGChannelNet architecture [28]

evaluated in Palazzo et al. [28], are unable to achieve classi-

fication accuracy above chance in a statistically significant

fashion. The only four classifiers that we tried that achieve

classification accuracy above chance in a statistically signif-

icant fashion are a support vector machine (SVM [6]), the

one-dimensional convolutional neural network (1D CNN)

previously reported by Li et al. [22], the EEGNet architec-

ture [20], and the SyncNet architecture [23].

Before proceeding, we stress that we are solely con-

cerned with forced-choice one-out-of-n classification of ob-

jects from EEG evoked by single-trial image stimuli, be-

cause this is precisely the paradigm employed by consid-

erable recent work [5, 10, 11, 12, 13, 15, 16, 17, 19, 21,

25, 26, 27, 28, 29, 30, 35, 43, 46, 47, 48, 49]. Further-

more, carefully calibrating the performance achievable for

this EEG paradigm is particularly important, because visual

object classification is a canonical problem in computer vi-

sion where there is increasing interest in incorporating in-

sights from brain data. We do not comment on work that

involves other paradigms [18, 31, 41].

Summary of contribution: While Li et al. [22] showed

that all this recent work [5, 10, 11, 12, 13, 15, 16, 17, 19, 21,

25, 26, 27, 28, 29, 30, 35, 43, 46, 47, 48, 49] hadn’t done

what they claimed to have done, we go far beyond that here

and show that they couldn’t have done what they claimed to

have done. I.e. object classification for single trial EEG is

infeasible, at least with methods that are currently standard

in the literature.

2. Data Collection

Spampinato et al. [35] selected fifty ImageNet images

from each of forty ImageNet synsets as stimuli. With

one exception, we employed the same ImageNet synsets as

classes (Table 1). Since we sought 1,000 images from each

class, and one class, n03197337, digital watch, contained

insufficient images at time of download, we replaced that

class with n04555897, watch.

We downloaded all ImageNet images of each of the

forty classes that were available on 28 July 2019, ran-

domly selected 1,000 images for each class, resized them

to 1920×1080, preserving aspect ratio by padding them

with black pixels either on the left and right or top and

bottom, but not both, to center the image. All but one

such image was either RGB or grayscale. One image,

n02492035 15739, was in the CMYK color space so was

transcoded to RGB for compatibility with our stimulus pre-

sentation software.

The 40,000 images were partitioned into 100 sets of 400

images each. Each set of 400 images contained exactly ten

images of each of the forty classes. Each set of 400 im-

ages was randomly permuted. The order of the 100 sets of

images was also randomly permuted.

A single adult male subject viewed all 100 sets of im-

ages while recording EEG. Recording was conducted over



n02106662 German shepherd n02124075 Egyptian cat n02281787 lycaenid n02389026 sorrel n02492035 capuchin

n02504458 African elephant n02510455 giant panda n02607072 anemone fish n02690373 airliner n02906734 broom

n02951358 canoe n02992529 cellular telephone n03063599 coffee mug n03100240 convertible n03180011 desktop computer

n04555897 watch n03272010 electric guitar n03272562 electric locomotive n03297495 espresso maker n03376595 folding chair

n03445777 golf ball n03452741 grand piano n03584829 iron n03590841 jack-o-lantern n03709823 mailbag

n03773504 missile n03775071 mitten n03792782 mountain bike n03792972 mountain tent n03877472 pajama

n03888257 parachute n03982430 pool table n04044716 radio telescope n04069434 reflex camera n04086273 revolver

n04120489 running shoe n07753592 banana n07873807 pizza n11939491 daisy n13054560 bolete

Table 1. ImageNet synsets employed as classes in our experiment.

ten sessions. Each session nominally recorded data from ten

sets of images, though some sessions contained fewer sets,

some sessions contained more sets, and some sets were re-

peated due to experimenter error. (Runs per session: 10, 8,

10, 11, 11, 10, 10, 10, 10, 10. Run 19 was repeated after

run 20 because one image was discovered to be in CYMK.

Run 43 was repeated because one earlobe electrode was

off.) When sets were repeated, only one error-free set was

retained. Each recording session was nominally about six

hours in duration. The subject typically took breaks after

every three or so sets of images. As the EEG lab was be-

ing used for other experiments as well, recording was con-

ducted over roughly a half-year period. (Session dates: 21,

28 Aug 2019, 3, 10, 16, 17 Sep 2019, 13, 14, 20, 21 Jan

2020.)

Our design is counterbalanced at the whole-experiment

level, the session level, and the run level. Each unit (ex-

periment, session, or run) has the same number of stimulus

presentations for each class with no duplicates. Thus at any

level, the baseline performance is chance. This allows par-

tial analyses of arbitrary combinations of individual runs or

sessions with simple calculation of statistical significance.

Each set of 400 images was presented in a single EEG

run lasting 20 minutes and 20 seconds. Each run started

with 10 s of blanking, followed by 400 stimulus presenta-

tions, each lasting 2 s, with 1 s of blanking between adjacent

stimulus presentations, followed by 10 s of blanking at the

end of the run. There was no block structure within each

run.1

EEG data was recorded from 96 channels at 4,096 Hz

with 24-bit resolution using a BioSemi ActiveTwo recorder

and a BioSemi gel electrode cap. Two additional channels

were used to record the signal from the earlobes for rerefer-

encing. The BioSemi system uses the so called driven-right-

leg circuit design to improve the common-mode rejection

ratio of the amplifier beyond conventional differential am-

plifiers [37]. Within this design, a large DC offset at an elec-

trode indicates scalp contact problems; this DC offset was

monitored in real time to ensure good electrode-scalp con-

tact by adding extra gel as needed. A trigger was recorded

in the EEG data to indicate stimulus onset. Preprocessing

1Spampinato et al. [35] employed a design where stimuli were pre-

sented in blocks of fifty images. Each stimulus was presented for 0.5 s

with no blanking between images, but with 10 s blanking between blocks.

During a pilot run of our experiment with this design, the subject reported

that it was difficult and tedious to attend to the stimuli when presented

rapidly without pause, thus motivating adoption of our modified design.

Our longer trials with pauses attempt to reduce the potential of cross-

stimulus contamination.

software verifies that there are exactly 400 triggers in each

recording.2

The current analysis uses only the first 500 ms after stim-

ulus onset for each stimulus presentation, even though 2 s of

data were recorded. Further, the current analysis decimated

the data from 4,096 Hz to 1,024 Hz. This was done to speed

the analysis. The full dataset is available for potential future

enhanced analysis.

Each session was recorded with a single capping with

the cap remaining in place when the subject took breaks

between runs. With fMRI data, the anatomical informa-

tion captured can be used to align volumes within a run

to compensate for subject motion, between runs to com-

pensate for subjects exiting and reentering the scanner (co-

registration), and between subjects to compensate for vari-

ations in brain anatomy (spatial normalization). In con-

trast, for EEG data, there are no established methods to ad-

just for differing brain/scalp anatomy when combining data

from multiple subjects; often approximately corresponding

scalp locations are treated as equivalent. For this reason,

we recorded data from a single subject to eliminate the need

to align across subjects. By performing capping only once

per session and choosing a cap size to yield a snug fit, any

within-session alignment issues are obviated. To minimize

across-session misalignment, the same cap with pre-cut ear

holes was used across sessions with the vertex marking on

the cap (location Cz) positioned to be geodesically equidis-

tant from the the nasion and inion in the front-back direc-

tion, and equidistant from the left and right pre-auricular

points in the left-right direction. Furthermore, visual in-

spection was done from vantage points directly in front and

at the back of the subject to check that the FPz, Fz, Cz, Pz,

and Oz markings on the cap fell on the geodesic connecting

the nasion and inion.

To check whether the subject consistently viewed the im-

ages presented, online trial averaging of the EEG data was

performed in every session to obtain evoked responses that

are phase-locked to the onset of the images. Data from two

occipital channels (C31 and C32) were bandpass filtered in

the 1–40 Hz range and epochs of 800 ms duration were

segmented out synchronously following the onset of each

image. Epochs with peak-to-trough fluctuations exceeding

100 µV were discarded and the remaining epochs were av-

eraged together to yield an 800 ms-long evoked response.

A clear and robust N1-P2 onset response pattern was dis-

2Due to experimenter error, one recording, run 14, continued beyond

400 stimulus presentations. The recordings for the extra stimulus presen-

tations were harmlessly discarded.



cernible in the evoked response traces obtained in each of

the 100 runs, consistent with the subject viewing the im-

ages as instructed. Note that all online averaging proce-

dures (e.g. filtering) were done to data in a separate buffer;

the raw unprocessed data from 96 channels was saved for

offline analysis.

3. Preprocessing

The raw EEG data was recorded in bdf file format, a sin-

gle file for each of the 100 runs.3 We performed minimal

preprocessing on this data, independently for each run, first

rereferencing the data to the earlobes, then extracting ex-

actly 0.5 s of data starting at each trigger, then z-scoring

each channel of the extracted samples for each run inde-

pendently, so that the extracted samples for each channel of

each run have zero mean and unit variance, and then finally

decimating the signal from 4,096 Hz to 1,024 Hz. No filter-

ing was performed. After rereferencing, there is no appre-

ciable line noise to filter. Randomized trials preclude classi-

fying long-term transients, thus there is no need to filter out

such transients. Note that this preprocessing is minimal; we

discuss below the prospects of improving the SNR of the

neural signals by removing movement and facial muscle ar-

tifacts.

The data was then randomly partitioned into five equal-

sized folds, each containing the same number of samples of

each class. All analyses below report average across five-

fold round-robin leave-one-fold-out cross validation, taking

four folds in each split as training data and the remaining

fold as test data. When performing analyses on subsets of

the data, the sizes of the folds, and thus the sizes of the

training and test sets, varied proportionally.

4. Classifiers

The analyses below employ eight different classifiers,

an LSTM [14], a nearest neighbor classifier (k-NN), an

SVM, a two-layer fully-connected neural network (MLP),

1D CNN, EEGNet [20], SyncNet [23], and EEGChannel-

Net [28]. The LSTM is the same as Spampinato et al.

[35] with the modifications discussed previously by Li et

al. [22]. The k-NN, SVM, MLP, and 1D CNN are as de-

scribed previously by Li et al. [22], with minor differences

resulting from the fact that here the signals contain 512 tem-

poral samples instead of 440. Two of the classifiers (k-NN

and SVM) are classical baseline machine-learning methods.

The remaining six classifiers are all neural networks, one

(MLP) being shallow and five (LSTM, 1D CNN, EEGNet,

SyncNet, and EEGChannelNet) being deep-learning meth-

ods.

3All code and raw data discussed in this manuscript are available at

http://dx.doi.org/10.21227/bc7e-6j47.

LSTM k-NN SVM MLP 1D CNN EEGNet SyncNet EEGChannelNet

2.2% 2.1% 5.0%∗ 2.5% 5.1%∗ 7.0%∗ 2.5% 2.5%

Table 2. Classification accuracy on the validation set, averaged

across all five folds, for each classifier. Here and throughout,

starred values indicate statistical significance above chance (p <

0.005) by a binomial cmf.

5. Analyses

To answer the first question, Is it possible to decode ob-

ject class from EEG data recorded from subjects viewing

image stimuli with randomized stimulus presentation or-

der?, we trained and tested each of the eight classifiers on

the entire dataset of 1,000 stimulus presentations of each of

forty classes, using five-fold cross validation (Table 2). All

analyses here and below test statistical significance above

chance using p < 0.005 against a null hypothesis by a bi-

nomial cmf with a Bonferroni [4] correction.4 Only three

classifiers, SVM, 1D CNN, and EEGNet, yield statistically

significant above-chance accuracy.5

To answer the second question, How many distinct

classes can one decode?, we performed a greedy analysis,

independently for each classifier. We first trained and tested

a classifier for each pair of distinct classes. Fig. 2 depicts

the resulting average validation accuracies. Only one clas-

sifier, SVM, yielded a statistically significant above-chance

accuracy for some pair. It did so for a large number of pairs.

We then selected the pair with the highest average validation

accuracy, independently for each classifier, and selected the

first element of this pair as the seed for a class sequence

for that classifier. Then for each n between two and forty,

we greedily and incrementally added one more class to the

class sequence for each classifier. This class was selected

by trying each unused class, adding it to the class sequence,

training and testing a classifier with that addition, and se-

lecting the added class that led to the highest classification

accuracy. This yielded a distinct class sequence of next-

most-discriminable classes for each classifier, along with an

average validation accuracy on each initial prefix of that se-

4A binomial pmf(k, t, q) =
(

t

k

)

qk(1 − q)t−k denotes the probabil-

ity that exactly k out of t trials succeed where each trial has success prob-

ability q. A binomial cmf(k, t, q) =
∑

n

k′
=k

pmf(k′, t, q) denotes the

probability that k or more out of t trials succeed. We deem a classification

analysis with t trials, n classes, and computed accuracy of a to be above

chance in a statistically significant fashion when cmf(batc, t, 1
c
) < 0.005.

All claims of statistical significance, i.e. SVM, 1D CNN, and EEGNet in

Table 2, Fig. 3(right), and Table 3(b), and SVM, 1D CNN, EEGNet, and

SyncNet in Fig. 3(left) and Table 3(a), correct for m multiple comparisons

by requiring cmf(batc, t, 1
c
) < 0.005

m
, where m = 3 (SVM, 1D CNN,

and EEGNet) for Table 2, Fig. 3(right), and Table 3(b) and m = 4 (SVM,

1D CNN, EEGNet, and SyncNet) for Fig. 3(left) and Table 3(a). Claims of

lack of statistical significance need no correction.
5All analyses reported here report classification accuracy, as appropri-

ate for a forced-choice one-out-of-n classification task. All relevant work

that employs this task [5, 10, 11, 12, 13, 15, 16, 17, 19, 21, 25, 26, 27,

28, 29, 30, 35, 43, 46, 47, 48, 49] similarly reports classification accuracy.

Other metrics such as AUC and F1 would be inappropriate for this task, as

it is a classification task, not a detection task.



quence (Fig. 3left and Table 3b).6 With the exception of

a single data point, the MLP classifier achieving marginally

significant above-chance classification accuracy for n = 29,

only four classifiers, SVM, 1D CNN, EEGNet, and Sync-

Net, yielded statistically significant above-chance accuracy

for any number of classes. SVM and 1D CNN yielded sta-

tistically significant above-chance accuracy for all numbers

of classes, EEGNet yielded statistically significant above-

chance accuracy for n ≥ 4, and SyncNet yielded statisti-

cally significant above-chance accuracy for 3 ≤ n ≤ 27.

To answer the third question, How much training data is

needed?, we performed an analysis where classifiers were

trained and tested on progressively larger portions of the

dataset, starting with 10%, incrementing by 10%, until the

full dataset was tested. This was done by taking the first

ten runs and incrementally adding the next ten runs. This

was done only for SVM, 1D CNN, and EEGNet, as only

these had statistically significant above-chance accuracy for

the full set of classes (Fig. 3right and Table 3b). Validation

accuracy generally increases with the availability of more

training data, though growth tapers off demonstrating di-

minishing returns.

The fourth question, Which classification architectures

that are currently standard in the literature allow such de-

coding?, was implicitly answered by the above three anal-

yses. Only SVM, 1D CNN, EEGNet, and SyncNet answer

any of the above three questions in the affirmative. SVM,

1D CNN, and EEGNet answer all of the above three ques-

tions in the affirmative.

To answer the fifth question, Does the inclusion of EEG

data contaminated with artifacts limit the decoding abil-

ity?, we conducted an additional analysis. While we had

a very cooperative subject, the task of watching 40,000 im-

age stimuli can be tedious. It is conceivable that the EEG

recordings suffer from artifacts that reduce classification ac-

curacy. To assess this, we repeated the analyses from Ta-

ble 2 for the three classifiers (SVM, 1D CNN, and EEG-

Net) for which we have observed statistically significant

above-chance classification accuracy, after performing ar-

tifact removal. We computed the swing for each time point

in each trial, i.e. the value of the maximal channel minus the

value of the minimal channel, computed the overall swing

for each trial as the maximal swing over all time points in

that trial, and discarded trials with greater than 600 micro-

Volt swing. A total of 852 out of 40,000 trials (2.13%)

were discarded, maintaining the same splits. This procedure

eliminates trials contaminated by appreciable artifacts from

subject movement and tightening of facial muscles. As a

result, the splits were no longer perfectly counterbalanced.

6The analyses reported in this manuscript require about a year of com-

pute time on a cluster with 144 cores and 54 Titan V GPUs. The results

for EEGChannelNet for n ≥ 26 in Fig. 3(left) and Table 3(a) are being

computed but were not available in time for publication.

Table 3(c) shows the results. While there is improvement

for 1D CNN (5.1% to 5.3%) and EEGNet (7.0% to 7.3%),

the improvement is not statistically significant, suggesting

that artifacts are not the limiting factor in classification ac-

curacy.

To answer the sixth question, Does use of a classifica-

tion method that lacks inherent ability to model temporal

variation in the EEG signal limit decoding ability?, we con-

ducted an additional analysis. The LSTM, 1D CNN, EEG-

Net, SyncNet, and EEGChannelNet classifiers all provide

an inherent ability to compensate for temporal variation in

the signal, both in the onset time of brain processing and its

rate. The k-NN, SVM and MLP classifiers lack such an in-

herent ability. We asked whether such ability materially af-

fects classification accuracy. To this end, we computed 257-

point power spectral density [36] of the raw EEG signal on a

per trial and per channel basis and repeated the analysis with

the k-NN, SVM, and MLP classifiers on this frequency-

domain signal instead of the original time-domain signal

(Table 3d). Such frequency-domain analyses appears not to

improve upon the time-domain analyses. We hypothesize

two reasons for this. First, we recorded the stimulus on-

set time as a trigger in the EEG signal and synchronize our

analyses to this. This eliminates variation in onset time of

the availability of visual information to the brain. Second, it

appears that there is not much variation in brain processing

rate for this task, and that the phase content of the EEG re-

sponse is relatively uninformative for object classification.

Finally, to answer the seventh question, Can one perform

such decoding across subjects?, we performed an additional

analysis. It appears that to achieve even modest statisti-

cally significant above-chance classification accuracy, one

needs enormous amounts of data. It is taxing to collect

this data from a single subject. Perhaps, one could spread

the burden by collecting data from many subjects, perhaps

even across many sites. Doing this, however, would require

cross-subject analyses, i.e. training classifiers on one set of

subjects and testing on a different set of subjects. We con-

ducted an analysis to assess the ability to do so. We reana-

lyzed data from six subjects on a smaller set of fifty shared

stimuli for each of the same forty classes, all collected

with randomized trials [22] using a leave-one-subject-out

six-fold cross-validation paradigm with the three classifiers

(SVM, 1D CNN, and EEGNet) for which we have observed

statistically significant above-chance classification accuracy

(Table 3e). While this analysis (12,000 trials) is not as small

as the analyses in Li et al. [22] (2,000 trials) it is also not as

large as the above analyses (40,000 trials). It corresponds

to the 30% mark in Fig. 3(right) and Table 3(b). Note that

while 1D CNN performs marginally above chance in a sta-

tistically significant fashion, the cross-subject analysis is far

worse (2.9% vs. 4.0% for SVM, 3.6% vs. 5.3% for 1D CNN,

and 2.7% vs. 5.1% for EEGNet). This suggests that per-





accuracy

number of classes LSTM k-NN SVM MLP 1D CNN EEGNet SyncNet EEGChannelNet

2 50.0% 51.3% 70.8%∗ 50.0% 66.4%∗ 50.0% 50.0% 50.0%

3 33.3% 33.8% 56.1%∗ 33.7% 52.5%∗ 35.1% 39.5%∗ 33.3%

4 25.5% 25.1% 44.5%∗ 26.7% 44.1%∗ 30.2%∗ 30.3%∗ 25.3%

5 20.8% 20.7% 37.5%∗ 21.1% 38.4%∗ 24.8%∗ 24.1%∗ 20.3%

6 17.1% 16.9% 32.4%∗ 17.4% 32.8%∗ 21.8%∗ 19.9%∗ 16.7%

7 14.8% 14.4% 28.3%∗ 14.9% 29.8%∗ 19.5%∗ 17.9%∗ 14.9%

8 12.7% 12.6% 25.1%∗ 13.3% 27.1%∗ 17.4%∗ 15.7%∗ 12.9%

9 11.3% 10.9% 22.6%∗ 11.9% 24.7%∗ 18.2%∗ 13.9%∗ 11.7%

10 10.1% 9.7% 20.6%∗ 10.5% 22.0%∗ 17.3%∗ 12.7%∗ 10.3%

11 9.4% 8.7% 18.9%∗ 9.2% 20.9%∗ 17.3%∗ 11.4%∗ 9.6%

12 8.4% 8.1% 17.5%∗ 8.7% 18.4%∗ 16.6%∗ 10.2%∗ 8.8%

13 8.0% 7.4% 16.3%∗ 8.2% 17.2%∗ 15.6%∗ 9.4%∗ 8.0%

14 7.2% 6.9% 15.2%∗ 7.5% 16.2%∗ 15.2%∗ 9.2%∗ 7.2%

15 6.7% 6.4% 14.3%∗ 6.9% 14.8%∗ 15.7%∗ 8.8%∗ 6.9%

16 6.2% 6.0% 13.4%∗ 6.5% 14.0%∗ 15.4%∗ 8.5%∗ 6.6%

17 5.9% 5.7% 12.7%∗ 6.1% 13.6%∗ 14.4%∗ 8.0%∗ 6.0%

18 5.5% 5.3% 12.0%∗ 5.8% 12.5%∗ 13.9%∗ 7.7%∗ 5.7%

19 5.1% 5.0% 11.4%∗ 5.4% 11.9%∗ 13.4%∗ 6.7%∗ 5.5%

20 4.8% 4.7% 10.8%∗ 5.3% 11.0%∗ 12.7%∗ 6.0%∗ 5.1%

21 4.7% 4.5% 10.3%∗ 4.9% 10.9%∗ 12.0%∗ 5.7%∗ 4.9%

22 4.4% 4.2% 9.8%∗ 4.8% 10.0%∗ 11.7%∗ 5.4%∗ 4.6%

23 4.2% 4.1% 9.4%∗ 4.5% 9.4%∗ 11.2%∗ 4.9%∗ 4.4%

24 4.0% 3.9% 9.0%∗ 4.4% 9.4%∗ 10.9%∗ 4.9%∗ 4.3%

25 3.8% 3.8% 8.6%∗ 4.0% 9.1%∗ 10.7%∗ 4.4%∗ 4.0%

26 3.7% 3.6% 8.3%∗ 3.9% 8.6%∗ 10.5%∗ 4.2%∗

27 3.5% 3.5% 8.0%∗ 4.0% 8.1%∗ 10.1%∗ 4.0%∗

28 3.5% 3.4% 7.7%∗ 3.7% 8.1%∗ 9.9%∗ 3.7%

29 3.3% 3.3% 7.4%∗ 3.8%∗ 7.5%∗ 9.7%∗ 3.6%

30 3.4% 3.2% 7.2%∗ 3.3% 7.3%∗ 9.9%∗ 3.4%

31 3.1% 3.1% 6.9%∗ 3.4% 7.1%∗ 9.3%∗ 3.3%

32 3.0% 3.0% 6.7%∗ 3.2% 7.0%∗ 9.1%∗ 3.2%

33 3.0% 2.8% 6.5%∗ 3.1% 6.7%∗ 8.8%∗ 3.0%

34 2.8% 2.7% 6.3%∗ 2.9% 6.4%∗ 8.6%∗ 3.0%

35 2.8% 2.6% 6.1%∗ 2.8% 6.4%∗ 8.6%∗ 2.9%

36 2.6% 2.5% 5.9%∗ 2.7% 6.2%∗ 8.6%∗ 2.7%

37 2.6% 2.4% 5.7%∗ 2.8% 6.1%∗ 8.0%∗ 2.7%

38 2.5% 2.3% 5.5%∗ 2.6% 5.9%∗ 7.6%∗ 2.6%

39 2.4% 2.2% 5.3%∗ 2.5% 5.7%∗ 7.4%∗ 2.6%

40 2.3% 2.1% 5.2%∗ 2.4% 5.4%∗ 7.2%∗ 2.5%

(a)

accuracy

fraction of dataset SVM 1D CNN EEGNet

10% 2.9% 3.4%∗ 3.8%∗

20% 3.7%∗ 4.6%∗ 5.1%∗

30% 4.0%∗ 5.3%∗ 5.1%∗

40% 4.6%∗ 5.7%∗ 6.9%∗

50% 4.2%∗ 5.7%∗ 7.4%∗

60% 4.7%∗ 5.9%∗ 7.5%∗

70% 4.8%∗ 5.4%∗ 7.0%∗

80% 4.8%∗ 5.4%∗ 7.3%∗

90% 4.8%∗ 5.3%∗ 7.4%∗

100% 5.0%∗ 5.1%∗ 7.0%∗

(b)

SVM 1D CNN EEGNet

5.0%∗ 5.3%∗ 7.3%∗

(c)

k-NN SVM MLP

2.1% 3.3%∗ 1.6%

(d)

SVM 1D CNN EEGNet

2.9% 3.6%∗ 2.7%

(e)

Table 3. (a and b) Tabular version of Fig. 3. (c) Classification accuracy, after artifact removal, on the validation set, averaged across all

five folds, for the three classifiers from Table 2 with statistically significant above-chance accuracy. (d) Classification accuracy on the

validation set, averaged across all five folds, for the three classifiers from Table 2 that do not exhibit temporal shift and scaling invariance,

using power spectral density frequency-domain features instead of the raw time-domain signal. (e) Cross-subject classification accuracy

on the data from Li et al. [22] using leave-one-subject-out cross validation, averaged across all six subjects, for the three classifiers from

Table 2 with statistically significant above-chance accuracy.

for 3 s, over a one-year period [38]. The number of im-

ages per class ranged from 8 to 44. Fourteen images were

presented as stimuli twice. It was recorded by the subject

themselves with a single consumer-grade EEG recording

device (Emotiv Insight) with five electrodes. (The number

of ‘brain signals’ reported by Vivancos [38, 39] differ from

the above due to multiplication of the number of stimulus

presentations by the number of electrodes.)

While we applaud such efforts, several issues arise with

these datasets. Consumer-grade recording devices have far

fewer electrodes, far lower sample rate, and far lower res-

olution than research-grade EEG recording devices. They

use dry electrodes instead of gel electrodes. Minimal infor-

mation is available as to how electrode placement was con-

trolled. It is unclear how to use recordings from different

devices with different numbers and configurations of elec-

trodes as part of a common experiment. The designs were

not counterbalanced. The stimulus presentation order is not

clear so it is not clear whether these datasets suffer from the

issues described previously by Li et al. [22]. The recording

did not appear to employ a trigger so it is unclear how to

determine the stimulus onset. The reduced precision lim-

its the utility of these datasets. Moreover, the “MNIST” of

Brain Digits has too few classes and “IMAGENET” of The

Brain has too few stimuli per class to answer the questions

we pose here.

A significant amount of prior work suffers irreparably

from flawed EEG experimental design. The dataset col-

lected by Spampinato et al. [35] is contaminated by its com-

bination of block design and having all images of a class

appear in only one block. Unfortunately, this fundamental

design confound cannot be overcome by post processing.

Considerable follow-on work [5, 10, 11, 12, 13, 15, 16, 17,

19, 21, 25, 26, 27, 28, 29, 30, 43, 46, 47, 48, 49] that uses

this dataset also inherits this confound and their conclusions

may thus be flawed. Other papers also report collection of

data from a block-design experiment, and train and test clas-

sifiers on that data (e.g. [2, 24, 42]) Further, it has become

popular to publicly release data for others to reuse. While

original authors can legitimately collect data from a block-

design experiment for purposes other than classification, if

they release that data, it can be misused by others for pur-

poses that weren’t intended, i.e. training and testing clas-

sifiers, thus invalidating work that depends on such misuse

(e.g. [1, 3, 40, 45]). Other papers fail to report sufficient

details to determine whether their data collection involved a

block-design experiment, yet it is still possible to determine

that the data was partitioned into training and test sets in a

way that likely resulted in label leakage from the training to

the test set (e.g. [32, 44]). Li et al. [22] previously demon-

strated that accuracy drops to chance when such flawed de-

signs are replaced with randomized trials keeping all other



aspects of the experimental design unchanged, including the

dataset size. Here, we demonstrate that accuracy increases

to only marginally above significance even when the dataset

size is increased to the bounds of feasibility.

8. Conclusion

In this manuscript we demonstrate five novel contribu-

tions.

1. We show that it does not seem possible to decode ob-

ject class from EEG data recorded from subjects view-

ing image stimuli with randomized stimulus presen-

tation order when the dataset contains between two

and forty classes with classification accuracy that is

above chance in a statistically significant fashion us-

ing an LSTM (the classifier employed by Spampinato

et al. [35]), a k-NN classifier, an MLP classifier, or

EEGChannelNet, even if one has a training set that

is 20× larger than previous work. It appears that

the LSTM, k-NN, MLP, and EEGChannelNet classi-

fiers are ill-suited to classifying object class from EEG

data recorded from subjects viewing image stimuli no

matter how many classes are classified and no mat-

ter how much training data is available. This refutes

a large amount of prior work and shows that the task

attempted by that work is simply infeasible.

2. We show that it is possible to decode object class from

EEG data recorded from subjects viewing image stim-

uli with randomized stimulus presentation order when

the dataset contains between two and forty classes with

classification accuracy that is marginally above chance

in a statistically significant fashion using either SVM,

1D CNN, EEGNet, or SyncNet. However, it is not pos-

sible to obtain accuracy above chance in a statistically

significant fashion with a dataset of the size employed

by previous work (fifty samples per class). For forty

classes, accuracy is marginally below statistical signif-

icance for SVM and marginally above statistical sig-

nificance for 1D CNN and EEGNet with 100 samples

per class (2× previous work), increases to about 5%

for the SVM, about 6% for 1D CNN, and about 8% for

EEGNet with about 600 samples per class (12× pre-

vious work), and then tapers off. It appears that no

amount of additional training data will allow substan-

tially better classification accuracy for forty classes us-

ing the classifiers that we tried.

3. Our classification accuracies are state-of-the-art for de-

coding object class from EEG data recorded from sub-

jects viewing image stimuli with randomized stimu-

lus presentation and large numbers of classes. To

our knowledge, these are also the first results yielding

statistically significant above-chance accuracy with a

large number of classes. Previous reports of higher ac-

curacy, to the best of our knowledge, appear to use data

that are contaminated by the confounds we describe.

4. We show that gathering the amounts of training data to

achieve this level of accuracy are at the bounds of fea-

sibility. Gathering the requisite data to train classifiers

for a larger number of classes, such as all of ILSVRC

2012, let alone all of ImageNet, would require Her-

culean effort.

5. We collected by far the largest known dataset of EEG

recordings from a single subject viewing image stimuli

with professional-grade equipment and procedures us-

ing proper randomized trials. It has 20× as many stim-

uli per class as the dataset of Li et al. [22], 4× as many

classes as the dataset of Vivancos [39] (which is not

known to have randomized trials), and 23× to 125×

as many stimuli per class as the dataset of Vivancos

[38] (which is also not known to have randomized tri-

als). Our released dataset will facilitate experimenta-

tion with new classification and analysis methods that

will hopefully lead to improved accuracy in the future.

Despite recent claims to the contrary, presented to the

computer-vision community with great fanfare, the problem

of classifying visually perceived objects from EEG record-

ings with high accuracy for large numbers of classes is im-

mensely difficult and currently beyond the state of the art. It

appears to be infeasible absent fundamentally groundbreak-

ing improvements to EEG technology or classification ap-

proaches. A common euphoria in the community is that

large datasets have allowed deep-learning methods to solve

practically everything. It appears, however, to have reached

its limit with object classification from EEG recordings.

Neither heroic amounts of data, at the bounds of feasibility,

traditional machine-learning methods like nearest-neighbor

classifiers (k-NN) or support vector machines (SVM), the

standard neural-network architectures of fully connected

networks (MLP), convolutional neural networks (CNN), or

recurrent neural networks (LSTM), nor even newer deep-

learning methods like EEGNet, SyncNet, or EEGChannel-

Net appear suited to the task. We present our data and this

task to the community as a challenge problem. A deeper

understanding of human visual perception that moves be-

yond large datasets and deep learning is perhaps necessary

to solve this problem.
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