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Abstract— Prior work in natural-language-driven navigation
demonstrates success in systems deployed in synthetic environ-
ments or applied to large datasets, both real and synthetic. How-
ever, there is an absence of such frameworks being deployed
and rigorously tested in real environments, unknown a priori.
In this paper, we present a novel framework that uses spoken
dialogue with a real person to interpret a set of navigational
instructions into a plan and subsequently execute that plan
in a novel, unknown, indoor environment. This framework is
implemented on a real robot and its performance is evaluated
in 39 trials across 3 novel test-building environments. We also
demonstrate that our approach outperforms three prior vision-
and-language navigation methods in this same environment.

I. INTRODUCTION

Imagine an office environment where individuals work in
separate areas to follow social-distancing guidelines. You
need to give an important package to a colleague but you're
unable to go in person. You summon a robot and give it
navigational instructions in plain English to your colleague’s
office. The robot engages you in a dialogue to clarify some
ambiguity in your navigational instructions and then follows
the plan it infers to deliver the package. In this paper, we
present a machine-learned system that makes a significant
step towards this reality.

Our system consists of two main components. The first
is a transformer-based network trained to interpret spoken
natural language and convert it into a navigation plan that the
robot can execute. Crucially, it’s designed to support multiple
turns in a conversation by taking the robot’s current plan and
a transcript of a spoken utterance as input and producing an
updated plan and follow-up question (if necessary) as output.
Some previous work (e.g., [1], [2]) only considers an agent
receiving a single text instruction as input and producing
a single plan as output. This is impractical, however, for
real-life applications that depend on spoken language and
speech recognition. A person might misspeak or the speech
recognition could be erroneous. This necessitates support
for live dialogue to rectify any potential errors or ambi-
guity. To train this network, we collected a novel dataset
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of navigational-instruction utterances, created transcript-plan
pairs, and augmented them to support multi-turn dialogue.

The second component of our system is a 2D CNN-
based network trained to produce navigational goals that
correspond to the plan produced by the dialogue component.
Navigational instructions generally consist of left or right
turns in specific locations, such as “turn right at the end of the
hallway.” If the robot does not have a map of its environment
in advance, it would be unable to directly generate an entire
navigational plan to execute these navigational instructions.
Therefore, the network takes the latest map (produced by
SLAM) and the current step in its plan as input to produce a
navigational goal as output. It is designed to produce forward
goals by default until the robot arrives at the desired inter-
section, in which it should produce a goal corresponding to
the desired direction. Additionally, it is trained to recognize
when a step in the plan cannot be executed. To train this
network, we collected a novel dataset of actual trajectories
driven and SLAM maps produced by a robot on several floors
of several buildings.

The dialogue and navigational components are combined
into a system that enables dialogue-driven navigation in an
end-to-end fashion in unknown, indoor environments. To test
out the effectiveness of a robotic algorithm, it is important
to test in the real world where it is required to operate in
continuous space with noise and unanticipated conditions. To
this end, we recruited volunteers to converse with the robot
and provide navigational instructions to various locations
in three real buildings. These volunteers were not involved
in our natural-language dataset collection. These three test
buildings were not part of either the dataset used to train
the dialogue component or the dataset used to train the
navigation component. We evaluated whether the naviga-
tional instructions were converted into a correct plan and
whether the plan was correctly executed. We demonstrate
our system’s performance in 39 trials. We also demonstrate
in Section VIII that algorithms that may work in simulation
do not necessarily perform well in the real world.

Explicitly, this paper makes the following contributions:

« We provide a novel dataset of transcript-plan pairs

for navigation in indoor environments. We apply a
novel data augmentation method to train a transformer
network to support multi-turn dialogue, allowing the
robot to ask the person clarifying follow-up questions.
« We provide a novel dataset of robot trajectories paired
with navigational commands in several indoor environ-
ments. We use automatic annotation and data augmen-
tation techniques to train a 2D CNN on this data to



produce navigational goals and feedback statuses that
correspond to the input instructions.

o Unlike most prior work that demonstrates performance
on synthetic data or their own training environments, we
demonstrate performance in real indoor environments
with real volunteers that are distinct from our training
sets to show the generalizability of our approach.

o« We train three prior vision-and-language navigation
methods on our data and deploy them them on our robot
in one of our test buildings. We show that our approach
vastly outperforms these methods.

II. RELATED WORK

There has been considerable prior work on vision-and-
language navigation (VLN). Some of this work, [3], [4], [5],
[6], [7], [8], trained and evaluated VLN models on the Room-
2-Room (R2R) dataset [3]. This dataset consists of natural-
language text instructions paired with corresponding trajecto-
ries in a simulated indoor environment. These trajectories are
sequences of vertices in a discrete graph, where each vertex
has a panorama of images to represent the view at that vertex.
[9] and [10] presented similar methods to choose waypoints
to reach a goal specified by natural-language instructions
but in simulated outdoor environments. Our work differs
significantly from all of this work in a number of key ways.

First, in the R2R simulator, robot position is represented as
a vertex in a discrete graph and visual information, although
from real images, is noise-free and deterministic at each
vertex. In contrast, rather than just repeatedly outputting one
of a small number of adjacent graph vertices to eventually
reach a goal vertex, we address a more complex problem:
controlling a physical robot in the real world with a noisy
continuous position and action space and noisy continuous
observations. While [8] trained in a simulated environment,
it tested both in simulated environments and on a real robot
in real environments. However, when the navigation graph
was known a priori, performance in the real environment
was comparable to that in simulation, but results were very
poor when it was unknown and waypoints were predicted on
the fly. Our system is able to successfully execute navigation
instructions without a known map of the environment, just
with the SLAM map that is built as the robot drives.

Second, the above prior work took single-turn text as input.
Our system interacts with a person in multi-turn spoken
dialogue and is trained to be robust in the face of noisy
speech recognition. Such dialogue is crucial for clarifying
potentially ambiguous instructions. [11] and [12] presented
VLN approaches that perform continuous control, rather than
waypoint selection, of an autonomous vehicle within two en-
vironments in the CARLA simulator given natural-language
instructions. However, they also only considered single-turn
instructions as input and the trained autonomous vehicle
did not engage in multi-turn dialogue. Also, in contrast,
our approach takes noisy SLAM data from a real physical
robot as input. This data in noisier and less rich than the
synthetically generated 3D images in the CARLA simulator.
[11] only evaluated their approach in the CARLA simulator,

while [12] also conducted a single experiment on real data
(the KITTI dataset) and one experiment on a physical electric
vehicle. We, however, rigorously demonstrate our system’s
performance on a real robot in real indoor environments in
39 trials.

Third, we output a feedback status along with our goal
coordinates. This allows for direct feedback about whether
or not the input instruction was successfully executed or
whether it eventually failed (because the instruction was
unachievable). The latter allows the robot to detect when
an instruction it was given is incorrect.

There has been prior work, [13], [14], [15], [16], [17],
that, like our work, has also focused on achieving multi-turn
dialogue understanding on a physical robot. However, this
work operated within smaller and simpler environments than
our work; we train and evaluate our system on several large
unmodified office environments. [13] proposed a method
to allow a robot to learn object-related concepts through
dialogue. Only a single demonstration on a real robot was
done in a single room with several objects on a table. [14]
demonstrated a dialogue and navigation system for a physical
robot; however semantic regions in the map were provided
to the system in advance and there was no full evaluation
of the system’s performance, only preliminary experiments
in a single environment. [15] constructed a framework to
control a physical robot with spoken language, but it was
only tested in a simulator in which the virtual robot could
execute navigation commands from a finite discrete set.
[16] demonstrated their algorithm on a quadcopter, but the
environment was very small with just a few objects on a
green surface. The environment was only varied by placing
different objects in different positions. [17] collected data
from a physical robot to train their algorithm to follow
natural-language instructions. However, evaluation of the
approach was only performed in simulation.

There has been other prior work [18], [19], [20], [21],
[22], [23], that, like ours, first converts natural-language
instructions into a plan that can then be interpreted and
executed. [18] and [19] modeled instruction-action pairs to
convert each instruction independently into an action in a
noninteractive fashion to map an instruction sequence to
an action sequence. Our system interacts with a person in
spoken dialogue to clarify ambiguities and update the plan
in the context of the dialogue. [20] and [21] determined a set
of constraints from natural-language instructions and applied
those constraints to a known map to generate a navigation
trajectory. [22] and [24] both depended on having topological
representations of the environment. Unlike our approach,
these methods would not work in an unknown environment.

Finally, some prior work only presented methods for part
of the VLN task. [23] and [25] demonstrated vision-only
navigation to a specified target object. [26] presented a data-
driven parser for understanding navigation directions for the
purpose of human-robot dialogue but did not apply it to any
form of navigation, simulated or real.



ITI. SYSTEM ARCHITECTURE

Our system consists of a dialogue component and naviga-
tion component. The dialogue component facilitates multi-
turn conversation with a person to produce a plan. The plan is
converted into commands that the navigation component then
executes. The navigation component incrementally executes
each command by analyzing the SLAM map and producing
goal locations for the robot to drive to and a feedback status
to indicate whether to advance to the next command. A
diagram of our system can be seen in Figure 1.

IV. DIALOGUE

The purpose of engaging in dialogue with a person is to
construct a plan of how to navigate to a specific destination.
If the person were to formally communicate the plan to the
robot, using formalisms the robot is capable of executing,
this task would be trivial. What makes this nontrivial is
that the communication is done informally through spoken
natural language. In order to facilitate this spoken dialogue,
we collected and augmented a dataset to train a transformer-
based network to take as input a current plan and input
transcript of the spoken utterance, and to produce an updated
plan and follow-up question as output.

A. Dataset collection

To collect a dataset of navigational instructions, we re-
cruited 27 subjects that spoke English and were familiar
with three buildings on our campus. For each of four floors,
for each of the three buildings (PHYS, MSEE, and EE),
we described a starting location and orientation of both a
robot and a passerby. We asked them to imagine they were
the passerby and that the robot had posed a single query,
asking for navigational instructions to a location within that
building. They were allowed to provide partial instructions
or indicate they did not know the location of the destination.
The subjects recorded a verbal response to each query and
we used Microsoft’s speech-to-text engine [27] to convert
the spoken responses into text. We collected a total of
8797 navigational-instruction utterances and produced their
corresponding transcripts. Some navigational-instruction ut-
terances involve using an elevator to move to another floor.
In this work, we handle the dialogue component of using
an elevator to move between floors, but focus on perform-
ing navigation in a single floor. Future work will address
accomplishing multi-floor navigation.

We identified a set of plan concepts of various kinds,
including directions, intersections, goals, and other that cover
the vast majority of navigational instructions contained in
our transcripts, so that each transcript would have a cor-
responding plan with a sequence of these concepts. All
plan concepts, their types and definitions can be found in
Table 1. We posted each transcript on Amazon Mechanical
Turk (AMT) and asked two workers to construct a coherent
plan using these plan concepts. Workers were native English
speakers who had to pass five custom qualification tests
involving this task before annotating the data.

TABLE I: Possible plan concepts for plan annotation. int—-L
and int-R have a left or right turn, respectively. end refers
to the end of the hallway; elbow refers to an elbow. The
first four direction concepts refer to the direction the robot
should drive in. It will continue moving in that direction
until it encounters the next step in the plan. either refers
to turning left or right at an elbow when it is not explicitly
stated (e.g., “go around the corner”). goal-F, goal-L, and
goal-R respectively refer to goals that are ahead, on the
left, or on the right. OJ refers to an unknown or unspecified
step in the plan. change—floor refers to using an elevator
to move between floors.

Type Plan concepts

Intersections  int-IL, int-R, end, elbow

Directions turn-around, forward, left, right, either
Goals goal-F, goal-L, goal-R

Other [, change-floor

When the constructed plan had a [J, where [ refers to an
unknown or unspecified step in the plan, we asked the AMT
workers to type a follow-up question that they would ask
to resolve the [J. Each of the 8797 transcripts had two plan
annotations and (potentially) two follow-up questions. When
the plans and follow-up questions were the same, we created
a single sample. When the plans and follow-up questions
were different, we kept both if they were both reasonable.
Otherwise, we kept the most correct one. If neither were
correct, we manually modified one to be correct and retained
this as a sample. This determination was done by the authors.
This process resulted in a total of 9818 unique samples
consisting of [J] for the current plan, an input transcript, an
updated plan, and a follow-up question. If the updated plan
was a complete plan (i.e., no O present), we used a default
follow-up question of “Got it. Thanks!” Of the total number
of samples, 52.3% had both annotated plans accepted and
were identical to one another, 7.9% had both annotated plans
accepted and were different but reasonable interpretations of
the navigational instructions, 32.5% had one plan accepted
(and the other discarded), 4.8% were manually modified by
the authors, and 2.4% were discarded (due to incoherent
speech-to-text results).

From among the 9818 samples, we found that 7467
(76.1%) had complete plans and 2351 (23.9%) had partial
plans (i.e., a O present). We sorted the samples with a partial
plan into four categories: empty, need-elevator, need-first,
and need-last, based on their plan pattern (see Table II). Al-
though these partial plan categories occur less frequently in
our dataset than samples with a complete plan, they are real-
istic possibilities during live spoken dialogue due to pauses in
speech, poor speech recognition, or incomplete navigational
instructions. Therefore, we augmented our dataset to increase
the number of samples in these categories. For empty, we
used an online tool! to generate random sentences that had
an updated plan of [O]. These training samples were used
to help train the network to handle sentences that did not

Thttps://randomwordgenerator.com/sentence.php
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Fig. 1: System Diagram. A question, g, is posed to a person. Their utterance, u, and the current plan, p, is fed into the
dialogue component, which produces an updated plan and follow-up question. Dialogue loops until a complete plan, [p;],
is produced. The complete plan is converted into robot commands, [¢;], which are fed into the navigation network. The
navigation component produces a goal location, [/, and feedback status, f, which are used to carry out all commands.

TABLE II: Number of samples for each partial plan category.

Category Pattern Original count ~ Augmented count

empty ()] 125 2125
need-elevator [0, change-floor,...] 2100 2100
need-first 0, -change-floor,...] 68 2200
need-last .., 0) 58 1818

contain navigational information. The category need-elevator
had a relatively large number of samples, so we did not
perform any augmentation. For need-first, we used samples
with complete plans, but removed certain keywords (e.g.,
“go straight” or “turn-around”) from the beginning of the
transcripts and replaced the first instruction in the plan with
Ll. We performed a similar augmentation for need-last, but
truncated text from the end of the transcript and replaced the
corresponding concepts in the plan with 0. Table II shows
the total sample counts before and after augmentation.

B. Dialogue turn generation

The purpose of dialogue is to rectify any missing infor-
mation (i.e., [J) in the current plan. The data we collected
only simulates the first turn in a conversation, in which
the current plan is [J], and the input transcript contains
complete, partial, or no information to the destination. To
facilitate dialogue, we must train the network to handle
subsequent turns of conversation in which a person responds
to follow-up questions produced by prior turns. This requires
further augmenting the dataset to create samples in which the
current plan belongs to one of the partial plan categories
other than empty, the input transcript corresponds to the
missing information in the current plan, the updated plan ac-
curately reflects the current plan integrated with the missing
information, and a valid follow-up question. To distinguish
from the samples described in Section IV-A, we refer to these
additional training samples as follow-on samples.

To generate these follow-on samples, we use custom logic
to combine different samples from our dataset. We first find
partial plans to serve as the current plan input in the follow-
on samples. Then, based on the index of [J] in each partial
plan, we find a transcript, or piece of a transcript, in our
dataset whose plan annotation would appropriately replace
the [d] in the current plan. This transcript then serves as the
input transcript for the new follow-on sample. To create the
updated plan for this sample, we replace the [[J] in the current
plan with the plan that corresponds to the transcript used.

TABLE III: Training samples.

=)
yeah, go straight and then make a right
[forward, int-R, right, O]

What do I do after turning right?

[0, end, left,goal-R]

think you might have to turn around
[turn-around,end, left,goal-R|
Got it. Thanks!

current plan

input transcript
updated plan
follow-up question
current plan

input transcript
updated plan
follow-up question

TABLE IV: Partial plan follow-up questions.

Category Follow-up question

empty Repeat original question.

need-elevator ~ Ask for navigational instructions to the elevator.
need-first Ask which direction to start out going.
need-last Ask what do to after last instruction.

Lastly, we determine the follow-up question for the follow-
on sample by using the rules in Table IV depending on the
partial plan category of the updated plan. If the updated
plan is complete, then the follow-up question is a “thank
you”. Table III shows one first-turn sample and one follow-
on sample.

C. Augmented dataset training and validation

With this additional augmentation, the network can be
trained to support all turns in a dialogue. Given a current plan
and transcript as input, it can learn to produce an updated
plan and a relevant follow-up question as output. It is trained
to fill in the missing plan concepts in the current plan with the
information provided by the person’s response in the input
transcript. During training and validation, the accuracy of
the updated plan output is determined by whether or not
it matches the target updated plan exactly. The relevance
of the follow-up question is measured by whether or not
it corresponds to the partial plan category of the target
updated plan based on the rules defined in Table I'V. This was
done computationally by comparing the text of the follow-
up question with the list of questions from that partial plan
category.

We used the source code at [28] to train a network based
on Text Summarization with Pretrained Encoders [29] to
take the current plan and input transcript as input and to
produce an updated plan and follow-up question as output.
For training, we specified a maximum input length of 200
tokens. We divided the subjects into five folds to perform



TABLE V: Commands produced from plan subsequences.

Plan subsequences ~ Command Description

end, left end_left turn left at end of hallway
end, right end_right turn right at end of hallway
int-L, forward int-L_forward go forward when left available
int-L, left int-L_left turn left when left available

int-R_forward
int-R_right
int-B_backward
elbow_left
elbow_right
elbow_either

go forward when right available
turn right when right available
turn around when possible

turn left at elbow

turn right at elbow

go through elbow

int-R, forward
int-R, right
turn-around
elbow, left
elbow, right
elbow,either

leave-one-fold-out cross validation. The average validation
accuracy was 69.9% and the average follow-up question
relevance was 99.0%.

D. Spoken dialogue

When initiating a conversation, the plan is initialized to
[O] and begins with the robot posing a question. It waits
for a response, which is transcribed to produce a transcript.
The current plan, along with this transcript, are fed into
the network, which produces an updated plan and follow-
up question. The robot poses the follow-up question and this
process repeats itself until the updated plan has no U

To help facilitate a more natural conversation, we have a
small amount of code to address a few corner cases that may
arise in spoken conversation. If a response is not heard within
5 s, the robot states this fact and repeats its question. If the
robot is not able to extract any information from a response,
it indicates such and may provide some information about
what it does understand (e.g., directions and intersections).
If the robot goes two turns without the plan changing (e.g.,
it fails to understand the navigational instructions or hears
no response), the robot ends the conversation and carries out
whatever portion of the plan is usable.

V. NAVIGATION COMMANDS

Once a complete plan is produced, it is post-processed
to take the plan concepts and convert them into a sequence
of commands for the navigation component to execute. The
commands are generated from plan subsequences by pairing
adjacent intersection and direction concepts in the plan, with
one exception: turn—around, which is treated as a stand-
alone command. Table V shows these conversions.

VI. NAVIGATION

The navigation component executes each command by
continuously looking at the SLAM map to determine a goal
location where the robot should drive and a feedback status
to indicate whether to advance to the next command. When
it arrives at the intersection indicated by the command, the
navigation component predicts a goal location that executes
the turn indicated by the command and a feedback status of
transition indicating it can advance to the next command.
However, if the robot is in the middle of a hallway, the
navigation component predicts a goal location that drives it
down the hallway and a feedback status of forward indicating
that the command has not been executed. If it reaches
the end of the hallway without detecting the intersection,

the navigation component stops the robot and produces a
feedback status of failure indicating that the robot has failed
to execute the command. We illustrate this in Figure 2 which
depicts three SLAM maps and commands depicting different
scenarios along with their corresponding feedback statuses.
The robot’s position and orientation is depicted by the light
blue arrow and the yellow circle represents the goal location
where the robot should drive.

A. Network

We implement this navigation with a neural network that
takes the command and SLAM map as input and predicts
a goal location as (z,y) coordinates and feedback status
with a 3-way classifier. The neural network consists of 4
convolutional layers that extract features from the SLAM
map. These features are concatenated with a one-hot en-
coding of the input command which is passed through 2
fully-connected layers to create a final representation of the
input. This representation is passed into two parallel layers,
to predict the coordinates and feedback status, respectively.

B. Training

To train this network, we required training samples that
consist of a SLAM map, input command, goal location, and
feedback status. To collect the SLAM maps, we manually
navigated the robot on several floors of three buildings
(PHYS, MSEE, and EE), ensuring to cover every hallway.
The robot was intentionally driven in the centers of hallways
and turned in the centers of intersections to simulate ideal
navigation. We used Google Cartographer [30] to determine
the robot’s positions and generate the SLAM maps as it was
driving, and these were recorded at a rate of 10 Hz.

Each SLAM map is used to create multiple training
samples by pairing each of the commands in Table V. Then,
for each map-command pair, we determine the corresponding
goal location and feedback status. To do this, we first must
determine what directions are available to the robot in the
SLAM map by using the robot positions that were recorded.
A direction is considered available if there is a recorded
position in the SLAM map in that direction within 5 m
of the SLAM map’s center. We also use these positions to

(a) int-L_left

(b) elbow_either (c) end_right

Fig. 2: (a) The robot can execute the command; it produces
a goal location that drives it into the hallway on its left
and a feedback status of transition. (b) The robot is in a
hallway and cannot execute the command yet; it produces
a goal location that drives it further down the hallway and
a feedback status of forward. (c) The robot has reached the
end of the hallway and cannot make a right turn; it stops and
produces a feedback status of failure.
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Fig. 3: Left: Black squares represent all positions within
5 m of the center of the SLAM map. Center: Green squares
represent positions corresponding to backward. Red squares
represent positions corresponding to right. Right: Green
square is goal location for backward and red square is goal
location for right. Available directions are backward and
right; using Table VI, the intersection types are int-R, end,
int-B, and elbow.

TABLE VI: Intersection types based on available directions.

forward | backward | left | right Intersection types
no no no yes int-R
no no yes no int-L
no no yes yes hallway, int-L, int-R
no yes no no end, int-B
no yes no yes int-R, end, int-B, elbow
no yes yes no int-L, end, int-B, elbow
no yes yes yes int-L, int-R, end, int-B
yes no no no hallway
yes no no yes int-R
yes no yes no int-L
yes no yes yes int-L, int-R
yes yes no no hallway, int-B
yes yes no yes int-R, int-B
yes yes yes no int-L, int-B
yes yes yes yes int-L, int-R, int-B

determine a goal location for each available direction. This
process is illustrated in Figure 3. Then we use the available
directions to determine the intersection type(s) based on the
correspondence indicated in Table VI.

We can now use this information to form the training
samples. For each command, if the SLAM map has the
intersection corresponding to it, we make a sample whose
goal location corresponds to the direction specified by the
command and whose feedback status is transition. If the
SLAM map does not have the intersection, but forward
is an available direction, we make a sample whose goal
location corresponds to forward and whose feedback status
is forward. If the SLAM map does not have the intersection
and forward is not available, we make a sample whose goal
location is (0.0, 0.0), and whose feedback status is failure.

We train the network on these samples, using two loss
functions for each of the respective outputs. For the 3-way
feedback status classifier, we use weighted cross-entropy and
for regressing to the (z,y) goal coordinates we use mean-
squared-error. During training, we randomly apply rotation
and translation (y-axis only) transformations to simulate the
robot having an off-center position and orientation in a
hallway, allowing the network to still predict correct goals.

C. Command Execution

To achieve autonomous navigation on the robot,we ap-
ply the trained network continuously to the current input
command and SLAM map at a rate of 10 Hz. Because
noisy output is possible with noisy SLAM data, we consider

multiple consecutive outputs from the network to make nav-
igation decisions. This accomplishes two crucial things: the
robot will not navigate incorrectly due to a single spurious
output and the robot will be able to catch an intersection if
it is driving past it. Specifically, the navigation component
considers the 10 most recent outputs, feedback statuses and
goal locations, of the network. Among these outputs, if the
most common feedback status is forward, the robot will drive
to the goal location of the most recent output. However, if it
is transition or failure the robot will stop moving and wait
for 10 additional outputs to make a final decision. If the
most common feedback status of these outputs is transition,
the robot computes the aggregates the goal locations of only
the outputs whose status is transition. The robot will then
drive to the aggregated goal location. Once that navigation
is complete, the robot will then take the next command as
input into the network. If it is failure, however, the robot will
stop and not attempt to execute any more commands.

VII. SYSTEM EXPERIMENTS

To evaluate the performance of our entire system, we
tested in three buildings that were not part of our training
sets.” These test buildings consist of multiple hallways and
alcoves of varying lengths and widths, with common objects,
such as water-fountains, trashcans, and chairs, found in
various places (see Figure 4 for example floor plans). Al-
though they are all office buildings, they represent a common
indoor environment. Other buildings such as supermarkets,
shopping malls, schools, libraries, airports, and factories also
predominantly consist of grid-like hallways and intersections
and contain the same aforementioned objects.

The system is deployed on a Clearpath Husky A200™
UGV robot equipped with an Open IMU UM?7, Velodyne
VLP-16 3D LiDAR, Blue Yeti microphone, and a System76
Laptop with two Nvidia GeForce GTX 1080 GPUs. We
placed this robot in different locations on different floors
of the three new buildings. In each location, it was tasked
with asking a person for navigational instructions to a goal
location and then following the plan it constructed. We
recruited volunteers, who were not part of our training set, to
engage in the dialogue. After constructing a plan, it attempted
to execute the commands to reach the hallway containing
the goal location. The ROS move_base package [31] was
used for autonomous path planning, with obstacle avoidance,
to driving goals produced by the navigation network. A
demonstration of our system can be seen in the attached
video submission.

We consider several different forms of successes. If the
navigational instructions were interpreted and followed cor-
rectly, this is a complete success. If the navigational in-
structions were interpreted incorrectly and the robot either
followed the interpretation correctly or signified an inability
to do so correctly, this is a navigation success but dialogue

2Qur dataset can be found at https://dx.doi.org/10.21227/
zxk7-ca24. The software used to produce the results in this paper can
be found at https://github.com/gobi/iros2021.



TABLE VII: Experimental results.

HAMP KNOY ME | Total
Complete Success 5 10 6 21
Dialogue Success/Navigation Failure 2 3 5 10
Dialogue Failure/Navigation Success 4 1 3 8
Complete Failure 0 0 0 0
Total 11 14 14 39

failure. If the navigational instructions were interpreted cor-
rectly, but the navigation was unsuccessful, this is a dialogue
success but navigation failure. If both were unsuccessful,
it is a complete failure. Any trial that required manual
intervention was considered a failure.

Table VII shows a breakdown of the trials and their
corresponding category on a per-building basis. The dialogue
and navigation components had high success rates of 79.4%
and 74.3%, respectively. In the case of dialogue, its success
rate is slightly better than the validation accuracy reported in
Section IV-C. In 92.3% of the trials, the dialogue component
produced plans whose first 3 concepts were correct, which
means that for a strong majority of the time, the robot
would have a plan that starts it going in the right direction.
In these trials, the robot always succeeded at reaching the
intersection corresponding to the current input command by
correctly outputting the fransition classification. However,
in 9 of the 10 trials with navigation failure, the robot was
unable to predict an accurate driving goal while stopped in
the correct intersection, even after rotating, and indicated
failure. In the other single trial, manual intervention was
employed to prevent the robot from crashing while turning a
corner to execute the first command and allowed the robot to
successfully complete the second command autonomously. In
5 of the 39 trials, the robot’s sequence of commands did not
correspond to the environment either due to misinterpretation
in dialogue or a mistake on the volunteer’s behalf. In all 5 of
these trials, the robot correctly drove forward until eventually
predicting the failure feedback status at the end of a hallway
to indicate that the command could not be executed.

VIII. COMPARISON EXPERIMENTS

We compared our method to three prior VLN approaches
[5], [6], [7] on the task reported in Section VII. While
we evaluated using the same kind of live trials reported in
Section VII, we needed a training set with the same structure
as R2R, where all navigation is performed on a fixed graph
with images available for all orientations at each vertex, Thus
we collected an additional training set, in the style of R2R,

P g

EE MSEE

PHYS HAMP KNOY ME

Fig. 4: One of the four floor plans from each building.
Our training set consists of EE, MSEE, and PHYS. Our
test set consists of HAMP, KNOY and ME. Green indicates

hallways.

using our robot in the same three buildings (PHYS, MSEE,
and EE) where we collected the training sets reported in
Section IV-A and Section VI-B, by placing the robot at fixed
waypoints, approximately 3 m apart, and collected 36 images
at each waypoint at different camera pan and tilt positions.
We then paired the natural-language utterances reported in
Section IV-A with the corresponding sequences of these
waypoints to create the new training set. This allowed us to
construct 2,814 training samples. We trained SF [6], RCM [7]
and Babywalk [5] on R2R, using the code base provided by
[5], then fine tuned on this new training set. During training,
the success rate was evaluated on the training set, where
success is defined as the VLN agent stopping within 5 m of
the target waypoint. The training success rates for SF, RCM,
and Babywalk were 98.2%, 84.0%, and 99.8%, respectively.

Evaluating with live trials in novel environments in a
different building, however, required us to map the small
finite action space output by models trained with the prior
VLN approaches to the continuous action space needed
to perform our task. During the trials, upon arrival at a
waypoint, the robot collected 36 images at the same pan
and tilt angles described above, extracted their features as
described in [5], and decided whether to drive to an adjacent
waypoint or indicate completion. We determined adjacent
waypoints by searching the robot’s SLAM map for positions
in free space that corresponded to positions in front of,
behind, left of, and right of the robot’s current position.

A strict evaluation of success of a purely autonomous
method that cascades the prior models that output discrete
navigation actions designed to navigate in a symbolic graph
with our code that instead navigates to physical waypoints
from those discrete actions leads to very low success rate.
Thus we relaxed our success criterion to manually intervene
if the robot got too near an obstacle. We moved the robot
away from the obstacle to allow the trial to continue.

We conducted eight trials with each of the three methods
in KNOY, where our approach had its highest success rate.
We positioned the robot in the same starting location and
orientation used in eight of our trials from Section VII and
provided the same corresponding text instructions. A trial
was concluded when the method predicted the stop condition.
If the robot was in the hallway with the goal location, we
considered it a success. We then manually drove the robot to
the beginning of the hallway with the goal location. Using
odometry, we measured the navigation error, which is the
driving distance from the ending location to the beginning
of the hallway with the goal location. Table VIII shows
that all three of the methods failed to correctly execute the
instructions specified by the input utterances in all eight
of their respective trials. Table IX shows a breakdown of
these trials, including the number of waypoints traversed
and how many waypoints the robot successfully navigated
before heading off in a wrong direction. In some, the robot
would simply start driving in the opposite direction from that
indicated by the instructions. In others, it would miss the
turn it was supposed to take or start driving back to where it
came from. Our system has a much higher success rate and



TABLE VIII: Comparison of our system with prior VLN
systems. Successful trials were those where the robot reached
the hallway with the goal location.

\ Successful #Trials ~ Total #Trials  Success Rate
SF [6] 0 8 0.0%
RCM [7] 0 8 0.0%
Babywalk [5] 0 8 0.0%
Our System 10 14 71.4%

TABLE IX: Navigation statistics from the results reported
in Table VIII. Correct Waypoints is the average number of
waypoints the system correctly predicted and navigated to
before heading off in a wrong direction. Total Waypoints
is the average number of waypoints navigated to before
predicting the stop condition. Navigation Error is the average
driving distance from the ending location to the goal location.

| Correct Waypoints  Total Waypoints  Navigation Error

SF [6] 39 26.8 256 m
RCM [7] 35 15.8 389 m
Babywalk [5] 0.1 8.9 294 m
Our System n/a n/a 3.6 m

far lower navigation error.

IX. CONCLUSION

We have demonstrated an end-to-end system, deployed on
a real robot in a real environment, that can interpret instruc-
tions through spoken dialogue as a sequence of commands
and then execute those commands. We have also shown that
our approach outperforms prior VLN methods when applied
to the task of a real robot understanding instructions in a real
unknown environment.
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