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We propose the use of the Earth as a transducer for ultralight dark-matter detection. In partic-
ular we point out a novel signal of kinetically mixed dark-photon dark matter: a monochromatic
oscillating magnetic field generated at the surface of the Earth. Similar to the signal in a labora-
tory experiment in a shielded box (or cavity), this signal arises because the lower atmosphere is a
low-conductivity air gap sandwiched between the highly conductive interior of the Earth below and
ionosphere or interplanetary medium above. At low masses (frequencies) the signal in a laboratory
detector is usually suppressed by the size of the detector multiplied by the dark-matter mass. Cru-
cially, in our case the suppression is by the radius of the Earth, and not by the (much smaller) height
of the atmosphere. We compute the size and global vectorial pattern of our magnetic field signal,
which enables sensitive searches for this signal using unshielded magnetometers dispersed over the
surface of the Earth. We summarize the results of a forthcoming companion paper, in which we will
detail such a search using a publicly available dataset from the SuperMAG collaboration: we report
no robust signal candidates and so place constraints in the dark-photon dark-matter mass range
2× 10−18 eV . mA′ . 7× 10−17 eV (corresponding to frequencies 6× 10−4 Hz . f . 2× 10−2 Hz).
These constraints are complementary to existing astrophysical bounds. Future searches for this sig-
nal may improve the sensitivity over a wide range of ultralight dark-matter candidates and masses.
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I. INTRODUCTION

The nature of dark matter remains one of the great
mysteries in fundamental physics. Myriad dark-matter
candidates exist, spanning a wide range of allowed
masses. Excitingly, there has recently been significant
progress in the exploration of more of this dark-matter
parameter space. In this work, we hone in on the ‘ultra-
light’ portion of the allowed dark-matter mass range, and
propose a new detection technique for the dark photon,
a well-motivated dark-matter candidate.

The dark photon is a new U(1) gauge boson coupled
to the Standard Model (SM) through a kinetic mixing
with the ordinary SM photon [1]. Dark-photon dark mat-
ter [2] is generically produced from inflation [3–5] and
can also be produced in other, model-dependent ways
(e.g., Refs. [6–17]). Several new experimental approaches
aiming at dark-photon detection have recently been de-
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veloped, and there is significant ongoing interest in this
field (see, e.g., Refs. [18–33]).

Several existing direct detection experiments that are
sensitive to the electromagnetic effects of dark-photon
dark matter, such as ADMX [18] and DM Radio [22],
employ a highly sensitive magnetometer with an electro-
magnetic resonator (e.g., a cavity or lumped-element cir-
cuit) inside a shielded region. While these approaches
are powerful, their sensitivity falls off at lower dark-
photon masses because the signal size is parametrically
suppressed by ∼ mA′L where mA′ is the dark-photon
mass and L is the characteristic linear size of the shielded
region [22]. If the electromagnetically shielded region
is L ∼ 1 m, then the measurable signal decreases for
masses mA′ . 10−7 eV (frequencies below approximately
30 MHz).1

We propose a new way to detect dark-photon dark
matter at much lower dark-photon masses. In contrast to
these existing detection approaches, we propose removing
the human-made shield and using a sensitive magnetome-
ter exposed to the ambient electromagnetic environment.
While at first it might appear that we have removed the
significant ∼ mA′L suppression, in fact an ‘unshielded’
magnetometer on Earth is necessarily still surrounded by
naturally occurring shields; indeed, these natural shields
are essential in generating the signal we consider in this
work. Given the low-mass dark photons of interest to us,
corresponding to signal frequencies f . 10−2 Hz (though
still well above yr−1), the Earth itself behaves as an ex-
cellent conductor, and acts to damp the interacting com-
ponent of the photon–dark-photon system in exactly the
same fashion as a shield. Similarly, while the ionosphere
surrounding the Earth may or may not (we will consider
both cases) constitute a sufficiently thick layer of good
conductor to qualify as a good natural shield, it is cer-
tainly true that the interplanetary medium permeating
the Solar System beyond behaves as an almost collision-
less plasma with a large plasma frequency and is amply
thick to damp the interacting component of the photon–
dark-photon system. Interestingly though, it turns out
that the lower few kilometers of the atmosphere are a
marginal or poor conductor. For the relevant frequen-
cies then, we thus effectively have a naturally shielded,
vacuum-like air-gap region near the surface of the Earth.
But the natural shields at play here have very large char-
acteristic sizes, and we consequently expect enhanced
sensitivity to lower-mass dark photons as compared to
any conceivable experiment employing laboratory-scale
magnetic shields.

In this paper, we calculate the signal of dark-photon
dark matter that is expected in a magnetometer that is
exposed to the ambient electrical environment near the
surface of the Earth, by modeling the naturally shielded

1 Throughout this paper we work in natural units where ~ = c =
1. The conversion to frequency from mass is f = mA′/(2π) in
natural units; that is, f ∼ 24 mHz× (mA′/10−16 eV).

atmospheric ‘cavity’ as bounded below by the conduct-
ing Earth, and bounded above by either (a) the conduct-
ing ionosphere, or (b) the plasma of the interplanetary
medium. In the former case (a), the cavity is a sim-
ple thin spherical shell sandwiched between two good
conductors, and the computation proceeds straightfor-
wardly: dark-photon dark matter can drive oscillating
charge motion at the interfaces of the Earth and iono-
sphere with the air gap of the lower atmosphere, and
these surface currents give rise to a leading-order mag-
netic field in the lower atmosphere. In the latter case
(b), there is a more complicated electrical environment
between the natural shields, and we examine how our
results from the former case are modified to more re-
alistically account for the complexities of the electrical
environment in the vicinity of the Earth. Perhaps sur-
prisingly, we find that the same leading-order magnetic
field is expected in either case. Importantly, our com-
putation resolves a crucial question (see, e.g., Ref. [34])
regarding the length-scale L that enters the geometri-
cal ∼ mA′L suppression: is it the height of the atmo-
sphere L ∼ h . 102 km, or the radius of the Earth,
L ∼ R ∼ 6 × 103 km? Perhaps counter-intuitively, we
show that it is the larger radius of the Earth which enters
the suppression factor, which is much more favourable
for the signal. This makes possible a sensitive search for
low-mass dark-photon dark matter.

Of course, with a magnetometer lacking a human-made
shield, we must ask whether ambient electromagnetic
noise will swamp any possible signal, making a sensitive
experiment impossible. Rather than trying to estimate
all possible noise sources, we have instead carried out a
full analysis of an existing dataset from a global network
of unshielded, geographically dispersed, three-axis mag-
netometers that have been operating for decades for the
purposes of geophysical metrology [35–37]. We present
the results of this analysis in summary form in this work;
technical details of the analysis are presented in a forth-
coming companion paper [38]. As we report no robust
signal candidates in this analysis, we present limits on
the parameter space for dark-photon dark matter. These
limits augment existing astrophysical constraints appli-
cable in this dark-photon dark-matter mass range that
arise from bounds on gas heating in various environments
(see, e.g., Refs. [34, 39–42]). Our search results, arising
from significantly different measurements, are competi-
tively complementary to these existing constraints. Fu-
ture searches for this signal hold promise to significantly
expand the reach of this approach beyond existing astro-
physical bounds, particularly at higher frequencies.

The rest of this paper is structured as follows. In
Sec. II we present an overview of the relevant physics of
the kinetically mixed photon–dark-photon system, and a
review of the electrical (conductivity) environment near
the Earth. Sec. III describes our actual signal. We be-
gin Sec. III with a simple toy example to illustrate the
origin of the dark-photon dark-matter signal we propose
to search for and highlight an important point regarding
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the geometrical suppression factor in a shielded region
(Sec. III A). We follow on from this toy example by pre-
senting our calculation of the dark-photon signal near the
Earth under two different sets of assumptions about the
damping thickness of the ionospheric conductivity layers
near the top of the atmosphere: first assuming that the
ionosphere is an effective shield (Sec. III B), and then
assuming it is not (Sec. III C). The results of the ex-
perimental analysis that is detailed in our forthcoming
companion paper [38] are presented in summary form
in Sec. IV. We conclude in Sec. V. We present supple-
mental material in a number of appendices: Appendix A
gives an in-depth review of the dynamics of the photon–
dark-photon system; Appendix B gives a treatment of
our signal without assuming infinite-conductivity (or in-
finite plasma frequency) boundary conditions near the
Earth; Appendix C gives the full forms of some lengthy
expressions whose limiting forms we present in the main
text; and Appendix D gives our conventions for the vec-
tor spherical harmonics.

II. PRELIMINARIES

The behavior of the kinetically mixed photon–dark-
photon system in the vicinity of an ordinary electro-
magnetically (EM) conducting interface exhibits a rich
and non-trivial phenomenology. We consider the case of
dark-photon dark matter, for which there exists a back-
ground, non-relativistic dark-photon field. Observable
electromagnetic effects are generated by this background
field [21, 22]. Most physically, one can think about
these effects as arising due to ordinary electric charges
acquiring an effective millicharge under the dark U(1)
gauge group (in the so-called ‘mass basis’). The action
of the dark-photon field then causes surface currents to
be driven at a conducting interface, and those currents
in turn source observable electromagnetic fields on the
non-conducting side of the interface.

More abstractly, one can consider the observable fields
to arise from an abrupt change at the conductor–vacuum
interface in the relationship between the vacuum propa-
gation eigenstates and the interaction eigenstates of the
mixed photon–dark-photon system; this abrupt change
gives rise to neutrino-oscillation-like phenomena in the
photon–dark-photon system on the non-conducting side
of the interface that lead to the generation of an interact-
ing component of the photon–dark-photon system away
from the interface.

In this section, we will first give a short qualitative
theory review of the behavior of the photon–dark-photon
system, both in vacuum and in conductors or plasmas,
and discuss implications for phenomenology; we defer
technical details and derivations to Appendix A. With
this theoretical motivation in place, we will then review
the electromagnetic environment near the surface of the
Earth in order to demonstrate that, in some range of fre-
quencies, the lower atmosphere constitutes precisely the

kind of environment in which we expect the generation
of observable EM signals due to the effects noted above.
Specifically, we discuss how the lower atmosphere consti-
tutes a low conductivity gap sandwiched between two lay-
ers in which the active mode of the photon–dark-photon
system is effectively damped: (1) the ground, which acts
as a good conductor; and (2) either (a) the ionosphere,
which as a relatively thin conductive layer may or may
not be thick enough to damp the interacting mode, or (b)
the interplanetary medium beyond, which acts as a colli-
sionless plasma with a high plasma frequency and which
is amply thick enough to achieve the necessary damping.

A. Overview of photon–dark-photon
phenomenology

In this work, we consider a massive dark photon (A′k)
kinetically mixed with the SM U(1) photon (Ak), de-
scribed by the Lagrangian

L ⊃ −1

4
(Fk)µν(Fk)µν − 1

4
(F ′k)µν(F ′k)µν

+
ε

2
(Fk)µν(F ′k)µν +

1

2
m2
A′(A′k)µ(A′k)µ

− Jµem(Ak)µ. [kinetically mixed basis] (1)

We will assume that the kinetic mixing parameter ε is
small: ε� 1.

While this basis is convenient for making explicit
the ‘vector portal’ nature of the mixing (see, e.g.,
Refs. [43, 44] for discussion of ‘portal’ phenomenology),
it is more convenient for our purposes to perform a field
re-definition and work in the so-called interaction basis;
see Appendix A for a detailed discussion of basis choices
and the relationships between various choices. Making
the substitutions Ak → Ai and A′k → A′i +εAi in Eq. (1),
followed by dropping terms at O(ε2), we have2

L ⊃ −1

4
(Fi)µν(Fi)

µν − 1

4
(F ′i )µν(F ′i )

µν

+
1

2
m2
A′(A′i)µ(A′i)

µ + εm2
A′(A′i)

µ(Ai)µ

− Jµem(Ai)µ. [interaction basis, O(ε)] (2)

It is apparent from Eq. (2) that, of the interaction-
basis states, only the ‘interacting state’ Ai (sometimes
also called the ‘active mode’) couples to EM charges;
the ‘sterile state’ A′i does not. On the other hand, the
presence of the mass-mixing term m2

A′AiA
′
i makes clear

that these interaction eigenstates are not the propaga-
tion (momentum) eigenstates in vacuum (we denote these

2 For the moment, we will keep the subscript-i on the interaction
basis states. Later, in Sec. III, where we work solely in the
interaction basis to make field computations, we will drop these
subscripts and identify Ai ≡ A, and A′i ≡ A′ for notational
simplicity.
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A1,2). In particular, in vacuum, these are related at O(ε)
by (

A1

A2

)
=

(
1 −ε

+ε 1

)(
Ai

A′i

)
; [vacuum, O(ε)] (3)

see the detailed discussion in Appendix A.
This mismatch of the interaction and propagation

eigenstates and, in particular, the changes in the relation-
ships between those eigenstates that occur as one moves
from one medium to another, can give rise to phenom-
ena directly analogous [21] to neutrino oscillations. For
example, suppose that a field configuration is such that,
on some physical boundary Σ to a region of vacuum, we
have that (1) the interacting field component is vanish-
ing, Ai|Σ = 0 (as happens, e.g., at a conductive inter-
face). Suppose also that (2) the sterile field component
is non-vanishing, A′i|Σ 6= 0. Because of the misalign-
ment of the interaction and momentum eigenbases, these
conditions require that the momentum eigenstates A1,2

have a certain fixed relationship to each other: under the
assumptions here, (1) imposes that (A1 + εA2)|Σ ≈ 0,
while (2) imposes (−εA1 + A2)|Σ ≈ A′i|Σ. At leading
order then, A2|Σ ≈ A′i|Σ, while A1|Σ ≈ −εA′i|Σ. Now
consider a test charge located at x, within the vacuum
region; it will be sensitive to the local interacting field
component Ai(x) ≈ A1(x) + εA2(x). If x were located
on the surface Σ, then condition (1) would by construc-
tion cause this linear combination to vanish and the test
charge would experience no effect. However, because
the momentum eigenstates A1,2 have different momen-
tum eigenvalues k1,2 and hence different phase evolution
∼ exp [iki · x] under translations, we generically have
A1(x) 6≈ −εA2(x) when x is not on the surface Σ. As
such, the interacting field component Ai(x) will not van-
ish at x away from the boundary Σ, and a test charge at
x will thus be accelerated. In other words, in this lan-
guage, simple vacuum propagation of this coupled system
causes a measurable interacting field that is constrained
to be zero on some boundary, to be re-generated some
distance away from the boundary.

The interface between vacuum and a good conductor
supplies a natural location for the interacting component
Ai of the field to vanish. As we discuss in detail in Ap-
pendix A, in a good conductor (conductivity σ � m2

A′/ω
where ω is the angular frequency of interest for the field
oscillation), the large self-energy for the interacting mode
Ai leads to a close alignment of the interaction and mo-
mentum eigenstates in the conductor. Moreover, in this
limit, the interacting component Ai rapidly decays on
the skin-depth length-scale δ ∼

√
2/(ωσ) � m−1

A′ . On
the other hand, the sterile state A′i has the dispersion re-
lation k2 ≈ ω2−m2

A′ up to highly suppressed corrections:
it behaves as a particle with a mass mA′ and is barely
impacted by the medium at all. Therefore, deep in a con-
ducting medium (i.e., any more than a few skin-depths
from any interface), any non-zero field configuration must
be purely in the sterile state A′i, which is itself essentially
unaffected by the presence of the medium.

If we specialize to the case of dark-photon dark matter,
then in order to match astrophysical and cosmological
observations, the dark photons must be non-relativistic
(i.e., ω ≈ mA′). Consider a region of space characterized
by a high conductivity, σ � mA′ , and assume that this
region in space is large compared to the skin-depth δ
for the interacting state in the conductor. To excellent
approximation, the dark-matter field in that region will
then be purely in the sterile state, with no interacting
admixture.

The dark-photon dark-matter field in the vicinity of
the Earth is a coherently oscillating vector field with a
random initial polarization state, which can be written
as (the real part of)

A′I(x, t) ≈
√

2ρdm
mA′

e−imA′ t ×
3∑
i=1

ξi(x, t)n̂ie
iφi(x,t), (4)

where n̂i (i = 1, 2, 3) are a set of orthonormal Carte-
sian basis-vectors fixed in an inertial frame, the ξi(x, t)
are O(1), and the φi(x, t) are phases. Compared
to the leading e−imA′ t phase evolution, the functions
ξi and φi all vary slowly, on length-scales Lcoh ∼
λde Broglie ∼ 2π/(mA′vdm) and timescales Tcoh ∼
Lcoh/vdm ∼ 2π/(mA′v2

dm), owing to the dispersion of DM
velocities vdm ∼ 10−3 in the Milky Way.3 Note also that
the dark-photon polarization state ∝∑i ξin̂ie

iφi is gen-
erally elliptical: the field is not generally simply oscillat-
ing back and forth along a real 3-vector direction with
its magnitude passing back and forth through zero.

If there is a cavity hollowed out within the high-
conductivity region of space mentioned above, such that
in the cavity we have σ � mA′ , then the interfaces
between the cavity and the conducting material will of
course be surfaces on which the interacting state must
vanish, while the sterile state simply takes the same non-
zero value at the interface that it does just inside the con-
ductor. This setup is precisely that required to give rise
to the oscillation phenomenon discussed above, and an
interacting, detectable field will be generated inside the
cavity [21] (similar observations in the context of light-
shining-through-walls experiments appear in Refs. [45–
47]). Specifically, in the limit where the geometrical
dimension R of the cavity, as measured transverse to
the axis on which the polarization vector of the sterile
field oscillates, satisfies the condition mA′R � 1, it can
be shown that the dominant field generated within the
cavity is an oscillating magnetic field with a magnitude
B ∼ ε(mA′R)

√
ρdm [22] near the walls of the cavity. This

is the origin of the signal being searched for by, e.g., the
DM Radio experiment [22, 23, 48].

3 Indeed, one can arrive at Eq. (4) by integrating a set of plane
waves with random phase offsets and vectorial orientations, and
phase evolution governed by exp [−i (ωt− k · x)], where ω =
mA′
√

1 + v2 and k = mA′v, over the standard galactic-rest-
frame Maxwell–Boltzmann DM velocity distribution for v.
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Because the only role played in the preceding two para-
graphs by the conductive medium was to supply bound-
ary conditions for the interacting state in the cavity (or,
more physically, to supply charges that could be acceler-
ated to generate surface currents that allow the net paral-
lel electric field to be canceled exactly at the cavity walls),
similar conclusions also naturally apply to the case where
the medium surrounding the cavity is instead a nearly
collisionless plasma with a high plasma frequency; i.e.,
ωp � ω ∼ mA′ � ν, where ωp and ν are the plasma and
collision frequencies, respectively. For this case, the ap-
proximate replacement rule in the discussion above about
the active mode damping length is σ → ω2

p/ω; see Ap-
pendix A for detailed discussion.

In this work, we will apply these observations to a nat-
ural physical system of experimental interest: the Earth.
As it turns out, the Earth acts as an excellent conduc-
tor in the dark-photon mass range of interest to us. On
the other hand, in the same mass range, the conductiv-
ity of the lower atmosphere is poor. Above the lower
atmosphere, the electrical environment near the Earth
is complicated, with possible effects from both the iono-
sphere/magnetosphere (which may act as a layer of good
conductivity, but also may not) and the interplanetary
medium beyond the Earth’s magnetosphere (which acts
as a collisionless plasma with a high plasma frequency).
In either scenario, however, the lower atmosphere con-
stitutes a large ‘vacuum’ gap4 sandwiched between two
media which efficiently damp the active component of the
photon–dark-photon system. Thus, we expect to find an
observable magnetic field in the gap. A similar obser-
vation that such a signal may exist was made briefly in
Ref. [34], but we disagree with the brief comments made
therein on the size of the possible suppression of the ef-
fect. However, before turning to the computation of the
size of the expected signal (see Sec. III), we first discuss
the electrical environment near the Earth in more detail.

B. Electrical environment near the Earth

In this subsection, we discuss in detail the electrical
conductivity environment in the vicinity of the Earth’s
surface. The main purpose of this discussion is to es-
tablish that, for an interesting range of dark-photon
masses, this environment approximates a poor conduc-
tivity gap—the lower atmosphere—sandwiched between
two layers which effectively damp any active component
of the mixed photon–dark-photon system: (1) at the in-
ner edge of the gap, the interior of the Earth; and (2) at
the outer edge of the gap, either (a) the interplanetary
medium, or (b) the ionosphere. Readers who are inter-
ested mainly in the conclusions of this section can refer

4 Dielectric effects of the atmospheric medium do not spoil this, as
such effects would enter only via the relative permittivity, which
is approximately unity.

to Fig. 1 for a rough sketch of the conductivity profile
near the Earth’s surface, and continue to Sec. II B 6 for
a brief summary of the discussion.

Although the signal we find in this work would in prin-
ciple be present for any dark photon in a wide range of
masses 10−21 eV . mA′ . 3× 10−14 eV (see Sec. II B 6),
by way of calibration for the present discussion, the range
of dark-photon masses of practical interest in this work
(see Sec. IV) and Ref. [38] is 2 × 10−18 eV . mA′ .
7 × 10−17 eV, corresponding to oscillation frequencies
6 × 10−4 Hz . fA′ . 2 × 10−2 Hz and Compton wave-
lengths 7× 104 . λA′/R . 3× 103, where R is the Earth
radius (the dark-photon de Broglie wavelengths are 103

times larger since vdm ∼ 10−3).

1. Surface and interior of the Earth

At the frequencies of interest to our work, it is com-
mon practice (see, e.g., Refs. [49, 50]) to approximate
the Earth as a highly conductive spherical ball. This can
easily be justified by examining the representative con-
ductivities for the various layers of the surface and inte-
rior of the Earth which are shown in Tab. I, along with
the corresponding skin-depths for the interacting mode
of the photon–dark-photon system (see Appendix A).

The low-frequency (f . 30 kHz) conductivity of the
crust of the Earth exhibits fairly large local fluctuations
near the surface owing to the presence of oceans and vary-
ing solid ground composition [51], and is typically insuf-
ficiently thick to be damping for an active mode with
ω ∼ 10−18 eV. However, the crust is only a few tens
of kilometers thick. The mostly molten layer immedi-
ately below the crust, the upper mantle, can be approxi-
mated as a bulk layer with an approximately uniform,
isotropic conductivity, and is already thick enough to
be moderately damping for the interacting component of
the photon–dark-photon system even for ω ∼ 10−18 eV.
By the depth of the lower mantle, roughly 500–1000 km
below the surface, the conductivity has increased suffi-
ciently that the lower mantle, and outer and inner core
are all some orders of magnitude thicker than the active-
mode skin-depth for ω & 10−18 eV (and down to lower
frequency modes as well, although this is not relevant for
our work).

Given these observations, a highly conductive spheri-
cal ball model for the Earth, with the thickness and con-
ductivity required to completely damp any interacting
component of the photon–dark-photon system, is justi-
fied down to at least ω ∼ 10−18 eV (and onward to much
lower frequencies too). It is also clear that the radius of
the spherical ball at which the interacting component can
be assumed to be completely damped is in the worst case
only ∼ (few) × 102 km–103 km below the surface; given
that the Earth radius is ∼ 6.4× 103 km, this sufficiently
highly conductive ball has a radius that is O(1) of that
of the Earth. We will show in Sec. III C, however, that
the exact assumed radius of this conductive ball will not
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TABLE I. Representative values for the conductivity of various parts of the bulk of the Earth. We give a description, approximate
depth below Earth’s surface, reference conductivity σ (or range of conductivities) in both SI and natural units,a active-mode

skin-depth δ ∼ (σω/2)−1/2 (see Appendix A) for ω ∼ ω? ≡ 10−18 eV given the reference conductivity (or range), and references
for the conductivity values quoted. The specific numbers quoted here are less important than the following general conclusion:
the active-mode skin-depths for the lower mantle and deeper layers are all some orders of magnitude smaller than the thicknesses
of those layers, making the Earth an excellent conductor that damps the interacting component efficiently at a radius that is
O(1) of the full radius of the Earth.

Description Depth [km] σ [S/m] σ [eV] δ(ω?) [km] Ref(s).

Surface/Crust (f . 30 kHz)b 0–30 10−4–10−2 7× 10−9–7× 10−7 3200–320 [51]

Oceans (f . 30 kHz) 0–10 ∼ 4 ∼ 3× 10−4 ∼ 16 [51]

Upper mantle 30–500 ∼ 10−2 ∼ 7× 10−7 320 [52, 53]

Lower mantle (upper) 500–1000 1–10 7× 10−4 –7× 10−3 30–10 [52, 53]

Lower mantle (Core–Mantle Boundary) ∼ 2900 ∼ 102 ∼ 7× 10−3 ∼ 3 [54]

Outer corec 2900–5200 (1.2–1.3) × 106 ∼ 90–95 3.0× 10−2 [55]

Inner core 5200–6400 (1.5–1.6) × 106 110− 120 2.5× 10−2 [55]

a Recall: 1 S/m ≡ 1/(Ωm) ≈ 7.4× 10−5 eV ≈ 1011 s−1. In older literature, units of ‘e.m.u.’ are sometimes used: 1 S/m = 10−11 e.m.u.
b Conductivity varies by geographical location (local ground composition) [51].
c Conductivity inferred from inner core values and comments in Ref. [55].

affect our leading order result: regardless of the details of
the conductivity profile of the Earth, the relevant length-
scale that will appear in our magnetic field signal will be
the radius at which the magnetic field is measured, which
will be the radius of the Earth R.

2. Lower atmosphere

As might be expected, however, the gaseous lower at-
mosphere presents a vastly different electrical conduc-
tivity environment as compared to the solid/liquid en-
vironments found in the interior of the Earth. The low
free-charge densities (near the ground, induced mainly
by ground radioactivity and radioactive gases [56]) and
short collision lengths in the lower atmosphere guaran-
tee that the lower few kilometers of the atmosphere are
a fairly poor conductor: typical values of conductivity
just above the ground are in the range σ(h = 0) ∼ 1–
3× 10−14 S/m ∼ 7× 10−19 eV–2× 10−18 eV [56].5 With
increasing altitude h, the density of neutral atoms falls
(leading to longer collision times) and the (cosmogenic)
small-ion charge density increases [56], which both act
to cause the conductivity to then rise exponentially:
σ(h) ≈ σ(h = 0)eh/hσ , with the scale height hσ ∼ 5–
6 km [56]; this expression is valid until h ∼ 60–90 km.

Because the delineation between good and poor con-
ductor behavior for the photon–dark-photon system is
(see Appendix A) σ? ∼ m2

A′/ω ∼ mA′ for ω ∼ mA′ ,
there is thus a thin layer in the lower atmosphere—from

5 We note that the upper end of this range lies near the lower
end of our range for mA′ . We demonstrate in Appendix B that
our calculation is still valid even when σ ∼ mA′ in the lower
atmosphere.

just above the ground, to a few to perhaps tens of kilo-
meters of altitude—that acts as a relatively poor conduc-
tor for the photon–dark-photon system with ω ∼ mA′ &
(few) × 10−18 eV. Moreover, the active-mode damping
length, δ, in the lower atmosphere is enormous compared
to either the thickness of the atmospheric layer or size of
the Earth:

δ ∼
√

2

mA′σ

∼ 1.3 AU×
√

10−18 eV

mA′
×
√

3× 10−14 S/m

σ
. (5)

3. Ionosphere

The simple conductivity model for the atmosphere
mentioned in the previous subsection begins to break
down at the ionospheric layers that surround the Earth,
at altitudes ∼ (0.9–few) × 102 km. The ionosphere is a
complicated, multi-layer, anisotropic conductive medium
whose properties depend sensitively on altitude and ge-
ographical location, and which exhibits both daily and
longer-period modulation [49, 57, 58].

The highest concentration of ionized electrons and ions
that are found to occur in the ionospheric layers, n ∼
106 cm−3 under optimal conditions, would in principle be
sufficient to support isotropic conductivities on the order
of σ ∼ 101–102 S/m [57, 58]. However, charge motion in
the ionosphere is subject to non-negligible effects of the
Earth’s magnetic field B⊕, and this significantly modifies
the conductivity properties of the medium, particularly
in directions perpendicular to the magnetic field lines [57,
58].

The ‘parallel conductivity’ (i.e., that which applies for
charge motion in response to an electric field applied
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FIG. 1. Sketch of the conductivity (or plasma frequency, where applicable) profile in the vicinity of the Earth’s surface in
(1) the case where the ionosphere is thick enough to damp active photon modes [solid red], and (2) the case where it is not
and we must consider the electrical environment out to the interplanetary medium (IPM) [dotted and solid green]. In the
former case, we terminate the sketch some distance into the ionosphere, as the details above that altitude are irrelevant. In
the latter case, we note that the conductivity or plasma frequency in the magnetospheric region (i.e., between the ionosphere
and the magnetopause) can be quite complicated, and we have indicated this by dotting the green line, and including the
shaded band and the question mark: we show in Sec. III C that, under reasonable assumptions, the details of the profile here
do not matter for our signal. The vertical extent of the blue band indicates the range of dark-photon masses mA′ we consider,
in correct relation to the relative sizes of (a) the conductivity in the lower atmosphere, (b) the conductivity in the Earth’s
crust/upper part of the mantle (representative value labeled on the plot), (c) the conductivity of the ionosphere, and (d) the
plasma frequency of the interplanetary medium beyond. While we stress that this plot is highly schematic, it correctly captures
that, in the upper atmosphere (interplanetary medium) and the Earth’s crust, the conductivity (plasma frequency) exceeds
the dark-photon mass, while the opposite is true in the lower atmosphere. The reader is referred to the text of Sec. II B for
detailed discussion and caveats associated with this sketch.

along the direction of B⊕ field lines) is effectively the
same as the isotropic conductivity one would obtain ab-
sent the B⊕ field: it rises to σq ∼ 1 S/m ∼ 7 × 10−5 eV
by an altitude of 120 km (ionospheric E layer), and con-
tinues to rise as high as σq ∼ 102 S/m ∼ 7 × 10−3 eV at
an altitude of ∼ 300 km (F layer) [57, 58]. Moreover, the
high altitude (upper F layer) parallel conductivity varies
temporally by less than an order of magnitude over daily
or Solar Cycle periods, and remains in the σq ∼ 1–10 S/m
range [57]. If this were an isotropic conductivity, the as-
sociated characteristic active-mode skin-depth

δ ∼
√

2

mA′σ
∼ 2 km×

√
10−18 eV

mA′
×
√

102 S/m

σ
(6)

would easily be short enough to completely damp the
interacting mode within the ionosphere.

However, the conductivity relevant for charge motion
in the direction of an electric field applied perpendicular
to the B⊕ field lines, the so-called Pedersen conductiv-
ity σp [57, 58], behaves very differently from the parallel

conductivity.6

Characteristic values for the Pedersen conductivity
around noon at mid-latitude locations during medium so-
lar activity (Wolf number7 RWolf ∼ 70) are σp ∼ (few)×
10−4 S/m ∼ (few)×10−8 eV at an altitude of ∼ 120 km (E
layer), falling to σp ∼ (few)×10−5 S/m ∼ (few)×10−9 eV

6 There is also a third conductivity, the Hall conductivity σh, which
characterizes charge motion perpendicular to both applied elec-
tric field and B⊕. Qualitatively, the Hall conductivity behaves
broadly similarly to the Pedersen conductivity: they have similar
peak values, and both peak in the ionospheric layers and then
drop at higher altitude, but there are important differences with
regard to the details of their altitude profiles [57, 58]. It is not
clear that a Hall conductivity is relevant to questions of active-
mode damping, as Joule energy loss is ∝ J · E, and Jh ⊥ E.
However, even if it is, its effects would be qualitatively similar to
the Pedersen conductivity; as a result, the Hall conductivity will
not modify our qualitative arguments in the text regarding the
ionospheric layer thicknesses vis á vis the active-mode damping
length.

7 The Wolf number RWolf measures the number of sunspots, and
varies from RWolf ∼ 0 at Solar Minimum to RWolf ∼ 100–
200 at Solar Maximum, on the ∼ 11-year Solar Cycle (see, e.g.,
Ref. [59]).
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by an altitude of ∼ 160 km (lower F layer), and remain-
ing there until an altitude of ∼ 250 km. The Pedersen
conductivity then falls exponentially with increasing al-
titude, reaching σp ∼ 10−7 S/m ∼ 7 × 10−12 eV around
∼ 500 km (upper F layer). These values however exhibit
significant daily and longer-term (Solar Cycle) modula-
tions [57]: at times of low solar activity (RWolf ∼ 35),
night-time Pedersen conductivities are up to 2 orders of
magnitude smaller in the E layer than during the day, and
approximately an order of magnitude smaller in the F
layer [57]. At times of peak solar activity (RWolf ∼ 200),
there are regions where the Pedersen conductivity re-
mains σp ∼ (few) × 10−4 S/m at all hours of the day,
although the altitude and thickness of this layer varies:
it is in the E layer at ∼ 100 km during the day, and in
the lower F layer at ∼ 200 km at night [57]. Although
approximate and quite variable, these characteristic val-
ues are all very high compared to the dark-photon mass
range of interest σ � mA′ .

However, it is clear that the layer of high Pedersen
conductivity is only ∼ (few × 101)–102 km thick. By
contrast, a homogeneous, isotropic conductor with ho-
mogeneous, isotropic conductivity values on the order of
the peak Pedersen conductivity would exhibit an active-
mode damping length of order

δ ∼
√

2

mA′σ

∼ 1300 km×
√

10−18 eV

mA′
×
√

3× 10−4 S/m

σ
. (7)

Although this is not strictly the correct comparison (i.e.,
damping in an isotropic conductor with isotropic con-
ductivity of order σp is not the same as damping in an
anisotropic conductor with the smallest conductivity of
order σp), the fact that this characteristic damping length
exceeds (or, depending on mA′ , is comparable to) the
thickness of the relevant ionospheric layer where the Ped-
ersen conductivity has such large values, makes it ques-
tionable whether the interacting mode will damp within
the ionospheric layer in our dark-photon mass range of
interest.

The upshot of this discussion is that the ionosphere
always has high characteristic anisotropic conductivities
σ{q,p,h} � mA′ , within some thickness. However, only
the parallel conductivity σq attains values sufficiently
large that an isotropic conductor with the same conduc-
tivity would result in guaranteed damping of the inter-
acting mode within the thickness of the ionospheric lay-
ers throughout the whole mass range in which our signal
computation is valid; see Sec. II B 6. On the other hand,
for mA′ . (few)× 10−16 eV, an isotropic conductivity of
the same size as typical mid-Solar-Cycle peak Pedersen
conductivity would not necessarily be sufficient to signif-
icantly damp the interacting mode within the thickness
of the ionosphere; see again the discussion in Sec. II B 6.
As a result, we will hedge our modeling of the ionosphere,
and consider two possible cases: (a) the ionosphere does

act to completely damp the interacting mode within its
thickness; and (b) it does not, so we must consider the
medium beyond the ionosphere.

4. Earth’s magnetosphere

The ionosphere is only a constituent part of the larger
magnetosphere, the region of space where the magnetic
field is dominated by the Earth’s own (mostly dipolar)
field. This is a complicated and highly dynamic environ-
ment, which in addition to the ionosphere, contains other
distinctive features. Just above the ionosphere is the so-
called plasmasphere (some sources define the ionosphere
as being the lower part of the plasmasphere), a region of
cold charged plasma (mostly originating from the Solar
Wind) which can extend up to a few Earth radii from
the surface. The outer edge of this region is defined by
a steep decline in plasma density, dubbed the plasma-
pause [60]. In addition, the magnetosphere contains the
two Van Allen radiation belts, which are regions of highly
energetic electrons and protons trapped by the Earth’s
magnetic field. The inner belt, located at 1–3 Earth radii,
is relatively stable, while the outer belt, located at 3–7
Earth radii, can vary significantly in response to Solar ac-
tivity [61]. Finally, the boundary of the magnetosphere,
the magnetopause, marks the outset of the interplanetary
medium (see next subsection), where the dominant mag-
netic field is that of the Sun. The magnetopause has a
location and shape that is highly variable and depends on
the prevailing state of the Solar Wind; generally, it takes
a highly aspherical tear-drop-like shape that extends up
to 10 Earth radii in the up-stream direction of the So-
lar Wind (i.e., toward the Sun) and up to 200 Earth
radii in the downstream direction (i.e., away from the
Sun) [62, 63]. For the purposes of this current work, we
do not attempt to explicitly account for this environmen-
tal complexity; instead, we will argue that the relevant
part of the signal we have found should be independent
of these details (see Sec. III C).

5. Interplanetary medium

Beyond the Earth’s magnetopause lies the interplane-
tary medium which permeates the Solar System. The
interplanetary medium consists of a hot collisionless
plasma consisting of fast-moving electrons, and ions
streaming outward from the Sun at a few hundred km/s.
This plasma will also damp low-frequency interacting
photon modes.

The interplanetary medium electron number density in
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the vicinity of the Earth is, on average,8,9 ne ∼ 5 cm−3,
while the electron temperature is Te ∼ 105 K [64, 69,
70]. This implies an electron-ion collision frequency of
roughly [34]

ν =
4
√

2πα2ne

3
√
meT 3

e

ln ΛC ∼ 10−20 eV, (8)

where the Coulomb logarithm can be estimated as [34]

ln ΛC =
1

2
ln

(
4πT 3

e

α3ne

)
≈ 27. (9)

This collision frequency lies below the dark-photon mass
range of interest to us in this work; the plasma can thus
be treated as collisionless.

The ionic Solar Wind flowing out from the Sun car-
ries with it Solar magnetic field lines [71], leading to a
characteristic magnetic field in the vicinity of the Earth
(outside the magnetopause) of around B� ∼ 5 nT [70].
This implies a cyclotron frequency for the electrons of

ωc =
eB�
me

∼ 6× 10−13 eV, (10)

which lies far below the characteristic electron plasma
frequency of10

ωp =

√
4πneα

me
∼ 10−10 eV, (11)

or fp ≈ 20 kHz. Therefore the effects of the magnetic
field can be neglected as well.

The primary effect of the plasma will thus be just to
add an effective mass ωp � mA′ to the dispersion rela-
tion of interacting modes in the interplanetary medium
(see Appendix A for more nuanced discussion). Inter-
acting modes in the medium with frequencies below ωp
will not propagate; they will instead be damped over the
characteristic scale δ ∼ 1/ωp ∼ 2 km � LSolar System.
As this is an extremely short length-scale compared to
characteristic distances in the Solar System, it is thus
safe to assume that the interacting mode of the photon–
dark-photon system throughout our entire mass range of
interest is effectively damped out completely within the
interplanetary medium.

8 Large upward transitory excursions by factors of ∼ 10 are of
course seen during solar storm events, such as flares or Coronal
Mass Ejections [64–67].

9 Voyager mission measurements indicate that the interplane-
tary medium maintains an electron and ion density n &
10−3 cm−3 [68] all the way out to the heliopause, some ∼ 100 AU
from Earth.

10 The charged ion plasma frequency is of course a factor of√
mp/me ∼

√
1800 smaller.

6. Summary

Here we summarize the relevant features of the near-
Earth environment discussed in this section, and outline
the mass range of validity for our models of the envi-
ronment used in Sec. III. As we are considering the ef-
fects of ultralight dark-photon dark matter, our discus-
sion will be restricted to masses mA′ & 10−21 eV (i.e.,
f ∼ 2.5 × 10−7 Hz) which are sufficiently large to al-
low for observed small-scale dark-matter structure [72–
75]. On the other hand, the signal derived in Sec. III
crucially relies on the Compton wavelength of the dark
matter being larger than the radius of the Earth, so we
will also restrict to masses mA′ . 3 × 10−14 eV (i.e.,
f . 7 Hz). Throughout this whole mass range, the in-
nermost layers of the Earth, which are O(1000 km) deep
(see Tab. I), are sufficiently conductive and thick to damp
the active photon mode. The lower atmosphere, on the
other hand, acts as a relatively poor conductor through-
out this range in the sense that the active-mode skin-
depth greatly exceeds the radius of the Earth: the lower
atmosphere thus contributes negligible damping to pho-
ton modes. The effects of the ionosphere present a more
complicated situation however, as the ionospheric lay-
ers have a highly anisotropic conductivity. For masses
mA′ & (few) × 10−16 eV [i.e., f & (few) × 10−2 Hz], the
ionospheric layers are thick enough that the active pho-
ton mode would be efficiently damped within the iono-
sphere, even using a conservative skin-depth estimate
based on the Pedersen conductivity. However, for masses
mA′ . (few) × 10−16 eV, the Pedersen conductivity be-
comes sufficiently low that the anisotropy of the iono-
sphere must be accounted for and the damping of active
photon modes is not guaranteed. Finally, in this case,
the interplanetary medium beyond the ionosphere acts
as a plasma with high plasma frequency for all relevant
masses; it will thus damp the active photon mode for the
entire mass range 10−21 eV . mA′ . 3× 10−14 eV.

In summary then, for (few) × 10−16 eV . mA′ .
3 × 10−14 eV, the atmospheric gap between the Earth
and ionosphere represents a cavity between two active-
mode-damping layers; on the other hand, for 10−21 eV .
mA′ . (few)× 10−16 eV, the damping effects of the iono-
sphere are not guaranteed, but the gap between the Earth
and the Earth’s magnetopause represents a cavity be-
tween two active-mode-damping layers. The situation
right around mA′ ∼ (few)× 10−16 eV may be fairly com-
plicated; however, this possibly complicated region of
parameter space lies above the mass range we consider
explicitly in our search for this signal in this work (see
Sec. IV) and Ref. [38].

III. SIGNAL

In this section, we derive the observable magnetic field
signal which the dark photon sources near the Earth’s
surface in the atmospheric cavity bounded by the Earth



10

itself below, and by either the ionosphere or the inter-
planetary medium above.

As discussed in Sec. II B, the Earth may be treated
as a good conductor in which the active mode of the
photon–dark-photon system is efficiently damped, while
the lower atmosphere is a region of relatively poor con-
ductivity where the active mode propagates almost with-
out attenuation. However, the effects of the ionosphere
above are more complicated, as this layer may or may
not be thick enough to act as an adequate shield for the
active mode. The interplanetary medium beyond this,
however, can be considered a plasma with a high plasma
frequency (i.e., much above our frequency range of inter-
est) and essentially infinite extent, and thus a good shield
for the active mode. Therefore, in order to remain ag-
nostic about the effect of the ionosphere, in this section
we compute the expected signal considering two different
idealized models for the environment near the Earth.

In both models, we idealize the Earth as a perfect con-
ductor, and the lower atmosphere as vacuum. In light of
the long active-mode damping length, we show in detail
in Appendix B that even having the conductivity as large
as σ ∼ mA′ in the lower atmosphere does not spoil the
assumption that this gap is effectively vacuum. For the
first model, we take the outer boundary of our geometry
to be the ionosphere, which we assume to be a perfectly
conducting spherical layer (i.e., a layer of sufficient thick-
ness to completely damp the active mode of the photon–
dark-photon system). That is, we take the vacuum at-
mospheric air gap to be sandwiched between two perfect
spherical conductors separated by a gap (the height of
the atmosphere) much less than the radius of the Earth.
For the second model, we ignore the ionosphere and mag-
netospheric environment, and take the outer boundary to
be the Earth’s aspherical magnetopause, assuming that
the interplanetary plasma medium beyond acts to com-
pletely damp the active mode of the photon–dark-photon
system at the location of the magnetopause.

In both cases, we find the same signal at leading or-
der: a monochromatic magnetic field signal with the spa-
tial dependence of a particular vector spherical harmonic
(VSH) [see Appendix D for VSH conventions] at the sur-
face of the Earth. In the aspherical case, additional mag-
netic field contributions appear, but they are in different
VSH components which can be easily distinguished from
the one of interest.

A key feature of our result is the characteristic length-
scale that determines the suppression of the dark-photon
signal. Similar to many other dark-photon observables,
our signal is suppressed by εmA′ [22, 34, 39–42]; on di-
mensional grounds, the factor of mA′ comes along with
a length-scale. In either model, our cavity has two such
scales: the radius of the Earth R, and the characteristic
size of the gap between the Earth and the outer bound-
ary (either the ionosphere or magnetopause) h. In the
case where the ionosphere functions as our outer bound-
ary, the latter is far smaller than former. A priori one
may expect that the suppression would be determined by

the shortest length-scale of the cavity, which in the case
where the ionosphere functions as the shield would be the
height of the atmosphere, h� R (see, e.g., comments in
Ref. [34]). However, we show that in both models the
observable magnetic field generated by the dark-photon
field is in fact suppressed by mA′R, not by mA′h!

In this section we proceed as follows: First, to moti-
vate the appearance of the mA′R dependence, as well as
to introduce some features of our Earth calculation, we
calculate the effect of a dark photon in a simple toy ex-
ample of a wide and squat cylindrical cavity hollowed
out of a perfect conductor; see also Appendix A.b of
Ref. [22]. Second, we calculate the magnetic field signal
in the vicinity of the Earth, for case of the first model
with a spherical, perfectly conducting outer boundary at
the ionosphere. Finally, we compute our signal in the
second model with an aspherical outer boundary of the
magnetosphere.

A. Toy example: cylindrical cavity

Consider a cylindrical cavity of radius R and height
L whose walls have infinite conductivity, in the presence
of a dark-photon field oriented along the axial symmetry
axis of the cylinder (which we will take to be the z-axis).
We will demonstrate that the magnetic field sourced by
the dark-photon field does not depend on the dimension
of the cavity L that is longitudinal to the dark-photon
field, but rather only on the transverse dimension R, even
if L� R.

Before proceeding, we note that unless otherwise spec-
ified, from this point onward in this paper, the ter-
minology ‘dark photon’ or ’dark-photon field’ refers to
the sterile state in the interaction basis, A′i. Also, be-
cause we work solely in the interaction basis from this
point onward, we will for notational simplicity drop the
subscript-i on both the sterile and interaction states in
the interaction basis: i.e., for the remainder of the body
of the paper, Ai ≡ A and A′i ≡ A′.

Our calculation will be based on the ‘effective back-
ground current’ approach for treating the effects of the
dark-photon field, which we will briefly outline here; see
Refs. [21, 22] and Appendix A 3 for careful treatments.
Because the sterile dark-photon field itself is unaffected
by the presence of a conductor or by the presence of
an interacting component to leading order in ε (see Ap-
pendix A), it is consistent when ε � 1 to neglect back-
reaction on the dark-photon field, and treat A′ as a
background field. In the interaction-basis Lagrangian,
Eq. (2), the terms L ⊃ −(Jµem − εm2

A′A′µ)Aµ appear.
It is thus clear that with A′ treated as a background
field at leading order, it acts to source observable elec-
tromagnetic fields in a manner indistinguishable from an
effective current given by

Jeff(x, t) = −εm2
A′A′(x, t). (12)

Note that we have written only spatial components here
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FIG. 2. Schematic view of the toy example cylindrical cavity
of poorly conducting material (white) of radius R and height
L� R hollowed out of a good conductor (gray). Also shown
are (1) the Ampèrian loop discussed in the text (red dashed
in top view; red markers in side view), which can be located
anywhere within the vertical height of the cavity along the
short dimension (as indicated by the pink arrows); (2) the ef-
fective current Jeff (blue arrows in side view), assuming that
the dark-photon field is perpendicular to the top and bottom
surfaces of the cavity; (3) the induced observable magnetic
field B (green arrows in top view); and (4) the Ampèrian
loop (dotted purple in the side view) that we consider for the
argument which we advance in footnote 11 that the displace-
ment current can be ignored (this loop runs along a straight
ray emanating from the center of the cavity in the top view).

because, in the non-relativistic limit ω � k, the effective
charge density vanishes, J0

eff → 0 (see Appendix A 3 for
a detailed discussion).

Before explicitly computing the electric and magnetic
field solutions, let us first explore a simple argument to
see why the result will depend on R but not L. Con-
sider a circular Ampèrian loop which runs around the
inner circumference of the cavity (parallel to the top and
bottom faces of the cavity); see Fig. 2. Assume the dark-
photon fieldA′ is aligned with the axial symmetry axis of
the cavity (i.e., perpendicular to the top and bottom sur-
faces). The magnetic field inside the conductor is sourced
by the effective background current density Jeff, and
must be axial on symmetry grounds. By the Ampère–
Maxwell law, the integrated magnetic field along this
loop,

∮
B ·dl ∼ BR, is equal to the current flux through

the surface it bounds,11
∫∫
dA·Jeff ∼ εm2

A′R2A′. There-
fore, we expect B ∼ εm2

A′RA′. If we normalize A′ to be
all of the dark matter, A′ ∼ √ρdm/mA′ , it follows that
the B field will be B ∼ εmA′R

√
ρdm; cf. the result at

Eq. (23), and the discussion immediately following. Note
that this argument does not depend on where in the short
geometrical dimension of the cavity the Ampèrian loop
is located: the answer is independent of L [22].

Note that if A′ were not perfectly aligned with the
symmetry axis ŝ of the cylinder, the above parametric
argument would still go through [up to O(1) geometrical
factors], with one exception: there would be an addi-

tional angular suppression B ∝ Â′ · ŝ. Unless the back-
ground dark-photon field is nearly perpendicular to the
symmetry axis of the cylinder (Â′ · ŝ . L/R), the axial
magnetic field is therefore still parametrically larger than
an estimate suppressed by the small length-scale L.

The intuitive lesson to draw from this discussion is
that the magnetic field amplitude depends on the sepa-
ration distance between the surfaces in which the screen-
ing currents that lie along the direction of the would-be
dark-photon electric field run.

Let us now find the quantitative solution to see that
this parametric argument holds. Given the effective cur-
rent described above, the full electric field solution must
satisfy

(∇2 − ∂2
t )E = ∂tJeff, ∇ ·E = 0. (13)

Assuming some boundary conditions for our problem, we
can decompose the full solution as

E = Einh +Ehom, (14)

where Einh is chosen to satisfy

(∇2 − ∂2
t )Einh = ∂tJeff, (15)

and Ehom is chosen to fulfill the boundary conditions on
the full solution, while satisfying

(∇2 − ∂2
t )Ehom = 0. (16)

Both contributions must also satisfy ∇ ·Einh/hom = 0.

11 Since we operate in the quasi-static limit mA′R � 1, the dis-
placement current term in the Ampère–Maxwell law can be ig-
nored at leading order. Consider the integral form of Faraday’s
law applied on the purple Ampèrian loop shown in the side view
in Fig. 2. Boundary conditions require that Ez vanishes at the
wall, and that the radial electric field must be zero near the top
and bottom cavity surfaces; we thus have

∮
E ·dl ∼ EL, where E

is the value of the vertical electric field near the center of the cav-
ity (which is similar to the generic value for Ez not in the vicinity
of the cavity walls). The Gaussian surface integral that appears
on the RHS of Faraday’s law is

∫∫
∂tB · dA ∼ mA′BRL, where

B is a representative value of the axial magnetic field. Therefore,
E ∼ (mA′R)B. The additional displacement current term in the
Ampère–Maxwell law that we ignored in the main text would
thus be

∫∫
∂tE · dA ∼ mA′R2E ∼ R(mA′R)2B, which clearly

only modifies the B field result at sub-leading order in mA′R.
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Neglecting the velocity of the dark photon, we may
write its effective current density as

Jeff(x, t) = −εm2
A′A′0e

−imA′ tẑ. (17)

Then we may take our inhomogeneous solution to be

Einh(x, t) = iεmA′A′0e
−imA′ tẑ. (18)

In accordance with the symmetries of the problem, we
will write our homogeneous solution as a linear combina-
tion

Ehom(x, t) = (aJ0(mA′r) + bY0(mA′r)) e−imA′ tẑ, (19)

for some constants a and b. Using the properties of the
(cylindrical) Bessel functions Jn and Yn, it is straightfor-
ward to show that Eq. (19) satisfies Eq. (16).

The two boundary conditions at the cavity walls deter-
mine a and b. Since the walls of the cavity are assumed to
have infinite conductivity, the z-component of the elec-
tric field must vanish at a radius r = R (recall, we are
working in the interaction basis). Moreover, the electric
field must be regular at the origin r = 0. The latter

condition forces b = 0, and the former then requires

a = − iεmA′A′0
J0(mA′R)

. (20)

This means that the full solution for the electric field
inside the cavity is [22]

E(x, t) = iεmA′A′0

(
1− J0(mA′r)

J0(mA′R)

)
e−imA′ tẑ. (21)

The corresponding magnetic field is [22]

B(x, t) = − i

mA′
∇×E (22)

= −εmA′A′0
J1(mA′r)

J0(mA′R)
e−imA′ tφ̂. (23)

Near the cavity walls and in the limit mA′R � 1, this
axial magnetic field oscillates with magnitude |B| =
εm2

A′RA′0/3. Normalizing A′0 to be all of the DM, this re-
sult has the exact same parametric scalings as the simple
Ampèrian-loop argument advanced above.

Note that neither Eq. (21) nor Eq. (23) depend explic-
itly on the dimension of the cavity L along the direction
of A′. This means that even if the cylinder is very squat
(i.e., L� R), the observable fields inside the cavity will
suffer no additional suppression. This effect is not par-
ticular to this geometry. For instance, for a rectilinear
cavity of side lengths Lx, Ly, and Lz, it can be shown
that the magnetic field sourced by a dark photon oriented
along the z-direction is12

B = −16εm2
A′A′0

∑
p,q odd

p
Lx

cos
(
πpx
Lx

)
sin
(
πqy
Ly

)
ŷ − q

Ly
sin
(
πpx
Lx

)
cos
(
πqy
Ly

)
x̂

πpq
(
m2
A′ − π2p2

L2
x
− π2q2

L2
y

) e−imA′ t. (24)

Again, this expression does not depend on Lz, so that
even if Lz � Lx, Ly, the magnetic field will not be sup-
pressed by the shortest length-scale of the cavity. In fact,
this is generically true regardless of the dark-photon ori-
entation: typically, the z-component of the dark-photon
field will be nonzero, and the magnetic field contribution
generated by the z-component of A′ will still take the
form of Eq. (24), but with A′0 → A′ · ẑ. In order to
suppress this field contribution by an amount equivalent

12 This result is not derived using the above approach of break-
ing down the electric field into homogeneous and inhomogeneous
contributions. Rather, it is derived using a cavity mode decom-
position (cf. Appendix A.c of Ref. [22]). A similar approach can
be applied to the cylindrical cavity and will give an equivalent
result to Eq. (23), but in the form of a more complicated sum.

to making the geometrical suppression factor ∼ mA′Lz
as opposed to ∼ mA′ ×min{Lx, Ly} would require close
alignment between A′ and the xy-plane, to within an
angle of O(Lz/min{Lx, Ly})� 1.

B. Earth model 1: ionosphere as boundary

We now consider the computation of the dark-photon
signal in our first idealized model of the electrical envi-
ronment near the Earth: a vacuum cavity bounded be-
tween two concentric spherical walls. This is the physical
situation in the vicinity of the Earth if, in fact, the iono-
sphere acts as an effective shield for the active mode of
the photon–dark-photon system.

For the purposes of this computation, we approximate
the lower atmosphere as a cavity of zero conductivity



13

bounded by an inner spherical wall of radius R� 1/mA′

(the Earth’s surface) and an outer spherical wall of radius
L = R+h (the ionosphere), where h� R (see also §8.9 of
Ref. [50] for a similar model for discussing the Schumann
resonances [76]). We will take both the ground and the
ionosphere to have infinite conductivity in our calcula-
tion; see Appendix B for a discussion of modifications to
this picture if finite conductivity effects are included.

Before proceeding to the calculation, we reiterate the
point that the result will depend only on R, and not
h, with another simple argument based on the Ampère–
Maxwell law. As above, we will treat the dark photon
as an effective background current. Suppose for sim-
plicity that A′ is oriented along the rotational axis of
the Earth (which we take to be the z-axis). Consider
the Gaussian surface which covers the northern hemi-
sphere of the Earth (but lies just outside the inner con-
ductive sphere); see the red hemisphere in Fig. 3. The
boundary of this surface is an Ampèrian loop in the
plane of the Earth’s equator. By the Ampère–Maxwell
law, the integrated magnetic field along this loop, once
again

∮
B · dl ∼ BR, is equal to the current flux

through this surface,13 which is given parametrically by∫∫
Jeff · dA ∼ R2Jeff ∼ εm2

A′R2A′ ∼ εmA′R2√ρdm, The
latter expression is obtained assuming the dark photon
is all of the dark matter, and throughout this series of
estimates we neglected O(1) geometric factors, and cor-
rections ∼ h/R. Clearly we once again arrive at the
conclusion that B ∼ εm2

A′RA′ ∼ εmA′R
√
ρdm at leading

order, up to O(1) factors. The leading order answer is
independent of h, the height of the atmosphere. Thus, if
the height of the atmosphere is varied, it will not have
any effect on the strength of the magnetic field at the
equator. In particular, we emphasize that the field is not
suppressed by mA′h (� mA′R)!

Note that the intuition developed in Sec. III A regard-
ing the relevant length-scale that enters the geometrical
suppression factor holds up here too, albeit with one mi-
nor modification. Previously we argued that the relevant
distance scale is the separation between the surfaces on
which the screening currents that lie along the direction
of the would-be dark-photon electric field run. In the ge-
ometry here, screening currents run in opposite directions
in the inner and outer shielding layers, so one should not
consider the gap h between the inner and outer shields to
be the relevant separation distance, as the magnetic field
contributions from those opposite current directions will
constructively superpose in the gap. Rather, the relevant
separation distance is that between like-sense screening
currents; here, that is approximately the radius of the
Earth R (up to O(h) corrections), which is indeed the
length-scale entering the suppression factor.

13 Again, we ignore the higher-order-in-(mA′R) displacement cur-
rent by virtue of an argument very similar to that advanced in
footnote 11, modified as required to account for the different
geometry here.

FIG. 3. Sketch of the Ampèrian loop setup for the Earth (not
to scale). The inner conducting sphere of the Earth (radius R)
is shown as the blue sphere. The solid green arrows represent
the axial magnetic field on the Equator. The thick solid red
line at the Equator is the Ampèrian loop discussed in the text,
with the red hemisphere being the Gaussian surface spanned
by the loop through which the effective current Jeff (yellow
arrows), here assumed to point along the Earth’s rotational
axis, is integrated. The assumed conducting ionospheric layer
is represented by the outer enveloping gray sphere, a dis-
tance h � R above the surface of the Earth sphere. The
Ampèrian loop could be located anywhere in the gap between
the Earth sphere and the ionospheric conductive layer with-
out modifying the leading-order result of the Ampèrian loop
argument given in the text [i.e., this would only induce cor-
rections ∝ (h/R)n to the leading order B field]. Note that the
dark-photon-induced effective current is shown here as aligned
with the rotational axis of the Earth strictly for the sake of
visualization; our search (see Sec. IV) marginalizes over the
spatial orientation (i.e., polarization state) of the dark-photon
field.

Let us proceed with the quantitative calculation, which
will confirm the foregoing parametric argument. Because
we assume spherical symmetry of the Earth’s surface and
ionospheric layer, whether or not the Earth is rotating is
irrelevant for the purposes of computing the fields at a
fixed location in absolute, inertial coordinates (i.e., coor-
dinates fixed to the locations of the average positions of
a set of distant stars). To begin with then, we work in
inertial spherical coordinates with the z-axis aligned to
the Earth’s rotational axis, and compute the signal at a
fixed inertial position near the Earth’s surface. In this
case, the inertial spherical coordinate θ corresponds to a
fixed latitude on the Earth’s surface, but the geographi-
cal longitude to which the inertial spherical co-ordinate φ
corresponds on the Earth’s surface evolves as the Earth
rotates in the inertial co-ordinate frame. Accounting for
this to find the signal at a fixed location on the Earth’s
surface (i.e., at a fixed location in the body-fixed rotating
frame) will however be trivial once we have the signal in
inertial coordinates, and we defer this correction to the
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end of the computation.

We will take the orientation of the dark-photon vector
potentialA′ to be generic and, for convenience, introduce
the notation

A′+ = − 1√
2

(
A′x − iA′y

)
, (25)

A′− = + 1√
2

(
A′x + iA′y

)
, (26)

A′0 = A′z, (27)

where A′x, A′y, and A′z are the Cartesian compo-
nents of the dark-photon vector potential in the inertial
frame. Because we assume that the dark photon is non-
relativistic, the A′i are constant over the whole surface
of the Earth; i.e., the dark-photon de Broglie wavelength
λdB = 2π/(mA′vdm) is much larger than the radius of
the Earth: 3 × 106 . λdB/R . 6 × 107 in our mass
range of interest. With this notation, we can then use the
VSH identities at Eqs. (D24)–(D26) to write the effective
background current corresponding to the dark photon in
terms of vector spherical harmonics (VSH) as14

Jeff = −
√

4π

3
εm2

A′

1∑
m=−1

A′m(Y1m + Ψ1m)e−imA′ t,

(28)

where we have employed the notation A′±1 ≡ A′±. This
form of the effective current is applicable everywhere in
the cavity gap between the surface of the Earth and the
ionosphere. Note that the appearance in Eq. (28) of the
form Vm ≡ Y1m + Ψ1m is easily understood: V0 ∝ ẑ,
and V±1 ∝ ∓(x̂± iŷ); see Appendix D.

As in Sec. III A, we proceed by computing the homo-
geneous and inhomogeneous contributions to the electric
field inside the cavity. The inhomogeneous contribution
will be simply

Einh =

√
4π

3
iεmA′

1∑
m=−1

A′m(Y1m + Ψ1m)e−imA′ t.

(29)

In terms of the VSH, the homogeneous contribution can
be decomposed into a ‘transverse electric’ (TE) and a
‘transverse magnetic’ (TM) contribution [50]:15

Ehom = ETE +ETM, (30)

14 We follow convention and label the VSH with degree ` and order
m; the order symbol m should not be confused with the dark-
photon mass, which we label mA′ .

15 These modes are ‘transverse’ in the sense that their electric
[Eq. (31)] and magnetic [Eq. (34)] fields are, respectively, tan-
gent to the sphere: r̂ ·ETE = r̂ ·BTM = 0.

where

ETE ≡
∑
`m

f`m(mA′r)Φ`me
−imA′ t, (31)

ETM ≡
∑
`m

1

mA′
∇× (g`m(mA′r)Φ`m) e−imA′ t

=
∑
`m

 −
`(`+ 1)g`m(mA′r)

mA′r
Y`m

−
(
g′`m(mA′r) +

g`m(mA′r)

mA′r

)
Ψ`m


× e−imA′ t, (32)

and where the VSH Laplacian properties Eqs. (D15)–
(D17) can easily be used to show that f`m and g`m must
each be linear combinations of spherical Bessel functions
j` and spherical Neumann functions y`, in order to satisfy
Eq. (16).16

Using the VSH curl properties Eqs. (D12)–(D14), the
corresponding magnetic fields can be computed to be

BTE = −i
∑
`m

1

mA′
∇× (f`m(mA′r)Φ`m) e−imA′ t

= −i
∑
`m

 −
`(`+ 1)f`m(mA′r)

mA′r
Y`m

−
(
f ′`m(mA′r) +

f`m(mA′r)

mA′r

)
Ψ`m


× e−imA′ t, (33)

BTM = −i
∑
`m

g`m(mA′r)Φ`me
−imA′ t. (34)

Note that Binh vanishes under our approximations since
Einh points in a fixed direction and is constant through-
out the atmospheric air gap.

Because Eq. (29) contains no Φ`m components and the
boundary geometry is spherical, it is clear that only the
` = 1 TM homogeneous components will be relevant for
our computation in this section. That is, g`m = 0 for
` 6= 1, and f`m = 0 for all `,m. Let us then write

g1m(x) = amj1(x) + bmx
3
0y1(x) [x0 ≡ mA′R] (35)

for m = 0,±1; here am and bm are constants, and we
have introduced a dimensionless scale factor x0 for later
convenience (see footnote 19).

Electromagnetic boundary conditions enforce that the
total electric field tangent to a perfectly conducting
boundary must vanish (recall, we work in the interac-
tion basis): that is, we must set E‖ = 0 on the ground
and at the ionosphere. Since Y1m ∝ r̂ points only radi-
ally [cf. Eq. (D1)], the boundary conditions as applied to

16 Recall that for F` ∈ {j`, y`} we have [77]

x2F ′′` + 2xF ′` +
(
x2 − `(`+ 1)

)
F` = 0.
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the field expansions we have developed are such that the
coefficient of Ψ1m in the total electric field must vanish
both at r = R, and at r = R+h.17 Imposing these condi-
tions yields algebraically complicated expressions for am
and bm in terms of the spherical Bessel and Neumann
functions; see Eqs. (C1) and (C2) in Appendix C. Since
we will be interested in the limits mA′R� 1 and h� R,
we may use the small-x limits of the spherical Bessel
and Neumann functions, j1(x) ∼ (x/3) − (x3/30) and
y1(x) ∼ −x−2 − 1/2, respectively, to expand Eqs. (C1)
and (C2). Retaining leading terms and the first few cor-
rections yields18,19

am =
√

3π iεmA′A′m

[
1 +

1

3
(mA′R)

2

(
1 +

h

R
+

2h2

3R2

)]
,

(36)

bm = − 4
√
π

15
√

3
iεmA′A′m (mA′R)

2

(
1 +

5h

2R
+

5h2

3R2

)
.

(37)

Substituting Eqs. (36) and (37) into Eq. (34), we find
that, to leading order in mA′R, the magnetic field at
Ω = (θ, φ) is

B(Ω, t) =

√
π

3
εm2

A′R
1∑

m=−1

A′mΦ1m(Ω)e−imA′ t. (38)

Note that, as advertised, the magnetic field signal is sup-
pressed not by mA′h, but rather by mA′R. Note also
that it has exactly the parametric scaling advanced by
the simple Ampèrian loop argument above (Φ10 ∝ φ̂ on
the Equator at θ = π/2).

It remains to account for the rotation of the Earth;
see also Ref. [78] for recent discussion. The speed of
rotational motion of a point fixed to the surface of the
Earth is v � c, so there are no relativistic field-mixing
effects for which we need to account; we need only relate
the (Earth-fixed frame) longitude on the Earth’s surface,

φ̃, to the azimuthal inertial co-ordinate φ. This is trivial:

φ = φ̃+ 2πfdt, (39)

17 Of course, a non-zero component of E ∝ Y`m ∝ r̂ merely in-
dicates the presence of an induced surface charge density at the
conductive boundaries.

18 To compute the leading-order magnetic field, we require only the
first term ∝ (mA′R)0 in am in Eq. (36), and we can set bm = 0.
For completeness, we have kept those higher-order terms here
which would be required to calculate the leading-order piece of
the electric field that is ∝ Ψ1m and have it satisfy the boundary
conditions approximately.

19 The x3
0 which we explicitly factored out in Eq. (35) preserves a

common small-parameter power counting in (mA′R) for am and
bm: since, parametrically, y1(x) ∼ x−3j1(x) at small x, it follows
that for x ≈ x0 � 1, we have fm(x0) ∼ x0(am/3 − bm) + · · · .
Therefore, like powers of x0 = mA′R appearing in am and bm
contribute at the same order to fm(x ≈ x0).

where fd = (sidereal day)−1. As measured with respect
to the inertial reference frame, the station at a fixed lo-
cation Ω̃ = (θ̃, φ̃) on the Earth’s surface thus sees the
magnetic field evolution

B(Ω̃, t) = B(θ = θ̃, φ = φ̃+ 2πfdt, t). (40)

The properties of the VSH are such that

Φ1m(θ = θ̃, φ = φ̃+ 2πfdt) = e2πifdtΦ̃1m(Ω̃), (41)

where Φ̃1m(Ω̃) are the VSH as constructed by the ob-
server using the body-fixed reference frame tied rigidly
to the rotating Earth.20 In the body-fixed frame, which
is of course the most convenient frame to use to compare
to fields measured at stations fixed to the surface of the
rotating Earth, the observable signal at Ω̃ = (θ̃, φ̃) is thus
given by the real part of

B̃(Ω̃, t) =

√
π

3
εm2

A′R
1∑

m=−1

A′mΦ̃1m(Ω̃)e−i(mA′−2πfdm)t.

(42)

A comment on the temporal coherence of this sig-
nal [Eq. (42)] is in order; see also Sec. II A. Thus far,
we have assumed an exactly monochromatic oscillatory
time dependence ∼ e−imA′ t for the dark-photon back-
ground field; this dependence leads directly to the ex-
actly monochromatic magnetic field signal ∼ e−imA′ t.
In reality, the dark-photon field is the vector sum of
multiple plane-wave components that have both an av-
erage speed and a velocity dispersion on the order of
vdm ∼ 10−3. As a result, the dark-photon field can only
be treated as essentially monochromatic on timescales
up to the coherence time Tcoh ∼ 2π/(mA′v2

dm) ∼ 106Tosc,
where Tosc is the dark-photon oscillation period (see, e.g.,
Refs. [22, 79]). For our mass range of interest, we have
Tcoh ∼ 2–45 yr. Therefore, as written, Eq. (42) is appli-
cable for times t . Tcoh; both the temporal phase and po-
larization of the signal will be randomized on timescales
& Tcoh.

Because Tcoh > 1 yr, the motion of the Earth around
the Sun takes place within the same coherence patch
of the dark-photon field, and so we expect side-bands
in the signal at frequencies f = f0 ± 1/(yr) where
f0 = mA′/(2π). Moreover, again because Tcoh > 1 yr,
even given a single coherence time worth of data, these
side-bands are in principle resolvable outside the intrinsic
∆f/f0 ∼ v2

dm ∼ 10−6 width of the main signal at f = f0.

20 For the avoidance of any doubt as to the construction we intend:
the Cartesian components of the VSH in the body-fixed frame
are obtained using the exact same formal definitions as for the
Cartesian components of the VSH in the inertial frame that are
given in Appendix D, by replacing (θ, φ)→ (θ̃, φ̃). The difference
between the two constructions is of course that the Cartesian
components in the body-fixed frame are defined with respect to
a set of basis vectors that rotate in the inertial frame.
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However, it is straightforward to see that the amplitude
of the side-bands is much smaller than the amplitude of
the signal at f = f0: because the spatial gradients of
the field are only probed by the Earth’s motion around
the Sun over length-scales ∼ AU, while the dark-photon
field has O(1) fractional spatial gradients only on length-
scales ∼ 1/(mA′vdm), the fractional side-band amplitude
can be estimated as ∼ (1 AU)× (mA′vdm) . 5× 10−2 for
mA′ . 7 × 10−17 eV, assuming vdm ∼ 10−3. Additional
side-bands at f = f0 ± 1/(day) would appear owing to
the rotation of the Earth causing the individual stations
to probe the dark-photon field gradients, but they are
even more severely suppressed by ∼ R× (mA′vdm); note
that this is separate from the rotational effects on the
vectorial orientation of the signal that are accounted for
at Eqs. (39)–(42).

C. Earth model 2: interplanetary medium as
boundary

In this subsection, we consider our second, less ideal-
ized model for the electrical environment near the Earth,
in which we discard the assumption from Sec. III B that
the ionosphere is an idealized spherical surface on which
the active mode is damped effectively. Instead, the model
is now as follows: we continue to take the inner bound-
ary of the region of interest for the computation of the
dark-matter-induced magnetic field signal to be a spher-
ical ball of infinite conductivity slightly interior to the
surface of the Earth, which effectively damps the active
mode. The outer boundary of the region of interest is
however now taken to be the aspherical magnetopause
(see Sec. II B 4), which marks the onset of the interplan-
etary medium where the plasma frequency is high and
the active mode is damped effectively.

We account for the asphericity of the outer boundary in
our computation for this model, but we show that it does
not significantly impact the signal so long as mA′L� 1,
where L is the characteristic radial distance to the mag-
netopause, as measured from the center of the Earth. In
the worst case scenario, the magnetopause can extend as
far as L ∼ 200R (with R still the Earth radius) in the
direction downwind of the Earth with respect to the flow
of the Solar Wind. Since we consider mA′ . 7×10−17 eV,
then at worst we have mA′L . 0.5, which might be
slightly marginal at this upper end of our mass range
with this worst-case value of L. In the best-case scenario,
the magnetopause is only L ∼ 10R distant in the upwind
direction; then mA′L . 0.02 � 1 throughout our mass
range of interest. As such, we work in the mA′L � 1
limit, as it applies over the majority of our mass range,
and in all but the worst-case assumption about the value
of L that should be used.

The result of our computation of the leading-order
magnetic field in this section will show that the TM
contribution (in inertial coordinates) is still given pre-
cisely by Eq. (38) [which is easily modified to account

for rotation to obtain Eq. (42)], but that there are ad-
ditional TE contributions to the leading-order magnetic
field. However, as these TE contributions involve differ-
ent VSH components as compared to the TM contribu-
tions [cf. Eqs. (33) and (34)], they can be distinguished
from each other globally, and it suffices to search for the
TM signal.

We further argue at the end of this section that our
calculation here captures all the relevant physics, and
that our result is insensitive the details of any additional
varying conductive regions in the gap between the surface
of the Earth and the magnetopause.

The argument in this subsection will proceed as fol-
lows. First, we show that regardless of the shape of
the boundaries of effective shields for the active compo-
nents in this second model now under consideration, the
same leading-order electric field result derived for the first
model in Sec. III B applies, up to corrections at O(x2

0)
where x0 = mA′L with L defined as above. We recall
that this is a TM-type electric field, with a leading term
at O(x0

0), and we will show that the leading TE-type
contributions could only possibly appear at O(x2

0).
Second, we examine the implications of these realiza-

tions for the magnetic field. Performing a consistent per-
turbative expansion of the fields in powers of x0 and
applying Maxwell’s Equations, we show that the rela-
tive power counting for TM and TE field modes behaves
differently: for integer n, there is a fixed relationship be-
tween the TE electric field at O(xn0 ) and the TE magnetic
field at O(xn−1

0 ), while a TM electric field at O(xn0 ) has
a fixed relationship to a TM magnetic field at O(xn+1

0 ).
As such, because the leading electric field is TM and
O(x0

0), it uniquely fixes the leading TM magnetic field in
this second model at O(x1

0) to again be the same as that
that was found for the first model, Eq. (38). However,
the leading TE part of the magnetic field, necessarily
at O(x1

0) because the leading TE electric field can only
appear at O(x2

0), is not fixed by this argument since it re-
quires knowledge of the TE electric field at O(x2

0), which
we will not compute. However, for the reason noted in
the previous paragraph, there is actually not a strong
need to find this part of the magnetic field: it can be
distinguished globally from the TM mode, and the latter
can be searched for alone.

Before continuing to the computation proper, we note
that since we will still be interested in calculating the
magnetic field as measured at locations on the surface of
the Earth, which we model as a sphere of fixed radius R,
it is appropriate to continue to work in spherical coor-
dinates and employ VSH decompositions of the electric
and magnetic fields, even though the outer boundary of
the region of interest is no longer spherical in this model.

As in Sec. III B, we decompose the homogeneous elec-
tric and magnetic fields into TE and TM contributions

Ehom = ETE +ETM, (43)

Bhom = BTE +BTM, (44)

whose forms are defined by Eqs. (31)–(34), although the
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coefficient functions f`m and g`m of course differ in prin-
ciple in this case as compared to those in Sec. III B. Let
us define ξ = r/L, where L is taken to be the largest
radial distance from the center of the Earth to the mag-
netopause (L ∼ 200R), and fix the same value of L in the
definition of the scale x0 = mA′L, so that mA′r = x0ξ.
Since the largest radial dimension in the problem is L,
we have ξ . 1 for all relevant locations interior to the
magnetopause, while x0 is a fixed small parameter (see
discussion above) that we can use as the parameter in
formal power series expansions of the functions f`m and
g`m:

f`m(mA′r) ≡
∞∑
n=0

xn0f
(n)
`m (ξ), (45)

g`m(mA′r) ≡
∞∑
n=0

xn0 g
(n)
`m (ξ). (46)

Substituting Eqs. (45) and (46) into Eqs. (31)–(34) yields
a formal power series for the fields. For notational sim-

plicity, let E
(n)
TE and E

(n)
TM be fields defined to have the

same forms as those given in Eqs. (31) and (32), re-
spectively, but with the following replacements made:

f`m → f
(n)
`m , g`m → g

(n)
`m , and mA′r → ξ (note: we do

not mean mA′r → x0ξ; we account for powers of x0 sep-

arately below). Similarly, let B
(n)
TE and B

(n)
TM be defined

with the same replacements to the expressions appearing
at Eqs. (33) and (34), respectively. The formal power
series expansions of the fields can then be written as

ETE =
∞∑
n=0

xn0E
(n)
TE , (47)

BTM =

∞∑
n=0

xn0B
(n)
TM. (48)

Similar näıve manipulations would yield

ETM
?
=
∞∑
n=0

xn−1
0 E

(n)
TM, (49)

BTE
?
=
∞∑
n=0

xn−1
0 B

(n)
TE , (50)

where E
(n)
TM is determined completely by taking a deriva-

tive of B
(n)
TM, and B

(n)
TE is determined completely by tak-

ing a derivative of E
(n)
TE ; see Eqs. (32) and (33). However,

Eqs. (49) and (50) would appear to allow for TM electric
fields and TE magnetic fields at O(x−1

0 ), arising from the
n = 0 terms. But because the coefficients in flm and glm
that are fixed by boundary conditions can have at most
one power of εmA′ arising directly from the Lagrangian
couplings [cf. e.g., Eqs. (36) and (37)],21 any physical

21 This scaling is clear from the background current approach (see

field component ∝ x−1
0 would have a piece that either di-

verges or fails to go to zero as mA′ → 0; however, it is a
well-known fact [1], and clear from the interaction-basis
Lagrangian, Eq. (2), that all physical effects of the dark
photon must decouple as mA′ → 0 for fixed A′m. As a

result, it must be the case that E
(0)
TM = 0 and B

(0)
TE = 0,

and so the correct expressions are:

ETM =
∞∑
n=0

xn0E
(n+1)
TM , (51)

BTE =
∞∑
n=0

xn0B
(n+1)
TE . (52)

Synthesising this, the full homogeneous electric and
magnetic fields contributions at O(xn0 ) for n = 0, 1, . . .
are given by

E
(n)
hom = E

(n)
TE +E

(n+1)
TM , (53)

B
(n)
hom = B

(n+1)
TE +B

(n)
TM. (54)

We will now argue that the leading-order homogeneous
electric field is the same as one derived in Sec. III B. Re-
call that in the background-current approach that is ap-
plicable in the limit ε � 1, a dark-photon field can be
treated as an effective current Jeff that sources an in-
homogeneous electric field component that is given in
Earth-centered inertial spherical coordinates by

Einh =

√
4π

3
iεmA′

1∑
m=−1

A′m(Y1m + Ψ1m)e−imA′ t.

(55)

Nothing about that argument depends on the geometry
of the boundaries of the lower atmospheric ‘cavity’.

Where the geometry of the cavity does enter is in fix-
ing the homogeneous part of the electric field by virtue of
the boundary conditions that, for boundaries where the
active mode is efficiently damped, fix the components of
the electric field in the tangent plane to the boundary
surface to be zero everywhere on that surface. We argue
that it is actually possible to find a homogeneous field
solution that not only cancels the in-tangent-plane com-
ponents of Einh at the boundaries of the region of inter-
est, but (up to sub-leading corrections) actually cancels
Einh everywhere inside cavity, including on the bound-
aries, regardless of the boundary geometry. Because this

Appendix A 3): the dark-photon-sourced background current is
J ∼ εm2

A′A
′ which, in the long-wavelength (mA′L � 1) limit,

sources an inhomogeneous electric field E ∼ m−1
A′ J ∼ (εmA′ )A′.

This inhomogeneous field fixes all of the homogeneous parts of
the solution via boundary conditions; since electric field super-
position is linear, all homogeneous field components thus have
a single power of (εmA′ ). Any additional powers of mA′ must
appear with a length-scale ∼ mA′L = x0.
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is one solution to Maxwell’s Equations that satisfies the
boundary conditions, uniqueness theorems then dictate
that it is the only solution, at least up to sub-leading
corrections.

Let us see how this works: using the VSH curl proper-
ties in Appendix D, it is easy to see that ∇× (rΦ1m) =
−2(Y1m + Ψ1m); therefore, Einh can be written as

Einh = −
√
π

3
iεmA′A′m

1∑
m=−1

∇× (rΦ1m) e−imA′ t (56)

= −
√
π

3
iεA′m

1∑
m=−1

∇× (x0ξΦ1m) e−imA′ t. (57)

This form of the inhomogeneous solution is suggestive of
an ` = 1 TM electric field solution to the homogeneous
equation, which suggests that we may be able to arrange
the cancellation noted above using an ` = 1 homogeneous
TM electric field.

To make this precise, we must return to the TM electric
field definition at Eq. (32), and recall that we have more
information about the function g`m appearing in that
definition than simply its power series expansion in terms
of x0 given at Eq. (46). In particular, g`m must be a linear
combination of spherical Bessel and spherical Neumann
functions, which we can write as [cf. Eq. (35) for ` = 1]

g`m(x) ≡ a`mj`(x) + b`mx
2`+1
0 y`(x). (58)

Taking x = mA′r = x0ξ, expanding the coefficients as

a`m =
∞∑
p=0

xp0 · a
(p)
`m, b`m =

∞∑
p=0

xp0 · b
(p)
`m, (59)

and using standard power-series expansions22 for the j`
and y`, it is reasonably straightforward to show that

g`m(mA′r) (60)

= x`0

∞∑
k=0

∞∑
p=0

xp+2k
0

[
a

(p)
`mc

a
`kξ

`+2k + b
(p)
`mc

b
`kξ
−`−1+2k

]
,

where c
{a,b}
`k are known numerical coefficients.23

We need to read off one specific result from Eq. (60):

g
(1)
1m(ξ) =

a
(0)
1m

3
ξ − b(0)

1mξ
−2; (61)

22 Specifically, we use the series expansion for the cylindrical Bessel
function Jν given at Eq. 8.402 in Ref. [80] for |arg z < π|,

Jν(z) = zν
√

2

π

∞∑
k=0

Ckν z
2k; Ckν ≡

√
π(−1)k2−2k−ν−1/2

Γ[k + 1]Γ[ν + k + 1]
,

along with the definitions [77] j`(x) ≡
√
π/(2x) J`+1/2(x) and

y`(x) ≡ (−1)`+1
√
π/(2x) J−`−1/2(x).

23 These can be read directly from the series expansion and defini-
tions in footnote 22 and are ca`k ≡ C

k
`+1/2

and cb`k ≡ C
k
−l−1/2

.

since g
(1)
1m contains a term that is ∝ ξ, we can indeed

exactly cancel Einh everywhere at order x0
0 using an ` = 1

E
(1)
TM electric field for which we have set [cf. Eqs. (36) and

(37)]

a
(0)
1m =

√
3πiεmA′A′m, b

(0)
1m = 0, (62)

where we included a factor of mA′ in a
(0)
1m that arises from

the leading m−1
A′ in the definition at Eq. (32).

In other words, the leading-order homogeneous electric
field that exactly cancels the inhomogeneous field every-
where in the cavity volume (including on the boundary
surfaces) is given by

E
(0)
hom = E

(1)
TM =

√
π

3
iεA′m

1∑
m=−1

∇× (rΦ1m) e−imA′ t.

(63)

Moreover, g
(1)
`m(ξ) = 0 for all ` 6= 1; and since no E

(0)
TE field

was required, f
(0)
`m = 0 for all `,m. To avoid confusion,

we emphasize that this E
(0)
hom field means that the total

electric field Etot = Einh+Ehom has no term ∝ x0
0: it has

been exactly cancelled out between the inhomogeneous
and homogeneous parts of the solution.

It remains to understand the order in x0 at which cor-
rections to this leading-order homogeneous electric field
appear. Irrespective of the boundary geometry, it is en-
tirely consistent with the boundary conditions and the

existing lower-order field solution E
(0)
hom that was required

to cancel the inhomogeneous field, to set a
(1)
`m = b

(1)
`m = 0

in Eq. (60) for all `,m, which sets E
(2)
TM = 0, and also

to then independently set E
(1)
TE = 0 such that E

(1)
hom = 0

everywhere, including on the boundary. Formally, the
reason that this is possible is that the formal power se-
ries at Eq. (60) skips orders of x0 in the sum over k (i.e.,∑
k x

2k
0 [ · · · ] appears); this fact ultimately arises from a

property of the spherical Bessel function power series ex-
pressions (and thus also holds for the cognate f`m func-
tions).

It is not however consistent to simply zero out the

higher-order corrections at E
(2)
hom: we already know that

an E
(3)
TM component to the homogeneous solution exists

by virtue of the fact that a
(0)
1m 6= 0.24 There are however

other electric field contributions at O(x2
0) [e.g., the TM

modes from the terms in Eq. (60) with p = 1, ` = 2, k = 0
or p = 0, ` = 3, k = 0; and also TE modes] that are avail-
able to satisfy the boundary condition that the full O(x2

0)
field components in the tangent-plane to the boundary
must be canceled on all the cavity boundaries. For gen-
eral boundary geometries that lack spherical symmetry,

24 This is because the p = 0, k = 1, ` = 1 term in Eq. (60) depends

on a
(0)
1m and contributes to g

(3)
1m, which fixes E

(3)
TM.
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engineering that cancellation will require both TM and
TE fields at multiple `,m values. We do not attempt to
calculate these corrections in closed form (the problem
is in general analytically intractable); for reasons to be-
come clear below, it suffices for us to have shown that

E
(1)
hom = 0 = E

(2)
TM = E

(1)
TE, but we note that the next-

order fields are generally non-zero.
Let us now understand the implications of these obser-

vations for the magnetic field. We have seen that E
(1)
TM

is given by Eq. (63), and that E
(0)
TM, E

(0)
TE, and E

(1)
TE must

vanish. The leading order contribution to the magnetic
field will thus be

B
(1)
hom = B

(2)
TE +B

(1)
TM. (64)

Since E
(1)
TM fixes B

(1)
TM uniquely and we know the form of

E
(1)
TM, we can compute

B
(1)
TM =

√
π

3
εmA′ξ

1∑
m=−1

A′mΦ1me
−imA′ t. (65)

In general, B
(2)
TE is non-zero for all except the most sim-

ple spherically symmetric boundary geometries because

E
(2)
TE 6= 0 generally, and this gives another contribution

to B
(1)
hom. However, TE and TM magnetic fields have

different spatial patterns globally, and so it is in prin-
ciple possible to distinguish these contributions to the
signal with sufficient sampling of the field. We are sat-
isfied that a signal given by Eq. (65) exists regardless of
the boundary geometry; because it can be distinguished
from any possible additional signal that may or may not
appear depending on the geometry of the boundary, a
search can target the signal Eq. (65) independent of the
boundary-shape-dependent additional field.

Reintroducing the factor of x0 from the power-series
expansion, and evaluating Eq. (65) at r = R, we find
that the TM part of the O(x0) magnetic field is

B(Ω, t) =

√
π

3
εm2

A′R

1∑
m=−1

A′mΦ1m(Ω)e−imA′ t, (66)

which is of course identical to Eq. (38), and will in turn
thus lead to a final form of the leading TM part of the
signal that is identical to Eq. (42); the calculation of
Sec. III B thus indeed gives the correct Φ1m components
to leading order.

Importantly, the only place that R enters in Eq. (66)
comes from the location where the magnetic field is mea-
sured, and not from the location of the inner boundary.
This implies that our result is relatively insensitive to the
details of the interior conductivity profile of the Earth
presented in Sec. II B 1. In other words, regardless of
what one considers the appropriate inner boundary (e.g.,
the Earth’s surface, upper mantle, or lower mantle), the
length-scale that appears in the leading-order magnetic
result when evaluated on the surface of the Earth, will
still be the radius of the Earth.

Finally, we argue that the signal we have computed us-
ing the simplified model that we considered in this sub-
section would not be modified in geometries with more
complicated conductivity profiles. In particular, as long
as the surface at which the magnetic field is measured lies
in a vacuum,25 all that is necessary to know is that the
total electric field is order O(x2

0) at this surface. Given
this condition, the leading-order homogeneous electric
field at the measurement surface will still be given by
Eq. (63), and the rest of the argument carries through.
Such a condition should generically be expected for the
physical case of interest, since the total electric field is
known to vanish deep within the Earth and deep in the
interplanetary medium. These locations are separated
by sub-wavelength scales L � m−1

A′ , and so we should
generically expect the total electric field to grow at most
quadratically in x0 = mA′L between them. Therefore, in
particular, the total electric field at the Earth’s surface,
where we measure our signal, should be order O(x2

0).
We note that there are some caveats to this argu-

ment. There are many complicated details of the con-
ductivity/electrical environment of the atmosphere and
magnetosphere which we have not explicitly considered,
which could in principle give rise to resonance effects
that would allow the electric field to ring up in the gap,
thereby invalidating the assumption that it is order O(x2

0)
at the surface of the Earth. The lowest-frequency cav-
ity resonances of the Earth–ionosphere cavity—the so-
called Schumann resonances [76]—are well-studied; the
lowest observed resonance appears at fs ∼ 8 Hz [81]
[this is approximately fs ∼ 1/(2πR) � 1/(2πmA′)],
which lies well above the upper end of our frequency
range of interest. Moreover, the cognate lowest-frequency
mode which one could imagine occurring in the Earth–
magnetopause cavity would be at a frequency fE–M ∼
1/(2πL) ∼ 1/(400πR) ∼ 3× 10−2 Hz, which also still lies
(marginally) above our frequency range of interest.

Obtaining a resonance at a frequency corresponding
to a Compton wavelength larger than the geometrical
size of a cavity requires elements to the cavity to act
as an effective high-Q lumped-element circuit. Certain
physical magnetohydrodynamic processes do give rise
to effective lumped-element behavior: the Ionospheric
Alfvén Resonator (IAR) induces resonances in the 0.1–
10 Hz range [82–87], while MHD ringing of the entire
magnetospheric cavity can induce resonances in the mHz
range [86, 88–90] (the Alfvén speed is vA � c). However,
the conditions required for the existence of these reso-
nances show strong diurnal variation, and their effects

25 In Appendix B, we consider finite conductivity effects, and find
that the leading order result Eq. (B14) is not affected by a ho-
mogeneous isotropic conductivity at the measurement surface,
so long as the skin-depth in the air gap is much longer than the
radius of the Earth. We have also verified that a radially varying
conductivity near the measurement surface does not affect the
argument in this subsection. Therefore, even this assumption
can be relaxed.
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are also quite strongly spatially varying; moreover, they
are not typically high-Q resonances. We therefore find it
unlikely that the naturally occurring and noisy electro-
magnetic environment near the Earth could conspire to
achieve a sufficiently strong, stable, and persistent reso-
nance condition in our frequency range of interest so as
to invalidate our modeling. Furthermore, the existence of
such a strong resonance with sufficient spatial and tempo-
ral overlap with our signal so as to be problematic would
undoubtedly make itself known in the magnetic field data
we have analysed in Ref. [38]; we find no evidence for this.

In summary, we are reasonably confident that no
strong resonances exist within the interesting range of
frequencies where we search for a signal (see Sec. IV) that
could lead to large electric fields [i.e., > O(x2

0)] ringing
up at the surface of the Earth. As a result, we conclude
that the model considered in this section appropriately
captures the physics of interest, and that our signal is
robust to neglected details of the near-Earth electrical
environment.

IV. SEARCH FOR SIGNAL IN EXISTING
GEOMAGNETIC FIELD DATA

The signal described in this work, Eq. (42), is a narrow-
band oscillating magnetic field with a magnitude

B ∼ 1.5 nG×
( ε

10−5

)
×
(

mA′

4× 10−17 eV

)
, (67)

assuming the dark photon is all of the dark matter.26

It exhibits a long coherence time and would appear in-
phase across the entire surface of the Earth in unshielded
magnetometers, with a specific vectorial spatial pattern.

A close-to-ideal experimental setup to detect such a
signal would thus be a network of geographically dis-
persed, unshielded three-axis magnetometer stations that
each measure the ambient magnetic field at the location
of the station as a function of time, and report those time-
stamped data over long periods of time. Serendipitously,
exactly such a network of detectors has been operating in
this fashion for decades for the purposes of, among other
things, geophysical metrology: the SuperMAG collabo-
ration [35–37] (see also Refs. [91–99]) maintains a public
database [35] of three-axis magnetic field time series data
taken with a one-minute time resolution (‘cadence’) at
O(102) stations—dispersed across every continent, and
on islands in most of the major oceans—since the late
1970s; these data are reported in a common format, and
with common reference system conventions.

In a forthcoming companion publication [38], we un-
dertake a detailed analysis of the SuperMAG data for
the signal described by Eq. (42). We summarize our ap-
proach and results here: our analysis effectively projects

26 We take A′ =
√

2ρdm/mA′ with ρdm = 0.3 GeV/cm3.

the components of the three-axis magnetic field time se-
ries measurements from the O(few× 102) individual sta-
tions’ measurements onto a small number of global time
series variables that appropriately describe the VSH pat-
tern of the signal, Eq. (42). We then analyze these time
series variables coherently across chunks of data of tem-
poral duration equal to the signal coherence time, by
first Fourier analysing each such chunk, and then search-
ing for narrow-band excess power in the frequency do-
main (this is equivalent to a matched-filter search in the
time domain for a monochromatic signal). Where rel-
evant, we incoherently combine the results from mul-
tiple such coherence times, using a Bayesian analysis
framework to take into account the stochastic fluctua-
tions from one coherence time to the next of the magni-
tude and polarization state of dark-photon dark matter
which on average constitutes all of the local dark mat-
ter; this mildly degrades the signal sensitivity (see, e.g.,
Refs. [100, 101] for similar procedures applied to axions).
Marginalizing over irrelevant signal parameters [includ-
ing the spatial orientation (i.e., polarization state) of the
dark-photon field, which we did not fix a priori ] and tak-
ing a reparametrization–invariant Jeffreys prior on the
kinetic mixing parameter ε, we obtain the posterior dis-
tribution on ε at each frequency at which we search over
the range 6×10−4 Hz . f0 . 2×10−2 Hz, roughly corre-
sponding to 2× 10−18 eV . mA′ ≡ 2πf0 . 7× 10−17 eV.

As we will report in Ref. [38], from these posteriors we
identified O(30) näıve signal candidates (some of these
candidates are visible by eye as narrow peaks above the
dark blue exclusion band in Fig. 4). On further exami-
nation however, we ruled out all such näıve signal candi-
dates as signals of dark-photon dark matter on the basis
of their failing further careful resampling checks carried
out on data subsets to test for their temporal constancy
and/or spatial uniformity. We report no robust candi-
date signals of dark-photon dark matter in the SuperMAG
dataset on the basis of our analysis [38]. SuperMAG has
also recently released data taken with a higher cadence of
one second, but over a shorter total time period (a little
over ten years), and from a smaller total number of sta-
tions [35]; it would be interesting to revisit this analysis
with those data, as they would enable access to higher
dark-photon masses (frequencies).

With no robust signal candidates identified in the one-
minute-cadence dataset that we analysed, we use the pos-
terior distributions on ε to extract 95%-credible upper
limits (local significance) on ε as a function of mA′ ; see
Fig. 4 for our results, which are reported here ahead of
publication of the details of the analysis in Ref. [38].

Our exclusion results are competitive with, or comple-
mentary to, various astrophysical bounds on dark-photon
dark matter [34, 40, 41],27 and represent direct terres-
trial laboratory exclusions of dark-photon dark-matter

27 Bounds similar to those in Ref. [41] also appear in Ref. [39] (with
the exception of the much stronger bound explicitly marked as
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FIG. 4. The 95%-credible upper limits on the kinetic mixing parameter ε that result from the experimental search outlined in
Sec. IV (and to appear in Ref. [38]) are shown as the dark blue line as a function of the dark-photon mass mA′ (the line appears
as a band owing to the density of frequencies at which limits are plotted, and fluctuations of the limits from one frequency
to the next). The sliding average of these limits over nearby frequencies are shown as a lighter blue line as a guide to the
eye. These limits assume that the dark photon is all of the dark matter. Also shown are a variety of existing astrophysical
limits arising from heating effects of dark-photon dark matter on gas in various astrophysical settings: the ionized interstellar
medium in the Milky Way (dotted orange) [34]; the intergalactic medium around helium reionization (short-dashed red, labeled
‘He++’) [40]; and gas in the Leo T dwarf galaxy (dot-dashed purple) [41]. We also show a DM-depletion limit from non-resonant
dark-photon–photon conversion [40] (long-dashed green, labeled ‘∆ρcdm’).

parameter space that are not subject to significant astro-
physical uncertainties. Future cosmological bounds from
21 cm observations in this mass range are also expected
to be highly competitive [42]; however, in light of the un-
certainty around the EDGES global 21 cm anomaly [104],
we do not display these limits in Fig. 4. Moreover, future
analyses of the higher-cadence SuperMAG data, as well
as possible future experiments looking for our signal at
even higher frequencies, could allow access to regions of
parameter space significantly beyond current constraints.

‘preliminary’ in the later reference that arises from a gas cloud of
anomalously low, and somewhat disputed, temperature; see also
the discussion in Refs. [102, 103]). Some question has however
been raised as to the validity of the bounds in Ref. [39] owing
to their being set using observations of gas clouds that are close
to the center of the Milky Way and part of a large outflow of
gas [41], although these concerns were addressed in a note added
in Ref. [39]. We take no position on this point of debate, and
note only that the strongest non-preliminary bounds in Ref. [39]
are similar, within an O(1) factor, to those in Ref. [41].

V. CONCLUSION

The dark photon is an interesting and well-motivated
dark-matter candidate over a wide mass range. Direct
laboratory probes of ultralight dark-photon dark matter
however often suffer severe signal suppression by ratios of
laboratory length-scales to the (much larger) dark-matter
Compton wavelength. As such, most existing constraints
on the lightest region of parameter space rely on astro-
physical observations. In this work, we have presented a
novel terrestrial signature of ultralight dark-photon dark
matter that exploits the size of the Earth itself in order
to alleviate this usual length-scale suppression. We have
shown that there exists a coherently oscillating, quasi-
monochromatic magnetic field signal of dark-photon dark
matter, Eq. (42), that has a specific global vectorial spa-
tial pattern, and which is detectable near the surface of
the Earth in unshielded magnetometer data. This sig-
nal would be present in principle for any dark photon
in the mass range 10−21 eV . mA′ . 3 × 10−14 eV (see
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Sec. II B 6).

The signal we have presented is obtained utilizing a
somewhat simplified model of the electrical conductiv-
ity environment near the Earth, in which we model the
poorly conductive lower atmosphere around the surface
of the Earth as a region of vacuum sandwiched between
two layers of material which efficiently absorb ordinary
photons: the conductive Earth below, and either the
ionosphere or interplanetary medium above. This geom-
etry is reminiscent of the conductor geometries employed
in laboratory-scale direct-detection experiments, such as
ADMX and DM Radio (which bound higher-mass dark
photons), in order to mediate the generation of an observ-
able magnetic-field signal of dark-photon dark matter.
Those signals are suppressed by mA′L, where L is the
characteristic geometrical size of the experiment. One
might have thus expected that the length-scale suppres-
sion in our scenario would involve the scale-height of the
lower atmospheric conductivity gap h ∼ 102 km; we have
however shown that the relevant length-scale that en-
ters in our signal is the much larger radius of the Earth,
R ∼ 6× 103 km. This observation significantly enhances
the amplitude of the magnetic field signal. We have also
shown that our signal prediction is robust to whether or
not the ionosphere acts as a conductive shield, and have
also argued that it is insensitive to many of the detailed
complexities of the real near-Earth environment that are
elided in our modeling.

We presented in this work the results of a search for
the magnetic field signal Eq. (42), the details of which are
to appear in a forthcoming companion paper [38]. This
analysis employs a large public dataset of geomagnetic
field measurement data maintained by the SuperMAG
collaboration [35–37], which comprise a time series of un-
shielded three-axis magnetic field measurements made at
O(102) stations widely dispersed around the surface of
the Earth, with a one-minute time resolution, beginning
in the 1970s. Our analysis finds no robust dark-photon
dark-matter signal candidates, and as such is used to
place upper limits on the kinetic mixing parameter ε as
a function of the mass of the dark-photon dark matter
in the ultralight region of parameter space. In partic-
ular, these data allow us to present limits in the mass
range 2 × 10−18 eV . mA′ . 7 × 10−17 eV. These limits
are shown in Fig. 4, and are complementary to existing
astrophysical constraints in this mass range.

The SuperMAG collaboration is currently in the pro-
cess of releasing data with higher time resolution (one
second, instead of one minute); we defer to future work
an analysis of that dataset, which would extend the sen-
sitivity of the search to higher masses (frequencies), and
presumably strengthen the existing exclusion limits (ab-
sent a signal detection). We also note that in principle
our limits appear to improve relative to existing astro-
physical gas-heating bounds moving to higher frequen-
cies; this strongly motivates additional experimental ex-
ploration of this signal at frequencies above the range we
have considered in this work, as this approach may allow

access to parameter space that is technically difficult to
probe with laboratory-scale experiments, f . kHz [22].
It may also be worthwhile exploring whether better sen-
sitivity could be achieved with improved magnetometers.
Finally, it would be interesting to consider the cognate
signal that would be expected to appear for axion-like
(i.e., ALP) dark matter.28
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Appendix A: Photon–dark-photon dynamics

In this Appendix, we will give a short review of some
of the underlying theoretical issues at play for the kineti-
cally mixed dark photon, discussing basis choices, and the
propagating eigenmodes of the EM-photon–dark-photon
system in regions of high and low conductivity as well
as their relationship to the vacuum mass eigenstates of
the system and the interacting eigenstates that couple to
EM-charged matter. See also Refs. [2, 21, 22, 105].

Consider a massive dark photon, (A′k)µ, that is ki-
netically mixed with the ordinary photon of electromag-
netism, (Ak)µ, with kinetic mixing parameter ε, which

we assume to be small (ε� 1) [cf. Eq. (1)]:29,30

L ⊃ −1

4
(Fk)µν(Fk)µν − 1

4
(F ′k)µν(F ′k)µν

+
ε

2
(Fk)µν(F ′k)µν +

1

2
m2
A′(A′k)µ(A′k)µ

− Jµem(Ak)µ, [kinetically mixed basis] (A1)

where F
(′)
µν ≡ ∂µA

(′)
ν − ∂νA

(′)
µ are the respective field

strength tensors. We refer to the basis in which Eq. (A1)
is written as the ‘kinetically mixed’ basis.

1. Basis choices (vacuum)

While the kinetically mixed basis is convenient to write
the Lagrangian from a theoretical perspective (because
it makes manifest the ‘vector portal’ nature of the cou-
pling), it does not make the phenomenology of the sys-
tem readily apparent. Of course, while the physics is
invariant to the basis choice, different basis choices are
convenient for different applications and, at the level of
the Lagrangian, there are two such common alternative
bases employed to write Eq. (1): the (vacuum) mass ba-
sis and the interaction basis. The (vacuum) mass basis
is reached via the non-unitary field redefinition(

Am

A′m

)
=

(
1 −ε
0
√

1− ε2

)(
Ak

A′k

)
, (A2)

in terms of which we have

L ⊃ −1

4
(Fm)µν(Fm)µν − 1

4
(F ′m)µν(F ′m)µν

+
1

2

m2
A′

1− ε2
(A′m)µ(A′m)µ [vacuum mass basis]

− Jµem
[
(Am)µ +

ε√
1− ε2

(A′m)µ

]
. (A3)

It is clear that the (vacuum) mass basis modes are the
propagating (i.e., momentum) eigenmodes in vacuum:
the massless mode (Am) and the massive mode (A′m) are
independent if Jem = 0. However, a linear combination of

29 Because we will in this Appendix at least initially be discussing
various basis choices with which to write Eq. (A1), and the rela-
tionships between these basis choices, we have written an explicit
subscript ‘k’ on the kinetically mixed basis states.

30 If ε = ±1, then one can ‘complete the square’ on the kinetic terms
such that only one linear combination (Fk)∓ (F ′k), respectively,
has a kinetic term while the other linear combination has no
kinetic term and is thus not a propagating mode. Therefore,
even absent the assumption ε� 1, there is still a limited range of
values in which ε can be varied continuously away from ε = 0 and
yield a theory with two independent propagating eigenmodes:
−1 < ε < 1. This restriction will also become manifest when we
examine the interaction and mass bases.

www.intermagnet.org
www.intermagnet.org
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the two vacuum mass basis modes couples to EM charges;
the mass basis states are thus not interaction eigenstates.

The interaction basis is reached by a different non-
unitary field redefinition:(

Ai

A′i

)
=

(√
1− ε2 0

−ε 1

)(
Ak

A′k

)
, (A4)

in terms of which we have

L ⊃ −1

4
(Fi)µν(Fi)

µν − 1

4
(F ′i )µν(F ′i )

µν

+
1

2
m2
A′

 (A′i)µ(A′i)
µ +

2ε√
1− ε2

(Ai)
µ(A′i)µ

+
ε2

1− ε2
(Ai)µ(Ai)

µ


− 1√

1− ε2
Jµem(Ai)µ. [interaction basis] (A5)

It is clear that the interaction basis modes are the inter-
action eigenstates: the ‘interacting mode’ (Ai) couples to
EM charges; the ‘sterile mode’ (A′i) does not. However,
the presence of the mass-mixing terms in Eq. (A5) makes
clear that the interaction basis states are not propagation
eigenstates in vacuum.

The relationship between the vacuum mass basis
(propagating eigenstates in vacuum) and the interaction
basis (interaction eigenstates) is given by the unitary
transformation(

Ai

A′i

)
=

(√
1− ε2 +ε

−ε
√

1− ε2

)(
Am

A′m

)
, (A6)

which shows explicitly that the propagation and interac-
tion eigenstates do not coincide in the presence of kinetic
mixing.

Note also that it is common in the literature for all the
results shown in this subsection to be written with all
effects at O(ε2) omitted; we have retained them here for
completeness.

2. Equations of motion and in-medium effects

So far, we have demonstrated that the vacuum mass-
basis states Am and A′m are indeed the vacuum propaga-
tion (i.e., momentum) eigenstates, but that these states
differ from the interaction eigenstates. As we will demon-
strate in this section, in a conducting medium with linear
response, these statements must be modified.

Straightforward application of the Euler-Lagrange
equations to the kinetically mixed basis Lagrangian
Eq. (A1) yields the equations of motion

∂µ
[
(Fk)µν − ε(F ′k)µν

]
= Jνem, (A7)

∂µ
[
(F ′k)µν − ε(Fk)µν

]
+m2

A′(A′k)ν = 0. (A8)

Because the local U(1) gauge transformation (Ak)µ →
(Ak)µ + ∂µΛ (for any function Λ) remains a good sym-
metry of Eq. (1) [assuming a conserved EM current,

∂µJ
µ
em = 0], we are still free to assume the Lorenz gauge

condition ∂µ(Ak)µ = 0. Equivalently, Eqs. (A7) and (A8)
contain only Fk and not Ak, and Fk is of course invariant
to this gauge transformation. On the other hand, there
is no gauge freedom associated with the other U(1) that
is broken by the explicit mass term in Eq. (A1); how-
ever, applying ∂ν to both sides of Eq. (A8) and recalling
that ∂ν∂µ is symmetric on its indices while both field

strength tensors (F
(′)
k )µν are anti-symmetric, yields the

on-shell Proca consistency condition m2
A′ [∂µ(A′k)µ] = 0.

Since mA′ 6= 0 by assumption in this work, we must have
∂µ(A′k)µ = 0 on shell.

Therefore, we have

∂2
[
(Ak)µ − ε(A′k)µ

]
= Jµem, (A9)

∂2
[
(A′k)µ − ε(Ak)µ

]
+m2

A′(A′k)µ = 0, (A10)

∂µ(Ak)µ = 0, (A11)

∂µ(A′k)µ = 0. (A12)

We will from this point assume that the fields (A
(′)
k )µ

are plane waves:31

(A
(′)
k )µ(x) = (A

(′)
k )µe−ikνx

ν

. (A13)

Moreover, let us now consider these equations in a
medium with a linear response, and no other free charge
(Jνfree = 0). Because the interaction eigenstate (Ai)
is proportional to Ak [indeed, ignoring O(ε2) terms,
they coincide; see Eq. (A4)], and because charges in
the medium will respond to only the interacting mode,
we should set Jµem = −Πµν(Ak)ν , where Πµν is the
self-energy tensor for the medium (note importantly
that this relationship is imposed in 4-momentum space;
the position-space analogue is generally non-local [105]).
This yields

(−ω2 + k2)
[
(Ak)µ − ε(A′k)µ

]
+ Πµν(Ak)ν = 0, (A14)

(−ω2 + k2)
[
(A′k)µ − ε(Ak)µ

]
+m2

A′(A′k)µ = 0, (A15)

kµ(Ak)µ = 0, (A16)

kµ(A′k)µ = 0. (A17)

The polarization tensor in a homogeneous medium can
be written as a sum over the mode self-energies πa and
mode projection operators Pµνa [105]:

Πµν ≡
∑

a=1,2,L

πaP
µν
a ; Pµνa ≡ −(ea)µ(e∗a)ν , (A18)

where a = 1, 2, L labels the two 3-transverse modes
[i.e., ki(e{1,2})

i = 0] and one 3-longitudinal mode

[(eL)i ∝ ki], respectively, and eµa are the corresponding

31 To avoid a proliferation of notation, we write the field value at
x = 0 with the same symbol as we have up until now used to

denote the field value at a general location x; namely, (A
(′)
k )µ.
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orthonormal polarization 4-vectors, normalized32 such
that (ea)µ(e∗b)µ = −δab, and obeying the 4-transversality
condition kµ(ea)µ = 0. Assuming that the medium does
not distinguish between the transverse modes (as it could
do if it were, e.g., birefringent or otherwise anisotropic),
we can write the two transverse-mode self-energies as
π1 = π2 = πT . Similarly, decomposing

(A
(′)
k )µ =

∑
a

(A
(′)
k )a(ea)µ, (A19)

we have

(−ω2 + k2)
[
(Ak)a − ε(A′k)a

]
+ πa(Ak)a = 0, (A20)

(−ω2 + k2)
[
(A′k)a − ε(Ak)a

]
+m2

A′(A′k)a = 0, (A21)

where, here and throughout what follows, we have de-
fined k2 = k · k (we distinguish the contracted 4-vector
k as kµk

µ where necessary). The gauge [Eq. (A16)] and
consistency [Eq. (A17)] conditions are automatically sat-
isfied by construction of the polarization tensors as 4-
transverse.

It remains to write expressions for the self-energies πa.
We will be interested in examining the behavior of these
fields in media that can be considered to be ohmic con-
ductors, where J = σE. Now,

E = −∂tAk −∇A0
k (A22)

= +iωAk − ikA0
k (A23)

= iω
∑
a=1,2

(Ak)aea + i(Ak)L[ωeL − k(eL)0]. (A24)

However, the 4-transversality condition imposes that
(eL)0 = k · eL/ω; moreover, since eL ∝ k, we have that
k(k · eL) = k2eL. Therefore,

E = iω
∑
a=1,2

(Ak)aea + iω[1− k2/ω2](Ak)LeL,

(A25)

⇒ J = iωσ
∑
a=1,2

(Ak)aea + iωσ[1− k2/ω2](Ak)LeL

(A26)

≡ −
∑

a=1,2,L

πa(Ak)aea. (A27)

Therefore, we can read off

πT = −iωσ, (A28)

πL = −iωσ
[
1− k2/ω2

]
. (A29)

Note that if we can consider non-relativistic modes (k �
ω), we have πL ≈ πT and, moreover, there is no dis-
tinction between the T and L modes in terms of their
relationships to the physical E field; cf. Eq. (A25).

32 We use the (+,−,−,−) metric sign convention.

This discussion of course also applies for an isotropic
plasma with a number density n of charge carriers of
charge Q = qe and mass m, and with a collision fre-
quency ν ≡ τ−1, such that the plasma frequency is
ω2
p = 4πnq2α/m. In this case, we simply take σ to be a

function of frequency:

σ(ω) =
ω2
pτ

1− iωτ =
iω2
p/ω

1 + iν/ω
. (A30)

For ωτ � 1 ⇒ ν/ω � 1, collisions dominate and such
a plasma behaves as a DC conductor with conductivity
σ = ω2

pτ ; on the other hand, for ωτ � 1 ⇒ ν/ω � 1,
the plasma is effectively collisionless and we can replace
σ → iω2

p/ω in the self-energies Eqs. (A28) and (A29),

and elsewhere throughout this Appendix.33 Generally
however, for a plasma with ν 6= 0, the full replacement
implied by Eq. (A30), σ → (iω2

p/ω)/ (1 + iν/ω), is re-
quired: for instance, damping effects for some modes are
∝ ν (see Secs. A 2 a and A 2 b).

We will now discuss the transverse [Sec. A 2 a] and lon-
gitudinal [Sec. A 2 b] cases in turn.

a. Transverse case

Substituting Eq. (A28) into Eq. (A20), and consid-
ering the resulting equation along with Eq. (A21), we
have an eigenvalue problem for the propagating (i.e., mo-

mentum) modes, which can be cast in the form k2 ~X =

M(ω) ~X, where the column vector ~X has components
~X = [(Ak)T , (A′k)T ]; i.e., Eqs. (A20), (A21), and (A28)
specify the transverse dispersion relations. This is easily
solved using standard linear algebra techniques34 to yield
the two eigenvalues k2

T{1,2} that are, correct to O(ε2),

given by (see also Appendix 3 of Ref. [21], but note a
difference in our sign convention—we use ω of opposite
sign—and method of derivation here in terms of the ki-

33 Note that because we solve the dispersion relation eigenvalue
problems in the following subsections [Sec. A 2 a and A 2 b] for
the momentum eigenvalues k = k(ω) and the corresponding mo-
mentum eigenmodes, whether or not σ is a function of frequency
has no influence on whether or not additional solutions to the
eigenvalue equations exist.

34 Recall that if the matrix M has linearly independent eigenvec-
tors, then the matrix U that is formed with columns that are
equal to these eigenvectors is invertible and diagonalizes M by a
similarity transformation: U−1MU = D, where D is a diagonal
matrix with the eigenvalues on the diagonal, ordered in the same
sense as the columns of U . Since k2 ~X = M ~X = UDU−1 ~X we
have k2[U−1 ~X] = D[U−1 ~X], and so the eigenstates are given by

the components of U−1 ~X.
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netically mixed basis)

k2
T1 = ω2 + iωσ − ε2ω2σ2

iωσ +m2
A′

(A31)

≈ ω2 + iωσ, (A32)

k2
T2 = ω2 −m2

A′ − ε2m4
A′

iωσ +m2
A′

(A33)

≈ ω2 −m2
A′ + iωσ

ε2m4
A′

(ωσ)2 +m4
A′
. (A34)

These correspond to the transverse propagation eigen-
states, all correct to O(ε), given in the various basis sets
by [21]

AT1 = (Ak)T − εm2
A′

iωσ +m2
A′

(A′k)T (A35)

= (Ai)
T − εm2

A′

iωσ +m2
A′

(A′i)
T (A36)

= (Am)T +
iεωσ

iωσ +m2
A′

(A′m)T , (A37)

AT2 = (A′k)T − iεωσ

iωσ +m2
A′

(Ak)T (A38)

= (A′i)
T +

εm2
A′

iωσ +m2
A′

(Ai)
T (A39)

= (A′m)T − iεωσ

iωσ +m2
A′

(Am)T . (A40)

As noted above, the expressions Eqs. (A31)–(A40) also
apply in the case of a plasma, under the replacement
rule implied by Eq. (A30): σ → iω2

p/ω × (1 + iν/ω)−1,
where ωp and ν are the plasma and collision frequencies,
respectively; see the comment in footnote 33.

In the conductor case, two limits are interesting: σ �
m2
A′/ω (poor conductor, or no medium) and σ � m2

A′/ω
(good conductor). Note that if we consider the case
ω2 ∼ m2

A′ such that the second momentum mode is
non-relativistic (k2

T2 � ω2), the condition for a good
conductor simplifies to σ � mA′ , while ‘vacuum’ means
σ � mA′ .

In the poor conductor limit, we find k2
T1 = ω2 and

k2
T2 = ω2 − m2

A′ , along with AT1 = (Ak)T − ε(A′k)T =
(Am)T and AT2 = (A′k)T = (A′m)T , correct up to terms at
O(ε2). This of course is exactly the expected result: the
vacuum mass-basis modes are the propagating momen-
tum modes, and their dispersion relations are correct for
massless and massive modes, respectively.

The good-conductor limit yields k2
T1 ≈ ω2 + iωσ

and k2
T2 ≈ ω2 − m2

A′ + iε2m4
A′/(σω); in both ex-

pressions, terms parametrically suppressed compared to
those shown have been omitted. We also have AT1 =
(Ak)T = (Ai)

T and AT2 = (A′k)T − ε(A′k)T = (A′i)
T ,

where these two expressions correct up to omitted terms
at O(ε2). This is an extremely important result: the in-
medium propagation eigenstates in a good conductor are

the interaction-basis states, not the vacuum mass-basis
states.

The interacting state has a complex momentum eigen-
value kT1 ≈

√
ωσeiπ/4, leading to an exponential damp-

ing factor

∝ exp [−i(kT1)µx
µ]

= exp
[
−iωt+ i(k̂ · x)

√
ωσ/2

]
× exp

[
−(k̂ · x)

√
ωσ/2

]
. (A41)

That is, the interacting mode field amplitude damps over
length-scales δT1 ∼ (ωσ/2)−1/2 � m−1

A′ , which we re-
fer to as the skin-depth (note that various conventions
exist for skin-depth in the literature, largely depending
on whether they are defined for the power [i.e., Poynting
flux] or for the field amplitude; the various definitions
differ from ours by O(1) numerical factors).

On the other hand, the sterile state has the usual
dispersion relation for a massive mode with mass mA′ ,
with the addition only of a highly suppressed imag-
inary component. Extracting a damping length re-
quires some care: consider that if ω2 − m2

A′ ≈ m2
A′v2

dm

with vdm ∼ 10−3, then the dispersion relation reads
k2
T2 ≈ m2

A′v2
dm + iε2m3

A′/σ. If ε2mA′/σ � v2
dm, then

we can approximate k2
T2 ≈ iε2m3

A′/σ, which would give

kT2 = εmA′eiπ/4
√
mA′/σ, leading to a skin-depth of

δ
(1)
T2 ∼

√
2σ/mA′/(εmA′) ∼ δT1 × σ/(εmA′), assuming

ω ∼ mA′ . However, whenever ε2mA′/σ � v2
dm the real

term in the dispersion relation dominates over the com-
plex one in magnitude, and in solving for the real (kR)
and imaginary (kI) parts of k in the dispersion relation

we must instead estimate kR ≈
√
ω2 −m2

A′ ≈ mA′vdm,
and 2kRkI ≈ ε2m3

A′/σ ⇒ kI ≈ ε2m2
A′/(2σvdm), imply-

ing a damping length δ
(2)
T2 ∼ 1/kI ∼ (2σvdm)/(ε2m2

A′) ∼
(vdm/ε)

√
2σ/mA′ × δ(1)

T2 . Because δ
(2)
T2 > δ

(1)
T2 whenever

the condition for the validity of the estimate leading to
the former is satisfied (i.e., ε2mA′/σ � v2

dm), we should
thus instead take the combined result35

δT2 ∼ max
[
1, (vdm/ε)

√
2σ/mA′

]
×
√

2σ/mA′/(εmA′);

(A42)

in either case, this is an extremely long length-scale.
Similar qualitative observations hold for the case of a

nearly collisionless plasma with a high plasma frequency
(ωp � ω ∼ mA′ � ν), which is the case of physi-
cal relevance in the interplanetary medium (see discus-
sion in Sec. II B 5). In that case, in the non-relativistic

35 We possibly access both regimes in various locations: we have
ε . 10−2, mA′ . 10−16 eV, and σ in highly conductive lay-
ers that is as large as σ ∼ 10−2 eV in the ionosphere, so
ε2m3

A′/σ . 10−18m2
A′ � v2

dmm
2
A′ . On the other hand, in the

lower atmosphere we also have other regions where σ ∼ mA′ , so
there we have ε2m3

A′/σ ∼ 10−4m2
A′ � v2

dmm
2
A′ at its largest.
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limit k2 � ω2 ∼ m2
A′ � ω2

p, we have kT1 ≈ iωp,
leading to a very short active-mode damping length
δT1 ∼ ω−1

p � m−1
A′ . In the same series of limits, we have

k2
T2 ≈ ω2 − m2

A′ + iε2m3
A′ν/ω2

p, where terms paramet-
rically suppressed compared to those shown have been
omitted. Note that for an exactly collisionless plasma
(ν = 0) there is no damping of this mode (see also
Eq. (23) of Ref. [34]): the omitted terms in the expression
for k2

T2 are all real and positive in this limit.
Extracting the damping length for ν 6= 0 again re-

quires the same degree of care as needed to obtain the
skin-depth for the T2 mode in a conductor. However,
because the mathematical structure of the expression for
k2
T2 for the plasma is identical to that for the conductor,

requiring only the parametric replacement σ → ω2
p/ν, we

can immediately write down the damping length for this
mode in a plasma from Eq. (A42):

δT2,p ∼ max
[
1, (vdm/ε)

√
2ω2

p/(mA′ν)
]

×
√

2ω2
p/(mA′ν)/(εmA′); (A43)

this is again an extremely long length-scale.

b. Longitudinal case

The longitudinal case requires some care in interpre-
tation. Formally, we may proceed as for the transverse
case: substituting Eq. (A29) into Eq. (A20), and consid-
ering it along with Eq. (A21) we again obtain a system
of equations that can be cast into an eigenvalue problem
for the propagation eigenstate(s). Proceeding näıvely, we
find two solutions:

k2
L1 = ω2 −m2

A′
σ − iω

σ − i(1− ε2)ω
(A44)

= ω2 −m2
A′
σ2 + (1− ε2)ω2

σ2 + (1− ε2)2ω2

+ i
ε2m2

A′σω

σ2 + (1− ε2)ω2
(A45)

≈ ω2 −m2
A′ + i

ε2m2
A′σω

σ2 + ω2
, (A46)

k2
L2 = ω2, [unphysical] (A47)

with corresponding eigenmodes

AL1 = (A′k), (A48)

AL2 = (Ak)− εω

ω + iσ
(A′k). [unphysical] (A49)

While the first of these solutions (eigenvalue k2
L1 and

eigenmode AL1 ) is physical, the second solution (eigen-
value k2

L2 and eigenmode AL2 ) is not. There are any num-
ber of way to see this, but the most straightforward is to

note that in the limit ω2 = k2, the longitudinal polar-

ization vector eµL =
(
k/
√
kνkν , k̂ω/

√
kνkν

)µ
formally

diverges: this is actually symptomatic of the fact that it
is not possible to find a normalizable polarization vector
eµL that simultaneously satisfies kµe

µ
L = 0, eµL(e∗L)µ = −1,

eiL ∝ ki, and ω2 = k2. Attempting to impose all of these
conditions leads to a logical contradiction. The longitu-
dinal mode is thus not physical if ω2 = k2.

A corollary of this observation is that we must assume
ω 6= −iσ, to avoid k2

1L = ω2 from Eq. (A44). Assuming
that ω is real is of course natural in this situation, but
this condition has non-trivial implications for the plasma
case; see discussion at end of this section.

Because there is only one propagating eigenmode, the
other degree of freedom in the system must be fixed by a
constraint. Indeed, examining the equation that results
from substituting Eq. (A29) into Eq. (A20), we find that
it reads

(−ω2 + k2)
[

(1 + iσ/ω) (Ak)L − ε(A′k)L
]

= 0; (A50)

demanding that this is solved for ω2 6= k2 leads to the
constraint

(Ak)L = ε(A′k)L
ω

ω + iσ
; (A51)

this of course enforces that the spurious mode vanishes
identically, AL2 = 0, as expected since we have assumed
that the solution we are seeking has ω2 6= k2, and thus
must be orthogonal to the (spurious) mode with the (spu-
rious) eigenvalue ω2 = k2. Note that in the σ = 0 vacuum
limit, AL2 = (Am)L, so this constraint sets the massless
longitudinal mode in vacuum to zero. This of course is
expected because that mode does not actually exist: any
L mode must have a non-zero µ = 0 component since
e0
L 6= 0 [i.e., (Am)0 6= 0], but we know that in vacuum

such a component can be removed by a residual restricted
gauge transformation [this is the massless mode, so the
gauge symmetry is unbroken]: (Am)µ → (Am)µ + ∂µΛ
with ∂2Λ = 0 by the choice ∂0Λ = −(Am)0. This is also
consistent with counting of degrees of freedom: a system
of one massless and one massive photon should, in vac-
uum, have only 5 physical degrees of freedom. Note that,
on the other hand, AL1 = A′m exactly.

As a result of the constraint, we have, at O(ε), the fol-
lowing interaction basis relationships to the propagating
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longitudinal mode:36

(Ai)
L ≈ (Ak)L = ε(A′k)L

ω

ω + iσ

= εAL1
ω

ω + iσ
, (A52)

(A′i)
L = (A′k)L − ε(Ak)L ≈ AL1 . (A53)

The overlap of the propagating mode AL1 with the in-
teracting mode ALi shows that the former drives charges
in vacuum (σ = 0) at O(ε). Moreover, we see that in
a good conductor (here, defined as σ � ω), the prop-
agating mode has a highly suppressed overlap with the
interacting mode: (Ai)

L → −iεAL1 (ω/σ); it is instead
closely aligned with the sterile mode. In the same limit,
we have k2

L1 → ω2−m2
A′ + iε2m2

A′ω/σ, which shows that
the damping of the propagating mode in a good con-
ductor is again highly suppressed: for a non-relativistic
mode with ω ∼ mA′ , the damping length δL1 is given by
the same expression as that for δT2 shown at Eq. (A42),
up to sub-leading corrections. Of course, in vacuum, we
have k2

L1 = ω2 −m2
A′ exactly, and the longitudinal dark-

photon mode propagates without any damping.
It remains to discuss how the field AL1 is sourced by

free currents, which we will do here by considering how
it may be sourced by such currents flowing outside of a
conductive medium (σ = 0). To this end, consider solv-
ing Eq. (A9) for ∂2(Ak)µ and substituting into Eq. (A10),
which yields

∂2(A′k)µ +
m2
A′

1− ε2
(A′k)µ =

ε

1− ε2
Jµem. (A54)

Dropping terms at O(ε2), projecting onto the longitu-
dinal polarization vector by contracting with (e∗L)µ, we
find

∂2(A′k)L +m2
A′(A′k)L = εJLem, (A55)

where JLem ≡ −(e∗L)µJ
µ
em. But (A′k)L = AL1 , so this shows

that AL1 is sourced at O(ε) by ordinary EM currents
(specifically, the piece of the current proportional to the
longitudinal polarization vector).

In sum then, we see that for the longitudinal case, only
one mode propagates in a conductor. In vacuum, this
propagating mode coincides with the massive mass-basis
mode, and is undamped. In a perfect conductor, this
propagating mode coincides with the sterile state in the
interaction basis and in the perfect conductor limit is also
undamped. This field is also sourced at O(ε) by ordinary
free EM currents flowing in vacuum, and it couples to test
charges in vacuum at O(ε).

36 Of course, there is only one degree of freedom, so relating it
to a basis of two modes is slightly odd. Nevertheless, because
the interacting mode in the interaction basis is the only part
of the system that couples to charges, this exercise is useful to
understand how the propagating mode interacts with charges.

Finally, we comment on the situation in plasma. Once
again, we would make the replacement σ → iω2

p/ω ×
(1 + iν/ω)−1, but the derivation above for the momen-
tum eigenvalues is unchanged: as long as ω 6= ωp (the
cognate of the condition ω 6= −iσ above), there is only
one propagating momentum eigenmode: kL1 = kL1(ω).
Note however that the energy spectrum of the longitudi-
nal excitations at fixed k, ω = ω(k), always contains two
modes: for k 6∼ ωp, there is one mode at ω2 ∼ k2 +m2

A′ ,
and a second, non-propagating mode at ω2 ∼ ω2

p. As
we are interested in the response of a system with spa-
tial profiles when driven by a monochromatic background
dark-photon field at frequency ω ∼ mA′ � ωp, it is ap-
propriate on physical grounds for us to consider the mo-
mentum k to be a function of ω: kL1 = kL1(ω).

For a non-relativistic mode propagating in a nearly
collisionless plasma with a high plasma frequency (i.e.,
assuming ω2

p � ω2 ∼ m2
A′ � ν2), we have k2

L1 ≈
ω2−m2

A′ +iε2m3
A′ν/ω2

p (terms parametrically suppressed
compared to those shown have been omitted), leading to
a damping length δL1,p which has the same expression as
that for δT2,p displayed at Eq. (A43).

3. Effective current approach

As our computations in the Sec. III rely on treating
the sterile field (A′i) as an effective current source for the
interacting field (Ai) in the interaction basis, we briefly
explain the origin of that approach here.

In the interaction basis the equations of motion
Eqs. (A7) and (A8) read, at O(ε),

∂µ(Fi)
µν = Jν − εm2

A′(A′i)
ν , (A56)

∂µ(F ′i )
µν +m2

A′(A′i)
ν = −εm2

A′(Ai)
ν . (A57)

Suppose we perform a systematic formal perturbative
expansion of the fields in powers of ε:

(Ai) ≡
∞∑
n=0

εn(Ai)
(n), (A58)

(A′i) ≡
∞∑
n=0

εn(A′i)
(n). (A59)

Substituting this expansion into Eqs. (A56) and (A57),
treating the resulting equations as a formal power series
in ε to be satisfied by setting the coefficients of equal
powers of ε equal, and keeping only terms up to O(ε) in
line with the terms retained in Eqs. (A56) and (A57), we
have a system of four equations (assuming that Jν ∼ ε0):

∂µ(Fi)
(0)µν = Jν , (A60)

∂µ(F ′i )
(0)µν +m2

A′(A′i)
(0) ν = 0, (A61)

∂µ(Fi)
(1)µν = −m2

A′(A′i)
(0) ν , (A62)

∂µ(F ′i )
(1)µν +m2

A′(A′i)
(1) ν = −m2

A′(Ai)
(0) ν . (A63)
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The leading-order interacting and sterile solutions are
unperturbed: (Fi)

(0) obeys the standard sourced Maxwell
equations, Eq. (A60); and (F ′i )

(0) obeys the source-free
Proca equations, Eq. (A61).

In the presence of a non-zero background field (A′i) ≡
(A′i)

(0) that obeys Eq. (A61)—e.g., the dark-photon dark-
matter field—we see from Eq. (A62) that the leading im-
pact on the observable field (Fi) is at O(ε), and can be
computed by treating the background (A′i) field as an ef-
fective current source [cf. the forms of Eqs. (A60) and
(A62)]:

Jνeff = −εm2
A′(A′i)

ν . (A64)

Note that the effective current is also conserved:

∂µJ
µ
eff = −εm2

A′∂µ(A′i)
µ (A65)

= −εm2
A′
(
∂µ(A′k)µ − ε∂µ(Ak)µ

)
(A66)

= 0, (A67)

since both kinetically coupled basis modes obey

∂µ(A
(′)
k )µ = 0. Therefore, for plane-wave (A′i)

µ, we have

J0
eff =

k

ω
k̂ · Jeff. (A68)

For non-relativistic modes (k � ω) then, the effective
charge density J0

eff vanishes, and the effective current is
simply a 3-current:

Jeff = −εm2
A′A′i. (A69)

Finally, note that in a EM-source-free region (Jν = 0)
with boundary conditions set such that the Ai field would
be zero if we set ε = 0, the Ai field remains zero at leading
order when ε 6= 0: (Ai)

(0) = 0. In this case, the back-
reaction term on the RHS of Eq. (A63) vanishes, and the
leading back-reaction on A′i is at O(ε2).

Appendix B: Finite conductivity effects

In this appendix, we repeat the calculation of Sec. III B
including the effect of nonzero, finite conductivities for
the Earth, atmosphere, and assumed conductive iono-
sphere layer, in order to demonstrate that the result is
unchanged. For simplicity, we take the Earth and iono-
sphere to have the same conductivity σ1 � mA′ and the
atmosphere to have a conductivity σ2; we will ignore spa-
tial variation of the conductivity within each layer. As in
Sec. III B, we will treat this calculation as a single-photon
electromagnetism problem, where the effect of the dark
photon is to source an inhomogeneous contribution to the
observable electric field. We will then compute the homo-
geneous contribution required to satisfy the appropriate
boundary conditions.

The first step therefore becomes to determine what
the inhomogeneous contributions inside the different con-
ductors are. In particular, since we will be interested in

solving for the observable electric and magnetic fields, we
want to know the contribution to the active component
in the interaction basis. Consider the case of transverse
fields. As described in Sec. A 2, there are two propa-
gating modes inside a conductor, given in this basis by
Eq. (A36) and Eq. (A39). Inverting these we can write
the active and sterile components in the non-relativistic
limit as

(
(Ai)

T

(A′i)
T

)
=

 1
εm2

A′

imA′σ +m2
A′

− εm2
A′

imA′σ +m2
A′

1


(
AT

1

AT
2

)
.

(B1)

Deep inside the ionosphere, AT
1 = 0 since its dispersion

relation has a large imaginary part. LetAT
2 = A′0e

−imA′ t

deep inside the ionosphere. In the non-relativistic limit,
this mode has highly suppressed spatial dependence and
can be treated as a uniform field in the vicinity of the
Earth; it will thus take this value everywhere in the
ionosphere. The boundary condition at the interface
between the atmosphere and ionosphere, as well as at
the interface between the atmosphere and Earth, will be
that the components are continuous in the interaction
basis. Since AT

2 = (A′i)
T to leading order, then in fact

AT
2 = A′0e

−imA′ t everywhere. This implies that the ac-
tive component is

(Ai)
T = AT

1 +
εA′0
β2

e−imA′ t, (B2)

where β2 = 1 + iσ/mA′ .37 The corresponding observable
electric field will then be

E = Ehom +Einh, (B3)

Ehom = imA′AT
1 , (B4)

Einh =
iεmA′A′0

β2
e−imA′ t. (B5)

We thus see that inside a conductor, the inhomogeneous
field has an additional factor of β−2 compared to the
vacuum expression [cf. Eq. (18)].

With this notation, we can now solve for the ho-
mogeneous fields following a method similar to that in
Sec. III B. The primary difference is that now we will
solve for the electric field in the Earth and ionosphere, as
well as the atmosphere. As before, each region will have
an inhomogeneous contribution given by Eq. (B5), with
the conductivity appearing in β given by σ1 or σ2, as ap-
propriate. We solve for the homogeneous contribution by

37 This will be the expression for β in a conductor. However this no-
tation can also be generalized to plasmas (such as the interplan-
etary medium, cf. Sec. II B 5), in which case β2 = 1 − ω2

p/m
2
A′ .

The rest of the argument in this appendix remains valid so long
as β has a large imaginary part in the plasma, which is true if
ωp � mA′ .
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satisfying boundary conditions. Because all conductivi-
ties are now finite, the appropriate boundary condition
at the interfaces between the regions are that the parallel
electric and magnetic fields38 are continuous across the
interface. Additionally, as in Sec. III A, we will require
that the electric field is regular at the origin. Finally,
we will require that the homogeneous contribution is en-
tirely outgoing at infinity (i.e., there is only a component
proportional to exp[+iβmA′r], not one proportional to

exp[−iβmA′r]); this final condition has the interpreta-
tion that the active photon modes in the ionosphere can
only be moving away from the Earth, and not towards it,
since they are sourced by charge motion in the vicinity
of the interface between the lower atmosphere and iono-
sphere. As in Sec. III B, the only relevant modes will be
the ` = 1 TM modes (because only ` = 1 modes appear
in the background sterile field, and the boundaries are
all assumed to be spherically symmetric in this compu-
tation).

Given the above boundary conditions, we can write the homogeneous contribution as

Ehom =



∑
m am

(
−2j1(β1mA′r)

mA′r
Y1m −

(
β1j
′
1(β1mA′r) +

j1(β1mA′r)

mA′r

)
Ψ1m

)
e−imA′ t, r < R

∑
m

(
−2gm(β2mA′r)

mA′r
Y1m −

(
β2g
′
m(β2mA′r) +

gm(β2mA′r)

mA′r

)
Ψ1m

)
e−imA′ t, R < r < R + h

∑
m dm

(
−2h

(1)
1 (β1mA′r)

mA′r
Y1m −

(
β1h

(1)′
1 (β1mA′r) +

h
(1)
1 (β1mA′r)

mA′r

)
Ψ1m

)
e−imA′ t, r > R + h,

(B6)

where β2
i = 1 + iσi/mA′ , h

(1)
n = jn + iyn is the spherical Hankel function of the first kind, and

gm(x) = bmj1(x) + cmx
3
0y1(x) [x0 ≡ mA′R]. (B7)

Likewise, the total magnetic field will be given by

B =



−i∑m amβ
2
1j1(β1mA′r)Φ1me

−imA′ t, r < R

−i∑m β
2
2gm(β2mA′r)Φ1me

−imA′ t, R < r < R + h

−i∑m dmβ
2
1h

(1)
1 (β1mA′r)Φ1me

−imA′ t, r > R + h.

(B8)

The boundary conditions that the parallel electric and magnetic fields are continuous at r = R and r = R+ h give
four equations which determine am, bm, cm, dm. Again the general solution is complicated, and we examine only in
the limit |β2mA′R| � 1 � |β1mA′h|. The latter limit corresponds to the skin-depth in the atmosphere being much
longer than R, while the former corresponds to the skin-depths in the ionosphere and Earth being much shorter than
h. In this limit, the solution becomes

am = −
√

4π

3

iεmA′A′m
β1

(mA′R)2eiβ1mA′R, (B9)

bm =

√
3πiεmA′A′m

β3
2

[
1 +

(β2mA′R)2

5

(
3 + 2Q[h/R]

3
+

5iQ[h/R]

3β1mA′h
− 5i

2β1mA′R

)]
, (B10)

cm = − 4
√
π

15
√

3
iεmA′A′m (β2mA′R)

2

(
1 +

5i

2β1mA′h

)
Q[h/R], (B11)

dm = −
√
π

3

iεmA′A′m
β1

[mA′(R+ h)]
2
e−iβ1mA′ (R+h), (B12)

38 Technically, it is the parallel magnetic H field that is continuous
across the interface (assuming no free surface current is flowing
on the surface interface). However, an isotropic ohmic conductiv-

ity is equivalent to an effective permittivity and not an effective
permeability, which implies that the parallel magnetic B field is
continuous.
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where

Q[x] =
3(x+ 1)3(x+ 2)

2(x2 + 3x+ 3)
, (B13)

and A′m are defined as in Eqs. (25)–(27). The magnetic field in the atmosphere to leading order is then

B(Ω, t) =

√
π

3
εm2

A′R
∑
m

A′mΦ1me
−imA′ t; (B14)

this agrees with Eq. (38), and the rotation of the Earth can be accounted for just as in Sec. III B to arrive at Eq. (42).

Note that Eq. (B14) does not depend on either of the
conductivities in the problem. In particular, note also
that at no point did we actually assume σ2 � mA′ , so this
condition on the atmospheric conductivity is not actually
essential to our result. Indeed, the same leading-order
magnetic field is obtained even for σ2 ∼ mA′ , which is the
physical case; see Fig. 1 and the discussion in Sec. II B.

However, in order to show more fully that our solution
here does match onto the solution given in the main text,
consider the additional limit σ2 � mA′ � σ1: then β2 ≈
1 and β1 ≈

√
σ1/mA′ exp[iπ/4]. It follows that the forms

of the solutions for R < r < R+h at Eqs. (B6) and (B8)
match onto those at Eqs. (32) and (34), respectively.

Moreover, since bm →
√

3πiεmA′A′m, the normalization
of the magnetic field for R < r < R + h agrees with
that of Eq. (38); cf. Eq. (36), but note that we have re-
labeled the coefficient am in the main text as bm in this
Appendix.

Moreover, am ∝ exp[−R
√
σ1mA′/2], while dm ∝

exp[+
√
mA′σ/2 (R+h)]. The electric and magnetic field

solutions Eqs. (B6) and (B8) for 0 ≤ r < R can thus

be shown in the σ1 � mA′ limit to exhibit exponential
damping suppressions moving into the inner conductor
that go as ∼ exp[−

√
σ1mA′/2 (R − r)]; similarly, for

r > R + h in the same limit, they exhibit exponen-
tial damping suppressions moving into the outer con-
ductor that go as ∼ exp{−

√
σ1mA′/2 [r − (R + h)]}.

Both of these results exhibit field-amplitude skin-depths
δ ∼

√
2/(σ1mA′), in agreement with Appendix A. In

the limit of infinite conductivity σ1, we thus recover our
solutions in the main text exactly.

Appendix C: Full coefficient expressions for solution
in Sec. III B

For completeness, we present the full solutions for the
coefficients am and bm which appear in the computation
in Sec. III B, which we only gave in the combined limits
mA′R� 1 and h� R in the main text.

The full solutions are

am = −2i

√
π

3
A′mεm

4
A′

×
{

(h+R)3
[(

1−m2
A′R2

)
cos(mA′R) + (mA′R) sin(mA′R)

]
− [R↔ (h+R)]

}
×
{ [

1−m2
A′(h2 + hR+R2) +m4

A′R2(h+R)2
]

sin(mA′h)− (mA′h) cos(mA′h)
[
1 +m2

A′R(h+R)
] }−1

;

(C1)

bm = −2i

√
π

3
A′mεmA′R−3

×
{

(h+R)3
[(

1−m2
A′R2

)
sin(mA′R)− (mA′R) cos(mA′R)

]
− [R↔ (h+R)]

}
×
{ [

1−m2
A′(h2 + hR+R2) +m4

A′R2(h+R)2
]

sin(mA′h)− (mA′h) cos(mA′h)
[
1 +m2

A′R(h+R)
] }−1

,

(C2)

where [R ↔ (h + R)] indicates repetition of the im-
mediately preceding term, but with the replacements
R→ h+R and h+R→ R.

Appendix D: Vector spherical harmonics

In this Appendix, we summarize our conventions for
the vector spherical harmonics (VSH). The VSH are de-
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fined in terms of the scalar spherical harmonics Y`m by
the relations

Y`m = Y`mr̂, Ψ`m = r∇Y`m, Φ`m = r ×∇Y`m,
(D1)

where r̂ is the radial unit vector. Thus Y`m points radi-
ally, while Ψ`m and Φ`m point tangentially to a constant-
radius sphere. Our conventions follow those of Ref. [106],
which differ slightly from those of Ref. [50]: in particu-

lar, Φ`m = i
√
`(`+ 1)X`m, whereX`m is the normalized

VSH defined at Eq. (9.119) in Ref. [50].
Our phase conventions, and some of the relevant VSH

orthogonality and completeness properties are

Y`,−m = (−1)mY ∗`m, (D2)

Ψ`,−m = (−1)mΨ∗`m, (D3)

Φ`,−m = (−1)mΦ∗`m, (D4)

Y`m ·Ψ`m = Y`m ·Φ`m = Ψ`m ·Φ`m = 0, (D5)

∫
dΩY`m · Y ∗`′m′ = δ``′δmm′ , (D6)∫
dΩ Ψ`m ·Ψ∗`′m′ =

∫
dΩ Φ`m · Φ∗`′m′

= `(`+ 1)δ``′δmm′ , (D7)∫
dΩY`m ·Ψ∗`′m′ =

∫
dΩY`m ·Φ∗`′m′

=

∫
dΩ Ψ`m ·Φ∗`′m′ = 0. (D8)

For any radially dependent function f(r), the diver-
gences and curls of the VSH are given by

∇ · (fY`m) =

(
df

dr
+

2f

r

)
Y`m, (D9)

∇ · (fΨ`m) = −`(`+ 1)
f

r
Y`m, (D10)

∇ · (fΦ`m) = 0, (D11)

∇× (fY`m) = −f
r

Φ`m, (D12)

∇× (fΨ`m) =

(
df

dr
+
f

r

)
Φ`m, (D13)

∇× (fΦ`m) = −`(`+ 1)f

r
Y`m −

(
df

dr
+
f

r

)
Ψ`m,

(D14)

with the Laplacians then being

∇2 (fY`m) =

(
1

r2

d

dr

(
r2 df

dr

)
− (`(`+ 1) + 2)f

r2

)
Y`m

+
2f

r2
Ψ`m, (D15)

∇2 (fΨ`m) =

(
1

r2

d

dr

(
r2 df

dr

)
− `(`+ 1)f

r2

)
Ψ`m

+
2`(`+ 1)f

r2
Y`m, (D16)

∇2 (fΦ`m) =

(
1

r2

d

dr

(
r2 df

dr

)
− `(`+ 1)f

r2

)
Φ`m.

(D17)

The explicit expressions for the VSH which are relevant
to this work [see Eq. (42)] are

Y10(r) =

√
3

4π
cos θr̂, (D18)

Y11(r) = −
√

3

8π
eiφ sin θr̂, (D19)

Ψ10(r) = −
√

3

4π
sin θθ̂, (D20)

Ψ11(r) = −
√

3

8π
eiφ(cos θθ̂ + iφ̂), (D21)

Φ10(r) = −
√

3

4π
sin θφ̂, (D22)

Φ11(r) =

√
3

8π
eiφ(iθ̂ − cos θφ̂), (D23)

where θ̂ and φ̂ are unit vectors in the directions of in-
creasing θ and φ. The m = −1 harmonics can be ob-
tained using Eqs. (D2)–(D4).

Note that, as written here, if the coordinate system in
question is aligned such that +ẑ points along the rota-
tion axis of the Earth out of the Geographic North Pole,
and the coordinate system is body-fixed such that it co-
rotates with the surface of the Earth, then the spherical
coordinate φ coincides with the definition of longitude.
However, the spherical coordinate θ is not the latitude:
θ increases from θ = 0 at the Geographic North Pole (lat-
itude +90◦), to θ = π/2 on the Equator (latitude 0◦), to
θ = π at the Geographic South Pole (latitude −90◦).

Fig. 5 shows the real and imaginary components of the
non-zero θ̂- and φ̂-components of Φ11 and Φ10, which
are the relevant VSH that appear in the signal, Eq. (42).

Finally, we note that the Cartesian unit vectors can be
written in terms of the VSH as

x̂ = −
√

2π

3
(Y11 − Y1,−1 + Ψ11 −Ψ1,−1), (D24)

ŷ =

√
2π

3
i(Y11 + Y1,−1 + Ψ11 + Ψ1,−1), (D25)

ẑ =

√
4π

3
(Y10 + Ψ10). (D26)
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FIG. 5. Shaded contour plots of the real and imaginary parts of all the non-zero θ̂- and φ̂-components of the vector spherical
harmonics Φ11 and Φ10; the cognate plots for Φ1,−1 can be read from those of Φ11 using Eq. (D4). Red (blue) indicates
positive (negative) values, with the color range for each plot independently normalized to span the range of values plotted.
Overlaid are the outlines of the Earth’s continents (white) [107]. The locations of the SuperMAG stations used in the analysis
that is outlined in Sec. IV (and which is the subject of Ref. [38]) are shown as green points.
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[84] T. Bösinger, A. Demekhov and V. Y. Trakhtengerts,
Fine structure in ionospheric Alfvén resonator spectra
observed at low latitude (L = 1.3), Geophys. Res. Lett.
31 (2004) .
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