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Abstract— Prior work in natural-language-driven navigation
demonstrates success in systems deployed in synthetic environ-
ments or applied to large datasets, both real and synthetic. How-
ever, there is an absence of such frameworks being deployed
and rigorously tested in real environments, unknown a priori.
In this paper, we present a novel framework that uses spoken
dialogue with a real person to interpret a set of navigational
instructions into a plan and subsequently execute that plan
in a novel, unknown, indoor environment. This framework is
implemented on a real robot and its performance is evaluated
in 39 trials across 3 novel test-building environments. We also
demonstrate that our approach outperforms three prior vision-
and-language navigation methods in this same environment.

I. INTRODUCTION

Imagine an office environment where individuals work in

separate areas to follow social-distancing guidelines. You

need to give an important package to a colleague but you’re

unable to go in person. You summon a robot and give it

navigational instructions in plain English to your colleague’s

office. The robot engages you in a dialogue to clarify some

ambiguity in your navigational instructions and then follows

the plan it infers to deliver the package. In this paper, we

present a machine-learned system that makes a significant

step towards this reality.

Our system consists of two main components. The first

is a transformer-based network trained to interpret spoken

natural language and convert it into a navigation plan that the

robot can execute. Crucially, it’s designed to support multiple

turns in a conversation by taking the robot’s current plan and

a transcript of a spoken utterance as input and producing an

updated plan and follow-up question (if necessary) as output.

Some previous work (e.g., [1], [2]) only considers an agent

receiving a single text instruction as input and producing

a single plan as output. This is impractical, however, for

real-life applications that depend on spoken language and

speech recognition. A person might misspeak or the speech

recognition could be erroneous. This necessitates support

for live dialogue to rectify any potential errors or ambi-

guity. To train this network, we collected a novel dataset
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of navigational-instruction utterances, created transcript-plan

pairs, and augmented them to support multi-turn dialogue.

The second component of our system is a 2D CNN-

based network trained to produce navigational goals that

correspond to the plan produced by the dialogue component.

Navigational instructions generally consist of left or right

turns in specific locations, such as “turn right at the end of the

hallway.” If the robot does not have a map of its environment

in advance, it would be unable to directly generate an entire

navigational plan to execute these navigational instructions.

Therefore, the network takes the latest map (produced by

SLAM) and the current step in its plan as input to produce a

navigational goal as output. It is designed to produce forward

goals by default until the robot arrives at the desired inter-

section, in which it should produce a goal corresponding to

the desired direction. Additionally, it is trained to recognize

when a step in the plan cannot be executed. To train this

network, we collected a novel dataset of actual trajectories

driven and SLAM maps produced by a robot on several floors

of several buildings.

The dialogue and navigational components are combined

into a system that enables dialogue-driven navigation in an

end-to-end fashion in unknown, indoor environments. To test

out the effectiveness of a robotic algorithm, it is important

to test in the real world where it is required to operate in

continuous space with noise and unanticipated conditions. To

this end, we recruited volunteers to converse with the robot

and provide navigational instructions to various locations

in three real buildings. These volunteers were not involved

in our natural-language dataset collection. These three test

buildings were not part of either the dataset used to train

the dialogue component or the dataset used to train the

navigation component. We evaluated whether the naviga-

tional instructions were converted into a correct plan and

whether the plan was correctly executed. We demonstrate

our system’s performance in 39 trials. We also demonstrate

in Section VIII that algorithms that may work in simulation

do not necessarily perform well in the real world.

Explicitly, this paper makes the following contributions:

• We provide a novel dataset of transcript-plan pairs

for navigation in indoor environments. We apply a

novel data augmentation method to train a transformer

network to support multi-turn dialogue, allowing the

robot to ask the person clarifying follow-up questions.

• We provide a novel dataset of robot trajectories paired

with navigational commands in several indoor environ-

ments. We use automatic annotation and data augmen-

tation techniques to train a 2D CNN on this data to



produce navigational goals and feedback statuses that

correspond to the input instructions.

• Unlike most prior work that demonstrates performance

on synthetic data or their own training environments, we

demonstrate performance in real indoor environments

with real volunteers that are distinct from our training

sets to show the generalizability of our approach.

• We train three prior vision-and-language navigation

methods on our data and deploy them them on our robot

in one of our test buildings. We show that our approach

vastly outperforms these methods.

II. RELATED WORK

There has been considerable prior work on vision-and-

language navigation (VLN). Some of this work, [3], [4], [5],

[6], [7], [8], trained and evaluated VLN models on the Room-

2-Room (R2R) dataset [3]. This dataset consists of natural-

language text instructions paired with corresponding trajecto-

ries in a simulated indoor environment. These trajectories are

sequences of vertices in a discrete graph, where each vertex

has a panorama of images to represent the view at that vertex.

[9] and [10] presented similar methods to choose waypoints

to reach a goal specified by natural-language instructions

but in simulated outdoor environments. Our work differs

significantly from all of this work in a number of key ways.

First, in the R2R simulator, robot position is represented as

a vertex in a discrete graph and visual information, although

from real images, is noise-free and deterministic at each

vertex. In contrast, rather than just repeatedly outputting one

of a small number of adjacent graph vertices to eventually

reach a goal vertex, we address a more complex problem:

controlling a physical robot in the real world with a noisy

continuous position and action space and noisy continuous

observations. While [8] trained in a simulated environment,

it tested both in simulated environments and on a real robot

in real environments. However, when the navigation graph

was known a priori, performance in the real environment

was comparable to that in simulation, but results were very

poor when it was unknown and waypoints were predicted on

the fly. Our system is able to successfully execute navigation

instructions without a known map of the environment, just

with the SLAM map that is built as the robot drives.

Second, the above prior work took single-turn text as input.

Our system interacts with a person in multi-turn spoken

dialogue and is trained to be robust in the face of noisy

speech recognition. Such dialogue is crucial for clarifying

potentially ambiguous instructions. [11] and [12] presented

VLN approaches that perform continuous control, rather than

waypoint selection, of an autonomous vehicle within two en-

vironments in the CARLA simulator given natural-language

instructions. However, they also only considered single-turn

instructions as input and the trained autonomous vehicle

did not engage in multi-turn dialogue. Also, in contrast,

our approach takes noisy SLAM data from a real physical

robot as input. This data in noisier and less rich than the

synthetically generated 3D images in the CARLA simulator.

[11] only evaluated their approach in the CARLA simulator,

while [12] also conducted a single experiment on real data

(the KITTI dataset) and one experiment on a physical electric

vehicle. We, however, rigorously demonstrate our system’s

performance on a real robot in real indoor environments in

39 trials.

Third, we output a feedback status along with our goal

coordinates. This allows for direct feedback about whether

or not the input instruction was successfully executed or

whether it eventually failed (because the instruction was

unachievable). The latter allows the robot to detect when

an instruction it was given is incorrect.

There has been prior work, [13], [14], [15], [16], [17],

that, like our work, has also focused on achieving multi-turn

dialogue understanding on a physical robot. However, this

work operated within smaller and simpler environments than

our work; we train and evaluate our system on several large

unmodified office environments. [13] proposed a method

to allow a robot to learn object-related concepts through

dialogue. Only a single demonstration on a real robot was

done in a single room with several objects on a table. [14]

demonstrated a dialogue and navigation system for a physical

robot; however semantic regions in the map were provided

to the system in advance and there was no full evaluation

of the system’s performance, only preliminary experiments

in a single environment. [15] constructed a framework to

control a physical robot with spoken language, but it was

only tested in a simulator in which the virtual robot could

execute navigation commands from a finite discrete set.

[16] demonstrated their algorithm on a quadcopter, but the

environment was very small with just a few objects on a

green surface. The environment was only varied by placing

different objects in different positions. [17] collected data

from a physical robot to train their algorithm to follow

natural-language instructions. However, evaluation of the

approach was only performed in simulation.

There has been other prior work [18], [19], [20], [21],

[22], [23], that, like ours, first converts natural-language

instructions into a plan that can then be interpreted and

executed. [18] and [19] modeled instruction-action pairs to

convert each instruction independently into an action in a

noninteractive fashion to map an instruction sequence to

an action sequence. Our system interacts with a person in

spoken dialogue to clarify ambiguities and update the plan

in the context of the dialogue. [20] and [21] determined a set

of constraints from natural-language instructions and applied

those constraints to a known map to generate a navigation

trajectory. [22] and [24] both depended on having topological

representations of the environment. Unlike our approach,

these methods would not work in an unknown environment.

Finally, some prior work only presented methods for part

of the VLN task. [23] and [25] demonstrated vision-only

navigation to a specified target object. [26] presented a data-

driven parser for understanding navigation directions for the

purpose of human-robot dialogue but did not apply it to any

form of navigation, simulated or real.



III. SYSTEM ARCHITECTURE

Our system consists of a dialogue component and naviga-

tion component. The dialogue component facilitates multi-

turn conversation with a person to produce a plan. The plan is

converted into commands that the navigation component then

executes. The navigation component incrementally executes

each command by analyzing the SLAM map and producing

goal locations for the robot to drive to and a feedback status

to indicate whether to advance to the next command. A

diagram of our system can be seen in Figure 1.

IV. DIALOGUE

The purpose of engaging in dialogue with a person is to

construct a plan of how to navigate to a specific destination.

If the person were to formally communicate the plan to the

robot, using formalisms the robot is capable of executing,

this task would be trivial. What makes this nontrivial is

that the communication is done informally through spoken

natural language. In order to facilitate this spoken dialogue,

we collected and augmented a dataset to train a transformer-

based network to take as input a current plan and input

transcript of the spoken utterance, and to produce an updated

plan and follow-up question as output.

A. Dataset collection

To collect a dataset of navigational instructions, we re-

cruited 27 subjects that spoke English and were familiar

with three buildings on our campus. For each of four floors,

for each of the three buildings (PHYS, MSEE, and EE),

we described a starting location and orientation of both a

robot and a passerby. We asked them to imagine they were

the passerby and that the robot had posed a single query,

asking for navigational instructions to a location within that

building. They were allowed to provide partial instructions

or indicate they did not know the location of the destination.

The subjects recorded a verbal response to each query and

we used Microsoft’s speech-to-text engine [27] to convert

the spoken responses into text. We collected a total of

8797 navigational-instruction utterances and produced their

corresponding transcripts. Some navigational-instruction ut-

terances involve using an elevator to move to another floor.

In this work, we handle the dialogue component of using

an elevator to move between floors, but focus on perform-

ing navigation in a single floor. Future work will address

accomplishing multi-floor navigation.

We identified a set of plan concepts of various kinds,

including directions, intersections, goals, and other that cover

the vast majority of navigational instructions contained in

our transcripts, so that each transcript would have a cor-

responding plan with a sequence of these concepts. All

plan concepts, their types and definitions can be found in

Table I. We posted each transcript on Amazon Mechanical

Turk (AMT) and asked two workers to construct a coherent

plan using these plan concepts. Workers were native English

speakers who had to pass five custom qualification tests

involving this task before annotating the data.

TABLE I: Possible plan concepts for plan annotation. int-L

and int-R have a left or right turn, respectively. end refers

to the end of the hallway; elbow refers to an elbow. The

first four direction concepts refer to the direction the robot

should drive in. It will continue moving in that direction

until it encounters the next step in the plan. either refers

to turning left or right at an elbow when it is not explicitly

stated (e.g., “go around the corner”). goal-F, goal-L, and

goal-R respectively refer to goals that are ahead, on the

left, or on the right. � refers to an unknown or unspecified

step in the plan. change-floor refers to using an elevator

to move between floors.

Type Plan concepts

Intersections int-L, int-R, end, elbow
Directions turn-around, forward, left, right, either
Goals goal-F, goal-L, goal-R
Other �, change-floor

When the constructed plan had a �, where � refers to an

unknown or unspecified step in the plan, we asked the AMT

workers to type a follow-up question that they would ask

to resolve the �. Each of the 8797 transcripts had two plan

annotations and (potentially) two follow-up questions. When

the plans and follow-up questions were the same, we created

a single sample. When the plans and follow-up questions

were different, we kept both if they were both reasonable.

Otherwise, we kept the most correct one. If neither were

correct, we manually modified one to be correct and retained

this as a sample. This determination was done by the authors.

This process resulted in a total of 9818 unique samples

consisting of [�] for the current plan, an input transcript, an

updated plan, and a follow-up question. If the updated plan

was a complete plan (i.e., no � present), we used a default

follow-up question of “Got it. Thanks!” Of the total number

of samples, 52.3% had both annotated plans accepted and

were identical to one another, 7.9% had both annotated plans

accepted and were different but reasonable interpretations of

the navigational instructions, 32.5% had one plan accepted

(and the other discarded), 4.8% were manually modified by

the authors, and 2.4% were discarded (due to incoherent

speech-to-text results).

From among the 9818 samples, we found that 7467

(76.1%) had complete plans and 2351 (23.9%) had partial

plans (i.e., a � present). We sorted the samples with a partial

plan into four categories: empty, need-elevator, need-first,

and need-last, based on their plan pattern (see Table II). Al-

though these partial plan categories occur less frequently in

our dataset than samples with a complete plan, they are real-

istic possibilities during live spoken dialogue due to pauses in

speech, poor speech recognition, or incomplete navigational

instructions. Therefore, we augmented our dataset to increase

the number of samples in these categories. For empty, we

used an online tool1 to generate random sentences that had

an updated plan of [�]. These training samples were used

to help train the network to handle sentences that did not

1https://randomwordgenerator.com/sentence.php



Fig. 1: System Diagram. A question, q, is posed to a person. Their utterance, u, and the current plan, p, is fed into the

dialogue component, which produces an updated plan and follow-up question. Dialogue loops until a complete plan, [pi],
is produced. The complete plan is converted into robot commands, [ci], which are fed into the navigation network. The

navigation component produces a goal location, l, and feedback status, f , which are used to carry out all commands.

TABLE II: Number of samples for each partial plan category.

Category Pattern Original count Augmented count

empty [�] 125 2125
need-elevator [�,change-floor, . . .] 2100 2100
need-first [�,¬change-floor, . . .] 68 2200
need-last [. . . ,�] 58 1818

contain navigational information. The category need-elevator

had a relatively large number of samples, so we did not

perform any augmentation. For need-first, we used samples

with complete plans, but removed certain keywords (e.g.,

“go straight” or “turn-around”) from the beginning of the

transcripts and replaced the first instruction in the plan with

�. We performed a similar augmentation for need-last, but

truncated text from the end of the transcript and replaced the

corresponding concepts in the plan with �. Table II shows

the total sample counts before and after augmentation.

B. Dialogue turn generation

The purpose of dialogue is to rectify any missing infor-

mation (i.e., �) in the current plan. The data we collected

only simulates the first turn in a conversation, in which

the current plan is [�], and the input transcript contains

complete, partial, or no information to the destination. To

facilitate dialogue, we must train the network to handle

subsequent turns of conversation in which a person responds

to follow-up questions produced by prior turns. This requires

further augmenting the dataset to create samples in which the

current plan belongs to one of the partial plan categories

other than empty, the input transcript corresponds to the

missing information in the current plan, the updated plan ac-

curately reflects the current plan integrated with the missing

information, and a valid follow-up question. To distinguish

from the samples described in Section IV-A, we refer to these

additional training samples as follow-on samples.

To generate these follow-on samples, we use custom logic

to combine different samples from our dataset. We first find

partial plans to serve as the current plan input in the follow-

on samples. Then, based on the index of [�] in each partial

plan, we find a transcript, or piece of a transcript, in our

dataset whose plan annotation would appropriately replace

the [�] in the current plan. This transcript then serves as the

input transcript for the new follow-on sample. To create the

updated plan for this sample, we replace the [�] in the current

plan with the plan that corresponds to the transcript used.

TABLE III: Training samples.

current plan [�]
input transcript yeah, go straight and then make a right
updated plan [forward,int-R,right,�]
follow-up question What do I do after turning right?

current plan [�,end,left,goal-R]
input transcript think you might have to turn around
updated plan [turn-around,end,left,goal-R]
follow-up question Got it. Thanks!

TABLE IV: Partial plan follow-up questions.

Category Follow-up question

empty Repeat original question.
need-elevator Ask for navigational instructions to the elevator.
need-first Ask which direction to start out going.
need-last Ask what do to after last instruction.

Lastly, we determine the follow-up question for the follow-

on sample by using the rules in Table IV depending on the

partial plan category of the updated plan. If the updated

plan is complete, then the follow-up question is a “thank

you”. Table III shows one first-turn sample and one follow-

on sample.

C. Augmented dataset training and validation

With this additional augmentation, the network can be

trained to support all turns in a dialogue. Given a current plan

and transcript as input, it can learn to produce an updated

plan and a relevant follow-up question as output. It is trained

to fill in the missing plan concepts in the current plan with the

information provided by the person’s response in the input

transcript. During training and validation, the accuracy of

the updated plan output is determined by whether or not

it matches the target updated plan exactly. The relevance

of the follow-up question is measured by whether or not

it corresponds to the partial plan category of the target

updated plan based on the rules defined in Table IV. This was

done computationally by comparing the text of the follow-

up question with the list of questions from that partial plan

category.

We used the source code at [28] to train a network based

on Text Summarization with Pretrained Encoders [29] to

take the current plan and input transcript as input and to

produce an updated plan and follow-up question as output.

For training, we specified a maximum input length of 200

tokens. We divided the subjects into five folds to perform







TABLE VII: Experimental results.

HAMP KNOY ME Total

Complete Success 5 10 6 21
Dialogue Success/Navigation Failure 2 3 5 10
Dialogue Failure/Navigation Success 4 1 3 8
Complete Failure 0 0 0 0

Total 11 14 14 39

failure. If the navigational instructions were interpreted cor-

rectly, but the navigation was unsuccessful, this is a dialogue

success but navigation failure. If both were unsuccessful,

it is a complete failure. Any trial that required manual

intervention was considered a failure.

Table VII shows a breakdown of the trials and their

corresponding category on a per-building basis. The dialogue

and navigation components had high success rates of 79.4%

and 74.3%, respectively. In the case of dialogue, its success

rate is slightly better than the validation accuracy reported in

Section IV-C. In 92.3% of the trials, the dialogue component

produced plans whose first 3 concepts were correct, which

means that for a strong majority of the time, the robot

would have a plan that starts it going in the right direction.

In these trials, the robot always succeeded at reaching the

intersection corresponding to the current input command by

correctly outputting the transition classification. However,

in 9 of the 10 trials with navigation failure, the robot was

unable to predict an accurate driving goal while stopped in

the correct intersection, even after rotating, and indicated

failure. In the other single trial, manual intervention was

employed to prevent the robot from crashing while turning a

corner to execute the first command and allowed the robot to

successfully complete the second command autonomously. In

5 of the 39 trials, the robot’s sequence of commands did not

correspond to the environment either due to misinterpretation

in dialogue or a mistake on the volunteer’s behalf. In all 5 of

these trials, the robot correctly drove forward until eventually

predicting the failure feedback status at the end of a hallway

to indicate that the command could not be executed.

VIII. COMPARISON EXPERIMENTS

We compared our method to three prior VLN approaches

[5], [6], [7] on the task reported in Section VII. While

we evaluated using the same kind of live trials reported in

Section VII, we needed a training set with the same structure

as R2R, where all navigation is performed on a fixed graph

with images available for all orientations at each vertex, Thus

we collected an additional training set, in the style of R2R,

EE MSEE PHYS HAMP KNOY ME

Fig. 4: One of the four floor plans from each building.

Our training set consists of EE, MSEE, and PHYS. Our

test set consists of HAMP, KNOY and ME. Green indicates

hallways.

using our robot in the same three buildings (PHYS, MSEE,

and EE) where we collected the training sets reported in

Section IV-A and Section VI-B, by placing the robot at fixed

waypoints, approximately 3 m apart, and collected 36 images

at each waypoint at different camera pan and tilt positions.

We then paired the natural-language utterances reported in

Section IV-A with the corresponding sequences of these

waypoints to create the new training set. This allowed us to

construct 2,814 training samples. We trained SF [6], RCM [7]

and Babywalk [5] on R2R, using the code base provided by

[5], then fine tuned on this new training set. During training,

the success rate was evaluated on the training set, where

success is defined as the VLN agent stopping within 5 m of

the target waypoint. The training success rates for SF, RCM,

and Babywalk were 98.2%, 84.0%, and 99.8%, respectively.

Evaluating with live trials in novel environments in a

different building, however, required us to map the small

finite action space output by models trained with the prior

VLN approaches to the continuous action space needed

to perform our task. During the trials, upon arrival at a

waypoint, the robot collected 36 images at the same pan

and tilt angles described above, extracted their features as

described in [5], and decided whether to drive to an adjacent

waypoint or indicate completion. We determined adjacent

waypoints by searching the robot’s SLAM map for positions

in free space that corresponded to positions in front of,

behind, left of, and right of the robot’s current position.

A strict evaluation of success of a purely autonomous

method that cascades the prior models that output discrete

navigation actions designed to navigate in a symbolic graph

with our code that instead navigates to physical waypoints

from those discrete actions leads to very low success rate.

Thus we relaxed our success criterion to manually intervene

if the robot got too near an obstacle. We moved the robot

away from the obstacle to allow the trial to continue.

We conducted eight trials with each of the three methods

in KNOY, where our approach had its highest success rate.

We positioned the robot in the same starting location and

orientation used in eight of our trials from Section VII and

provided the same corresponding text instructions. A trial

was concluded when the method predicted the stop condition.

If the robot was in the hallway with the goal location, we

considered it a success. We then manually drove the robot to

the beginning of the hallway with the goal location. Using

odometry, we measured the navigation error, which is the

driving distance from the ending location to the beginning

of the hallway with the goal location. Table VIII shows

that all three of the methods failed to correctly execute the

instructions specified by the input utterances in all eight

of their respective trials. Table IX shows a breakdown of

these trials, including the number of waypoints traversed

and how many waypoints the robot successfully navigated

before heading off in a wrong direction. In some, the robot

would simply start driving in the opposite direction from that

indicated by the instructions. In others, it would miss the

turn it was supposed to take or start driving back to where it

came from. Our system has a much higher success rate and



TABLE VIII: Comparison of our system with prior VLN

systems. Successful trials were those where the robot reached

the hallway with the goal location.

Successful #Trials Total #Trials Success Rate

SF [6] 0 8 0.0%
RCM [7] 0 8 0.0%
Babywalk [5] 0 8 0.0%
Our System 10 14 71.4%

TABLE IX: Navigation statistics from the results reported

in Table VIII. Correct Waypoints is the average number of

waypoints the system correctly predicted and navigated to

before heading off in a wrong direction. Total Waypoints

is the average number of waypoints navigated to before

predicting the stop condition. Navigation Error is the average

driving distance from the ending location to the goal location.

Correct Waypoints Total Waypoints Navigation Error

SF [6] 3.9 26.8 25.6 m

RCM [7] 3.5 15.8 38.9 m

Babywalk [5] 0.1 8.9 29.4 m

Our System n/a n/a 3.6 m

far lower navigation error.

IX. CONCLUSION

We have demonstrated an end-to-end system, deployed on

a real robot in a real environment, that can interpret instruc-

tions through spoken dialogue as a sequence of commands

and then execute those commands. We have also shown that

our approach outperforms prior VLN methods when applied

to the task of a real robot understanding instructions in a real

unknown environment.
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