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ABSTRACT: Motivated by the results of Dynamical Mean Field Theory, we study the two-
point function of fermions moving in a charged black brane background in AdSgy, 1 in the limit
of large d. We observe the emergence of a locally critical form of the fermion self-energy, with
a strongly constrained range of possible scaling behaviors at large d. Novelties compared to
the analysis in d = 3,4 include an enlarged regime of temperatures where the results apply,
and the analytical tractability of the calculations.
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1 Introduction

Non-Fermi liquids are of interest in condensed matter physics both as abstract possible states
of quantum matter, and for potential application to phases seen in modern materials. The
arsenal of tools available to study non-Fermi liquids is quite limited, however. One such tool,
which has been applied extensively to this problem in the last decade, is holography. In this
note, we discuss the possible applications of holography to the theory of fermions at finite
density in d space-time dimensions as d — 0.



We have two motivations for studying large d holography. One arises directly from the
condensed matter literature: the dynamical mean field theory (DMFT) ansatz works by con-
sidering fermions hopping on a lattice of coordination number z in the limit of large z. For
traditional lattices (e.g. the cubic lattice), this coincides with a limit of large dimension. The
DMFT ansatz is a widely used tool in condensed matter theory, and has found spectacular
success in describing strongly coupled phenomena such as the metal/non-metal Mott tran-
sition [1, 2]. The ansatz uses the assumption that the lattice self energy is spatially local.
For a quasiparticle near a Fermi surface, in momentum space, this means that the Green’s
function,

Z(w>kF)
w—vpkl + 3w, k)’

G(w, k) = (1.1)

has a self-energy that only depends on the frequency,
Y(w, k) = 3(w). (1.2)

Here the dependence on the intensive parameters of the system is left implicit. It is a proven
fact that the self energy becomes spatially local at infinite lattice coordination number z.
However, DMFT has found enormous success even when the coordination number is as small
as z = 6.

The qualitative reason for the emergence of a purely w-dependent self-energy in DMFT
is the self-consistency of a mean-field like single site approximation that governs the fermion
dynamics. Particularly interesting to us are the situations — relevant to non-Fermi liquid
dynamics — where an approximate conformal quantum mechanics emerges at intermediate
energies. Part of our interest in studying large d holography is to witness the dual phenomenon
—the emergence of a (dual) AdSy geometry at large d.! Importantly, from the DMFT analysis,
we might expect that the emergent geometry is now applicable to the problem over a wider
range of energy scales than has been traditionally observed in the direct analysis of holographic
systems dual to finite density fermions in three or four space-time dimensions.

This brings us to our second motivation for studying large d holography — analytical
tractability of the physics of the emergent IR geometry which governs the finite density
holographic system. Recently, the large d limit of semi-classical Einstein gravity has been
extensively studied in the classical GR literature [4-12]. The idea is that the number of space-
time dimensions d, provides a new parameter for a perturbative analysis of standard problems
in classical GR. One such example is finding the spectrum of black hole quasinormal modes.
This is an extremely hard computation at fixed d, with very few results known analytically
[13, 14]. However, such computations can be done with relative ease in a large d perturbation
expansion. In fact, results of the quasinormal spectrum using large d perturbation theory are
in remarkable agreement with numerics even for spacetime dimensions d = 6.

'A distinct — and very successful — application of holography to a similar class of problems occurs in the
study of the Sachdev-Ye-Kitaev models. For a review with further references, see [3].



In sum, then, the aim of this paper is to use large d perturbation theory to understand
strongly coupled conformal field theories at finite charge density and temperature. We calcu-
late the scalar and the fermion two-point function in the boundary CFT by solving the large
d Einstein gravity equations in the holographic bulk dual perturbatively. The full two-point
function can be explicitly obtained by using matched asymptotic expansions perturbatively
at large d. The tractability of the 1/d expansion, including computations beyond leading
order at large d, is an advantage the present framework has over the current state-of-the-art
in DMFT, where explicit 1/z corrections have been difficult to compute.

1.1 Overview of results

The holographic setup at finite charge density and temperature has been considered previously
for the case of fixed d in the seminal work of Faulkner et. al [15-18]. They studied the two-
point function of scalars and fermions in a near-extremal black brane background in AdSg,.
This corresponds to a conformal field theory on the spatial manifold R?~! at finite temperature
and chemical potential. It is well known that such a near-extremal black brane grows a nearly

AdS5y geometry in its near-horizon region.?

The AdSy geometry in turn can be thought as
having its own holographic C'F'T} dual. It was found that the two-point function in the CF'Ty

can be written as,

Z(w,kp)
w — UFk?J_ + G]R(w, kF)’

GUv(w, k) = (1.3)
where Gg is the two-point function in the C'FT; that is dual to the near-horizon AdSs
geometry. This is similar to the DMFT ansatz (1.2), since the near-horizon two-point function
Grr(w, kr) serves as the local self energy ¥(w) of the two-point function. Our work is morally
similar to [15-18], but differs in the details.

The first difference concerns the range of applicability of our results. At large d, we find
that the two-point function can be tuned to take the form (1.3) for any % ~ O(1), in large
d counting. This is parametrically larger than the range of applicability in Faulkner et. al
where % — 0. This extended regime of validity is interesting from the DMFT perspective,
since the ansatz (1.2) is valid for any finite %

The other difference is the ability to compute quantities explicitly by using the large d
perturbation theory in the bulk. For instance, one of the central results of [15-18] is about
the form of the IR two-point function Gjr(w, k). For scalars it was shown to take the form,

GIR(W)]CF) e T2ya (14')

2In many situations, one would expect the AdSs throat to be valid down to a low energy cutoff, beyond
which the geometry is infrared completed by onset of an instability. Such a cutoff is naturally 1/N suppressed,
as well as being suppressed by dynamical scales in various concrete scenarios. We therefore work with the
AdSs> geometry without further apology.



where,

m? g2 k2
o \/d(d 1) 2dd-1) Tdd-12 1 (1.5)

The parameter v is related to several critical exponents in the theory and is of central im-
portance. This exponent can be tuned to any value by varying m or q. At large d, we find
that if we limit ourselves to almost marginal (A ~ d) or relevant deformations (A < d) in the
CFTy, the scalar two-point function can be written in the form of (1.3) only if,

L V(ﬂ;l% kr) (1.6)
or smaller, were V(m, ¢, kr) is an O(1) number, with at the most a logarithmic dependence
on d. While it is still true that V' (m, q, kr) can be tuned to any O(1) value by varying m or g,
the fact that v is small in the large d limit is a fact that arises on solving the bulk equations
of motion. A similar result holds true for fermions.?

It is important to emphasize that although the appearance of a local self energy in both
DMEFT and holography might seem striking, the two results (1.2) and (1.3) apply in two very
different classes of systems that are at best spiritually related to each other. The holographic
setup is a doped large N conformal field theory with a sparse spectrum, which clearly isn’t
the kind of system that is studied in the DMFT literature. However, the fact that the same
phenomenon (i.e. local self energy) presents itself in two such different setups is worthy of
investigation, and analysis of one system may yield qualitative insight into behaviors seen
in the other. (This is the standard justification for using holography to yield tractable toy
models of many dynamical phenomena which are thought to occur — but are difficult to
understand directly — in conventional quantum field theories.)

Another issue that we would like to address concerns the existence of the holographic
dictionary in a space-time of high dimension. It follows from Nahm’s classification of super-
conformal algebras that there are no supersymmetric conformal field theories in spacetime
dimensions d > 6 [19]. The existence of interacting conformal field theories without super-
symmetry in spacetimes of high dimension remains a very interesting open question. (For
constraints on such theories, see e.g. [20].) We will take the approach that at infinite N,
the bulk theory becomes purely classical, and the boundary CF'T becomes a theory of gen-
eralised free fields that can be studied perturbatively using a large d expansion. Studying a
charged black hole at infinite N then corresponds to studying the boundary generalised free
field theory at finite temperature and chemical potential. It is unclear what happens to this
construction at subleading orders in N, but our aim is to study such systems systematically
in a large d perturbation expansion with the hope that lessons learnt here could be applied

3For readers confused by the existence of parameters where the scalar two-point function exhibits a surface
in momentum space, be comforted that the regime where this occurs is one where the charged black brane
geometry is unstable, and so the result is not a stable phase of holographic quantum matter.



towards understanding field theories at finite temperature and charge density at fixed d some
day.

The organisation of the rest of this note is as follows. In section 2, we elaborate the
black hole geometry at large d, and its near-extremal limit. In section 3, we evaluate the
scalar two-point function by evaluating the bulk equations of motion in different patches of
this geometry. In section 4, we match the solutions in the overlapping regions and find that
the full two-point function takes the form (1.3) for certain parametric regimes of v. The
concluding section contains some brief remarks about the relationship of physics seen in this
system to analyses of other systems. Several calculations involving other parameter regimes
for the scalars, and the analysis of fermions, are relegated to appendices.

2 AdS4.1 black holes at large d

As mentioned in the introduction, we are interested in understanding strongly coupled field
theories at finite temperature and non-zero charge density. This corresponds to studying
charged black holes in Einstein gravity minimally coupled with matter in asymptotically
AdSg1 spacetime [21]. Since the spatial manifold of our CFT is R, we will be interested
in studying black holes with planar horizons. Such black holes are also known as black
branes. We do not have a specific field theory at hand, but rather an entire class of large
N field theories that are strongly interacting, and have a sparse spectrum of light operators
[22]. It is widely believed that all such field theories have a universal sector that is dual to
Einstein gravity in asymptotically AdSg,1 spacetime.

In section 2.1, we study charged black brane solutions in Einstein gravity at large d,
and specialise to near-extremal black holes in section 2.2. The large d geometry is extremely
simple, and the only nontrivial physics takes place in a small region near the horizon as
emphasized originally by Emparan et al. [4-8]. In terms of holographic RG [23, 24], this
means that the boundary CFT has a nontrivial IR that is governed by the near-horizon black
brane geometry. We will find that at large d, the near-horizon geometry exists for all O(1)
values of T'/pu.

2.1 Charged black brane in AdS;

The bulk Einstein-Maxwell action in asymptotically AdS;.1 spacetime is given by,

Jdd“x\ﬁ( e 2+d(de;1)>. (2.1)

167rG N
The charged black brane metric is given by the Reissner-Nordstrom (RN) solution,
r? 2 dr? 2
ds® = —€—2f(7")dt2 + —m d:):d . (2.2)
where f(r) is given by,
2
_1_ M 9%
=1 - —2 2



The parameters m; and ¢ are related to the mass and charge of the black brane. £ is the
dimensionful curvature radius of AdS, and sets the fundamental length scale in our problem.
The vector potential is given by,

4, - _C (1_(m>d—2> d—1 oA -o
Pri? " 2(d—2)
where e is a dimensionless gauge coupling. Note that our action has an overall Gy that sits
in front of both the Einstein-Hilbert and Maxwell terms. In spacetime dimensions greater
than four, both gravity and electromagnetism are irrelevant. The ratio of the strengths of
these two forces between two particles of unit charge and unit mass (measured in units of %)

is set by the gauge coupling e. The radius of the event horizon r}, is related to m; and g, via
the largest zero of the emblackening factor,

2
Flrn) =0,  mp=rf (1 + 2?5_2) . (2.4)
Th

Thus every charged black brane solution is labelled by two parameters, the charge gy
and the radius of the event horizon rj. Since black branes are thermodynamic objects in the
large N limit, we can interchangeably work with microcanonical and canonical ensembles.
In the canonical ensemble, the solution is labelled by two intensive parameters — the inverse
temperature S and the chemical potential . They are given in terms of ¢, and r by,

dry, (d— 2)qg eqp d—1
T — 1— 2% — . 2.5
402 ( drid=2 )’ H 2rd=2\ 2(d - 2) (2:5)

The entropy density of the black brane is given by the Bekenstein-Hawking area law,

A 4Gy \ 7

We would now like to study this solution at large spacetime dimensions. At large d,

S_ 1 (r")dfl . (2.6)

the black brane geometry becomes extremely simple [4-8]. To see that, let us rewrite the
emblackening factor as,

- [ (] () @ -2 en

where we have introduced the extremality parameter,

_q |d—2
uqur}1 d 7 (2.8)

The black brane is neutral when v = 0 and extremal when u = 1. In the limit of large
d, as we move further away from the event horizon the emblackening factor goes to unity
exponentially fast in d. The emblackening factor is non-trivial only when,

=<0 (2) . (2.9)

Th



Vacuum AdS
AdS Blackhole

Figure 1. f(r) is non-trivial in the shaded region. Outside this region, also called the sphere of
influence [5], the geometry becomes that of vacuum AdS. The black brane has a similar region, but
with a planar topology, which will also be called the sphere of influence.

For all other values of r, such that % 2 O(1) the emblackening factor is exponentially close

to one,
fry=1+0 (e_d> : (2.10)

Thus outside the region (2.9), the black brane geometry (2.2) reduces to that of vacuum
AdSgy1 with a constant vector potential,

ds? = —jdﬁ + ﬁer - ﬁde A= —— (2.11)
/2 r2 g2 d=1 t ﬁ@' )

Inside the region (2.9), called the sphere of influence in figure 1, the geometry stays

erpu

non-trivial. To see that we first make a coordinate redefinition,

p= (;)H . (2.12)

Taking the limit d — o0, while keeping 7, fixed and p « e?~2, the geometry in the sphere of

influence becomes,

(p—u®)(p—1)r , P%dp? 2o, erpu (p - 1)
PP = ) g2 4 Thap? oA = Lk
R [ U N T AN

2
dsgin = —

(2.13)

We find that the near-horizon region factorises into Mo xR,;_1, where My is a two dimensional
manifold. The metric (2.13) and (2.11) spans the entire geometry.
Before we proceed with this large d geometry, we would like to remark why just taking

d — o0 is problematic for us. The temperature (2.5) of the black brane is given by,
T_d(-v) (2.14)
7! 2\/§7reu

which blows up linearly with d. This is clearly an issue if we wish to interpret this system holo-

graphically. However, if we tune the extremality parameter u, we can make the temperature

finite. This is the topic of the following section.



AdSy; x Ry_4 Vacuum AdSgy1

Near-horizon region Mid-region Far-away region

1

Figure 2. The black brane geometry at finite 7'/u and large d. The mid-region geometry interpolates
between the AdSs x Ry_; throat in the deep interior and vacuum AdSgy; in the UV.

2.2 Near-extremal black branes at large d

We will now tune the extremality parameter to make the temperature finite. Let,

u = H’ (2.15)

where 4 is an O(1) number that is bounded below by zero. The temperature and the chemical
potential of the black brane then becomes,

U 1 er 1
Tt= UM +O(>, - +O<). 2.16
24/ 2em d a \/202 d ( )

We will use the superscript ¢ to denote that T is the temperature measured by an asymptotic

observer with worldline (%)u. As before, the temperature T and p are external parameters

in the problem, and can be tuned to any value. We are interested in black branes that
develop an AdS, region in the near-horizon geometry. At finite d, this corresponds to taking
T/ — 0. Such black branes are called near-extremal since this limit corresponds to taking
the configuration with the largest charge for a given fixed mass. In the large d limit, we find
below that an AdSs region develops even when T/ ~ O(1).

Far away from the horizon the geometry becomes vacuum AdS, but the near-horizon
region becomes more interesting. The near-horizon geometry (2.13) Mg x R;z_1 mentioned in
the previous section, itself develops an AdSy throat in its deep interior as depicted in figure
2. We have thus three obvious regions of interest in our geometry. The far-away region which
is vacuum AdSg.1, the middle region My x Ry_1 and the near-horizon AdSy x Ry_1. The
coordinates used in these three different regions can be found in table 1.

To access the AdS, region we will first use an intermediate set of coordinates (Z,7), that



Geometry Coordinates
Vacuum AdSg,q (ryt, ;)
Mo x Ry (p,t,x;)
AdSy x Ryq_1 (2,7, 2i)

Table 1. The three relevant regions of our geometry and the corresponding co-ordinate systems.

are defined by,

d—2 -
r 2 u ~

= —ut=p—-1+= = td. 2.1
(m) " P d’ ’ (217)

| =

The limit Z — 0 corresponds to going towards the middle region, while z; = % corresponds

to the event horizon. In these coordinates the metric (2.13) becomes,

1 _ @ 2 E2d~2 2
ds? = — (—%@d# + w) +lhgg? (2.18)
d (142—8)°¢ 2(1-1) ¢

We will now make a final coordinate change to obtain the near-horizon AdSs geometry,
Z2=Z\, T =T, (2.19)

where X is an arbitrary parameter. Finally taking the limit A — 0, while keeping d\ = &
fixed, we obtain,

1—-£ 27,2 2
1 z “d
d82 _ d2 _<Z2h>zgd7-2 + 2722, + %dl'g_l’ (220)

where,

(2.21)

SIS

We find that the near-horizon geometry (2.20) is that of a black hole in an asymptotically
AdSy x R spacetime. As mentioned previously, such a near-horizon AdS, geometry is a
feature of near-extremal black holes even at finite d. The important difference is about the
regime of validity at large spacetime dimensions. The temperature of the AdSs black hole is
given by,

r_ _Th
A zpl?’

and is an O(1) fraction of the chemical potential x4 (2.16). The temperature as measured by

(2.22)

the observer at asymptotic infinity (2.16) in terms of the temperature of the AdS, black hole
is given by,
t Thd)\

T = =T7 x dA. 2.23
47TZh€2 % ( )




We find that if d were held fixed, as in Faulkner et al. [15-18], the geometry (2.20) would be
applicable only when,

— ~ A0 2.24
. (2.24)

The first advantage of working at large d is that the regime of validity of the near-horizon
geometry (2.20) is parametrically enhanced to,
Zt ~d\ ~ O(1). (2.25)
I
The second advantage is that we have a better control over the geometry. In particular we
know the exact form of the interpolating geometry between the near-horizon region and the
far-away region. This allows us to perturbatively solve the bulk wave equations as shown in
the next section. In the rest of the note, we will drop the superscript in the temperature 7°.

3 Two-point function of scalars

Our aim in the rest of this note is to find the two-point function of scalars and fermions in
the boundary CFT, using large d perturbation theory, at finite temperature and chemical
potential. This requires us to solve the bulk equations of motion for minimally coupled scalars
and fermions in the AdS;.1 geometry. We will exclusively work with scalars in the main text,
and deal with fermions in appendix C.* The physics of the fermions and scalars is qualitatively
similar. The only difference between them comes from the kind of large d scaling of m, ¢, k
that we deem to be natural for the two, as elaborated near (4.16) and in section C.3.
Consider the minimally coupled scalar Klein-Gordon action,

S =— Jddﬂm\/fg (Dp¢*DH¢ + m?p*¢) (3.1)

where D, = 0, —iqA, is the covariant derivative, and m and ¢ are the mass and charge of the
scalar field respectively. Note the absence of ﬁ in our scalar action (3.1). This corresponds
to the fact that we are considering probe excitations in the black brane geometry, and any
back reaction due to the probe field is thus suppressed by Gy in appropriate units. The
equations of motion can be easily found by first going to Fourier space in the boundary
coordinates,

d .
o(r,zt) = J(;lﬂk)dgﬁ(r, kﬂ)e’k“x#. (3.2)

d+1
4 We note that we will consider spinors with a fixed number of complex components, and not Z[T] complex

components. This explicitly breaks Lorentz invariance. This is appropriate for the application of interest, since
in the low-energy limit relevant to DMFT, spin can be considered as a global symmetry that decouples from
space-time symmetries. So just as in DMFT one considers a fermion with fixed number of components as
d — o0, we will consider a two component Dirac spinor that transforms under a global SO(2,1) in the bulk,
which is dual to a two component Weyl fermion on the boundary.

,10,
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Figure 3. The scalar potential in the Schrodinger problem for the redefined field ®(o) . We have set
d=100,¢ =1,r;, = 3, and w,m, k, ¢, & to some O(1) values. ¢ — o0 corresponds to going towards the
asymptotic AdSy41 boundary.

The equation of motion can be easily found using the variational principle. In the black brane
background (2.2) it becomes,

1 —gr2 % & -2\ \’
—\/?gar <\/gr f(r)&rqb) + T—QkQ + 210 (w + uq (1 — :3_2>> +m? ¢ =0.

(3.3)

It is almost impossible to solve this equation of motion exactly. We will try to solve it per-
turbatively using matched asymptotic expansions. The idea is to first solve the bulk equation
of motion in the far-region AdSy,1, and the near-horizon region AdSs x R;_1 separately. We
then match the two solutions in the middle My x R;_1 geometry, to obtain the full solution.
In the following sections, we will show how this can be achieved order by order in a 1/d
expansion.

Although, before we proceed with that calculation we would like to elaborate on the qual-
itative structure of the bulk solution using the following argument. The bulk Klein-Gordon
equation (3.3) can be rewritten as a Schrodinger equation by making the field redefinition,

d+1

o(r kM) =r" 2 O(r), (3.4)

and introducing a new radial coordinate,

o(r) = J ") (3.5)

— 11 —



The equation of motion for the redefined field becomes,

d’® (o)
do?

- (V(o) — w2) o =0. (3.6)

Plotting the scalar potential V (o), we find that the potential has a very sharp peak near the
horizon followed by a %2 fall off, as shown in figure 3. The height of the peak is O(d?) and it
occurs near,

r—rp, logd

- e (3.7)

% ~ 1 stay confined in the region close to the horizon, and are

Thus modes with frequencies
decoupled from the physics that occur elsewhere. This is why at large spacetime dimensions
d, the near-horizon physics (2.20) found in the previous section has the extended regime of

% ~ d on the other hand are not confined to

validity mentioned near (2.25). The frequencies
the near-horizon region and depend on the entire geometry. For near-extremal black branes
at finite d, the low energy modes w/p — 0 decouple from the rest of the geometry due to the
fact that they are localised in the long AdSs throat that forms in the near-horizon region.
The fact that w/pu ~ 1 are also localised in the near-horizon region at large d, is because of

the potential barrier whose height grows with d.

3.1 Far-away solution

We will first solve the bulk equation of motion (3.3) in the far-away region. Recall that the
region where the radial coordinate r satisfies,

r—7Th

Th Th

d
>1 — <T> > 1, (3.8)

is the far-away region in our terminology. As mentioned near (2.11), the geometry is just
vacuum AdSg; 1 in this region. The bulk equation of motion (3.3) takes a standard form, and
the solution is given in terms of Bessel functions,

4r2

2,.2
k2 — w? — 2qrpw — Lo
teitr (=4 as1) . \/ arn 2 : (3.9)
2 A—g

k2 — a2 V2qrpw — w? " d \/k2 — w2 — \2qrhw — a>r,
ok, w,r) = 2 c1i7AT <§ —A+ 1) I o 2

T
where we have set £ = 1 and have defined,

d d?

The CFT two-point function is obtained by taking the ratio of the non-normalizable mode
to the normalizable mode at the asymptotic boundary r — c0. Expanding the bulk solution

- 12 —



(3.9) as r — o0, we obtain,

a-Aa
ok, w,r) =r>~1 (id_A2_§(d_A) <2k2 — ¢*ri —2? — 2\/§qrhw> ? o(w, k) + .. ) +
A Ag-3A/2 (972 2.2 2 Af2
r =2 (2k: —q¢°rp — 2w — Zﬁqrhw) co(w, k) + ... . (3.11)

We will be working in standard quantization and thus the mode 72~ is the non-normalizable

A

mode while »~= is the normalizable mode. The two-point function is given by,

A_% 02((")7 k)
Cl(wv k) .

This is the full two-point function in a holographic CFTy at large d at finite temperature and

Guv(w, k) = 23(@=28) (—2k2 + @22 + 2v2qrw + 20.12) (3.12)

chemical potential. But of course it is still necessary to determine the values of ca(w, k) and
¢1(w, k). These constants are obtained by imposing infalling boundary conditions in the deep
IR at r = 7. This is how the solution gets to know the IR physics. Since our solution (3.9)
is valid only in the far-away region, we need to first solve the bulk equation of motion in the
near-horizon geometry and match, as we do in the following sections.

Note that, had our geometry been entirely vacuum AdSg,1, the solution (3.9) would be
valid for all values of . The two-point function in the dual vacuum CFTy is given by (3.12),
but the ratio of ¢;(w, k) is now fixed by demanding regularity in the deep interior as r — 0.
For completeness we write down the explicit form for the vacuum two-point function,

A4 T (1 LV 1 4m?)
T (1+ W&t dm2)

Guac(w, k) = _95(d-24) <2k2 — ¢*r3 — 2V 2qrpw — 2w2> (3.13)

3.2 Near-horizon solution

In this section we solve the bulk equation of motion (3.3) in the near-horizon AdSs x R4_1
geometry. This region corresponds to the case where the radial coordinate r satisfies,

r\ ¢ 1
— ] -1 = 3.14
(m) <3 (3.14)

In terms of the coordinate z, this corresponds to the case when z ~ O(1). The bulk equation
of motion can be easily solved in the AdSy black hole geometry (2.20) to obtain,

1y, fwzy oy 1 g 1 iq W oz
oeink) =77 =) T ()2 (5 0= S v g gt v )
_ 1 iqg 1 iq iw z
b Bz ol (= —v— ——, = — —:1—2v; — . 3.15
+ 1(0’)’ )Z 2 1(2 v \/id’2 v+ \/§d+27th7 v Zh)) ( )

The constants b;(w, k) need to be fixed by imposing boundary conditions. The first
boundary condition is that there are no outgoing modes at the event horizon z = z,. Ex-
panding the solution near z = z;, and imposing infalling boundary conditions we can obtain
ba(w, k) in terms of by (w, k). Putting it all together we get,
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iwzy, 1 1 ) .
¢(z,w,k)=b1(w,k)F(1—2u)z%+V(z—zh) Th <z_2”2F1 <7—1/ . §—V+ o, ;1—2V;i>

2 7 \Rd V2d | 2nTt Zn
—2v 1 [ [ 1 (1)
Zn F<§+V+\/§d)r<’/—\/§d+§—7zﬂt> (L, a1 ig o E

1 iq \p(1 iq iw i\ T V2d’ 2 Y V2d - 2nTt’ V’zh ’

e )T - )
(3.16)

where,
1 ¢? k2 d?

_ 2
v=—pm2— 4+ =+ —. 3.17
d 2 7‘}21 4 ( )

The second boundary condition comes from matching the far-away solution (3.9) with the
near-horizon solution (3.16) in the middle region. This fixes the constant b;(w, k) in terms of
the constants ca(w, k) and ¢q(w, k).

Since the near-horizon geometry is itself asymptotically AdSs (times R;_1), we can do
the following manipulation [15, 25]. Imagine a one dimensional conformal field theory that
lives at the boundary of this asymptotically AdSs geometry. We can use holography for this
AdS3/CFT, system and obtain the two-point function of scalar operators in this CFT}. Since
this system arises in the deep IR of the full AdS;,1/CFT, system, we refer to the CF'T; two-
point function as the IR Green’s function. As before, the two-point function can be obtained
by expanding (3.16) near the asymptotic AdS; boundary z — 0, and evaluating the ratio of
the normalizable mode to the non-normalizable mode. Doing that we obtain,

T1-20)T (3 +v+ L) (f -2 v 29) 2
Grr(w, k) = =T% <2 ﬂd) (2 5 ﬁd) (”) . (3.18)

1 J 1 J i Kr
R R (e A
As shown in the appendix, the IR Green’s function for the fermionic case is quite similar but
with,

1 q? k2
2 . 3.19
v=pm 5 + 2 (3.19)

Having obtained the near-horizon solution (3.16) and far-away solution (3.12), we will now
match them in the following section.

4 Matched asymptotics for scalars

In order to match the far-away solution with the near-horizon solution, we first need to
understand the regime of validity of the individual solutions. The far-away solution relied on
the assumption that f(r) = 1 at leading order in d. In terms of the mid-region coordinates
defined in (2.17) this corresponds to,

p=d. (4.1)
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While the near-horizon AdSs region is valid in a region,
1

p—15 PR (4.2)
where n; is some O(1) positive number. Clearly, there is no overlapping range of validity
between (4.1) and (4.2). To match our two solutions we will thus need to solve the bulk
equation of motion in the mid-region geometry. The equation in the middle region is again a
second order differential equation that comes with two integration constants. These get fixed
by matching the mid-region solution with the near-horizon solution (3.16) at small p—1, and
with the far-away solution (3.9) at large p.

We will find that for certain parameter regimes, we would be able to directly match the
far-away solution with the near-horizon solution without solving for the middle region. We
will analyse different parameter regimes separately since they give rise to different physics as
we now elaborate. Recall from the previous section that v for scalars is given by,

1 2 k2 g2
y:\/m2—q—|—2+ (4.3)

We see that v can take any value depending on the values of the mass, charge and the spatial

momenta of the scalar field. We can classify these values into three possible regimes,

No~1, i)y~ ﬁ, i)y ~ d™, (4.4)
where ng, n3 are some O(1) positive numbers.

Of the three, we will not consider the case where v increases with d. The reason is that
we are eventually interested in a parameter regime where the two-point function takes the
form (1.3). It is well known (as is also shown below) that such a form is possible only if there
exists a range of momenta k for which (4.3) could become imaginary. If we assume that m
and ¢ have the same large d scaling (or to be more precise, m grows at least as fast as ¢ in
the large d limit), then the scenario where v increases with d corresponds to an operator with
scaling dimension A » d in the dual C'F'Ty. This is a highly irrelevant operator, and is not
of interest to us.

In the rest of the section we will work with the case when v is O(1), and m,q, k are
also O(1). The scenario where v ~ 1, but m,q and k take generic O(d) values, is quite
similar as shown in appendix B. If m,q or k take fine tuned O(d) values, v could be made
arbitrarily small by cancelling the d?/4 inside the square root (4.3). This fine tuned case
precisely corresponds to finding a UV two-point function that takes the form (1.3), as shown
in section 4.1.

Before we begin with the v ~ 1 matching problem, we would like to explain the qualitative
nature of the solution in our geometry. The far-away solution when expanded near the mid-
region takes the following form,

B(r,w, k) = ey (w, k)22 + c_(w, k)22, (4.5)
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where ¢4 are some linear combinations of ¢; and ¢z mentioned in (3.9). Let that be given by,

c1(w, k) = b] (w, k)eq (w, k) + by (w, k)e—(w, k), (4.6)

where the coefficients bii (w, k) are obtained by the explicit matching calculation. Matching
(4.5) with the near-horizon solution imposes that,

C+(w7k)

o) = Crrik). (4.7)

The full UV two-point function (3.12) is given by the ratio of ¢;(w, k). Putting the above
together we obtain,

co(w, k) _ by (w, k)es (w, k) + by (w, k)e—(w, k)
ci(w, k) b (w, k)ey(w, k) + by (w, k)e—(w, k)’
_ b (w, k)Gir(w, k) + by (w, k) (4.8)
bf(w,k)G[R(w,k) + bl_(w,k). )

This is the most general form of the UV two-point function, that only depends on the fact
that the bulk equation of motion is a second order differential equation.

We begin by first expanding the far-away solution (3.9) near the mid-region. The radial
coordinate r can be expressed in terms of the middle region coordinate as,

1
r=rp (1 + o§p> . (4.9)

Using the identities (D.3) for expansion of Bessel functions at asymptotically large orders, we

expand the far-away solution (3.9) near the middle region to obtain,

N c1(w, k)T <1 — 4/ % + m2) cos (m/m2 + %) + c2(w, k)T <1 + \/% + m2) einV/Am? +d?

(27rdm'gp)% pres

—2p"e%c1(w, k)T (1 — A § + mz) sin (Wq m? + f)) , (4.10)

¢ (p,w, k) =

where,

d/4
24/2 2?2
N = o~ i VAm+d? (q%% —2k% + 2V2qr Mt ) ,

d d?
2 2
2 2 vd + L—%+V2d2
g k 9 1 2 7 V2qrpw
2 7“}21
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We will match this with the near-horizon solution (3.16) expanded near the middle region.
Using (2.17), (2.19) and (2.21) the p coordinate can be written in terms of z as,

zp [
=1+—-=—=1]. 4.12
) +Z(d ) (4.12)

The limit z — 0 in the near-horizon geometry corresponds to going towards the mid-region.
We take this limit such that p ~ % — 0 i.e we take z — 1/d™ where n4 is some number
ng > 1. This lies far outside the regime of applicability of the near-horizon geometry (4.2).
However it can be shown that this limit can be taken consistently to match the far-away with
the near-horizon solution. We have checked this by explicitly solving the bulk equation of
motion perturbatively in 1/d in the middle region. In the following section, we will find that
for small v, it is necessary to solve the bulk equation of motion in the middle region before we
can match the far-away solution with the near-horizon solution. Taking the limit z — 0, and
using the asymptotic expansions of the hypergeometric function and the IR Green’s function
(3.18), the near-horizon solution (3.16) becomes,

izpw 1 Z%+V
d(z,w, k) =b1(w, k)(—z) ™ <z2'/ — ZZVGIR(w,k)> . (4.13)
h

We can now match our two solutions (4.10) and (4.13). Up to exponentially small cor-
rections in d we get,

ca(w, k)
c1(w, k)

= Grr(w, k) (’wdmf (4.14)

Thus the full two-point function when v ~ 1 is given by,

—imd 2V
G k) = 95(d-24) <_ 24 o202 4 94/2 \2A-% ke imd
vv(w, k) = 22 2k% 4+ q°ry, + 2V 2qrpw + 2w Grr(w, k) 7 . (4.15)

This is quite different than the answer advertised in (1.3). In particular, the UV Green’s
function does not have a non-trivial pole for w — 0,k — kp. As a result such a parametric
range of v is of no interest to us. In the next section, we will find a Green’s function precisely
of the form (1.3) when v is small in the large d limit.

Let us now understand why (4.15) does not take the general form (4.8) for the two-point
function. If we compare (4.8) with (4.15) we conclude that b and b, are zero, or at the
least exponentially small in d for the v ~ 1 matching problem. Qualitatively this is because
b} (w, k) corresponds to the contribution of the AdSs normalizable mode to the AdS,; non-
normalizable mode, while b, (w, k) is the contribution of the AdS; non-normalizable mode to
the AdS; normalizable mode. These contributions are exponentially small in d since a mode
that is normalizable or non-normalizable in the mid-region geometry stays so throughout the
entire geometry, as can be seen from the form of the scalar potential in figure 5 of appendix
B. It can be explicitly seen from (B.4), that the exponentially small contributions become
polynomial precisely when v ~ 1/d%/3.
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Intuitively when v takes such a form, there is no distinction between the normalizable
mode z¥ and the non-normalizable mode z™" in the near-horizon geometry, and the order of
magnitudes of the matching coefficients b;i (w, k) in terms of large d counting are the same.
In that case, we do obtain a Green’s function that takes the form given in (4.8), as we show
in the following section.

4.1 Finding bulk Fermi surfaces

In this section, we will focus on the case when v is fine tuned to be a small number that
vanishes in the large d limit. In particular, we will show that if,

L V(ménq; kr) (4.16)
where V(m,q, kr) and ng are some positive O(1) numbers, the UV Green’s function has a
pole as w — 0,k — kp. The value of ny is different for scalars and fermions, and depends on
what we assume to be the natural large d scaling for the momenta k& = \/k:TkZ Inad+1
dimensional spacetime theory, if we assume that the individual momentum components are
O(1) numbers in some units, it follows that the momentum % is an O(v/d) number in those
units. This is quite similar to the rescaling in the fermion hopping matrix ¢;; — Ld that is
done in DMFT to ensure that a well-defined d — oo limit exists. We will thus work with the
case where k ~ v/d, and find that for m, ¢ ~ v/d, the UV two-point function for fermions has
a non-trivial zero for ny = 2/3.

Similar arguments hold true for scalars and we find that the UV two-point function has
a non-trivial zero for ny = 2/3. However, in our holographic setup there is an additional
parameter regime that is natural for scalars but not for fermions. This difference stems from
the fact that a massless scalar field corresponds to a marginal operator of scaling dimension
A = d in the boundary CFT,, while a massless fermionic field is dual to an operator with
scaling dimension A = %. In terms of the scaling exponent v, this corresponds to the difference
of d?/4 between the scalars (3.17) and the fermions (3.19). Due to this form of the scaling
exponent for scalars (3.17), there are two interesting parametric regimes. The first, where
k ~ +/d like the fermions discussed above. The second, where k ~ d. We will not work out the
case when k ~ +/d for scalars, since the results are identical to the fermionic case discussed in
appendix C. In the rest of the section we will deal with the case where m, ¢, k ~ d for scalars,
and find that the UV two-point function has a non-trivial zero for ny = 1/3.

The faraway solution (3.9) and the near-horizon solution (3.16) still remain the same,
but the details of the matching calculation change a bit for the following reasons. The first
is that when v is small, the order and the argument of the Bessel functions in (3.9) are both
large, and approximately equal to each other. This requires a new asymptotic expansion of
the Bessel function, and we get a new expression for the far-away solution when expanded
near the mid-region as shown near (A.5) in the appendix. The second is that we also need
to solve the bulk equations of motion in the mid-region to match the far-away solution with
the near solution. We perform this matching explicitly in appendix A, and only focus on the
qualitative features here.
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As argued near (4.8) the most general solution to the matching problem is given by,

co(w, k) by (w,k)Grr(w, k) + b5 (w, k)

c1(w, k) b (w, k)Grr(w, k) + by (w, k) (4.17)
If b (w, k) has a non-trivial zero such that,
by (w, k) =w+vp(k—kr)+..., (4.18)
where the ... refer to higher order terms in w or k — kg, the UV two-point function can be
written as,
co(w, k) _ by (0, kr) (4.19)

ci(w k)  w+vplk—kr)+ bf((), kr)Grr(w, kF)

This is the main result of this section. We find that the full UV two-point function takes the
form of the quasiparticle Green’s function near a Fermi surface with the IR Green’s function
serving the role of the self energy. While this fact has been known since the original work
of Faulkner et al. [15], the point of our work is to emphasize that at large d the matching
calculation can be done explicitly order by order in a large d expansion. Using which we
found the large d scaling of v (4.16), and a closed form expression for evaluating V' (m, q, kr)
as given by (A.13) for the scalars and (C.30) for the fermions.

As mentioned in footnote 3, the two-point function for bosons signals an instability. This
is because the two-point function can be written as (4.19), only when there exists a range of
momenta where v (4.3) can become imaginary. This requires that the charge of the scalar

field is greater than its mass g = 4/2m?2 + %. It is well known that such a charged scalar field
in a charged black brane geometry leads to an instability [26]. As show in [15], it is related to
super radiance of the black brane in the bulk, and the spin statistics of the dual operator in
the boundary. The charged fermion considered in appendix C does not have this instability.

The Fermi velocity and the momentum in (4.19), as shown in appendix A, are given at
leading order in d by,

2 2 _ d?
q° —2m > Pe 2
— kp =rpA| — —m2 — —. 4.20
0 . , F=r 5 (4.20)

Note that m and g both scale linearly with d, thus vp is an O(1) number while ]%F is O(d),
where p is given by (2.16). The self energy is given by,

Y(w, k) = b7 (0,kr)Grr(w, kr),

2V(m.a.kp) (1 _ 4V(m, g, kr) <¢<°> (— v QQWT) + 3@ (% + 1) + 47y + log (Cf)))

=0f (0, kp)T a3 4173 ,

(4.21)

where 1(©) is the polygamma function and + is the Euler constant. We have used the AdS,
Green’s function (3.18), and have expanded to the first subleading order in d to obtain (4.21).
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Figure 4. The left panel is a plot of the potential for fine tuned v. The right panel is a closeup of
the potential near the horizon, which looks like a triangular well.

The constants b] (0, kr) and by (0,kp) are O(1) numbers, with at the most a logarithmic
dependence on d, and are given by (A.14) in the appendix. As long as the temperature and
frequency are not exponentially small in d, we can also expand the exponent in the self-energy
(4.21). Up to shifts and redefinition of the Fermi momenta, we obtain that,

V(m7Q7kF) V(m)Q7 kF)

ReY o FE

log T, Im¥ o (4.22)
The scaling exponent V(m, ¢, kr) can be obtained by finding the zero of a certain combination
of Airy functions as argued near (A.13), and has at the most a logarithmic dependence on d.
The presence of Airy functions has a very intuitive explanation that we now elaborate.

Consider the mode that grows like P

in the near-horizon region as given in (4.5).
In the process of finding a bulk UV two-point function that takes the form (4.19), we have
imposed two boundary conditions on this mode. The first is the boundary condition in the
near-horizon region where we match it with (4.13). The other is requiring that b; is zero as
w — 0 for some k = kp. In other words, we are looking for a normalizable solution of a second
order differential equation when w = 0. This is just the Schrodinger bound state problem in
quantum mechanics. As discussed near (3.3), the bulk Klein-Gordon equation can be written

as a Schrodinger equation using a change of variables and a field redefinition,

d’® (o)
do?

— V(0)®(c) = 0. (4.23)

For generic v the potential was shown in figure 3. For fine tuned values of v i.e. when
V(m,q,k

(21/2 )
an almost triangular well in the near-horizon region at large d. Finding bound states in a

the potential at large d becomes what is shown in figure 4. The potential develops

triangular well is a standard problem, the spectrum of which is obtained by finding the zeros
of certain combination of Airy functions, just like in (A.13). Note that figure 4 is drawn in
the r coordinate, but a similar triangular well picture holds true in the o coordinate as well.
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5 Discussion

In this note, we argued that holographic non-Fermi liquids are amenable to a large d perturba-
tive analysis. We found explicit results for the Fermi velocity, the Fermi momentum, and the
scaling exponent v. We showed that at large d, the natural values of v are V(m, q, kp) /dl/ 3
for scalars and V (m, ¢, kp)/d*? for fermions, where V(m, q, kr) is given by the zeros of a cer-
tain combination of Airy functions. For such small values of v, we found that the self energy
(4.22) has a constant imaginary part proportional to v, and a real part that is proportional
to vlogT.

Our results have intriguing similarities to other calculations in the recent literature. For
instance, a constant quasiparticle lifetime was also found in recent simulations of certain
quantum critical metals [27]. And a vanishingly small value of v also arose in the context of
de Haas—van Alphen oscillations in some materials explored recently in [28, 29].

At large d, we also demonstrated that the self energy of the full two-point function is a
function of only w, for any finite value of T7'/u. This is beyond the usual regime of validity
found in previous work on holographic non-Fermi liquids, and in fact agrees with the DMFT
ansatz. Unlike the DMFT method where the d — oo limit is taken first, our analysis works at
all orders in a perturbative series in 1/d. A possible generalisation of our work is to consider
theories with hyperscaling violation [30]. Qualitatively, the effective number of dimensions in
such theories is d — 0, and a similar analysis can be done at finite d but large and negative
hyperscaling violating exponent 6.

The obvious drawback of our work is that we work with large-N holographic CFTs,
which are very different from real-life systems. In addition to that, the Fermi surface and the
corresponding charge density found in our work are O(N?) and are subleading compared to
the O(N?) contribution from the black hole. In other words, to explore further properties
of this system we would need to do a bulk one-loop calculation. It is unclear whether the
large-d expansion behaves well at subleading orders in NV, and we leave that to future work.

Finally, it is interesting to note that previous works on the large N limits of certain con-
densed matter systems have similarities with the large N holographic analysis. For instance,
the large N multichannel Kondo effect at large number of channels K and Abrikosov fermions
@ [31] has emergent conformal invariance and an IR Green’s function that is quite similar to
the AdS2/CFT; Green’s function given in (3.18).
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A Matching for fine tuned scalars

In this section, we will provide the details for the matching calculation for bulk scalars when
v is fine tuned to be small. We will perform the matching in the middle region that lies in
between the near-horizon AdSy region and the far-away AdSy,1 region. Since the middle
region is parametrised by the coordinates (p,t), we will first rewrite our near-horizon and
far-away results in those coordinates.

The near-horizon solution (3.16) at the AdS; boundary i.e z — 0 is given by,

d(z,w, k) = by (w, k)22 + by (w, k)Grr(w, k)22 7. (A1)
Using (2.17),
_ U
p—d(z 1)+1. (A.2)

we can express the near-horizon solution in terms of the coordinates (p,t),

Grr(w, k) + 1) K (GIR(w,k) - 1) K < K >
+ by (w, k . 1% 1o
d p—1 1w, k) ds P 5\d(p

Grr(w, k) — 1)

00,00, k) b (w ) (

[N

V2 pfllog2<d(p"‘_1)>+..., (A3)

1
+ §b1 (w7 k) ( d%
where we have used 4z, = dA = K.
Similarly, the far-away solution (3.9) can be expanded in the mid-region by using the

relation,

TZThP%QZTh <1+1O§p+...>. (A.4)

The Bessel functions in (3.9) have a rich set of asymptotic expansions, depending on the
relative magnitudes of their order and argument. When v is of order 1/ d%, it can be easily
checked that the argument and the order both grow linearly in d, while their difference is of
order d3. When this is the case, we can use the beautiful result of Olver [32] given in equation
(D.6) to write,

1/3 [ (~ 2(d—A) | x ATAYAS 22/3y2 _x 2(d—A) o : 22/3y2
2 ((01 cos 01 + G2e’™2)Ai ((4M2+1)2/3 c11 sin OBi e

3 (AM2 +1)5 /p

1

N123

o(r,w, k) ==
"n

("’f—hi 2Q2 —4M2 — 1+ (4M2 +1)logp — 2\/§Qﬁ)
B (M2 + 1)

. 922/31/2 22/3y/2 1
X ((61 cos 0i2(d=2) 4 Ege“‘A)Ai’ ((2‘/)2/3> — &i2(d=2)py <V> sin@) +0 <7>
A4M? + 1
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where we have defined,
d d
c1=cl <1+2\/1+4M2> , Gy = ol <1—2\/1+4M2> , (A.6)

and 0 = %\/4M 2+ 1. In the appendices for scalars we have employed the notation m =
Md,q = Qd. Having obtained the asymptotic expansions in the mid region, we will now
proceed to match them. There are perhaps quicker ways of doing, but we will proceed in a
way that we find the cleanest.

The expansion (A.3) for the near-horizon solution is valid as long,

p—1«1 (A.7)
While the expansion (A.5) for the far-away solution is valid when,
p=d. (A.8)
Since there is no overlap between the two regions, we will solve the bulk equation of motion in
the middle region and match it with the near-horizon and far-away solutions, perturbatively
in 1/d. Let the middle solution be given by,

3 3

1 1
o(p, k,w) = x(p,w, k) + d—l)g(p,w, k) + d—zxg(p,w, E)+.... (A.9)

The powers of d are chosen with hindsight obtained from the rest of the calculation. Given
this expansion the bulk equation of motion in the middle region can be solved perturbatively.
Each x;(p,w, k) satisfies a second order differential equation, and hence comes with two
integration constants. Since each x;(p,w, k) also satisfies two boundary conditions, one at
the near-horizon/mid-region boundary and the other at the mid-region/far-away boundary,
the x;(p,w, k) are fixed uniquely order by order. We will write down the first few y;(p,w, k),

Cl(wv k;) + 02("‘)7 k) log(p — 1) CB(Wa k;) + 04(‘*‘)7 k) log(p — 1)

w, k) = w, k) =
X(p7 ) ) f 1 2 /7[) 1 ) Xl(p7 ’ ) i 1 2 /7[) 1 )
w, k)V21og?(p — 1) + 2¢5(w, k) + cg(w, k)1 -1
)(2(/)7 7]{:) C5( 9y ) Og (p ) 65( Y ) CG( ) ) Og(p ) . ( A 10)

24/p—1

We will match (A.10) with the near-horizon expansion (A.3) when p = 1+ £L%, and with
the far-away expansion (A.5) when p = pyyd. These clearly lie in the respective regimes of
convergence (A.7) and (A.8). The parameters p;r and pyy are some O(1) numbers. Perhaps
the higher order y;(p,w, k) could also be obtained by a Callan-Symanzik type argument by
demanding that the physical quantities do not depend upon the parameters p;yr and pyy.
In the following, we will set pjr = pyy = 1. Note that solving for the higher order terms
in (A.9) requires the subleading corrections to the mid-region metric (2.13). We have not
listed those corrections to the metric here, but have incorporated them in our computations

wherever they were necessary.
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Performing this matching calculation at leading order we obtain,

e T — V1 +4AM2) N (A11)
a I(1+4V1+4M?) D '

where,

_ 2 av3 K
w2y @ v ) B 3G - 1) (4M? +1) Ky (121\/12+3) log (d2/3)
3 \12m2 13 log(d) (4M2ry, + 11,) + 2k /—4M2 +2Q2% — 1 — 2¢/2Quw |’

393G - 1) (an2 +1) " v tog (5%) (COt " ( 2M2V2; 2/3) o ( 2M2V2L 273 ))
D = v3r (1M? + 1)2/S 2(d=28) 0| (2212+3) (20024 3)

2v2Qw — logd (4M2r), + r),) — 2k /2Q2 — 4M?2 — 1

v?2 v2
+(G+ Dcot(A] | ——— |+ (G@+ 1B | ————— | |. (A.12)
(2m2 + %)2/3 (22 + %)2/3

We can tune V such that the ratio N/D takes the form (4.19). We find that if V(m,q, k)
satisfies the following relation,

1
1\ 3 V2 V2 K
o2M? + > log d Ai’ () =3V Ai () log (=75 ) - (A.13)
( 2 (2M2 4 1)? (2M2 4 1)*? <d2/3>

the full two-point function has a non-trivial zero as w — 0 and k — kp. The constants that
appear in (4.19) can now be easily extracted from (A.12) and (A.13). We find,

(4M2 + 1) rp log d
V2Q ’

by = —

2 2(d—2A) 32 o v2 _ ; v2 ®
(4M + 1) rhi log d tan 6 (\/4]M T 1log(d)Bi ((2 2+;)2/3> 3VBi ((2Mz+l)2/3 log (d2/3)
+ M7+3 2
b = . (A.14)

25/6QV Ai (4(2]\42\:—2%)2/3 ) 6 log (dz%)

As mentioned in the main text, both constants have at most a logarithmic dependence on d.
We can integrate (A.13) to get a simpler equation,

V2 2log () v
J V[ Sl— A15
' <(2M2 n ;)2/3> PP\ T logd 2n2 1L (4.15)

The equation has a unique solution, and corresponds to finding a bulk Fermi surface.

B Matching for scalars for v ~ 1 and m,q,k ~ d

In this section we will perform the matching calculation for scalars in a parameter regime that
wasn’t discussed in the main text. We argued in section 4.1 that the UV two-point function
has a non-trivial pole as w — 0,k — kp only when v vanishes in the large d limit. For O(1)
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Figure 5. The potential for the Schrodinger problem for the bulk equation of motion for the scalar field
o(r,w, k) when v ~ 1. The potential monotonically increases and a mode that is (non) normalizable
stays (non) normalizable throughout the geometry.

values of v we showed that the full UV two-point function takes the rather uninteresting form
(4.15).

The exponent v can take O(1) values in several cases. In the main text we considered the
case when m, ¢,k ~ O(1), in this appendix we will work with the case when m, ¢ and k take
generic O(d) values. We will find that the result is similar to (4.15). The far-away solution
(3.9) has a similar expansion as in (4.10). It is given by,

i20
) (rh <1 + logp> W, k> = N (Cl(w’ k) cos (93 : ca2(w, k)e™ 2p"e“c1(w, k) sin (9)> ,
d (2rdurip) pe

[N

(B.1)

where,

o d/d
N =2~ % Vi & <q2r,% g2y 22 | 2w ) Co="mr i,

2 K2 v+ %2—£;+V2 NG)
a=d Q———+V210g i —v M‘Fl . (B.2)
2 \/@ Q%ry — 2K?
"h

We have used the notation m = Md,q = Qd and k = Kd. Meanwhile the near-horizon
solution can be expanded near the AdS> boundary to obtain,

izpw 1, z%"'l’
¢(va7k) = bl(wak)(izh) h z2 - ZQV GIR(ka) . (B3)
h
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Matching the two we obtain,

dr/AM2+1
—d\/4M?2+1 2.1
ca(w, k) 9, 1 —imdy/aM2+1 O R K\ cotd
= |ay /M2 + e Grr(w, ke
c1(w, k) 4 M2 41— p2 d 2
(B.4)

For generic values of m,q and k, the second term in the parenthesis is exponentially sup-
pressed compared to the first. Using (3.12), we thus obtain the UV two-point function, up to
exponentially small corrections,

2dy/M2+1
Cov (@ k) = Grnleo, B M2+ Lty <m>21’ oy (B.5)
vviw,R) = Grr(Ww, — e . .
Arpeimy | M2 + i d

We find that for v ~ 1, and generic m, ¢, k ~ O(d) values, we obtain a similar looking Green’s

function as found before in (4.15). Thus this parameter regime is uninteresting from the
perspective of finding Fermi surfaces. Figure 5 shows the Schrodinger potential for the scalar
field ¢(r,w, k) when v ~ 1. The potential increases monotonically, and due to the large d

T > 1. As a result a mode that is

nature of our geometry, is of order O(d?) as soon as
(non) normalizable in the near-horizon geometry stays (non) normalizable in the rest of the
geometry. This is why the coefficients b and b, are exponentially small. Subsequently the
Green’s function takes a form given in (B.5) and not the Fermi surface type given in (1.3).
Note that the terms in the parentheses in (B.4) are of similar magnitudes, in large d

counting, when v ~ 1/ d'/3. This is precisely when we find Fermi surfaces.

C Fermions

In this section, we will deal with bulk fermions. As mentioned in the introduction, the physics
is qualitatively similar to the case of scalars, but the details are slightly different. We begin
with the bulk action of the fermions minimally coupled to gravity [33, 34],

_ 1 =
Sfer = —ijdd+1$\/?g (‘I’F“ (a,u + Zwuabrab - iqA,u) v — m\IﬂIJ) (Cl)
where,
1
Taeb — 5 [Fa,Fb] , wzb = egrgue"b — e”baueﬁ. (C.2)

a
"

Christoffel symbols. For a diagonal metric that only depends on the bulk radial coordinate

The I'* are the d + 1 dimensional gamma matrices, w? is the spin connection and I';, are the

r, we can make the following redefinition,

U(r,t,z') = (—gg™) " 1(r, L, ). (C.3)
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This cancels the spin connection term in the bulk equation of motion, and we get,
egFa (au - ZqA,U«) ¢(Ta t, 331) = m¢(r, t :L‘Z) (64)

We work with non-relativistic fermions that explicitly break Lorentz invariance as men-
tioned near footnote 4. Setting the vielbein to ef = 4/|gt*|, and going to fourier space in the
boundary coordinates,

Y(r,t,zt) = fdd_lk dw e_i“’t”kixiw(r,w,k) (C.5)

we obtain the bulk equation of motion for fermions in the black hole background (2.2),

6 +iy| 0 (w4 gAy) wmw,k):( I iy + 2 o—3>w. (C.6)
g g Vg

The o; are the Pauli matrices,
[*=o° = , I'=ic' = , I"=—-0"= , (C.7)

and ¥ (r,w, k) is a two component Weyl spinor. We will now solve this equation in the near-
horizon region and the far-away region, and match them in the middle to obtain the full
two-point function.

C.1 Near-horizon region

The near-horizon metric is given by (2.20), that we reproduce here for the reader’s conve-

nience,

1 (1 - i) T}Ql 02dz2 7’,21
b ‘h

ds? = — | -~ L Thgr2y  Z 05 )
d? 22 V4 52 <1 _ i) 0?2
2h

dz?_,. (C.8)
The equation of motion (C.6), can be exactly solved in the near-horizon geometry [15].
Throughout this appendix we will solve for the top component of ¥(r,w, k). The top com-
ponent satisfies a second order differential equation, the solution to which is given by,

iq W

—2v 2v .
i v z _dw z 1q 1 z
k = - — arT b k _ F — —:2 1: —
Y(r,w, k') =z ( Zh) (z— 2zn) <1(w, )( Z}L) 2 1(1/ \/id’\/id+y+27rT+2’ v+ ’zh)

iq iq w 1 5 2
+b2(w,k')2F1 <_E_V7E_V+ 27‘(‘T+§71 2V, Zh)), (09)
where,
1 q2 k2
— 2 4 C.10
AV 2 ’I“}QL ( )
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7iwzh52
At the event horizon, this solution has an incoming mode (z — z;) #» and an outgoing

iwzh€2

mode (z — zp,) 9» . Imposing incoming boundary conditions at the horizon we obtain,

] _ _iw_ iq 1 iq iw z

L w, kYD) =by (W, k)D(1 4+ 20)27Y (2 — 2) 3T |22V oFy (v — —, = + v + + i1+ 20 —
Wlryw, k) =i (w, kDL + 20)27 (2 — 24) [ i (v Sl v S a2
Lw

Zh

2 27 ~ q 1q w z
- 2F1<———u,7—u+ + ;1—21/;—) ,
1 2 27T
F(ﬁ*”“ﬁ(?*” v 2:} V2d Vad o h

(C.11)

where o F} are the regularized hypergeometric functions.

Like the scalars, we can imagine a CFT) that lives at the asymptotic boundary of the
near-horizon AdS; geometry. The two-point function in this C'FT} which we refer as the IR
Green’s function, is then given by,’

ik

F(1—2V)F<\/igd+u+1)1"(%+z/—\}%d—zier)ﬁ+iy—%+dm <4 )21/
F(1+21/)F(\}gd )r(%f,/f ig iw)ﬁ—z’u—%+% wkrn)
(C.12)

Grr(w, k) = T

C.2 Far-away region

The far-away region in the large d limit, is extremely simple and we just obtain vacuum
AdS4.1 with a constant gauge potential,

2 2

¢
ds® = —E—th2 $dr® 4 Sded s, A= o (C.13)

The fermion equation of motion (for the top component) in this background is a standard
differential equation. The solution is given in terms of Bessel functions,

P(r,w, k') =

</2k2 — @2} — 24/2qrpw — 2w? 1 i\/—qzﬁ — k2 + v/2qrpw + w?
23/4im /1 a(w k) (5 —m [,m,%

r

i\/q—h — k2 +/2qrpw + w?
+e2(w, k)2 (m o+ 3 I .1 2 . (C.14)
2) mta

r

5The two-point function for spinors is also given by the ratio of the normalizable mode to the non-
normalizable mode. However, both components of the spinor contribute to the two-point function. We will
only present the answer here, and refer the reader to the standard work [33] and references therein for the
holographic prescription for computing the Green’s functions of spinors.

— 928 —



Using the asymptotic expansion of the Bessel function, and recalling our redefinition (C.3),
we have at the asymptotic AdS4y1 boundary,

- i\ 4 ¢*r? ]
lim ¥(r,w, k') =c1(w, k) () roztm <k2 — - \grpw — w2>
r—00 2 2
ca(w, k)imt 4 e @ 9 "
+ W?ﬁﬁ*m* <k: - Th —V2qrpw — w > . (C.15)

Taking the ratio of the normalizable mode to the non-normalizable mode (while including
both components of the spinor) we obtain the fermion two-point function in the CFTy,

. 2,2 m+l
ie'™(2m + 1) (k:2 — th —\2qrpw — w2> g ea(w, k)
22m (—2k + /2qry, + 2w) c1(w, k)

Guv(w, k) = (C.16)

To obtain the full UV two-point function we need to obtain the integration constants ¢;(w, k).
We will obtain them by matching the far-away solution (C.14) with the near-horizon solution
(C.11) in the following sections, just like we did for the scalars.

C.3 Parametric regime of interest

Before we proceed with the matching calculation, we would like to reiterate the relevant
parametric regimes of interest as discussed near (4.16). Recall that the scaling exponent of

1 @ k2
2 1
V= pi m 5 + 7“;217 (C.17)

while the dimension of the fermionic operator in the C'F'Ty is given by,

the fermions is given by,

A= g +ml. (C.18)

The parameters m, q and k can have any dependence on d, since that is not fixed by the
symmetries or the dynamics of the theory. We will restrict to the cases that we find are the
most interesting. In a d dimensional theory, we expect the momentum k = |k¥| to scale as
Vd. As discussed in the main text, this regime also makes sense from the perspective of the
DMFT ansatz, where the hopping parameter is rescaled as t;; — t;;/ Vd. We find from the
matching calculation that if k& ~ v/d, and if we want the UV two-point function to take the
form of (1.3), then m and ¢ also need to scale as Vd. In such a parametric regime, we find
bulk Fermi surfaces when,

V(m7 q, kF)

where V(m,q,kr) is an O(1) number, with at most logarithmic dependence on d. In our
opinion, this is the most natural parametric regime for the fermions.
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If we had instead taken m,q,k ~ 1, we would have found bulk Fermi surfaces for v ~
V(m,q,kr)/d, where V(m,q, kr) is some O(1) number. This is also an interesting case to
consider, but we shall not pursue it here since it gives rise to the same kind of physics. We
could have also considered the scenario where m, ¢, k scale with d, like we did for the scalars.
In that case we obtain physics similar to the scalars, and find that v = V(m, ¢, kp)/ d'/3, when
looking for Fermi surfaces. Finally, just like the scalars, the fermion two-point function takes
the uninteresting form (4.15), and not the Fermi surface type (1.3), whenever v ~ 1.

C.4 Finding bulk Fermi surfaces

Just as we did for the scalars, we will rewrite our far-away solution and the near-horizon
solution using the coordinates for the middle region (p,¢). The radial coordinate of the
far-away region is related to the mid-region coordinate by,
r 1
— = pd2, (C.20)
Th
We want to expand the far-away solution in the middle region. This corresponds to taking
r — 7. In terms of the middle region coordinates this means,

T =T (1 + 1ng> . (C.21)

d

The far-away solution is valid as long as,
p = d. (C.22)

Meanwhile the near-horizon coordinate z is given by,

u  z
=— | — -1 1. 2
P d(Zh >+ (C.23)

The near-horizon is valid as long as,
p—1l«1 (C.24)

Clearly the regimes of validity (C.22) and (C.24) have no overlap.

There are perhaps multiple ways of proceeding with this problem. We will take the
simplest approach in our opinion. We will solve the bulk equation of motion in the middle
region perturbatively in 1/d and match it with the near and far solutions. At each order we
get two new integration constants and two boundary conditions, thus the mid-region solution
is uniquely fixed. The metric in the middle region is given by (2.13),

2 _ 1) 7“2 €2dp2 T2
ds? = _%7%2 “hage? 92
g 2 et Epmepon T et (C.25)
Let the bulk fermion field be given by the following perturbative expansion,
1 1 1
Y(p,w, k) = x(p,w, k) + W}g(p,w,k) + WXQ(PN}JC) + Wxg(p,w, k)+... (C.26)
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The bulk equation of motion can now be solved order by order in 1/d. Each x; satisfies
a second order differential equation. It also needs to satisfy two matching conditions, one
with the near-horizon solution and the other with the far-away solution. This uniquely fixes
each y;(p,w, k), and gives us c;(w, k) in terms of by (w, k) and Grr(w,k). Performing this
calculation we find the coefficients ¢;(w, k) that are needed to obtain the full UV two-point
function (C.16). We will not write down the rather long expressions for ¢;(w, k) for arbitrary
values of k but only write down the final answer near the near Fermi surface kK = kp. As
argued near (4.19), the ratio ¢;(w, k) takes the form,
Cg(w, ]{7) b2_ (O, ]CF)

= . C.27
ci(w,k)  w+op(k—kr) + b7 (0,kp)Grr(w, kr) ( )

The constants b; are given by,

My, tan (mv/dM ) (Bi(z) (33600M2y/zlog (%) + 537627 + 1253522) + 10 (14162" + 223) Bi ()
b, =
? 1404/2i4MVAQ (13722 Ai(z) + 2 (2423 + 25) Ai'(z))
960/2M 21, V Ai (z) log (%) oy
Q (137 22BMBVIAI (z) + 8 (25M* + 6VO) Al ()" © 22BMYE

’

by =

The Fermi velocity and momentum is given by,
/g2 — 2m?2
Vp = u, kF =Th i — m2. (0.28)
q 2
Note that ¢,m scale as O(+/d), thus the Fermi velocity is O(1) while the Fermi momentum
is O(v/d). The scaling exponent is given by,

V(ma q, kF)

where V' (m, ¢, k) satisfies the relation,

. 2
Al (722/3/ M4/s> V (67200M°%log (%) + 12535 M4V3 + 1344V7)

= — . (C.30)
. 3/9 1 [8/3 4 6
Aj (22/3\/]\244/3> 20/2M8/3 (223 M*4 + 354V6)
D Asymptotic expansion of Bessel functions
We will be using the following identities quite frequently,
I,(z) = et (zei%) , T, (2e™™) = ™ (2),
Y, (2e™™) = 7 ™Y, (2) + 2isin(myn) cot(vm)J, (2). (D.1)
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In particular, we will be using the expansion of Watson for asymptotically large argument
and large order i.e. v,z — oo with v/z fixed,

exp (V2 — 22 — vsech ™! & +1)4,,
JD(Z) = ( Z 2) 7\ (D2)
\V2m/ 2 — 22 =T (3) (3V2 —22)
12 1
V(e) = R e [ (5) - Vo2 - ) i et Dlmt o) dn gy g
27TVV2—22 m=0 T (3) (3vv? —27)
where,
1 5 v 2
Ag=1, A1=-——|—— D4
o=l A== (o) - (D.4)
37 2385 :
YN Sy (N 2NN 05)
128 576 \ /12 — 22 3456 \ V12 — 22
When we tune near the Fermi surface we will need the formula for asymptotic expansions

at large order v and large argument z such that |[v — z| ~ v1/3. This requires a different

expansion than Watson’s and is given by the result of Olver [32],
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where Ai(z) and Bi(z) are the Airy functions of the first and second kind respectively.
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