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Abstract

In recent work, we conjectured that Calabi-Yau threefolds defined over Q and admitting a
supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-
two cuspidal Hecke eigenforms. In this work, we will address two natural follow-up questions,
of both a physical and mathematical nature, that are surprisingly closely related. First, in
passing from a complex manifold to a rational variety, as we must do to study modularity, we
are implicitly choosing a “rational model” for the threefold; how do different choices of rational
model affect our results? Second, the same modular forms are associated to elliptic curves over
Q; are these elliptic curves found anywhere in the physical setup? By studying the F-theory
uplift of the supersymmetric flux vacua found in the compactification of IIB string theory on
(the mirror of) the Calabi-Yau hypersurface X in P(1, 1, 2, 2, 2), we find a one-parameter family
of elliptic curves whose associated eigenforms exactly match those associated to X. Actually,
we find two such families, corresponding to two different choices of rational models for the same
family of Calabi-Yaus.
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1 Introduction

One of the crowning achievements of twentieth century mathematics was the modularity theo-
rem [1–5], which implies that every elliptic curve defined over Q can be associated to a special
automorphic form called a weight-two eigenform. More recently, the modularity program has been
extended to higher-dimensional Calabi-Yau (CY) varieties, including CY threefolds (CY3s) [6, 7].
For example, it is known that rigid threefolds defined over Q are modular [8]. Recently, the modu-
larity of threefolds has been connected to special string compactifications. In particular, it has been
conjectured that supersymmetric flux compactifications over Q are associated to the same kind of
modular forms as elliptic curves [9], and that rank-two attractors defined over Q are associated to
the same kind of modular form as rigid threefolds [10].

Although these relationships were in some sense anticipated in [11,12], for technical reasons they
are somewhat surprising. In physics, when we consider a string compactification we usually think of
the threefold as being more or less uniquely specified by the choice of complex structure. However, to
discuss modularity this is insufficient; we must also choose a rational model for the threefold. Indeed,
the eigenforms associated to elliptic curves and threefolds by the various modularity theorems and
conjectures are most properly thought of as being assigned to this choice of rational model, and
the same point in complex structure moduli space can be related to many different eigenforms.
Thus, a deep understanding of the relationship between string theory and modularity will require
significant conceptual and technical advances beyond what is currently understood.

The main question that motivates this paper is why, physically, supersymmetric flux compact-
ifications are modular. We will not answer this question, but we will provide a physical picture
that at least makes the results of [9] plausible. Weight-two eigenforms, which are the automorphic
objects that we associated to supersymmetric flux compactifications in [9], are more traditionally
associated to elliptic curves defined over Q. With this in mind, it is natural to ask if there is a
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rational elliptic curve anywhere in the physical setup.
On the other hand, it is well-known that flux compactifications of IIB string theory on a CY3 are

dual to F-theory compactified on an elliptically-fibered CY fourfold [13]. F-theory is an approach
to IIB string theory that geometrizes certain non-perturbative aspects [14–16]; see e.g. [17] for
a review. In the F-theory uplift of the flux compactification, the generic elliptic fiber1 provides
a natural elliptic curve, which we will argue reproduces the modularity of the underlying flux
compactification, as identified in [9].

Perhaps the most important challenge to this proposal is that a priori there is no reason for
the generic elliptic fiber to be defined over Q, even when the associated threefold is. Indeed, in
F-theory the generic fiber is most naturally defined over the function field of the base, and thus
does not have any obvious modular properties. Nevertheless, we will revisit the main example of [9]
and find that, whenever the threefold is defined over Q, so is the generic fiber of the F-theory
uplift. Moreover, we will find that the framework of [13] naturally produces a rational model for
this elliptic curve, and that the modular form associated to this choice of rational model exactly
matches the modular form that appears in the zeta-function of the threefold, subject to one choice
of twist. In fact, we will study two different rational models for these flux compactifications, and
correspondingly find two rational models for the associated family of elliptic curves, with matching
in both cases2.

For threefolds with h2,1 = 1, similar ideas appeared in Section 4 of [10]. Our treatment extends
that of [10] in a few important respects. First, we describe the F-theory geometry explicitly.
The authors of [10] argued that in the case they study, F-theory gives an elliptic curve with
the right j-invariant; here we exhibit the stronger result that, surprisingly, it also produces the
desired rational model for an elliptic curve with this j-invariant. We are only able to see this by
directly manipulating the defining equation of the F-theory fourfold. Additionally, whereas those
authors considered an isolated flux compactification, we will consider a continuous family of vacua.
Although this situation is less generic, it offers a rather richer laboratory to study flux modularity.
To obtain a rational model from the F-theory construction, we must put in one rational model
by hand; this allows us to pick out a coordinate transformation in the F-theory geometry that is
necessary to correctly reproduce the modularity of the threefold. In a continuous family, this is
not really an issue: we put in the rational model associated to one point in moduli space, and get
out the rational models associated to an infinite number of other points. On the other hand, for
isolated vacua this prescription has no predictive power: to correctly reproduce the rational model,
we must insert the same rational model by hand. Put another way, while the authors of [10] gave
interesting evidence—in the form of the j-invariant—that the F-theory geometry should reproduce
the weight-two eigenform associated to the flux compactification they described, we are able to
show this explicitly in the setting we study, for all but one rational point along the family of flux
compactifications.

The outline of this paper is as follows. First, in Section 2, we will briefly introduce the notion
of rational models; these are unfamiliar to physicists, and are absolutely essential to modularity,
so it is well worth taking the time to understand them. Next, in Section 3 we will study Sen’s
construction of elliptically fibered fourfolds in F-theory, and obtain a universal formula for the

1Throughout this paper, we work in a limit where the axiodilaton τ is constant over the base of the elliptically
fibered fourfold.

2The discussion of different rational models for the Calabi-Yau hypersurface in P(1, 1, 2, 2, 2) and their modularity
was motivated in part by a comment by one of the referees of [9]; we thank that referee for suggesting this.
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generic fiber in terms of the j-invariant of the underlying supersymmetric flux compactification.
Finally, in Section 4 we will apply the F-theory framework to the example of [9], and derive two one-
parameter families of elliptic curves that exactly reproduce the eigenforms associated to two families
of rational models for the supersymmetric flux compactifications arising in the octic Calabi-Yau
hypersurface in P(1, 1, 2, 2, 2). We will then conclude in Section 5 with discussion and outlook.

2 Twists and Rational Models

In string theory, we usually deal with CY3s in the category of complex manifolds, where (neglecting
the Kähler structure) they are determined up to isomorphism solely by their complex structure.
For instance, any two tori with the same j-invariant (or, equivalently, the same modular parameter
τ) are isomorphic as complex manifolds. However, to discuss modularity, we cannot work in the
category of complex manifolds, but instead in the category of rational projective varieties, where
the notion of isomorphism is much more refined. Put another way, to discuss the modularity of a
variety, it is not enough to fix its complex structure; we must also pick a rational structure.

As an example, consider the two elliptic curves

E : y2 = x3 + x, (2.1a)

E ′ : y2 = x3 − x. (2.1b)

These curves both have j = 1728, so as complex tori they are isomorphic, but E has conductor 64
and E ′ has conductor 32. The conductor determines the level of the modular forms associated to
E and E ′, so as varieties defined over Q they are not isomorphic. This point of view is unfamiliar
from the perspective of string theory, so we will spend this section briefly reviewing how different
arithmetic objects can be isomorphic as complex manifolds, and the relationship between the mod-
ular forms associated to such objects. The material in this section is fairly standard, and much
more detail can be found in e.g. [18–20].

2.1 Rational Models

We begin with the elliptic curve

E : y2 = x3 + fx+ g, (2.2)

which has j-invariant

j = 1728
4f3

4f3 + 27g2
. (2.3)

The rescaling

y →
√
dy (2.4)

takes Eq. 2.2 to

E ′ : y2 = x3 + d2fx+ d3g, (2.5)
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which manifestly still has j-invariant given by Eq. 2.3. If we are viewing the elliptic curves as
complex tori, then Eq. 2.4 is simply a change of variables, so Eqs. 2.2 and 2.5 are isomorphic; this
is simply the statement that all complex tori with fixed j are isomorphic.

Conversely, if we consider E and E ′ as being defined over Q (which of course requires f, g, d ∈ Q)
then the situation is somewhat more complicated. If d is a perfect square, then

√
d is also rational,

and once again Eq. 2.4 is a simple change of variables, so that Eqs. 2.2 and 2.5 are isomorphic
even over the rationals.

On the other hand, if d is not a perfect square, then the situation is radically different. In
general, Eq. 2.4 is not an isomorphism over Q, but instead over the number field Q(

√
d), and thus

E and E ′ are not in general isomorphic over Q. The elliptic curve E ′ is called a quadratic twist of
E [18,19], and in general E and E ′ are genuinely different objects in arithmetic geometry: they are
different rational models for the same complex torus.

2.2 Twists

The weight-two eigenforms associated to two elliptic curves related by a quadratic twist are them-
selves simply related. Consider elliptic curves E , E ′ whose associated eigenforms (called f and g,
respectively) have Fourier expansions given by

f(τ) =
∑
n

anq
n, (2.6a)

g(τ) =
∑
n

bnq
n. (2.6b)

If E , E ′ are related by a quadratic twist as above, then we will have

ap = ±bp (2.7)

for all but finitely many primes p.
The choice of sign is determined by a Dirichlet character. A Dirichlet character χ with modulus

D is a map χ : Z→ C satisfying the equations

χ(n) = χ(n+D), (2.8a)

χ(nm) = χ(n)χ(m) (2.8b)

for all n,m; we say that χ has order k if χk is a trivial character, i.e. if

χ(n)k = 0 or 1 (2.9)

for all n. Thus, if χ is of order two we have x(n) = 0,±1 for all n. More detail about Dirichlet
characters can be found in e.g. [18–20].

Quadratic fields Q(
√
d) (where d is square free) are in bijection with Dirichlet characters of

order two and modulus D, where D is determined by d as

D =

 4d d ≡ 2, 3 mod 4

d d ≡ 1 mod 4
. (2.10)
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Thus, the field over which a quadratic twist is defined is associated to a unique Dirichlet character
χ; the more precise statement of Eq. 2.7 is that

ap = χ(p)bp (2.11)

for all but finitely many primes p. Two modular forms related in this way are said to be twists of
each other, and the modular forms of any two elliptic curves that are quadratic twists of each other
will also be related by a twist.

Although we have given a precise definition of the map between modular forms related by a
quadratic twist, we have not actually said how to evaluate the signs in Eq. 2.11. In this paper, we
will focus on the Dirichlet character of modulus D and order 2 [21], which is given by

χ(n) =

(
D

n

)
, (2.12)

where
( ·
·
)

is a Kronecker symbol.

2.3 A Suggestive Example

For an example of the above ideas that will be quite relevant later, consider the two elliptic curves

y2 = x3 + fx+ g (2.13a)

y2 = x3 + fx− g, (2.13b)

where f, g ∈ Q. These two curves have the same j-invariant, but are arithmetically inequivalent, so
they are different rational models for the same complex torus. To see that they are arithmetically
inequivalent, note that the g → −g map is generated by the coordinate transformation

y → iy. (2.14)

Thus, the two curves are isomorphic over Q(i), but not over Q.
What about the modular forms associated to these elliptic curves? By the discussion above, the

two modular forms are related by a Dirichlet character for Q(i). The nontrivial character, which
following LMFDB [22] we will call χ4.b, is defined in terms of a Kronecker symbol as

χ4.b(n) =

(
−4

n

)
=



0 n ≡ 0 mod 4

1 n ≡ 1 mod 4

0 n ≡ 2 mod 4

−1 n ≡ 3 mod 4

. (2.15)

We have indicated its action on some small primes in Table 1. Thus, any two elliptic curves related
by Eq. 2.14 have the same point counts for all p not congruent to 3 mod 4.

It is interesting to consider the special case g = 0, i.e. the elliptic curve

y2 = x3 + fx, (2.16)
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p 3 5 7 11 13 17

χ4.b(p) -1 1 -1 -1 1 1

Table 1: The Dirichlet character χ4.b evaluated on the primes in [23].

which has j-invariant 1728 for all f . This curve is invariant under g → −g, so its endomorphism ring
is enlarged relative to that of a “generic” elliptic curve; we say that a curve whose endomorphism
ring is enlarged by a twist defined over Q(

√
−d) has complex multiplication by

√
−d. Thus, the

g = 0 example above has complex multiplication by
√
−4. Correspondingly, the modular form

associated to an elliptic curve with complex multiplication is invariant under twisting by a Dirichlet
character; we again say that a modular form with such a self-twist has complex multiplication. The
j-invariants of elliptic curves over Q with complex multiplication have been completely classified,
and there are thirteen possibilities [18], corresponding to the thirteen quadratic imaginary fields
with class number one; this is the gateway to a rich and beautiful area of mathematics known as
class field theory.

2.4 Rational Models for Threefolds

Before we move on, it is worth noting that most of the above discussion should also go through
for CY3s, at least in principle, but of course the picture is much more complicated. Just as
with elliptic curves, to discuss the modularity of a CY3 we must first select a rational model
for the threefold. Thus, the modularity conjectures of [9, 10] can more precisely be stated as
conjecturing the modularity of all rational models of supersymmetric flux compactifications or
rank-two attractors over Q, and when we identify particular modular forms (as was done in [9, 10])
we have implicitly picked a rational model. We will shortly encounter a second family of rational
models for the supersymmetric flux vacua studied in [9] that will demonstrate concretely the need
for such a choice even in threefolds.

In general, we expect the modular forms associated to different rational models of the same
special point in complex structure moduli space to be related by a twist, just as with elliptic
curves. However, an important difference between threefolds and elliptic curves concerns the level
N of the eigenform associated to a rational model of a CY3. For an elliptic curve, N is simply the
conductor of the curve. However, for threefolds, no precise statement is known; it is not even known
whether all bad primes of the threefold must divide the level of the eigenform [6]. Indeed, in [7]
several concrete examples are given of nonrigid CY3s associated to both a weight-four eigenform
and a weight-two eigenform such that the levels of the two eigenforms do not match.

While for elliptic curves we were able to construct an infinite tower of twists, for threefolds the
situation is rather more complicated. There is one lesson from elliptic curves, however, which will
be quite helpful to us later on. The rescaling in Eq. 2.4 is a symmetry of the underlying complex
variety; however, this symmetry is broken by the choice of rational structure. Thus, an easy way
to generate different rational models for the same complex manifold is to look for symmetries of
the complex moduli space that cannot be defined over Q.
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3 F-Theory and Elliptic Curves

In [9] we conjectured that a special class of string compactifications called supersymmetric flux
vacua are modular. In defining a supersymmetric flux vacuum, we start with type IIB string
theory compactified to four dimensions on a CY3 X, and perform a special quotient of X called an
orientifold (see e.g. [24]). Orientifolds of IIB string theory can be naturally reinterpreted in terms
of a twelve-dimensional theory called F-theory compactified to four dimensions on an elliptically
fibered fourfold Y [13]; the original threefold is a double cover of the base of the fibration. Given that
the weight-two eigenforms associated to supersymmetric flux compactifications are also associated
to elliptic curves, it is quite natural to hope that the elliptic fibers of the fourfold might enjoy
modularity properties related to those of the threefold.

We will see that this is the case, but first we must explain how to associate elliptic curves to
supersymmetric flux compactifications, following [13]. We begin with an elliptically fibered CY
fourfold in Weierstrass form,

y2 = x3 + f(u)x+ g(u), (3.1)

where f and g are functions of the coordinates u of the base B of the elliptic fibration; actually,
they are sections of the bundles −4K and −6K, respectively, where K is the canonical bundle of
the base, but we will not need this extra complication. We work on the locus of fourfold moduli
space where f and g can be decomposed in terms of auxiliary functions h(u), η(u) as

f(u) = Cη(u)− 3h(u)2 (3.2a)

g(u) = h(u)
[
Cη(u)− 2h(u)2

]
. (3.2b)

In terms of η and h, the fiber over a point u ∈ B has j-invariant

j(u) = 6912

[
Cη(u)− 3h(u)2

]3
C2η(u)2 [4Cη(u)− 9h(u)2]

(3.3a)

and discriminant

∆(u) = C2η(u)2
[
4Cη(u)− 9h(u)2

]
. (3.3b)

By analyzing monodromies around the singular locus ∆ = 0, Sen argues that we have D7 branes
on the locus η(u) = 0, and O7 planes on the locus h(u) = ±2

3

√
Cη(u).

A particularly simple way to obtain a supersymmetric flux compactification is to take the D7
branes and O7 planes to coincide with each other; we therefore set

η(u) = h(u)2 (3.4)

so that

f(u) = (C − 3)h(u)2 (3.5a)

g(u) = (C − 2)h(u)3. (3.5b)

Our elliptic fibration is thus

y2 = x3 + (C − 3)h(u)2x+ (C − 2)h(u)3, (3.6)
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with j-invariant

j = 6912
(C − 3)3

C2 (4C − 9)
. (3.7)

Thus, away from the locus h = 0, where ∆ = 0 and the fiber is singular, the j-invariant of the fiber
is constant over the base, and depends only on the constant C.

At this stage, the Weierstrass coefficients f and g themselves vary as we move over the base.
However, this can be easily remedied. Consider the double cover of the base defined by

ξ2 − h(u) = 0. (3.8)

Sen [13] proved that this space is a CY threefold, which should be identified with the CY3 whose
orientifold gives the flux compactification in the IIB picture. For our purposes, the relevant threefold
is a projective variety, and hence (as long as we avoid the singular locus where h = 0), we can
projectively set ξ = 1, which in turn sets h = 1. Thus, away from the discriminant locus, we have
a generic elliptic fiber given by

y2 = x3 + (C − 3)x+ (C − 2). (3.9)

Our generic elliptic fiber has an undetermined constant C, and indeed the j-invariant of the generic
fiber depends on this constant. This simply reflects the fact that we have not completely fixed the
complex structure of the fourfold; to do so, we must return to the IIB description of the flux
compactification.

Recall that, in the IIB frame, to specify a flux compactification, we need to fix a family X of
CY3s, a point X∗ in the complex structure moduli space of X, integral fluxes h, f ∈ H3(X,Z), and
an axiodilaton τ ∈ H/ SL(2,Z). These data specify a supersymmetric flux compactification if

G3 ≡ f − τh ∈ H2,1 (X∗) . (3.10)

Thus, the fluxes f, h specify a natural choice of j-invariant, namely j(τ). In fact, in F-theory, the
j-invariant of the generic fiber should match j(τ). Comparing to Eq. 3.9, we can accomplish this
by setting j(τ) = j(C) (where j(C) is given in Eq. 3.7) and solving for C(j).

Actually, this prescription is not quite well-defined yet. As a consequence of the definition
of a supersymmetric flux vacuum, the fluxes f, h themselves have restricted Hodge type, and in
particular they satisfy

f, h ∈ H2,1 (X∗)⊕H1,2 (X∗) . (3.11)

We then have that the Z-span of f and h also has restricted Hodge type, so that there exists a
two-dimensional sublattice Hflux ⊂ H3(X,Z) such that

Hflux ≡ Zf + Zh ⊂ H2,1 (X∗)⊕H1,2 (X∗) ; (3.12)

this is the same sublattice which, upon application of the Hodge conjecture, is related to the
modularity of X∗. While it is not true that each choice of fluxes in Hflux yields a physically
acceptable supersymmetric flux compactification, it is true that, for any such choice, there exists
some choice of τ such that Eq. 3.10 is satisfied. In general, different choices of f, h will have a τ
related by an element of GL(2,Z), instead of SL(2,Z), and thus j(τ) will depend on the choice of
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fluxes. To resolve this issue, we simply choose f, h to be primitive lattice vectors, and select the τ
associated to them; all such choices are related by SL(2,Z), so there is no ambiguity in this choice
of j(τ).

Having chosen j(τ), we can now return to Eq. 3.9. Setting j(τ) = j(C), where j(C) is given in
Eq. 3.7, and solving for C yields three solutions for C(j); these solutions are too long to be written
down explicitly, but for rational j they are in general not rational, or even real.

We would like to use the elliptic curves in Eq. 3.9 to explain the modularity of supersymmetric
flux compactifications. For this to work, we need the elliptic curve to be defined over Q whenever
X∗ is. However, in some sense the elliptic curves are as “bad” as could possibly be expected. Even
if j(τ) is rational for some X∗, C(j) need not be, and so the elliptic curve in Eq. 3.9 need not be
either. We will spend the remainder of this paper applying this framework to the example which
we studied in [9]. We will see that the appropriate j-invariants are such that Eq. 3.9 is defined
over Q whenever the threefold is, and therefore we have a hope of interpreting the modularity of
the threefold in terms of the F-theory geometry.

4 A Case Study: The CY3 in P(1, 1, 2, 2, 2)

To combine all of the above ideas, we will return to the example studied in [9]: the (mirror of
the) octic Calabi-Yau hypersurface in P(1, 1, 2, 2, 2), defined as a resolution of a quotient of the
projective polynomial

x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 8ψx1x2x3x4x5 − 2φx4

1x
4
2 = 0. (4.1)

Along the locus ψ = 0, these threefolds support a continuous family of supersymmetric flux vacua,
parameterized by the unfixed coordinate φ [25]. The fourfold used to construct the F-theory
geometry dual to these flux compactifications has been constructed explicitly in [26] as a toric
variety; we will not need to use this construction, and will instead be able to work directly with
the Weierstrass model in Eq. 3.1.

Flux modularity implies that, subject to the usual assumptions, for each rational value of φ, the
underlying threefold is modular, and associated to the Tate twist of a weight-two eigenform. In [9],
we studied several such choices of φ, and found evidence of modularity in each case. In this section,
we will reinterpret these results in the context of the elliptic curves introduced above. Before we
do so, however, we should first discuss the choice of rational model that underpinned our earlier
discussion of the modularity of these varieties.

4.1 Two Rational Models and Their Modularity

As discussed above, whenever we discuss the modularity of a complex manifold, we must first pick a
rational model for the variety. However, given the explicit form of the projective hypersurface in Eq.
4.1, as long as φ is rational there is an obvious choice of rational model: the projective hypersurface
itself defines a perfectly good rational model. This is the rational model whose modularity we
studied in [9].

However, there is another very natural choice of rational model for the same varieties. We
saw in Section 2.4 that a particularly easy way to generate different rational models is to look for
symmetries of the complex manifold that are defined over fields bigger than Q. As it turns out,
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the octic hypersurface has such a symmetry. By rescaling, for instance, x1 → eiπ/4x1, we generate
a symmetry on moduli space that takes (ψ, φ)→ (eiπ/4ψ,−φ).

On the locus ψ = 0, where we are studying supersymmetric flux compactifications, this is simply
a Z2 symmetry generated by φ→ −φ. However, the symmetry map is defined over the cyclotomic
field Q(ζ8) so, although φ → −φ is a symmetry of the moduli space, it is not a symmetry of the
rational varieties. Thus, the two families

x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 2φx4

1x
4
2 = 0, (4.2a)

x8
1 + x8

2 + x4
3 + x4

4 + x4
5 + 2φx4

1x
4
2 = 0, (4.2b)

are isomorphic as complex varieties, but not as rational models, so that Eqs. 4.2a and 4.2b are two
different rational models for the same point in moduli space. For simplicity, we will take φ ≥ 0 for
the remainder of the paper.

In [9], we studied the modularity of the rational model in Eq. 4.2a. However, we could just
as well have studied the modularity of Eq. 4.2b. The results of doing so are listed alongside
the modularity results of [9] in Table 2.3,4 The argument underlying flux modularity is phrased
purely in terms of the complex structure of the underlying complex manifold, and thus we expect
all rational models for a threefold over Q admitting a supersymmetric flux compactification to be
modular (but of course different rational models will in general be related to different modular
forms). This intuition is supported by the results of Table 2, where we find eigenforms associated
to both of the rational models for each value of φ.

φ Form from Eq. 4.2a Form from Eq. 4.2b Relative Twist

0 64.2.a.a 64.2.a.a χ4.b

1/2 24.2.a.a 48.2.a.a χ4.b

3/5 400.2.a.e 200.2.a.c χ4.b

11/8 57.2.a.c 912.2.a.b χ4.b

2 192.2.a.a 192.2.a.c χ4.b

3 32.2.a.a 32.2.a.a χ4.b

7 48.2.a.a 24.2.a.a χ4.b

9 40.2.a.a 80.2.a.a χ4.b

Table 2: The weight-two eigenforms associated to Eqs. 4.2a and 4.2b for the values of φ in [9], as
well as the relative twist between the two forms. We see that, for all of these points, the relative
twist is χ4.b.

As different rational models, it is reasonable to expect that the modular forms associated to
Eqs. 4.2a and 4.2b might be related by a twist. However, the coordinate redefinition that takes us

3The modular forms associated to Eq. 4.2a here differ slightly from those in version 2 of [9]. For more details on
this discrepancy, refer to version 3 of [9].

4Here and throughout, we refer to individual eigenforms by their LMFDB labels [22]. These labels indicate the
level and weight of each eigenform.
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between these two rational models is not defined over a quadratic imaginary field; it is therefore
unclear how we should pick the twist. Table 2 provides a surprisingly simple answer. For each φ we
studied, the modular forms associated to Eq. 4.2b and 4.2a are related by twisting by χ4.b, exactly
the same Dirichlet character we encountered in Section 2.3! This striking coincidence, which we
will shortly be able to explain, is one hint that the modularity of these varieties should be able to
be interpreted in terms of an auxiliary geometric object that transforms more simply.

4.2 The Elliptic Curves

Let us now apply the discussion of Section 3 to this example. The first thing we need to do is
compute the dilaton associated to the flux compactifications. Full details are left to Appendix A,
but we will sketch the calculation here. In terms of the fluxes f, h and the periods Π, τ is given as
a function of φ as [25]

τ(φ) =
f · ∂ψΠ

h · ∂ψΠ
. (4.3)

Using the primitive flux vectors

f =



2

0

−2

−2

1

−1


, h =



2

0

0

0

0

1


(4.4)

and the analytic properties of the periods Π described in [27], it is straightforward to compute that

τ(φ) = i
u−1/2(−φ)

u−1/2(φ)
, (4.5)

where u−1/2(φ) is defined in [27] and admits a series expansion given Eq. A.19. Finally, comparing
with the periods of the famous Legendre family of elliptic curves, we compute

j(φ) ≡ j [τ(φ)] = 64

(
4φ2 − 3

)3
φ2 − 1

. (4.6)

We have graphed j(φ) in Figure 1. Just from j(φ), we already see something interesting: whenever
φ is rational, so is j(φ). The converse is not necessarily true: although each rational value of j(φ)
is realized for some φ, in general the appropriate value of φ will not be rational.

Returning to Eq. 3.9, we can set j(C) equal to j(φ) to find C(φ). Doing so yields three solutions:
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ϕ
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j(ϕ)

Figure 1: The j-invariant of the elliptic curves associated to supersymmetric flux vacua, parame-
terized by φ as in Eq. 4.6.

C1(φ) =
9

4φ2
(4.7a)

C2(φ) =
18
(

4φ4 − 13φ2 −
√

16φ8 − 40φ6 + 33φ4 − 9φ2 + 9
)

64φ4 − 144φ2 + 81
(4.7b)

C3(φ) =
18
(

4φ4 − 13φ2 +
√

16φ8 − 40φ6 + 33φ4 − 9φ2 + 9
)

64φ4 − 144φ2 + 81
. (4.7c)

Somewhat miraculously, C1(φ) is a rational function of φ! Thus, if we set C = C1(φ) in Eq. 3.9,
we find a family of elliptic curves,

y2 = x3 +

(
9

4φ2
− 3

)
x+

(
9

4φ2
− 2

)
. (4.8)

Before we move on, it is worth considering what we have done. We have “derived” a one-
parameter family of elliptic curves, parameterized by our modulus φ, such that the j-invariant
matches the j-invariant of the flux compactifications on the mirror of the CY hypersurface in
P(1, 1, 2, 2, 2), and moreover such that the elliptic curves are defined over Q whenever φ is rational.
This means that for each rational value of φ, we get a rational elliptic curve, and therefore a weight-
two eigenform. In general, these eigenforms will be twists of the eigenforms we found in [9]. In
some sense, this is the best outcome that we have any right to expect. After all, the discussion
in Section 3 is phrased purely in the language of complex geometry, without any reference to a
rational structure in either the threefold or the fourfold. In this sense, it is surprising that the
elliptic curves are rational in the first place, and not surprising that we didn’t land on the “right”
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rational model. After all, all rational models for the same elliptic curve are isomorphic over C, so
to F-theory as it is usually understood they should be identical!

However, we can do even better. As φ→ 0 our curve becomes badly behaved: the Weierstrass
coefficients f and g (which after projectivizing h away depend only on φ) diverge. On the other
hand, j(φ) is perfectly well-defined in this limit, so we don’t have a genuine singularity. Instead,
we have simply picked bad coordinates. The Weierstrass variables x, y aren’t a good description of
the geometry in the φ→ 0 limit.

We can fix this by simply performing a φ-dependent rescaling of y. As discussed in Section 2.3,
under the transformation y → a1/2y, the Weierstrass form y2 = x3 + fx + g gets transformed to
y2 = x2 + a2fx+ a3g, so our Weierstrass form becomes

y2 = x3 +

(
9

4φ2
− 3

)
a2x+

(
9

4φ2
− 2

)
a3. (4.9)

Now we will need to cheat a little bit. We identified the point φ = 0 with the eigenform 64.2.a.a,
which is associated to the elliptic curve

y2 = x3 + x. (4.10)

We can pick a such that, in the φ→ 0 limit, Eq. 4.9 becomes Eq. 4.10 if we find an a(φ) such that

lim
φ→0

[(
9

4φ2
− 3

)
a2

]
= 1 (4.11a)

lim
φ→0

[(
9

4φ2
− 2

)
a3

]
= 0. (4.11b)

The easiest way to accomplish this is to set

a(φ) =
2φ

3
(4.12)

so that our family of elliptic curves becomes

y2 = x3 +

(
1− 4φ2

3

)
x+

(
2φ

3
− 16φ3

27

)
. (4.13)

We will call the curve associated to each φ Eφ.
It is straightforward to check, with the help of e.g. LMFDB [22], that this family of elliptic

curves correctly reproduces the modular forms associated to Eq. 4.2a for each value of φ studied
in [9]. In Table 3 we have listed the LMFDB label of the elliptic curve for each of these values of φ,
as well as its Weierstrass coefficients and the associated modular form; we find excellent agreement
with Table 2.

What about our other rational model, Eq. 4.2b? By picking a ∼ φ in Eq. 4.12, we have
explicitly broken the φ → −φ symmetry of our complex structure moduli space. We could just
have easily have picked

a = −2

3
φ (4.14)
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φ LMFDB label Weierstrass Coefficients of Eφ Associated form

0 64.a4 {1, 0} 64.2.a.a

1/2 24.a5 {2/3, 7/27} 24.2.a.a

3/5 400.e4 {13/25, 34/125} 400.2.a.e

11/8 57.c3 {−73/48,−539/864} 57.2.a.c

2 192.a3 {−13/3,−92/27} 192.2.a.a

3 32.a1 {−11,−14} 32.2.a.a

7 48.a2 {−193/3,−5362/27} 48.2.a.a

9 40.a1 {−107,−426} 40.2.a.a

Table 3: Elliptic curves from Eq. 4.13 and their associated modular forms for the φ points listed
in Table 2. The notation {f, g} means the elliptic curve y2 = x3 + fx+ g.

to find the family

y2 = x3 +

(
1− 4φ2

3

)
x−

(
2φ

3
− 16φ3

27

)
, (4.15)

which is of course simply the image of Eq. 4.13 under φ → −φ. We will call these elliptic curves
E ′φ. Again, we can check whether the forms associated to these curves match those associated to
Eq. 4.2b in Table 2; the results are summarized in Table 4, and again we find matching for all φ.

φ LMFDB label Weierstrass Coefficients of E ′φ Associated form

0 64.a4 {1, 0} 64.2.a.a

1/2 48.a5 {2/3,−7/27} 48.2.a.a

3/5 200.c4 {13/25,−34/125} 200.2.a.c

11/8 912.b3 {−73/48, 539/864} 912.2.a.b

2 192.c3 {−13/3, 92/27} 192.2.a.c

3 32.a2 {−11, 14} 32.2.a.a

7 24.a2 {−193/3, 5362/27} 24.2.a.a

9 80.a1 {−107, 426} 80.2.a.a

Table 4: Elliptic curves from Eq. 4.15 and their associated modular forms for the φ points listed
in Table 2. The notation {f, g} means the elliptic curve y2 = x3 + fx+ g.

Thus, we have two rational models for the threefolds in Eqs. 4.2a and 4.2b, and two rational
families of elliptic curves in Eqs. 4.13 and 4.15. For the φ points studied in [9], we have checked

15



that the modular forms associated to the curves in 4.13 exactly match those associated to Eq. 4.2a,
and similarly the forms associated to Eq. 4.15 match those associated to Eq. 4.2b. In fact, we
have checked many more points. For all φ = n

d where 1 ≤ n, d < 2, 000 (in lowest terms), we have
checked that these two sets of families continue to match each other: the Fourier coefficients of
the modular form associated to the elliptic curve are compatible with the ζ-function factorizations
in [23] and version 3 of [9]. This constitutes 2,431,574 examples for each set of rational models.
Thus, we conjecture that the modular forms associated to Eqs. 4.2a and 4.2b are given by the forms
associated to the elliptic curves associated to the modular forms in 4.13 and 4.15, respectively, for
all rational φ. We therefore see that in some sense the arithmetic structure associated to these flux
compactifications varies analytically with φ.

This is our main result. By “cheating” at one value of φ to fix the complex structure of
the F-theory fourfold, we have managed to reproduce the modularity of the CY hypersurface in
P(1, 1, 2, 2, 2). Thus, not only does the F-theory prescription of [13] describe the complex geometry
of the IIB threefold, it also describes its arithmetic geometry. As emphasized before, there was no
real reason for this to happen: the elliptic fibers of the fourfold are a priori not defined over Q
at all, but instead over a function field. For the supersymmetric flux compactifications considered
here, these complications are all avoided, and we actually find a simple family of rational elliptic
curves.

Of course, all of this is subject to the somewhat artificial rescaling in Eqs. 4.12 and 4.14. The
need for such a rescaling is a crucial step in the argument, and is why the relationship between
the modularity of the flux compactification and the F-theory geometry is more subtle than was
anticipated in [10]. These rescalings are simple quadratic twists of the generic fiber, so they twist
the modular form associated to each φ by a (φ-dependent) Dirichlet character. We picked this
twist by matching on to the modular form we wanted at φ = 0, so we only got the “right” rational
models out after putting one model in by hand. However, this was simply a choice; we could have
picked a different twist, or even no twist at all. Different choices of a(φ) would presumably yield the
modular forms associated to different rational models for the underlying threefold. There is quite
possibly a rational model for the CY3 in P(1, 1, 2, 2, 2) whose associated eigenforms match those of
Eq. 4.8, but it is not the rational model we considered in [9]. It would be quite enlightening to see
if one could engineer the rational models for the threefold from the rational model for the elliptic
curves, but we will not attempt to do so here.

4.3 Bigger Number Fields

So far we have restricted ourselves to rational values of φ, to compare with [9, 23]. However, with
the conjecture of the previous section, we can now predict the automorphic forms associated to the
CY3 in P(1, 1, 2, 2, 2) for certain irrational values of φ. Indeed, whenever φ is in a number field
K, Eq. 4.13 provides an elliptic curve defined over K (and with j-invariant also in K). For K
such that the modularity of elliptic curves over K is well-understood, we can therefore associate an
automorphic form to the elliptic curve Eφ exactly as we did before, and by the same logic as above
we can conjecture that the rational model Eq. 4.2a should be associated to the same automorphic
form. For simplicitly, in this section we will focus on Eq. 4.13, and correspondingly the threefolds
in Eq. 4.2a, but the exact same reasoning applies equally well to Eqs. 4.15 and 4.2b.

It is known that elliptic curves over real quadratic fields are associated to Hilbert modular
forms. Thus, when φ is in such a field, we can find an elliptic curve from Eq. 4.13, and plug it in to
LMFDB [22] to find one or more Hilbert eigenforms. Some examples are shown in Table 5. While
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we have not computed the ζ-functions of these threefolds over such number fields, a framework for
doing so was laid out in e.g. [28, 29]; we predict that applying that framework to this example will
reproduce the Hilbert modular forms listed in the table.

φ Weierstrass coefficients of Eφ LMFDB Label Associated Hibert Form(s)
√

2
{
−5

3 ,−
14
27

√
2
}

2.2.8.1-256.1-c4 2.2.8.1-256.1-c
√

2 + 1
{
−3− 8

3

√
2,−94

27 −
62
27

√
2
}

2.2.8.1-1024.1-l3 2.2.8.1-256.1-l, 2.2.8.1-256.1-p

1
2

√
2

{
1
3 ,

5
27

√
2
}

2.2.8.1-1024.1-g1 2.2.8.1-256.1-g, 2.2.8.1-256.1-i
√

3 {−3,−10
9

√
3} 2.2.12.1-1024.1-r3 2.2.12.1-1024.1-d, 2.2.12.1-1024.1-r

1
2

√
3 {0, 1

9

√
3} 2.2.12.1-256.1-c1 2.2.12.1-256.1-c

−1
2

√
3 {0,−1

9

√
3} 2.2.12.1-256.1-c2 2.2.12.1-256.1-c

1
4

√
15 {−1

4 ,
1
36

√
15} 2.2.60.1-8.1-b1 2.2.60.1-8.1-b, 2.2.60.1-8.1-d

Table 5: The elliptic curves obtained from Eq. 4.13 for φ valued in real quadratic fields. For each φ,
we give the Weierstrass coefficients of the elliptic curve, its LMFDB label, and its associated Hilbert
eigenform(s). As before, the notation {f, g} corresponds to the Weierstrass form y2 = x3 + fx+ g.

Similarly, elliptic curves over imaginary quadratic fields are associated to Bianchi modular forms.
In Table 6, we have listed several examples of quadratic imaginary φ, as well as their associated
Bianchi modular forms. To the best of our knowledge, there are no known examples of modular
threefolds over quadratic imaginary fields. In light of the above discussion, these values of φ provide
natural candidates for the first such examples.

Finally, we note that elliptic curves over all CM number fields (such as e.g. the cyclotomic
fields) were proven to be potentially modular in [30]. As the modularity of such elliptic curves
becomes better understood, Eq. 4.13 provides a natural way to associate (Tate twists of) whatever
automorphic objects get associated to these elliptic curves to threefolds.

5 Conclusion

We have argued that the F-theory construction of [13], when applied to the one-parameter fam-
ily of supersymmetric flux compactifications on the CY hypersurface in P(1, 1, 2, 2, 2), yields a
one-parameter family of elliptic curves that reproduces the modular forms associated to the un-
derlying Calabi-Yau threefold. In this way, we find a direct relationship between the physical flux
compactification and the arithmetic properties of the underlying threefold.

Nevertheless, we have not proven that the threefold is modular, and associated to the same
eigenform as the generic fiber. Doing this would involve computing the ζ-function of the threefold
directly from the Weierstrass form of the fourfold. The CY3 in P(1, 1, 2, 2, 6), which also admits
a one-parameter family of supersymmetric flux compactifications [25, 31], provides a particularly
natural candidate for this calculation. One advantage it enjoys over the present model is the relative
simplicity of its fourfold lift in F-theory.

Even if the calculation of the ζ-function could be done, we still would not have a satisfactory
physical explanation of the modularity of flux vacua. To compute the Fourier coefficients of a
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φ Weierstrass coefficients of Eφ LMFDB Label Associated Bianchi Form(s)

i {7
3 ,

34
27 i} 2.0.4.1-1024.1-a4 2.0.4.1-1024.1-a

i+ 1 {−8
3 i+ 1,−14

27 i+ 50
27} 2.0.4.1-160.1-a2 2.0.4.1-160.1-a, 2.0.4.1-160.2-a

2i {19
3 ,

164
27 i} 2.0.4.1-6400.2-f4 2.0.4.1-6400.2-f

1
2 i {4

3 ,
11
27 i} 2.0.4.1-6400.2-e7 2.0.4.1-6400.2-e

2i+ 1 {−16
3 i+ 5, 68

27 i+ 194
27 } 2.0.4.1-512.1-a1 2.0.4.1-512.1-a, 2.0.4.1-512.1-b

i
√

2 {11
3 ,

50
27 i
√

2} 2.0.8.1-2304.2-d5 2.0.8.1-2304.2-d, 2.0.8.1-2304.2-f

i
√

2 + 1 {−8
3 i
√

2 + 7
3 ,

2
27 i
√

2 + 98
27} 2.0.8.1-3072.2-b1 2.0.8.1-3072.1-b, 2.0.8.1-3072.2-b

Table 6: The elliptic curves obtained from Eq. 4.13 for φ valued in imaginary quadratic fields.
For each φ, we give the Weierstrass coefficients of the elliptic curve, its LMFDB label, and its
associated Bianchi eigenform(s). As before, the notation {f, g} corresponds to the Weierstrass
form y2 = x3 + fx+ g.

modular form from a projective variety, we must reduce the defining polynomial modulo various
primes. Can we ever motivate this reduction in string theory? Although various references have
made progress towards computing the L-functions of varieties from string theory (see e.g. [32–35]),
to date no clear, string theoretic motivation for the mod-p reductions of a threefold or other variety
have ever been given.

Relatedly, as emphasized throughout the paper, in physics we typically do not imagine choosing
a rational model for our CY3s. What do different choices of rational model represent physically?
Is there some subtle (and hitherto unidentified) physical observable which distinguishes between
them? If so, then we are in some sense always picking a rational model, albeit unknowingly. The
L-function calculation of [34,35] supports this idea, at least for elliptic curves, but it is still unclear
how exactly to reconcile our usual intuition with these results.

Actually, even asking these questions presupposes some new conceptual advances. As demon-
strated clearly by our main example, supersymmetric flux vacua need not be defined over number
fields. However, to discuss modularity, we need to restrict ourselves to threefolds defined over
number fields. While the Hodge conjecture implies that rank-two attractors (and therefore super-
symmetric flux compactifications on threefolds with h2,1 = 1) are always defined over number fields,
clearly this argument does not apply to more general flux vacua. Does some still-to-be-understood
physics distinguish the subset of flux vacua defined over number fields from the more generic ones?
Without an affirmative answer to this question, it is hard to see how flux modularity can ever have
a satisfying physical explanation. We hope that such an answer exists, and that in finding this
answer we can expand the growing relationship between string theory and arithmetic geometry.
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A Deriving Eq. 4.6

In this appendix we will derive Eq. 4.6. Our starting points are the periods of the mirror of the CY3
in P(1, 1, 2, 2, 2), as studied in [27]. The CY3 is equipped with a nowhere vanishing holomorphic
threeform Ω, and the periods are defined by the integrals of the Ω over some basis for H3(X).
The holomorphic threeform Ω, and therefore its periods, are determined by the Picard-Fuchs (PF)
equations, a complicated system of coupled nonlinear PDEs which in our example are given by

∂3Ωψ,φ

∂ψ3
− 32ψ3∂

3Ωψ,φ

∂ψ2∂φ
− 96ψ2∂

2Ωψ,φ

∂ψ∂φ
− 32ψ

∂Ωψ,φ

∂φ
=0,

16(φ2 − 1)
∂2Ωψ,φ

∂φ2
+ ψ2∂

2Ωψ,φ

∂ψ2
+ 8ψφ

∂2Ωψ,φ

∂ψ∂φ
+ 3ψ

∂Ωψ,φ

∂ψ
+ 24φ

∂Ωψ,φ

∂φ
+ Ωψ,φ = 0,

(8ψ4 + φ+ 1)(8ψ4 + φ− 1)
∂4Ωψ,φ

∂ψ3∂φ
+ 128ψ3(8ψ4 + φ)

∂3Ωψ,φ

∂ψ2∂φ
+ 50ψ3∂

2Ωψ,φ

∂ψ2
+

16ψ2(148ψ4 + 13φ)
∂Ωψ,φ

∂ψ∂φ
+ 30ψ2∂Ωψ,φ

∂ψ
+ 16ψ(44ψ4 + 3φ)

∂Ωψ,φ

∂φ
+ 2ψΩψ,φ = 0.

(A.1)

This system has a six-dimensional space of solutions, which matches the dimension of H3(X).
An explicit set of solutions was found in [27] in terms of auxiliary functions ul(φ), defined as

the solutions of the second-order ODEs

(φ2 − 1)
d2ul
dφ2

− (2l − 1)φ
dul
dφ

+ l2ul = 0, (A.2)

for l ∈ Z/4, subject to the boundary condition

ul(0) =
2lπ

1
2 exp l πi

2

Γ(1 + l
2)Γ(1

2 −
l
2)
. (A.3)

For l 6∈ Z, which is the case that we will be the most interested in, ul(φ) and ul(φ) are linearly
independent, and span the solution space; for φ > 1, they are given explicitly as [27]

ul(φ) = (2φ)l 2F1(− l
2
,

1− l
2

; 1;
1

φ2
),

ul(−φ) =
sin lπ

π
(2φ)l

∞∑
n≥0

(− l
2)n(1−l

2 )n

(n!)2

1

φ2n
·
[
− log(−φ2) + ψ(0)(− l

2
+ n)

+ ψ(0)(
1− l

2
+ n)− 2ψ(0)(n+ 1)

]
− cos lπ(2φ)l 2F1(− l

2
,

1− l
2

; 1;
1

φ2
).

(A.4)

In the domain ∣∣∣ 8ψ4

φ± 1

∣∣∣ < 1, (A.5)
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[27] provides an expansion for a basis $j(ψ, φ) (for j ∈ 0, 1, · · · , 5) of periods in terms of the ul:

$j(ψ, φ) = −1

4

∞∑
m=1

(−1)m(−1)mj/4Γ(m4 )

Γ(m)Γ3(1− m
4 )

(212ψ4)
m
4 u−m

4
((−1)jφ). (A.6)

The fluxes are elements of the integral cohomology H3(X,Z), so to study them we must express
the periods in an integral symplectic basis. An integral symplectic basis for H3(X,Z) is a basis
{Aa, Ba} of cycles (for a ∈ 0, · · · , h2,1) such that

Aa ·Ab = 0 = Ba ·Bb, Aa ·Bb = δab. (A.7)

We write the periods as

Ga =

∫
Aa

Ω, za =

∫
Ba

Ω. (A.8)

It is conventional to package these periods into a column vector as

Π = (G0,G1,G2, z0, z1, z1)> . (A.9)

We also write the Poincare dual integral symplectic basis of threeforms as

β = (β0, β1, β2, α0, α1, α2) , (A.10)

where α is dual to A and β is dual to B. Up to an irrelevant overall constant, we have

Π = S$, (A.11a)

where [27]

S = (2πi)3 ·



−1 1 0 0 0 0

1 0 1 −1 0 −1

3
2 0 0 0 −1

2 0

1 0 0 0 0 0

−1
4 0 1

2 0 1
4 0

1
4

3
4 −1

2
1
2 −1

4
1
4


. (A.11b)

We can then write the holomorphic threeform itself as

Ω = βS$. (A.12)

Let us now turn to the ψ = 0 locus, where we expect to find supersymmetric flux vacua [25].
On this locus, the periods (as given in Eq. A.6) vanish. We get around this by defining a rescaled
threeform

ΩR =
1

ψ
Ω, (A.13)
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with rescaled periods $R
j and ΠR. We have

$R
j (φ) = −1

4

{
−

(−1)j/4 Γ
(

1
4

)
Γ
(

3
4

)3 u−1/4

[
(−1)j φ

]
+ 64

(−1)j/4

Γ
(

1
2

)2 ψu−1/2

[
(−1)j φ

]
+ · · ·

}
(A.14a)

= 2
(−1)j/4 Γ

(
1
4

)
Γ
(

3
4

)3 u−1/4

[
(−1)j φ

]
, (A.14b)

and as before

ΠR = s$R (A.15a)

ΩR = βS$R. (A.15b)

We can now look for fluxes f, h satisfying Eq. 3.11, i.e. elements of H3(X,Z) that are orthogonal
to ΩR. Direct calculation shows that a basis for such vectors is

V1 = (2, 0, 0, 0, 0, 1)> and V2 = (2, 0,−2,−2, 1,−1)>. (A.16)

These are the generators of the flux lattice Hflux defined above. From [25], we have that the
axiodilaton is given by

τflux(φ) =
f · ∂ψΠR

h · ∂ψΠR
. (A.17)

Setting f = V2, h = V1 and using Eq. A.14a to take the derivatives, we find that

τflux(φ) = i
u−1/2(−φ)

u−1/2(φ)
, (A.18)

where

u− 1
2
(φ) = (2φ)−

1
2 2F1

(
1

4
,

3

4
; 1;

1

φ2

)
(A.19a)

u− 1
2
(−φ) = − 1

π
(2φ)−

1
2

∞∑
n≥0

(1
4)n(3

4)n

(n!)2

1

φ2n
·

[
− log

(
−φ2

)
+ ψ(0)

(
1

4
+ n

)

+ ψ(0)

(
3

4
+ n

)
− 2ψ(0)(n+ 1)

]
. (A.19b)

We now need to compute j [τflux(φ)] . However, this is quite nontrivial, given that u−1/2(−φ)
does not admit a simple expression. The easiest way we have found to do this calculation is to
compare to the periods of the Legendre family of elliptic curves, defined by the (long) Weierstrass
form

y2 = x(x− 1)(x− λ). (A.20)

As a function of λ, these curves have j-invariant

j(λ) = 256
[λ (λ− 1)− 1]3

λ2 (λ− 1)2 . (A.21)
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We will find a function λ(φ) such that the modular parameter τ(λ) of these elliptic curves exactly
reproduces Eq. A.18, which will let us find j(φ) in closed form.

We begin with the PF equation for the Legendre family, given by [36]

λ(λ− 1)
d2Ω

dλ2
+ (2λ− 1)

dΩ

dλ
+

1

4
Ω = 0. (A.22)

In a neighborhood of λ = 0, the periods can be written as

π0(λ) =

∞∑
n=0

(
−1/2

n

)2

λn = 2F1(
1

2
,

1

2
; 1;λ),

π1(λ) =
1

πi
(π0(λ) log λ+ h(λ))− log 16

πi
π0(λ),

(A.23)

where [36, 37]

h(λ) =
1

2
λ+

21

64
λ2 +

185

768
λ3 + · · · . (A.24)

The modular parameter of these curves is given by

τLegendre(λ) =
π1(λ)

π0(λ)
. (A.25)

To match Eq. A.21 we must have that

j[τLegendre(λ)] = 256
[λ (λ− 1)− 1]3

λ2 (λ− 1)2 . (A.26)

Both π0(λ) and u−1/2(φ) are given in terms of 2F1 hypergeometric functions. Moreover, there
is a standard relationship between hypergeometric functions of the form [38–40]

2F1(
1

2
,

1

2
; 1;λ) = (1− λ)−

1
2 2F1(

1

4
,

3

4
; 1;

4λ

(1 + λ)2
). (A.27)

The left-hand side of this equation appears in π0(λ) and, subject to the identification

1

φ2
=

4λ

(λ+ 1)2 , (A.28)

the hypergeometric function on the right-hand side is exactly u−1/2(φ), so this equation provides a
map between π0(λ) and u−1/2(φ). Indeed, we have that

u− 1
2
(φ) = λ

1
4 (1− λ)

1
2 (1 + λ)−

1
2 2F1(

1

2
,

1

2
; 1;λ) = λ

1
4 (1− λ)

1
2 (1 + λ)−

1
2π0(λ) (A.29a)

u− 1
2
(−φ) = −i λ

1
4 (1− λ)

1
2 (1 + λ)−

1
2 (π1(λ)− π0(λ)). (A.29b)

Plugging into Eq. A.18, we have that

τflux(φ) =
λ

1
4 (1− λ)

1
2 (1 + λ)−

1
2 (π1(λ)− π0(λ))

λ
1
4 (1− λ)

1
2 (1 + λ)−

1
2π0(λ)

=
π1(λ)

π0(λ)
− 1 = τLegendre(λ)− 1, (A.30)
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where λ is determined in terms of φ by Eq. A.28. We then have that

j [τflux(φ)] = j [τLegendre(λ)] . (A.31)

Plugging Eq. A.28 into Eq. A.21, we find that

j(φ) = 64

(
4φ2 − 3

)3
φ2 − 1

, (A.32)

which completes our derivation of Eq. 4.6.
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