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The axion is a well-motivated candidate for the inflaton, as the radiative corrections that spoil
many single-field models are avoided by virtue of its shift symmetry. However, axions generically
couple to gauge sectors. As the axion slow-rolls during inflation, this coupling can cause the produc-
tion of a non-diluting thermal bath, a situation known as “warm inflation.” This thermal bath can
dramatically alter inflationary dynamics and observable predictions. In this paper, we demonstrate
that a thermal bath can form for a wide variety of initial conditions, including starting from zero
initial temperature in the universe. Furthermore, we find that axion inflation becomes warm over a
large range of couplings, and explicitly map the parameter space for two axion inflation potentials.
We show that in large regions of parameter space, axion inflation models once assumed to be safely
“cold” are in fact warm, and must be reevaluated in this context.

I. INTRODUCTION

Single-field slow roll inflation is a compelling solu-
tion to the difficulties of standard Big Bang cosmol-
ogy [1, 2] and provides a natural explanation for the
primordial perturbations observed in Cosmic Microwave
Background (CMB) anisotropies [3]. Realizing a viable
model of single-field inflation however has challenges; the
generation of radiative corrections to the potential by
generic Planck-suppressed operators can spoil the flat-
ness necessary to sustain a sufficient period of slow-roll
(see e.g. [4] for a discussion). These corrections can be
avoided if the inflaton is a pseudo-Nambu-Goldstone bo-
son (pNGB) that enjoys a weakly-broken shift symmetry.
As a result, such a pNGB (henceforth axion) provides an
elegant candidate for the inflaton. This was the origi-
nal motivation for “natural inflation” [5] and the vari-
ous axion inflation models that have since been proposed
(e.g. Refs. [6–19] constitute a non-exhaustive list).

While the use of an axion as the inflaton avoids the is-
sues of radiative corrections to the potential, it has other
implications for the dynamics of inflation. Namely, the
axion generically couples to other particles in the theory.
For example, such couplings are motivated by reheat-
ing [20–24]. In particular, an axion, φ, naturally couples

to gauge fields with a dimension-5 operator ∝ φ
f TrGG̃

where f is the scale of the symmetry breaking and G is
the gauge field strength. We will show in this paper that
such a coupling often generates a thermal bath during
inflation, which can significantly alter the predictions of
inflation.

As the axion rolls in its potential, it sources the produc-
tion of gauge degrees of freedom. In some regions of pa-
rameter space, this production outpaces the dilution due
to Hubble expansion and generates a thermal bath. Dis-
sipative interactions with a thermal bath result in “ther-
mal friction” that dramatically alters the inflationary dy-
namics. For non-Abelian gauge sectors, the friction is
dominated by strong sphaleron transitions [25, 26], an
understudied source of dissipation entirely distinct from

those often considered [27, 28].

Inflation in a coincidently-evolving thermal bath is
known as “warm inflation” [29]. Warm inflation models
often suffer from a similar problem to the aforementioned
“cold” inflation models, though it is thermal corrections
rather than Planck-suppressed radiative corrections that
spoil the flatness of the potential [30]. Again, the axion
avoids this, further motivating it as an inflaton in a warm
inflationary setting [15, 25, 28, 31].

Most axion inflation models are however assumed to be
in the “cold regime” where any backreaction from ther-
mal effects is negligible. The purpose of this paper is to
demonstrate that this is not always a valid assumption.
As will be shown in the following sections, axion inflatons
with gauge couplings must necessarily be exceptionally-
weakly coupled to avoid being driven into a warm regime,
whereupon observable predictions change dramatically.
Furthermore, we show that in a large region of parameter
space, this fate is independent of initial conditions—the
warm regime is the attractor solution whether inflation
begins with a thermal bath or in vacuum. While in this
paper we explore parameter space for two specific po-
tentials of interest, the result we find is generic: axion
inflation can often lead to the formation of a thermal
bath that must be accounted for.

This paper is organized as follows. In Section II, we
review the dynamics of warm inflation in the context of
an axion coupled to a non-Abelian gauge sector (with
the possible presence of light fermions). In Section III,
we show that warm inflation is an attractor solution with
a large basin of attraction. In Section IV, we introduce
the different possible regimes for warm and cold inflation.
In Section V, we map out inflationary parameter space
in terms of these regimes for two different cases: one in
which the axion couples to a pure SU(3) Yang-Mills sec-
tor, and one in which the axion couples to the Standard
Model SU(3)c, so the effects of light fermions must be in-
cluded. We also analyze some of the qualitative features
of the resulting maps of viable parameter space. Finally,
we conclude in Section VI. Appendices A and B contain
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detailed computations of the bounds on initial conditions
presented in Section III.

II. INFLATION IN A THERMAL BATH

Axions couple to gauge sectors with a dimension-five
non-renormalizable coupling of the form ∝ φ

f TrGG̃ where

f is the axion decay constant. While the potential is gen-
erally set by UV physics in axion inflation models, such
a coupling to any gauge sector is allowed and generi-
cally expected to exist in the IR theory. In this case, the
thermal bath that the motion of the inflaton sources can
backreact and drive the system into the regime of warm
inflation when naively, the system is thought to be cold.

Here, we consider two possible couplings: one to a
generic SU(3) gauge sector with no associated light
fermions, the other to the strong gauge sector of the Stan-
dard Model. The Lagrangian includes the terms

L ⊃ 1

2
(∂φ)2−V (φ)− 1

2g2
TrGµνG

µν− φ

16π2f
TrGµνG̃

µν

−
[
ψ̄( /D −mf )ψ

]
(1)

with φ the inflaton, V (φ) the inflationary potential set
by UV physics, g the gauge coupling of the non-Abelian
gauge sector, Gµν the associated field strength tensor,
G̃µν = 1

2εµνρσG
ρσ its dual, and f the decay constant

which couples the inflaton to the gauge sector. We in-
clude the final term for models with a light fermion ψ
with mass mf , such as the Standard Model, but we do
not include this term when considering our pure gauge
case.

The equations of motion for a homogeneous inflaton
φ(t) in the presence of a thermal bath at temperature
T (t) are given by [32]

φ̈+ 3Hφ̇+ Υ(T )φ̇+ V ′(φ) = 0 (2)

H2 − 1

3M2
pl

(
ρR +

φ̇2

2
+ V (φ)

)
= 0 (3)

ρ̇R + 4HρR −Υ(T )φ̇2 = 0 (4)

where we have defined the energy density of the thermal

bath of radiation as ρR = π2g∗
30 T 4 with g∗ the number

of relativistic degrees of freedom in the bath. Mpl =√
~c/8πG = 2.435× 1018 GeV/c2 is the reduced Planck

mass.
Υ(T ) is the temperature-dependent dissipation term

that accounts for the frictional effect of sphaleron transi-
tions between gauge vacua. This has been computed in
the generic case of a gauge sector (with trace normaliza-
tion TR and dimension dR of the representation) and an

associated light fermion to be [33]:

Υ(T ) =
Γsph

2Tf2

 Γch

Γch +
24T 2

R

dRT 3 Γsph

 (5)

where the sphaleron transition rate has been found to be

Γsph ∼ N5
c α

5T 4 (6)

with Nc the number of colors in the sector and α = g2/4π
the coupling; the chirality-violation rate associated with
the fermion is1

Γch ≡
κNcαm

2
f

T
(7)

with κ someO(1) coefficient which we set to 1 henceforth.
The effect of light fermions is to allow chirality-

violating processes that diminish the friction associated
with sphaleron transitions (see [33] for details). It is clear
that in the limit mf → ∞, Eq. 5 reduces to the form
previously derived for a pure-gauge sector [25]. When
mf . (Ncα)2T , the pure-gauge frictional term is sup-
pressed by ∝ (Ncα)−4(mf/T )2.

Note that the above expressions only hold if thermal-
ization of the bath is efficient. This occurs when the
thermalization rate, given by [26]

∆ ≈ 10N2
c α

2T, (8)

is much greater than the rate of expansion H. In the
relevant parameter space, this reduces to the condition
T/H & 1, which is equivalent to being in a warm inflation
regime.

The slow roll conditions in warm inflation are modified
from those of cold inflation. In cold inflation, one defines
the slow roll parameters εV and ηV as

εV =
1

2

(
V ′

V

)2

M2
pl (9)

and

ηV =

(
V ′′

V

)
M2

pl. (10)

In warm inflation, these equations are modified to

εW =
1

(1 +Q)

1

2

(
V ′

V

)2

M2
pl (11)

and

ηW =
1

(1 +Q)

(
V ′′

V

)
M2

pl. (12)

1 For theories with multiple light fermions, it is the mass of the
lightest fermion which will appear in Eq. 7.
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where Q ≡ Υ/3H is the ratio of the thermal friction to
the Hubble friction. Clearly, these reduce to the cold pa-
rameters in the limit that Q� 1. We refer to the regime
in which T > H but Q� 1 as weak warm inflation, while
we refer to the limit Q� 1 as strong warm inflation.

The slow-roll conditions therefore become εW , ηW � 1.
Under these conditions, the equations of motion simplify
to

φ̇ =
−V ′(φ)

3H + Υ(T )
(13)

H2 =
ρR + V (φ)

3M2
pl

(14)

4HρR = Υ(T )φ̇2 (15)

For any given potential V (φ) and axion decay constant
f (which appears in the expression for Υ), these equa-
tions can be solved numerically to find the steady-state
equilibrium configuration.

Inflation terminates when εW = 1. Denoting the field
value at which this occurs as φend, one can then compute
the number of e-folds of inflation between a given φ and
φend as

N =
1

M2
pl

∫ φ

φend

(1 +Q(φ̃))

(
V (φ̃)

V ′(φ̃)

)
dφ̃. (16)

By setting N = N∗ (taken to be 60 in this analysis2),
one can compute φ∗, the field value at which one wishes
to match theoretical predictions to cosmological observ-
ables. In this analysis, we will be interested in the equi-
librium values of H, T , and Υ at this φ∗.

III. WARM INFLATION AS AN ATTRACTOR

In this section, we will show that the equilibrium con-
figuration derived in the previous section is an attractor
solution with a large basin of attraction. This further
underlines the key point of this paper: generic condi-
tions in axion inflation often lead to thermal effects that
cannot be ignored. We will explore two generic initial
conditions for inflation and demonstrate that they can
both lead to the warm inflation equilibrium. The first is
a thermal bath at a temperature different than the equi-
librium temperature, the second is a vacuum absent of
any thermalized degrees of freedom. In other words, even
starting from zero temperature, an inflation model may
drive itself into the warm regime.

2 While the number of e-folds ultimately depends on the inflation-
ary scale of a particular model, we choose to fix N∗ to a particular
fiducial value for comparative purposes. We have verified that
the maps of parameter space we present in Sec. V do not change
appreciably for other choices of N∗.

A. Inflation begins in a thermal bath

We will begin with the simple assumption that the
inflationary period is preceded by some matter- or
radiation-dominated period such that there is a well-
defined initial temperature of the bath at the onset of
inflation. Let T0 denote the initial temperature of the
bath and Teq be the steady-state equilibrium tempera-
ture of the system arising from Eqs. 13–15.

If T0 > Teq, the approach to equilibrium is simple to
understand: the redshifting of the existing thermal bath
is faster than the rate at which thermal friction dumps
energy into the bath, thus Hubble expansion will cause
the temperature of the bath to fall with a−1, where a
is the scale factor. In this case the system reaches the
equilibrium temperature in ∼ ln( T0

Teq
) e-folds of inflation.

If T0 < Teq, the system will still reach equilibrium
within a Hubble time, as first noted in Ref. [25]. The
proof is as follows. We will assume that thermalization
is efficient and the system remains at a well-defined tem-
perature throughout its evolution. (In Appendix A, we
explicitly check these assumptions by ensuring that both
∆� Ṫ /T and ∆� H throughout the evolution.) Then
the evolution of T is governed by Eq. 4, along with the
definition of ρR and expression for Υ(T ). To encompass
both the cases with and without light fermions, let us pa-
rameterize the dissipation as Υ(T ) = CT p (where p = 3
when no light fermions are present and p = 1 when there
are). As we will eventually see, the system will reach its
equilibrium within a Hubble time, so the 4HρR term in
Eq. 4 can be neglected. Substituting in the definition of
ρR and expression for Υ(T ), we then find

ρ̇R ≈ Υ(T )φ̇2 =⇒ T 3−pṪ ≈ 15C

2π2g∗
φ̇2. (17)

Since φ̇ decreases as the temperature increases, it will
be smallest when the system reaches its equilibrium. We
can therefore bound φ̇ > φ̇eq. Then we can integrate the
above to find

T 4−p
eq − T 4−p

0

4− p
>

15C

2π2g∗
φ̇2eqteq (18)

where teq is the time it takes to reach its equilibrium.

Note that we can neglect the T 4−p
0 term here and this

inequality will still be satisfied. We can derive an expres-
sion for φ̇eq by considering the equilibrium limit of Eq. 4.
Then ρ̇R,eq = 0, so we find

2π2g∗
15

HT 4
eq = CT peqφ̇

2
eq (19)

Substituting this expression for φ̇eq into Eq. 18 yields

T 4−p
eq

4− p
> HT 4−p

eq teq =⇒ teq <
1

(4− p)H
. (20)

Therefore the system reaches equilibrium within a Hub-
ble time so long as p < 4, which is true for both the case
with and without light fermions. (This retroactively jus-
tifies neglecting the 4HρR term when deriving Eq. 17.)
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B. Inflation begins in a vacuum

Now let us consider a situation in which inflation be-
gins in a vacuum.3 There is no well-defined T0, hence the
above argument does not immediately apply. However,
if some other mechanism generates a bath with T > H,
then the above proof shows that the system will run to
the attractor solution. As we will see in the remainder of
this section, the exponential production of gauge modes
during inflation can do just that.

The exponential production of gauge modes during in-
flation arises due to a tachyonic instability in the gauge
equations of motion [14]. Neglecting the expansion of the
universe, nonlinear terms arising from the non-Abelian
nature of the SU(3) gauge fields, and backreaction on
the inflaton (assumptions that we will return to momen-
tarily), the equations of motion for the gauge modes can
be written as

Ä± − k

(
αφ̇

2πf
∓ k

)
A± = 0. (21)

where A± are the helicity modes. It is immediately clear

that for the + polarization in the case where φ̇ > 0,

modes with k ≤ kmax ≡ αφ̇
2πf exhibit a tachyonic instabil-

ity.

We wish to determine under what conditions the gauge
modes sourced by this mechanism thermalize sufficiently
rapidly to produce a thermal bath, after which the argu-
ments of the previous sub-section apply. We must there-
fore ensure three conditions are satisfied:

1. Do number-changing reactions become efficient
within a Hubble time? This ensures that the pro-
duced particles can thermalize more rapidly than
Hubble expansion dilutes the population.

2. Does the equation of motion remain perturbative
when scattering becomes efficient? The full gauge
equation of motion includes non-linear terms asso-
ciated with the non-Abelian nature of the sector.
These must be small enough that Eq. 21 remains a
valid approximation.

3. Does scattering become efficient before particle pro-
duction backreacts on the inflaton’s motion? We
must ensure that the exponential production does
not drain the inflaton of its kinetic energy before
the produced particles can thermalize.

3 This is in some sense a less generic case than those addressed
in the previous subsection, as inflationary models are often pre-
ceded by an epoch in which radiation or matter dominate. It is
in fact one of the original motivations of inflation that the expo-
nential increase in the scale factor could inflate away the degrees
of freedom of a previous epoch.

The analytic derivation of these conditions is tedious,
and can be found in Appendix B. In this section, we will
simply state the results, though we refer the interested
reader to the Appendix for a full treatment. Note that in
what follows, we will evaluate the conditions for the case
in which there is no light fermion coupled to the gauge
sector, but since a light fermion only makes thermaliza-
tion more efficient, the bounds we quote therefore place
a conservative limit in the presence of light fermions as
well. (See Appendix B for further discussion.)

Condition 1: We require that number-changing reac-
tions occur well before Hubble expansion can dilute the
particles. This will be satisfied when

f

Mpl
� O(10−1)α

√
εV . (22)

We have computed this bound, as well as the following
bounds, by setting the inflaton’s velocity to the termi-
nal velocity set by Hubble friction, i.e. φ̇ = V ′(φ)/3H ,
however the bounds are also applicable in the case of
lower velocities (see footnote 9 of Appendix B). Eq. 22
can also be written as kmax � O(1)H , from which we see
that so long as the fastest growing modes k ∼ kmax are
sub-horizon, these modes will satisfy Condition 1.

Condition 2: Here we ensure that the non-linear
terms in the gauge field equation of motion are small
in comparison to the linear terms, hence interactions re-
main perturbative. The system will remain perturbative
when

f

Mpl
� O(10−2)Ncα

2√εV . (23)

Note that for Ncα < 1, this is strictly more constraining
than Condition 1, however Condition 2 is not a true phys-
ical bound, but rather a bound on our calculations. It is
possible that thermalization may still occur in the non-
perturbative regime, and in such a case, warm inflation
would be achieved up until Condition 1 is violated.

Condition 3: This condition demands that the energy
drained from the inflaton by the exponential production
of gauge modes does not backreact to slow the roll of the
inflaton. Backreaction is avoided when

f

Mpl
� O(10−1)

(
α4ε

3/2
V

Nc

)1/7(
H

Mpl

)4/7

. (24)

It should be stressed that the H and εV that appear in
this expression correspond to the initial values of these
parameters. This makes them somewhat arbitrary, as
one has the freedom to choose initial conditions. How-
ever, in order to provide some context for the regions of
parameters space this bound covers, one can rewrite the
expression as

f � 2× 1010 GeV

×
( α

0.1

)4/7(Nc
3

)−1/7 ( εV
10−3

)3/14( H

10−10Mpl

)4/7

(25)
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(see Appendix B). It is clear that this can be satisfied for
a wide variety of initial conditions in interesting regions
of parameter space.

So, in summary, we find that provided the produced
gauge modes are well sub-horizon (Condition 1) and that
f is sufficiently large to avoid backreaction (Condition 3),
the system will generate a thermal bath within a Hubble
time, even starting from vacuum. This shows that there
is a large region of parameter space in which the exponen-
tial growth does produce a thermal bath, and therefore
the system runs away to the warm inflation attractor so-
lution.

The results of this entire section, in both the case
of vacuum and initial thermal bath, underscore a ma-
jor point of this paper: the fact that warm inflation is
the attractor solution implies that if a warm inflationary
equilibrium exists for a particular choice of parameters,
the system will necessarily be driven to it; for a large set
of initial conditions, it cannot be evaded.

IV. INFLATIONARY REGIMES

We are interested in what regions of parameter space
“cold” inflationary models are in fact driven to warm
inflation. As such, we chose to examine fiducial poten-
tials that are popular in the axion inflation literature
and calculate the consequences of an additional gauge
coupling. The two potentials studied are that of axion
monodromy [6, 34, 35]

Vmon(φ) = µ3
(√

φ2 + φ2c − φc
)

(26)

and the Starobinsky model [36] (which is a limit of the
α-attractors [37, 38])

VStar(φ) = V0

(
1− exp

(
−|φ|
v

))2

. (27)

Each is a two-parameter family of models governed by a
normalization and scale: µ and φc respectively in mon-
odromy, and V0 and v in the Starobinsky model. Best
fits to the current measurements of the CMB parame-
ters As, ns, and r by the Planck satellite [3] lead to pa-
rameter values of µ = 6 × 10−4Mpl, φc = Mpl/10 and
V0 = 6.2× 10−10M4

pl, v = 10Mpl/3 for the two models in

the usual cold inflationary paradigm [39].
We note that it is however not possible to repro-

duce the measured CMB parameters in the strong warm
regime with these potentials.4 This is because correctly

4 In the weak regime, the formulae for the spectral parameters de-
pend on the phase-space distribution of inflaton particles, which
we do not compute and thus refrain from commenting on. For a
detailed discussion, see Ref. [40].

reproducing the observed red-tilt of the CMB in strong
warm inflation requires ηV ≥ εV [25] (in contrast to the
cold inflation scenario where potentials with εV ≥ ηV are
sought to reproduce the observed spectral tilt). As a re-
sult, this condition is not met in generic “cold” inflation
potentials such as these. For this reason, we restrict our
analysis to classifying inflationary regimes rather than
computing spectral parameters. While we limit our anal-
ysis to these two potentials, the results we display below
are fairly generic for slow-roll inflationary potentials, as
will be discussed further below.

For these potentials, we vary the normalizations and
axion decay constants, under both the assumption of a
pure SU(3) gauge group with no light fermions and with
Standard Model (SM) fermions and a coupling to the
SM strong sector, and find the associated equilibrium
solution. Depending on the resulting values for H, T , and
Υ at φ∗, the solution is sorted into one of the following
categories:

1. Strong warm inflation: Here, Q > 1 (equiva-
lently Υ > 3H), hence the friction is dominated by
thermal effects and the dynamics are significantly
changed from the naive cold prediction. Addition-
ally, H,T < f to ensure that the behavior of the
axion is well-defined.

2. Weak warm inflation: In this case, Q < 1
(equivalently 3H > Υ), hence we are not in the
strong regime, however H < T . While the dynam-
ics in this case are not influenced by thermal effects,
the CMB power spectrum is now set by thermal
fluctuations [41, 42]. Again, H,T < f for the rea-
son above.

3. Cold inflation: In this case, T < H, hence both
the dynamics and resulting CMB spectrum are set
purely by the Hubble parameter and the predic-
tions of the inflation model are unchanged. Again,
H,T < f .

4. Thermally broken (H < f < T ): We denote this
as “thermally broken” in that the derived equilib-
rium temperature is above the axion decay con-
stant, hence the above assumptions made on the
dynamics of the axion are no longer valid. Naively,
if operating purely under the assumption of cold in-
flation, this may seem like viable parameter space,
however the generation of a thermal bath leads to
a backreaction that renders the effective theory in-
valid.

5. Broken (f < H): In this regime, the effective
theory also breaks down, since the Hubble scale
is above the axion decay constant. Note that
this breakdown is not related to the temperature,
hence the non-viability of these regions of param-
eter space could have been predicted prior to this
study.
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The most relevant of these categories for us are 1, 2,
and 4, namely strong warm inflation, weak warm infla-
tion, and thermally broken (H < f < T ), because for all
three of these regimes, the naive assumption that a par-
ticular model is operating in a cold inflationary regime is
violated, and thermal effects must be taken into account.

V. RESULTS

We study both couplings to a generic pure SU(3) gauge
sector with no light fermions (that may, for example, con-
stitute a portion of a dark sector) and couplings to the
strong SU(3)c of the Standard Model, taking into con-
sideration the effects of light fermions in the SM.

As is shown below, the monodromy and Starobinsky
models display similar behavior for both of these cases.
This is not surprising, as the relevant dynamics are in
general occurring on scales much smaller than those on
which the potential is changing, hence the results are
fairly insensitive to the overall shape of the potential so
long as the slow-roll conditions are satisfied. This indi-
cates that this rough map of parameter space is general-
izable to other models that employ a slow-rolling axion
as the inflaton.

A. Pure SU(3)

For the pure gauge sector, we adopt QCD-like param-
eters, setting α = 0.1 and Nc = 3. We assume that the
new sector is sequestered from SM degrees of freedom
and adopt g∗ = 2N2

c − 1 = 17, which accounts for the
two polarizations for each of the eight gauge bosons and
a single degree of freedom from the inflaton. The theory
is taken to be unconfined at all relevant scales. Finally,
we choose to take N∗ = 60 in the below plots, but the
results are robust against changes to this parameter.

In Figures 1 and 2, we show the parameter space
spanned by the axion decay constant and normalization
of the potential. The dashed green line indicates the re-
quired normalization to match As under the assumption
of cold inflation, hence these cold inflation models are
only consistent and viable in regions where this dashed
green line lies within the light blue cold inflation regime.
It is clear that in both cases, this limits the allowed axion
couplings to 10−3Mpl < f < Mpl in order for these mod-
els to be safe from thermal effects, whereas prior to this
work one might have naively expected decay constants as
low as f ∼ 10−4Mpl to be allowed.5

5 Note that the point at which f becomes smaller than H is a
bit misleading in Figs. 1 and 2. Since Hubble is evaluated at
the φ∗ predicted under warm conditions, the Hubble that would
have been predicted under the assumption of cold inflation is
marginally larger.

B. The Standard Model

Here, we adopt the same parameters as in the previ-
ous section, however we change g∗ → g∗(T ) to account
for all relativistic species in the Standard Model below
temperature T [43] and additionally compute the running
of αQCD with temperature. We employ the fit in [44] that
sets nf = 5 and fixes αQCD(mZ) at the mass of the Z
boson. This introduces a new effect, which is that for
sufficiently low temperatures (T ∼ 0.1 GeV), the theory
confines. We have demarcated these regions in light gray
in Figs. 3 and 4 and labeled them accordingly. Addition-
ally, we take mf ≈ 1 MeV in Eq. 7, along with TR = 1/2
and dR = 3 in Eq. 5, to account for for the light fermionic
degrees of freedom in the Standard Model.

As above, we show the parameter space spanned by the
axion decay constant and normalization of the potential.
Once again, the dashed green line indicates the required
normalization to match As under the assumption of cold
inflation, hence these cold inflation models are only con-
sistent and viable in regions where this dashed green line
lies within the light blue cold inflation regime.

In comparison to the previous subsection, it is clear
that the light fermions play a significant role in limit-
ing thermal effects by reducing the friction and the as-
sociated energy density of the thermal bath for a given
Hubble. The crossing point at which f = T = H has
been shifted to significantly lower values of f and nor-
malization, hence lower H. As a result, for the correct
normalization to reproduce As, no choice of f forces the
model into a region in which thermal effects dominate.

It should be noted that constraints on axion-gluon cou-
plings [45, 46] may be relevant at low normalizations and
strong couplings (lower left of Figures 3 and 4), however
these are model-dependent. As placing limits is not the
main point of this paper, we choose not to display these
bounds.

C. Regime Scalings

Much of the rough structure of Figs. 1–4 is generic for
all potentials and can be derived analytically. This is
because in the weak limit Q � 1, both φend and φ∗ are
independent of f and the normalization of the potential
(since εW is independent of these). Therefore H(φ∗) is
proportional to the square root of the normalization of
the potential, and thus is a good proxy for the horizontal
axes of Figs. 1–4. Using Eq. 5 and Eqs. 13–15, it is then
straightforward to derive how T (φ∗) and Q(φ∗) scale with
H(φ∗) and f . These can then be used to determine the
slopes of the boundaries between these regions, which are
defined by equating different sets of these parameters.

For example, the boundaries between the cold and
weak warm regimes in Figs. 1–2 appear as horizontal
lines. This behavior can be derived analytically by plug-
ging the appropriate limits into Eq. 15. Namely since
there are no light fermions, we may take the m → ∞
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V(ϕ)=μ3(sqrt(ϕ2+ϕc2)-ϕc)
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FIG. 1: Map of parameter space for an axion monodromy potential with coupling to pure SU(3) gauge sector (no light
fermions). Light blue regions indicate parameter space in which inflation remains cold, while red regions indicate that inflation
enters a warm regime. The orange region corresponds to the regime in which the temperature of the bath is driven above f ,
hence the EFT breaks down and cold inflation is certainly not a good assumption. The dashed green line denotes the required
normalization to reproduce the observed As of the CMB power spectrum. It is clear that for f . 1015 GeV, the assumptions
of cold inflation are violated for this choice of normalization. Additionally, we note the appearance of large warm inflationary
regimes towards small values of the normalization.
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FIG. 2: Same as Fig. 1 for the Starobinsky potential. As expected, this exhibits similar behavior to that of the monodromy
potential.
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V(ϕ)=μ3(sqrt(ϕ2+ϕc2)-ϕc)
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FIG. 3: Map of parameter space for an axion monodromy potential coupled to the QCD sector of the Standard Model. The
dashed green line denotes the required normalization to reproduce the observed As of the CMB power spectrum. The inclusion
of the effects of light fermions has dramatically changed the locations of the various regimes, weakening the frictional mechanism
and pulling the f = H = T point towards lower values of the coupling and normalization. It is interesting to note that the
regions of viable warm inflation towards lower couplings persist even with this effect.
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FIG. 4: Same as Fig. 3 for the Starobinsky potential. As expected, this exhibits similar behavior to that of the monodromy
potential.
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limit of Eq. 5 and find Υ ∼ T 3/f2. Additionally since we
are interested in the weak limit, we may ignore the Υ in
the denominator of Eq. 13 to find φ̇ ∼ V ′/H ∼ H. Thus
in these limits Eq. 15 yields T ∼ H/f2. The boundary
between the cold and weak warm regimes is defined by
T = H, and thus will occur at a constant value of f in
these limits.

We can likewise understand why this behavior changes
in Figs. 3–4. The bend in the boundary between the
cold and weak warm regimes is due to the change in the
relevant limit of Eq. 5. Namely on the left-hand side of
the plot, the mf → ∞ limit applies, and so the line is
horizontal as in the previous case. However on the right-
hand side, mf � α2T and so the appropriate scaling for
the friction is Υ ∼ T/f2. By a similar argument to above,
this implies that the boundary at T = H should scale
as f ∼ H−1, which is reflected in the Standard Model
plots. Note that the bend in the boundary occurs roughly

when H ≈
√

dRκ
24

mf

N2
cα

2TR
, since this is the temperature

at which Eq. 5 transitions between these two limits.
Similar arguments to the above may be made to un-

derstand many of these boundaries. We remark on a
few interesting ones and give qualitative explanations of
them. Firstly, note that the boundary of the confined
region changes direction around the transition from the
weak warm regime to the strong warm regime. Since the
boundary of the confined region is approximately defined
by a fixed temperature, this means that in the weak limit,
decreasing f (going to stronger couplings) increases the
temperature, while in the strong limit, it decreases the
temperature. This is simply because in the weak limit,
the thermal friction does not influence the dynamics of
inflation. Thus decreasing f does not slow the inflaton
down and can only cause more energy to be dumped into
the bath. In the strong limit, however the thermal fric-
tion dominates the dynamics, so decreasing f will slow
the inflaton down, leading to less energy dumped into the
bath and a lower temperature.

Next note that the boundaries between the weak warm
and strong warm regimes have opposite slopes between
Figs. 1–2 and Figs. 3–4. This is due to the different scal-
ings of Eq. 5 in the cases with and without light fermions.
(The boundaries in Fig. 3–4 lie in the mf � α2T limit,
so the case with light fermions is appropriate.) Using
Eqs. 13 and 15, it can be shown that when Υ = H,
then H ∼ T 2. Thus in the case without light fermions
Υ ∼ T 3/f2 scales faster than H with temperature, while
in the case with light fermions Υ ∼ T/f2 scales slower.
This leads to opposite slopes in the two cases.

Finally, we point out that this technique of using H(φ∗)
as a proxy for the horizontal axis breaks down in the
strong limit, as φ∗ can gain dependence on f . For in-
stance, if these figures were actually plotted with H(φ∗)
on the horizontal axis, then the boundary between the
broken and thermally broken regimes, which is defined
by f = H, would appear as a straight line. In Figs. 1–2,
this is clearly not true as majority of the boundary lies
well within the strong regime.

VI. CONCLUSION

The axion remains a well-motivated candidate for the
inflaton as its potential is protected from radiative and
thermal corrections that would spoil the slow-roll dynam-
ics. However, we have shown that generic couplings to
non-Abelian gauge sectors, motivated for example by re-
heating, can result in the generation of a thermal bath
that significantly alters the predictions of inflation. This
bath is an attractor solution in significant parts of ax-
ion inflation parameter space. In those regions, axion
inflation will generate the bath for a wide variety of ini-
tial conditions, including if inflation begins in a vacuum.
In other words, for those parts of inflation model pa-
rameter space, the presence of a thermal bath in axion
inflation is not optional and thermal effects cannot be
neglected when assessing the viability of an axion infla-
tion model. We find the general result that the cou-
pling to a generic SU(3) gauge group must be very weak
(f & 1015 GeV) in order to remain safely in a cold infla-
tionary regime, though this limit is modified in the pres-
ence of light fermions such as those that appear in the
Standard Model. The parts of parameter space that be-
come warm for two representative axion inflation poten-
tials are shown in Figures 1 and 2 for the pure gauge case
and Figures 3 and 4 for the case with light fermions. Our
results serve as a warning to inflationary model-builders:
“cold” axion inflation is often warmer than one might
expect.
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Appendix A: Thermalization of an initial thermal
bath

In Section III A, we assumed that thermalization was
efficient and the temperature was well-defined through-
out its evolution. This will be true so long as the ther-
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malization rate ∆ ∼ 10N2
c α

2T (Eq. 8) satisfies ∆� Ṫ /T
and ∆ � H, which amount to conditions on thermaliz-
ing faster than the bath’s temperature is evolving and
faster than the bath is diluting due to the expansion of
the Universe. Since T increases and Ṫ decreases as the
evolution continues, it is sufficient to check both these
conditions at T0. The situation is quantitatively differ-
ent in the presence/absence of a light fermion, hence we
explore both, however the qualitative picture remains the
same.

1. No light fermions

Let us first consider the case of a pure SU(N) gauge
sector with no associated light fermions, so that we may
set p = 3 and C = N5

c α
5/2f2. Eq. 17 then implies

Ṫ0 ≈
15N5

c α
5φ̇20

4π2g∗f2
(A1)

We may assume that φ̇0 is no larger than its cold in-
flation value −V ′/3H, as if it were it would be slowed
down within a Hubble time (and we may just consider

T0 to be the temperature when φ̇ reaches its cold infla-
tion value). Then utilizing Eq. 9 and Eq. 14 (neglecting
the ρR contribution), we find

Ṫ0 ≈
5N5

c α
5V ′2

12π2g∗H2f2
≈

15N5
c α

5εVH
2M2

pl

2π2g∗f2
. (A2)

The condition ∆� Ṫ /T then becomes

10N2
c α

2T0 �
Ṫ0
T0

=⇒ T0 �

√
3N3

c α
3εV

4π2g∗

HMpl

f
. (A3)

Though initial conditions can be selected arbitrarily, we
can evaluate Eq. A3 at the set of fiducial values that we
use in Section V (namely α = 0.1, Nc = 3, and g∗ =
2N2

c − 1 = 17) to provide a numerical frame of reference:

T0
H
� 3× 10−4

(
Ncα

3× 0.1

)3/2 ( εV
10−3

)1/2( f

Mpl

)−1
,

(A4)
indicating a large region of parameter space in which this
is satisfied.

2. Light fermions

For the case with light fermions, we instead take p = 1

and C =
κNcαdRm

2
f

48T 2
Rf

2 . We then find

T 2
0 Ṫ0 ≈

5κNcαdRεVm
2
fH

2M2
pl

16π2g∗T 2
Rf

2
, (A5)

which yields the condition

T0 � 4

√
κdRεV

32π2g∗NcαT 2
R

√
mfHMpl

f
. (A6)

As above, we note that initial conditions are arbitrary,
however we can evaluate this at a set of fiducial pa-
rameters (now additionally taking g∗ = 100, TR = 1/2,
dR = 3, and mf = 1 MeV) to provide a numerical frame
of reference. This yields

T0
H
� 7× 10−13

×
(

Ncα

3× 0.1

)−1/4 ( εV
10−3

)1/4(H
f

)−1/2(
f

Mpl

)−1
(A7)

which once again demonstrates the large basin of attrac-
tion.

In summary, in order for our proof that the system
reaches the warm inflation equilibrium solution within a
Hubble time to be valid, the bath must thermalize more
rapidly than it dilutes due to Hubble expansion and ther-
malize more rapidly than the temperature changes. The
first condition (∆ � H) implies that T0 must exceed

(10Ncα)−2H, and the second (∆ � Ṫ /T ) implies that
T0 must exceed the threshold in Eq. A3/A6 in the ab-
sence/presence of fermions. Note that this latter thresh-
old is not a physical bound on reaching warm inflation,
but rather a limit on the validity of our assumptions:
when this condition is violated, the dissipation is so effi-
cient that the bath does not have time to thermalize all
of the particles being produced. However, since a ther-
mal distribution is ultimately the distribution of maxi-
mal entropy, it is very likely that the system eventually
reaches a thermal equilibrium at the attractor solution,
though that approach to equilibrium is not captured in
our treatment.

Appendix B: Inflation begins in a vacuum

Here, we derive in detail the conditions presented in
Sec. III B. Recall that the exponential production of
gauge modes during inflation arises due to a tachyonic
instability in the gauge equations of motion [14]. Let us
define the gauge field operator6 A in the Lorenz gauge
with mode expansion

A =
∑
λ=±

∫
d3~k

(2π)3

[
Aλ(t,~k)~ελ(~k)akλe

i~k·~x + h.c.
]

(B1)

6 Throughout this appendix, we will use A to refer to the RMS

value of the operator
~̂
Aa for a single color. We use A±(k, t) to

refer to the mode function at a particular momentum k (again
for a single color). Note that A has dimension 1, while A±(k, t)
has dimension −1/2.
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where A± are the two helicity modes, akλ and (akλ)† are
the creation/annihilation operators, and the helicity op-

erators ~ε±(~k) are defined such that ~k · ~ε±(~k) = 0 and
~k × ~ε±(~k) = ∓i|~k|~ε±(~k).

We will initially neglect the expansion of the universe,
nonlinear terms arising from the non-Abelian nature of
the SU(3) gauge fields, and backreaction on the inflaton
(assumptions that will be justified post facto), and derive
the equations of motion for the modes:

Ä± − k

(
αφ̇

2πf
∓ k

)
A± = 0. (B2)

We focus on the + polarization in the case where φ̇ >
0. It is clear from the equation of motion that modes

with k ≤ kmax ≡ αφ̇
2πf exhibit a tachyonic instability.

Specifically, they grow as

A+(k, t) ∝ eβt, β =
√
k · (kmax − k). (B3)

Note that β is maximized for k = kmax

2 . Thus most modes
which are produced by this mechanism will be produced
with momentum near kmax

2 . Since we are primarily inter-
ested in subhorizon modes, we will assume kmax � 2H
(which will turn out to be strictly weaker than the other
conditions we derive).

We wish to determine under what conditions the gauge
modes sourced by this mechanism thermalize sufficiently
rapidly to produce a thermal bath, after which the ar-
guments of Section III A apply. We will therefore deter-
mine the field value Ascatter at which this is achieved, and
ensure that this value is reached before Hubble expan-
sion, backreaction, and nonlinear effects become relevant.
Specifically we will define Ascatter as the value at which
number-changing reactions become efficient. We will
then check the three conditions presented in Sec. III B,
however we will state them in terms of values of A:

1. Is Ascatter reached within a Hubble time?

2. Is Ascatter � ANL, the field value at which non-
linearities become large and perturbativity breaks
down?

3. Is Ascatter � Aslow, the field value at which the
exponential production backreacts on the inflaton’s
motion?

We will show that all three are met across large parts of
the relevant parameter space.

Henceforth, we will assume that there are no light
fermions coupled to the SU(N) gauge sector, as the
bound we derive will then apply to both cases. (With
light fermions, number-changing reactions can only be
more efficient, hence the bounds derived below serve as
conservative limits in the presence of light fermions.)

In the absence of any light fermions, we compute
Ascatter using the gluon-gluon scattering rate Γ3→2 [47].
We are specifically interested in the 3-to-2 scattering rate,

as number-changing processes are required for complete
thermalization. When this rate satisfies Γ3→2 � H, we
will consider scattering to be efficient and assume that
thermalization occurs. Schematically, this rate is given
by

Γ3→2 ∼
CNcα3n2

k5
, (B4)

where n is the number density of gauge modes, k is
their momentum scale, and C ∼ O(10) is a normalization
which comes from phase space, symmetry, and diagram-
matic factors [47]. To evaluate this rate, we must first
compute n. Each mode k with amplitude A+(k, t) will
have energy equal to

E2 +B2

2
=
|Ȧ+|2 + |∇ ×A+|2

2

=
(β2 + k2)|A+|2

2

=
kkmax|A+|2

2
.

(B5)

Since each particle in such a mode has energy k, then the

occupation number of the mode will simply be kmax|A+|2
2 .

Then integrating over all modes and summing over all
colors, we find the total number density to be

n ≈ (N2
c − 1)

∫
d3k

(2π)3
kmax|A+|2

2
≈ (N2

c − 1)kmaxA
2

2
.

(B6)
Using the momentum at which the exponential produc-
tion is maximized k = kmax

2 , the scattering rate then

becomes7

Γ3→2 ∼
8CN5

c α
3A4

k3max

. (B7)

The field value at which scattering becomes efficient is
then

Ascatter ∼ 4

√
k3maxH

8CN5
c α

3
. (B8)

Since the energy density is related to A by

ρ ≈ (N2
c − 1)

∫
d3k

(2π)3
kkmax|A+|2

2
∼ (N2

c − 1)k2maxA
2

4
,

(B9)

7 If, when scattering becomes efficient, the number density of par-
ticles is far greater than the thermal value, then the system ap-
proaches some T � kmax and the thermalization process is lim-
ited by high-energy scatterings near T . However, as we show in
Eq. B10, the final temperature is of order kmax, hence using the
scattering rate for k ∼ kmax/2 (Eq. B7) is appropriate for the
entire approach to a thermal bath.
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and energy is conserved on times much shorter than a
Hubble time, we can find the temperature that the sys-
tem will approach provided thermalization is efficient.
We evaluate ρ at Ascatter and set it equal to the rela-

tivistic Bose-Einstein distribution π2

30 g∗T
4. Solving for T

yields

T ∼ 4

√
15

2π2

N2
c k

2
maxA

2
scatter

g∗

∼ O(0.5)N−5/8c α−3/8k7/8maxH
1/8

(B10)

where in the last expression, we have taken C ∼ O(10)
and g∗ = N2

c −1 ≈ N2
c . One sees that if the particles can

thermalize, the bath they form will be at a temperature
or order kmax, with a weak dependence on Nc and α.
It follows immediately that since we consider subhorizon
modes kmax � 2H, the bath will indeed have T > H,
hence the arguments of Sec. III A apply and the system
runs away to the warm inflation equilibrium.

Now let us evaluate in what regions of parameter space
the particles successfully thermalize. We begin by check-
ing Condition 1, namely that Ascatter is reached within a
Hubble time. The initial condition we will take for our
mode functions will be the Bunch-Davies vacuum, so that
the mode function becomes

A+(k, t) ∼ eβt√
2k
. (B11)

The operator A can therefore be roughly estimated as

A ∼

√∫
d3k

(2π)3
|A+|2 ∼

1

2π

√∫
dk ke2βt ∼ kmax

4π
e

kmaxt
2

(B12)
where we have approximated the last integral by its value
near k = kmax

2 .8 Then Condition 1 is simply

Ascatter � A|t=H−1

=⇒ kmax � H

(
ln

(4π)2√
8CN5

c α
3
− 1

2
ln
kmax

H

)
=⇒ kmax � 3H,

(B13)

where we have taken C = 10, Nc = 3, and α = 0.1 in the
last approximation. Hence, as stated in Section III B, this
condition simply reduces to ensuring subhorizon kmax,
which was the parameter space of interest to begin with.

Let us now check Condition 2, namely that non-linear
effects due to the non-Abelian nature of the gauge modes
do not affect the equations of motion. We begin by deter-
mining ANL, the field value at which these effects become
non-negligible. Linear terms in the equation of motion
are of order k2A while non-linear terms are of the order

8 We have confirmed numerically that this approximation holds.

NcgA∂A ∼ NcgkA2 and N2
c g

2A3. We can thus estimate
at what ANL these become comparable to the linear terms
by taking k to its dominant value kmax

2 and comparing the
terms:

k2ANL ≈ NcgkA2
NL

=⇒
(
kmax

2

)2

ANL ≈
kmax

2
·NcgA2

NL

=⇒ ANL ≈
kmax

2Ncg
.

(B14)

(The same result comes from comparing to N2
c g

2A3 as
well.) Our second condition therefore reduces to

Ascatter � ANL =⇒ kmax �
32π2

CNcα
H ∼ 100H, (B15)

where again we have taken C = 10, Nc = 3, and α = 0.1.
Recall that this is only a bound on where our calcula-
tions are reliable. It is very possible that even when this
bound is violated, the system will thermalize, however
our perturbative treatment does not capture this.

Finally, let us check Condition 3, namely that the ex-
ponential production does not backreact on the inflaton’s
motion and slow its roll. We compute Aslow, the field
value at which this occurs, by determining when the en-
ergy density of the radiation bath, as in Eq. B9, becomes

comparable to the kinetic energy ρφ̇ = φ̇2

2 in the inflaton
field. This occurs at

Aslow ∼
√

2φ̇

Nckmax
(B16)

Our final condition is then

Ascatter � Aslow

=⇒ k7max �
32CNcα3φ̇4

H
∼ φ̇4

H

(B17)

again for C = 10, Nc = 3, and α = 0.1.
Taking φ̇ to be the terminal velocity set by Hubble

friction,9 we can rewrite these limits in terms of f and
εV . We have

φ̇ =
V ′

3H
=

√
2εV V

3HMpl
=
√

2εVHMpl, (B18)

9 If φ̇ begins at a lower velocity, it will speed up and reach a ter-
minal velocity within a Hubble time. If this terminal velocity is
the one set by Hubble friction, then the above treatment is ap-
plicable. It is however possible that it reaches a lower terminal
velocity set by the production of gauge modes [14]. Such a termi-
nal velocity has an associated steady-state occupation of gauge
modes Aterminal. Because such a steady state requires the gauge
modes to drain most of the kinetic energy of the inflaton, the
energy density of Aterminal is by definition comparable to that of
Aslow (computed with the φ̇ set by Hubble friction). It follows
that Aterminal ∼ Aslow, and so if Eq. B17 is satisfied (again with
the φ̇ set by Hubble friction), then there will be enough gauge
modes in this steady state to scatter. Thus Eqs. B20–B22 guar-
antee the production of a thermal bath for any initial velocity.
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so

kmax

H
=
α
√

2εV
2π

· Mpl

f
(B19)

hence we can substitute these expressions into our limits
on kmax/H to express our conditions respectively as

Condition 1:
f

Mpl
� 3α

√
2εV

2π
(B20)

Condition 2:
f

Mpl
� CNcα

2
√

2εV
64π3

(B21)

Condition 3:
f

Mpl
�

(
α4(2εV )3/2H4

212π7CNcM4
pl

) 1
7

. (B22)
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